
MODULES DETERMINED BY THEIR ANNIHILATOR CLASSES

SIMION BREAZ AND JAN TRLIFAJ

Abstract. We present a classification of those finite length modules X over
a ring A which are isomorphic to every module Y of the same length such that

Ker(HomA(−, X)) = Ker(HomA(−, Y )), i.e. X is determined by its length and

the torsion pair cogenerated by X. We also prove the dual result using the
torsion pair generated by X. For A right hereditary, we prove an analogous

classification using the cotorsion pair generated by X, but show that the dual
result is not provable in ZFC.

1. Introduction

Let A be a ring. For a class of (right A-) modules C, we consider the following
annihilator classes
◦C = {M ∈ Mod-A | HomA(M, C) = 0}, C◦ = {M ∈ Mod-A | HomA(C,M) = 0},
and
⊥C = {M ∈ Mod-A | Ext1A(M, C) = 0}, C⊥ = {M ∈ Mod-A | Ext1A(C,M) = 0}.

The annihilator classes of the form ◦C for some C ⊆ Mod-A are well-known to
coincide with the torsion classes of modules, i.e., the classes closed under direct
sums, extensions, and homomorphic images. Dually, C◦ are the torsion-free classes,
i.e., the classes closed under direct products, extensions, and submodules, [9, §VI.2].

The annihilator class ⊥C (C⊥) is closed under direct summands, extensions, direct
sums (direct products), and contain all projective (injective) modules, but it is not
characterized by these closure properties in general (see Examples 1 and 2 below).
This is the reason why it is hard to compute the annihilator classes of the form ⊥C
and C⊥ explicitly, and in some cases (e.g., for the class of all Whitehead groups ⊥Z),
their structure depends on additional set-theoretic assumptions, cf. [3, Chap.XIII].

In this paper we address the more tractable problem of comparing rather than
computing the annihilator classes, and of characterizing modules by their annihila-
tor classes.

Recall that in particular cases, there are close relations among some of the anni-
hilator classes. For example, if C consists of finitely presented modules of projective
dimension ≤ 1, then the classes C⊥ are exactly the tilting torsion classes of mod-
ules, [6, §6.1]. If moreover A is an artin algebra then C⊥ are exactly the torsion
classes closed under direct products, pure submodules, and containing all injective
modules, cf. [2, 3.7]. In this case the Auslander-Reiten formula provides a precise
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relation, namely X⊥ = ◦(τX) for each finitely presented module X of projective
dimension ≤ 1 where τ denotes the Auslander-Reiten translation. Dually, if Y is
a finitely presented module of injective dimension ≤ 1, then ⊥Y = (τ−Y )◦, see [1,
IV.2].

Surprisingly, the conditions ◦X ⊆ ◦Y and X⊥ ⊆ Y ⊥ (and the dual ones) are
closely related even for general modules. We show this by expressing these condi-
tions in terms of existence of certain chains of submodules. Thus we prove equiva-
lence of the two conditions for certain finite length modules (see Theorem 7 below).

Of course, in general we may have X � Y even if ◦X = ◦Y and X⊥ = Y ⊥ (just
take Y = X2 where X is any non-zero module of finite length). Moreover, this is
possible even if we impose the condition “X and Y have the same length”: If X
is indecomposable such that Ext1A(X,X) 6= 0, there exists Y � X2 such that X
embeds in Y and Y/X ∼= X; it is not hard to see that ◦X2 = ◦Y , and X2⊥ = Y ⊥

if A is hereditary (see also [8, Example 5.1]).
Developing further some of the ideas from [8] and [12], we characterize in Theo-

rem 21 those modules X of length lg(X) < ∞ which are isomorphic to each finite
length module Y such that lg(X) = lg(Y ) and ◦X = ◦Y . The corresponding ver-
sion for X⊥ = Y ⊥ is proved in Theorem 24 assuming that A is a right hereditary
ring. The dual of Theorem 24 fails by Example 28. However, Theorem 21 can be
dualized; this is proved in Theorem 27.

2. Comparing the annihilator classes

We start by two examples showing that unlike the classes of the form ◦C and
C◦, the annihilator classes ⊥C and C⊥ are not characterized by their basic closure
properties in general.

Example 1. This is an example of a class D of modules closed under direct sum-
mands, direct sums, extensions, and containing all projective modules, but such
that D 6= ⊥C for any class of modules C.

We consider the setting of (abelian) groups (= Z-modules), and D will be the
class of all ℵ1-free groups (i.e., the groups M such that each countable subgroup
of M is free). Clearly D contains all free groups, and it is closed under direct
summands and extensions. The Baer-Specker theorem says that any direct product
of copies of Z is ℵ1–free (cf. [3, IV.2.8]). By [5, Lemma 1.2], if C is a group such
that Ext1Z(P,C) = 0 for any direct product P of copies of Z, then C is a cotorsion
group, so ⊥{C} contains all torsion-free groups. In particular the group of all
rational numbers Q ∈ ⊥{C}, but Q is not ℵ1–free. So there is no class of groups C
such that D = ⊥C.

Example 2. Now we give an example of a class D of modules closed under direct
summands, direct products, extensions, and containing all injective modules, but
such that D 6= C⊥ for any class of modules C. In this example, we will assume that
there are no ω-measurable cardinals (this holds under the Axiom of Constructibility
V = L, for example, see [3, VI.3.14]).

We will work in the setting of (right A-) modules where A is a simple non-artinian
von Neumann regular ring such that A has countable dimension over its center K.
(Note that K is a field by [7, Corollary 1.15]). For a concrete example of such ring,
we can take A = lim−→M2n(K), the direct limit of the direct system of full matrix
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K-algebras where K is a field and

K
f0
↪→M2(K)

f1
↪→ . . .

fn−1
↪→ M2n(K)

fn
↪→M2n+1(K)

fn+1
↪→ . . . ,

where fn : M2n(K) ↪→ M2n+1(K) is the block-diagonal embedding defined by
fn(A) = ( A 0

0 A ).
D will be the class of all modules that have no maximal submodules. Clearly

D is closed under direct summands and extensions. Moreover, A is a hereditary
ring, and Ext1A(M,N) 6= 0 whenever M , N are non-zero finitely generated and M
is non-projective by [11, Lemma 3.2 and Proposition 3.3]. Baer’s Criterion then
yields that D contains all injective modules.

We claim that D is closed under direct products. Note that each simple module
is slender by [10, Lemma 3.7]. Let κ be a (non-ω-measurable) cardinal and consider
a sequence (Dα | α < κ) of elements of D. By [3, Corollary III.3.4], any non-zero
homomorphism from

∏
α<κDα to a simple module S is necessarily non-zero on the

direct sum
⊕

α<κDα, and hence on some Dα, in contradiction with Dα ∈ D. This
proves our claim.

Finally assume that D = C⊥ for a class of modules C. Since D is closed under
direct sums and A is hereditary, the class D is 1-tilting by [6, Corollary 6.1.7], so
D = Mod-A by [6, Corollary 6.2.4], a contradiction.

In the next few lemmas, we will work with particular chains (Yα | α ≤ σ)
consisting of submodules of a module Y (where σ is an ordinal).

A chain (Yα | α ≤ σ) is called a strictly increasing continuous chain of submod-
ules of Y provided that Y0 = 0, Yα ( Yα+1 for each α < σ, Yα =

⋃
β<α Yβ for each

limit ordinal α ≤ σ, and Yσ = M .
Dually, (Yα | α ≤ σ) is a strictly decreasing continuous chain of submodules of

Y provided that Y0 = Y , Yα ) Yα+1 for each α < σ, Yα =
⋂

β<α Yβ for each limit
ordinal α ≤ σ, and Yσ = 0.

The following result was proved in [12, Theorem 2] for finite rank torsion-free
abelian groups. Here we simplify our notation by writing ◦X instead of ◦{X} for a
module X, and similarly for the other annihilator classes.

Lemma 3. Let A be a ring, and X, Y be non-zero modules. Then the following
conditions are equivalent:

a) ◦X ⊆ ◦Y (that is, Y ∈ (◦X)◦).
b) There exist a strictly decreasing continuous chain (Yα | α ≤ σ) of sub-

modules of Y , and A-homomorphisms ϕα : Yα → X (α < σ), such that
Yα+1 = Ker(ϕα) for all α < σ.

Moreover, if X =
⊕

γ<κXγ is any direct sum decomposition of X, then we can
choose each homomorphism ϕα so that Im(ϕα) ⊆ Xγ for some γ < κ.

Proof. a)⇒b) We construct the chain (Yα | α ≤ σ) by induction on α. Let Y0 = Y .
Assume Yα is defined and Yα 6= 0. Then HomA(Yα, Y ) 6= 0, so there exists a non-
zero homomorphism ϕα : Yα → X. Without loss of generality, we can suppose
that Im(ϕα) ⊆ Xγ for some γ < κ, and put Yα+1 = Ker(ϕα) ( Yα. If α is a limit
ordinal, we define Yα =

⋂
β<α Yβ . Since the Yαs form a strictly decreasing chain,

our construction must stop at some σ, hence Yσ = 0.
b)⇒a) Suppose that ϕ : U → Y is a non-zero homomorphism. Then there is a

least index α < σ such that Im(ϕ) ⊆ Yα. So Im(ϕ) * Yα+1, and 0 6= ϕαϕ : U → X.
Therefore ◦X ⊆ ◦Y . �
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Of course, the strictly decreasing chain in condition b) is always finite when Y
is artinian. But if Y is only assumed noetherian then an infinite chain is needed in
general in condition b) even if X has finite length.

For a simple example, consider the case of the abelian groups X = Zp = Z/pZ
(p a prime integer) and Y = Z. Then ◦X is the class of all groups containing
no maximal subgroup of index p, and ◦Y the (larger) class of all groups having
no non-zero free summands. Notice that there exists exactly one chain satisfying
condition b), namely Yn = Zpn for n < ω and Yω = 0.

We could have expressed condition b) of Lemma 3 simply in terms of the existence
of a strictly decreasing continuous chain of submodules of Y , (Yα | α ≤ σ), such
that Yα/Yα+1 is isomorphic to a submodule of X for each α < σ.

The dual result, concerning the annihilator classes of the form X◦, then reads
as follows:

Lemma 4. Let A be a ring, and X, Y be non-zero modules. Then the following
conditions are equivalent:

a) X◦ ⊆ Y ◦ (that is, Y ∈ ◦(X◦)).
b) There exist a strictly increasing continuous chain (Yα | α ≤ σ) of sub-

modules of Y such that Yα+1/Yα is a homomorphic image of X for each
α < σ.

Moreover, if X =
⊕

γ<κXγ is any direct sum decomposition of X, then in condition
b), we can assume, without loss of generality, that for each α < σ, the module
Yα+1/Yα is a homomorphic image of Xγ for some γ < κ.

Proof. a)⇒b) We construct the chain (Yα | α ≤ σ) by induction on α. Let Y0 = 0.
Assume Yα is defined and Yα 6= Y . Then HomA(Y, Y/Yα) 6= 0, so there exists a
non-zero homomorphism f : X → Y/Yα (If X =

⊕
β<κXβ , we replace f by its

non-zero restriction to some Xβ .) We take Yα+1 ⊆ Y such that Yα ( Yα+1 and
Yα+1/Yα = Im(f). For a limit ordinal α, we define Yα =

⋃
β<α Yβ . Clearly, the

construction stops at some ordinal σ, so Yσ = Y .
b)⇒a) If ϕ : Y → U is a non-zero homomorphism, then there is a least index

β < σ such that Ker(ϕ) + Yβ . Then β = α+1 is a non-limit ordinal, Ker(ϕ) ⊇ Yα,
and ϕ has a factorization through the canonical projection π : Y → Y/Yα, ϕ = ψπ
where ψ : Y/Yα → U is non-zero when restricted to Yβ/Yα. By assumption, there
is an epimorhism f : X → Yβ/Yα, hence 0 6= ψf : X → U . �

The strictly increasing chain in condition b) of Lemma 4 must be finite in case
Y is noetherian. However, if Y is only assumed artinian then an infinite chain is
needed in general even if X has finite length. Again, consider the case of abelian
groups, X = Zp (p a prime integer) and Y = Zp∞ (the Prüfer group). Then X◦

is the class of all groups with trivial p-torsion part while Y ◦ is the (larger) class
of all groups with no direct summand isomorphic to Y . The only chain satisfying
condition b) of Lemma 4 is the (unique) composition series of Zp∞ .

Now we turn to the annihilator classes of the form X⊥ and generalize [8, Lemma
5.2]. We will call a module M torsionless provided that M embeds into a free
module.

Lemma 5. Let A be a ring, and X, Y be non-zero modules. Consider the following
conditions:

a) X⊥ ⊆ Y ⊥ (that is, Y ∈ ⊥(X⊥)).



MODULES DETERMINED BY THEIR ANNIHILATOR CLASSES 5

b) Y is a direct summand in a module Z such that Z possesses a strictly
increasing continuous chain of submodules (Zα | α ≤ ρ) with Z1 a free
module, and Zα+1/Zα

∼= X for each 0 < α < ρ.
c) There exist a strictly increasing continuous chain (Yα | α ≤ σ) of submod-

ules of Y and A-homomorphisms ϕα : Yα+1 → X (0 < α < σ) such that
Yα = Ker(ϕα) for all 0 < α < σ. Moreover, either Y1 is torsionless or Y1

embeds into X.
Then a) is equivalent to b), and it implies c).
Moreover, if X =

⊕
γ<κXγ is any direct sum decomposition of X, then we can

choose each homomorphism ϕα (0 < α < σ) in c) so that Im(ϕα) ⊆ Xγ for some
γ < κ.

Conversely, c) implies b) if and only if X⊥ consists of modules of injective di-
mension ≤ 1.

Proof. The equivalence of a) and b) is well-known (see e.g. [6, 3.2.3]).
Assume b). Let Yα = Y ∩Zα for each α ≤ ρ. Then Y0 = 0, Y1 is torsionless (but

possibly zero), Yα ⊆ Yα+1, and Yα+1/Yα
∼= (Zα + Yα+1)/Zα ⊆ Zα+1/Zα

∼= X for
each 0 < α < ρ. Moreover, Yα = Y ∩ Zα =

⋃
β<α Yβ for each limit ordinal α ≤ ρ,

and Yρ = Y . Removing possible repetitions from the chain (Yα | α ≤ ρ), we obtain
the required strictly increasing chain as in c).

If X =
⊕

γ<κXγ then we can refine the original chain (Zα | α ≤ ρ) so that
each consecutive factor Zα+1/Zα is isomorphic to some Xγ , and then proceed as in
the previous paragraph. Then for each 0 < α < σ there is some γ < κ such that
Im(ϕα) ⊆ Xγ .

Assume c). For each α < σ, the A-homomorphism ϕα yields an embedding
Yα+1/Yα ↪→ X. If X⊥ consist of modules of injective dimension ≤ 1, then
Ext1A(Yα+1/Yα,M) = 0 for each M ∈ X⊥, and a) follows by the Eklof Lemma
[6, 3.1.2].

Conversely, if X⊥ contains a module M of injective dimension > 1, then by
Baer’s Criterion, there is a right ideal Y of A such that Ext1A(Y,M) 6= 0. Since
Y is torsionless, condition c) of Lemma 5 holds for σ = 1, but a) fails since M ∈
X⊥ \ Y ⊥. �

Corollary 6. A ring A is right hereditary if and only the conditions b) and c) in
Lemma 5 are equivalent for all right A-modules X and Y .

Proof. If A is not hereditary and X is a projective right A-module then the class
X⊥ = Mod-A contains an element of injective dimension at least 2. The last part
of Lemma 5 shows that, under this hypothesis, the conditions b) and c) are not
equivalent. �

The condition b) of Lemma 3 is quite close to condition c) of Lemma 5 in case
Y is both artinian and noetherian, that is, when Y has finite length:

Theorem 7. Let A be a ring, and X, Y be non-zero modules. Consider the fol-
lowing conditions:

a) ◦X ⊆ ◦Y ;
b) X⊥ ⊆ Y ⊥.

Then a) implies b) in case Y is artinian and X⊥ consists of modules of injective
dimension ≤ 1.
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Conversely, b) implies a) in case Y is noetherian and Y has no non-zero tor-
sionless submodules.

In particular, a) is equivalent to b) in case A is right hereditary, Y has finite
length and contains no non-zero projective submodules.

Clearly, the binary relations � and v defined on the set of all finite length
modules by X � Y if and only if ◦X ⊆ ◦Y , and by X v Y if and only if X⊥ ⊆ Y ⊥,
are preorder relations. We can now characterize the hereditary rings over which
these relations coincide:

Theorem 8. The following are equivalent for a right hereditary ring A:
a) Either A is simple artinian, or Soc(A) = 0.
b) ◦X ⊆ ◦Y if and only if X⊥ ⊆ Y ⊥, for all non-zero finite length modules X

and Y .
c) ◦X = ◦Y if and only if X⊥ = Y ⊥, for all non-zero finite length modules X

and Y .

Proof. a)⇒b) If A is simple artinian then b) is clear. If Soc(A) = 0, then there are
no simple projective modules and b) holds by the final claim of Theorem 7.

b)⇒c) is obvious.
c)⇒a) Suppose that S and T are non-isomorphic simple modules such that S is

projective. Then (S ⊕ T )⊥ = (T ⊕ T )⊥, hence ◦(S ⊕ T ) = ◦(T ⊕ T ). This gives
Hom(S, T ) 6= 0, a contradiction. So either all simple modules are isomorphic and
projective, or there are no projective simple modules.

If all simple modules are isomorphic and projective, then each maximal right
ideal M is a direct summand in A, so the socle of A is not contained in M , hence
A is simple artinian.

If there are no projective simple modules then Soc(A) = 0 because A is right
hereditary. �

Our next result is a variant of the equivalence a)⇔b) of Theorem 7 that restricts
condition a) to finite length modules with no projective direct summands:

Proposition 9. Let A be a right hereditary ring and Y a module of finite length.
The following are equivalent:

a) X⊥ ⊆ Y ⊥;
b) ◦X ∩ C ⊆ ◦Y ∩ C, where C is the class of all finite length modules which

have no non-zero projective direct summands.

Proof. a)⇒b) If Y is projective then clearly ◦X ∩ C ⊆ ◦Y ∩ C = C.
Suppose that Y is not projective. By Lemma 5 there are a finite strictly in-

creasing continuous chain (Yα | α ≤ n) of submodules of Y and A-homomorphisms
ϕα : Yα+1 → X (0 < α < n) such that Yα = Ker(ϕα) for all 0 < α < n and Y1 is
either projective or embeds into X. In the latter case, let ϕ0 denote an embedding
of Y1 into X.

Let Z ∈ C and suppose that Z /∈ ◦Y , so there is a non-zero homomorphism
f : Z → Y . Observe that Im(f) * Y1 in case Y1 is projective. There is an index
0 < α ≤ n such that Im(f) ⊆ Yα and Im(f) * Yα−1. Then g = ϕα−1f gives a
non-zero homomorphism from Z into X, and Z /∈ ◦X.

b)⇒a) There is nothing to prove if Y is projective.
Suppose that Y is not projective. Since Y has finite length, Y has a decompo-

sition Y = P0 ⊕ C0 such that P0 is projective and 0 6= C0 ∈ C. By assumption
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there exists a non-zero homomorphism f0 : C0 → X. Let Z0 = Ker(f0) ( C0. If
Z0 is not projective, we decompose it as Z0 = P1 ⊕ C1 where P1 projective and
0 6= C1 ∈ C. Then there exists a non-zero homomorphism f1 : C1 → X and we
define Z1 = Ker(f1) ( C1. Proceeding in this way, we obtain a decreasing chain
Y ⊇ C0 ) Z0 ⊇ C1 ) Z1 ⊇ . . . and projective modules P0, . . . , Pn such that
Zn−1 = Pn ⊕ Cn. Since Y has finite length, there is an n < ω such that the
construction stops, i.e., Zn is projective.

We define an increasing chain of submodules of Y as follows: Y0 = 0, Y1 =
P0 ⊕P1 ⊕ · · · ⊕Pn ⊕Zn, Y2 = Y1 +Cn, . . . , Yn+1 = Y1 +C1, Yn+2 = Y1 +C0 = Y .
Then Y1 is projective, and we have

Yk+1/Yk = (Y1 + Cn−k+1)/(Y1 + Cn−k+2) ∼=

Cn−k+1/((Y1 + Cn−k+2) ∩ Cn−k+1) = Cn−k+1/Zn−k+1

because in the construction above, Y1 + Cn−k+2 = P0 + · · · + Pn−k+1 + Zn−k+1,
Zn−k+1 ( Cn−k+1, and (P0 + · · · + Pn−k+1) ∩ Cn−k+1 = 0 by construction, so
Yk+1/Yk is isomorphic to a submodule of X for each 1 ≤ k ≤ n+ 1. By Lemma 5
we conclude that X⊥ ⊆ Y ⊥. �

Concerning the dual classes X◦ and ⊥X, the reader might expect a dualization
of Lemma 5. There is no such result available. In other words, there is no handy
description of the class (⊥X)⊥ for an arbitrary module X (see [6, §3.3] for more
details).

We will see in Example 12 that the dual of the implication b)⇒a) in Theorem 7
fails in general. However, the dual of the implication a)⇒b) does hold:

Lemma 10. Let A be a ring, and X, Y be non-zero modules such that Y is noe-
therian and ⊥X consists of modules of projective dimension ≤ 1.

Then X◦ ⊆ Y ◦ implies ⊥X ⊆ ⊥Y .

Proof. By Lemma 4, there exist 0 < m < ω and a strictly increasing continuous
chain (Yn | n ≤ m) of submodules of Y such that Yn+1/Yn is a homomorphic image
of X for each n < m. Let M ∈ ⊥X. Then M has projective dimension ≤ 1, so
Ext1A(M,Yn+1/Yn) = 0 for each n < m, and by induction on n, we conclude that
M ∈ ⊥Y . �

The equivalence a)⇔b) in Theorem 7 holds in particular for all hereditary artin
algebras A (and all finitely generated modules Y containing no indecomposable
projective submodules). For these algebras, the dual result does hold. In order to
prove this we need to recall that if A is a hereditary artin algebra and τ = DTr is
the Auslander-Reiten translation in the category of all finitely presented modules,
then by the Auslander-Reiten formula we get an isomorphism HomA(X, τN) ∼=
DExt1A(N,X) for each finitely presented A-module N and each A-module X (see
e.g. [8, Lemma 1.1]).

Proposition 11. Let A be a hereditary artin algebra. Let X, Y be non-zero modules
such that Y has finite length and Y has no indecomposable injective factor-modules.
Then X◦ ⊆ Y ◦ if and only if ⊥X ⊆ ⊥Y .

Proof. The direct implication holds by Lemma 10.
For the converse, assume that ⊥X ⊆ ⊥Y . We have to show that X◦ ⊆ Y ◦. Since

Y is finitely presented, Y ◦ is a torsion-free class closed under direct limits, so it
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suffices to prove the implication

HomA(X,M) = 0 ⇒ HomA(Y,M) = 0

for each finitely generated module M .
By the assumption on Y , if this implication fails, then it fails for a finitely

generated module M with no indecomposable injective direct summands. So it
suffices to prove the implication when M is finitely generated, indecomposable and
not injective. Then M = τN for a finitely generated indecomposable module N ,
so HomA(X,M) = HomA(X, τN) = 0 implies ExtA(N,X) = 0 by the Auslander-
Reiten formula, hence ExtA(N,Y ) = 0 by assumption. Then also HomA(Y,M) =
HomA(Y, τN) = 0, q.e.d. �

The reverse implication of Proposition 11 will clearly fail for all injective simple
modules X, Y such that X � Y . We finish this section by an example showing
that it is not possible to extend Proposition 11 to general hereditary rings, even if
we restrict ourselves only to non-injective simple modules:

Example 12. Let A be a simple countable, but not artinian, von Neumann regular
ring (so A is as in Example 2, but we moreover require the field K to be countable).
By [11, Proposition 6.3], any representative set simp-A of all simple modules has
2ω elements, and all of them are non-injective. The condition X◦ ⊆ Y ◦ clearly
fails for all X 6= Y ∈ simp-A. However, assuming V = L, for each module X of
finite length, the class ⊥X coincides with the class of all projective modules by [11,
Corollary 3.19]. In particular, the condition ⊥X ⊆ ⊥Y holds for all X,Y ∈ simp-A.

3. Modules of finite length and their annihilator classes

Now we turn to finite length modules that are direct sums of bricks.
Recall that a module X is a brick if EndA(X) is a division ring. Notice that any

brick is indecomposable.

Theorem 13. Let A be a ring, and X, Y be non-zero modules of finite length.
Assume that X =

⊕m
i=1Xi is a direct sum of bricks such that Hom(Xi, Xj) = 0 if

i 6= j. Then the following are equivalent:
a) X ∼= Y ;
b) ◦X = ◦Y and lg(Y ) ≤ lg(X);
c) ◦X = ◦Y and lg(X) = lg(Y );
d) ◦X = ◦Y and Y =

⊕n
i=1 Yi is a direct sum of bricks such that Hom(Yi, Yj) =

0 for all i 6= j.

Proof. The implications a)⇒d) and c)⇒b) are trivial.
b)⇒a) By Lemma 3 there are a chain of submodules Y = Z0 ) Z1 ) · · · ) Zk =

0 and homomorphisms ϕi : Zi → X such that Ker(ϕi) = Zi+1, and for each i < k
there is j ∈ {1, . . . ,m} with Im(ϕi) ⊆ Xj .

Let j ∈ {1, . . . ,m}. Since Hom(Xj , X) 6= 0, there exists a non-zero homomor-
phism f : Xj → Y . Then there is an index i < k such that Im(f) ⊆ Zi and
Im(f) * Zi+1, hence ϕif 6= 0. Since Hom(Xj , Xs) = 0 for all s 6= j, we have
0 6= Im(ϕif) ⊆ Xj , and Im(ϕi) ⊆ Xj . If πj : X → Xj is the canonical projection,
then πjϕif is an isomorphism because Xj is a brick. It follows that f : Xj → Zi is
a split monomorphism, and

Zi = f(Xj)⊕Ker(πjϕi) = f(Xj)⊕Ker(ϕi) ∼= Xj ⊕Ker(ϕi).
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Since Ker(ϕi) = Zi+1, there is a subset I = {i1, . . . , im} ⊆ {0, . . . , k − 1} such
that Zij+1 is a direct summand of Zij

with a complement isomorphic to Xj , for all
j ∈ {1, . . . ,m}. In particular, lg(X) ≤ lg(Y ).

But lg(X) ≥ lg(Y ) by assumption, so I = {0, . . . , k−1} and Y ∼=
⊕m

i=1Xi = X.
d)⇒c) As in the proof of b)⇒a), the inclusion ◦X ⊆ ◦Y implies lg(X) ≤ lg(Y ).

Swapping the roles of X and Y , we obtain that lg(Y ) ≤ lg(X). �

We also have the dual result:

Theorem 14. Let A, X and Y be as in Theorem 13. Then the following are
equivalent:

a) X ∼= Y ;
b) X◦ = Y ◦ and lg(Y ) ≤ lg(X);
c) X◦ = Y ◦ and lg(X) = lg(Y );
d) X◦ = Y ◦ and Y =

⊕n
i=1 Yi is a direct sum of bricks such that Hom(Yi, Yj) =

0 for all i 6= j.

Proof. We only give the proof for the implication b)⇒a), the rest is easy. By
Lemma 4 there is a chain of submodules 0 = Y0 ( Y1 ( · · · ( Yk = Y such that
Yi+1/Yi is a homomorphic image of Xj for some j ∈ {1, . . . ,m}.

Let j ∈ {1, . . . ,m}. Since Hom(X,Xj) 6= 0, also Hom(Y,Xj) 6= 0, so there exist
i < k and a non-zero homomorphism f : Yi+1/Yi → Xj . Since Hom(Xs, Xj) = 0 for
all s 6= j, there is an epimorphism π : Xj → Yi+1/Yi. But Xj is a brick, so π is an
isomorphism. In particular, lg(X) ≤ lg(Y ). The assumption of lg(X) ≥ lg(Y ) then
implies that k = m, and there is a permutation p ∈ Sm such that Yi+1/Yi

∼= Xp(i)

for all i < m. Without loss of generality, we will assume that p = id.
Since Hom(X,Y1) 6= 0, there exists 0 6= f ∈ Hom(Y, Y1). As Hom(Xj , X0) = 0

for all j 6= 0, we have f � Y1 6= 0. But Y1 is a brick, so the inclusion Y1 ⊆ Y splits,
and Y = Y1 ⊕ Y ′ where Y ′ possesses a chain 0 = Y ′

0 ( Y ′
1 ( · · · ( Y ′

m−1 = Y ′ with
Y ′

i+1/Y
′
i
∼= Xi+1 for all i < m− 1.

In particular, Y ′
1
∼= X1, so Hom(X,Y ′

1) 6= 0. Then Hom(Y, Y ′
1) 6= 0, and also

Hom(Y ′, Y ′
1) 6= 0 because Hom(X0, X1) = 0. Consider 0 6= f ′ ∈ Hom(Y ′, Y ′

1). Then
f ′ � Y ′

1 6= 0. Since Y ′
1 is a brick, the inclusion Y ′

1 ⊆ Y ′ splits, giving a decomposition
Y ′ = Y ′

1 ⊕ Y ′′. Proceeding in this way, we obtain a direct sum decomposition of Y
showing that Y ∼=

⊕m
i=1Xi = X. �

There is a similar result for the annihilator classes of the formX⊥ over hereditary
rings:

Theorem 15. Let A be a right hereditary ring, and X, Y be non-zero modules of
finite length. Assume that X =

⊕m
i=1Xi is a direct sum of non-projective bricks

such that Hom(Xi, Xj) = 0 if i 6= j. Then the following are equivalent:

a) X ∼= Y ;
b) X⊥ = Y ⊥ and lg(Y ) ≤ lg(X);
c) X⊥ = Y ⊥ and lg(X) = lg(Y );
d) X⊥ = Y ⊥ and Y =

⊕n
i=1 Yi is a direct sum of bricks such that Hom(Yi, Yj) =

0 for all i 6= j.

Proof. This is again a variation of the proof of Theorem 13, so we only indicate the
necessary changes:
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• We use Lemma 5 in place of Lemma 3, so the module Zk can be non-zero,
but it is always projective.

• If j ∈ {1, . . . ,m}, using Y ⊥ = X⊥ ⊆ X⊥
j and Proposition 9, we deduce that

there exists a non-zero homomorphism f : Xj → Y . Since the brick Xj is
not projective, Im(f) * Zk. Then there exists an index ij ∈ {0, . . . , k − 1}
such that Zij+1 is a direct summand of Zij with a complement isomorphic
to Xj .

• In the last part, from the equalities of lengths we obtain that Zk = 0.
The rest of the proof is the same as for Theorem 13. �

Remark 16. By Example 12, assuming V = L, there exist a hereditary ring A
and non-isomorphic non-injective simple modules (hence bricks) S and T such that
⊥S = ⊥T . So the dual of Theorem 15 cannot be proved in ZFC.

Next we list without proof several elementary properties of the annihilator classes
of the form ◦X:

Lemma 17. Let A be a ring, and X, Y , and Z be modules.
a) ◦(X ⊕ Y ) = ◦X ∩ ◦Y ;
b) If 0 → X → Y → Z → 0 is a short exact sequence then ◦(X ⊕ Z) ⊆ ◦Y ⊆

◦X;
c) If f ∈ End(X) and K = Ker(f) then ◦X = ◦(K ⊕X/K). If moreover

f2 = 0 then also ◦X = ◦K.

The following lemma gives a way of replacing finite length modules by direct
sums of bricks without changing the annihilator class:

Lemma 18. Let A be a ring and Y be a non-zero module of finite length. Then
there exists a chain of submodules Y = Y0 ) Y1 ) · · · ) Yk such that

i) ◦Y = ◦Y 1 = · · · = ◦Y k,
ii) Yk =

⊕m
i=1 Zi where each Zi is a brick such that Hom(Zi, Zj) = 0 for all

i 6= j,
iii) Yj/Yj+1 embeds into Yj for all j ∈ {0, . . . , k − 1}.

Proof. Suppose that Y has a non-zero nilpotent endomorphism. Let Y0 = Y , and
take 0 6= f0 ∈ EndA(Y0) such that f2

0 = 0. Let Y1 = Ker(f0) ( Y0. If Y1 has a
non-zero nilpotent endomorphism, take 0 6= f1 ∈ EndA(Y1) such that f2

1 = 0 and
let Y2 = Ker(f1) ( Y1.

Since Y is of finite length, there is a least k such that the ring E = EndA(Yk)
has no non-zero nilpotent elements (i.e. it is reduced). Then the chain Y = Y0 )
Y1 ) · · · ) Yk satisfies condition iii) by construction, and condition i) by Lemma
17.c). By [13, 54.1] the reduced ring E is completely reducible, hence E is a finite
direct product of division rings. It follows that the decomposition of Yk into the
direct sum of indecomposable modules consists of bricks, and there are no non-zero
homomorphisms between different members of the decomposition, so ii) holds. �

Using Theorem 7, we obtain a result which generalizes [8, Proposition 5.6].

Corollary 19. Let A be a right hereditary ring and Y be a non-zero module of
finite length. Then there exists a chain of submodules Y = Y0 ) Y1 ) · · · ) Yk such
that

i) Y ⊥ = Y ⊥
1 = · · · = Y ⊥

k ,
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ii) Yk =
⊕m

i=1 Zi where each Zi is a brick such that Hom(Zi, Zj) = 0 for all
i 6= j,

iii) Yj/Yj+1 embeds into Yj for all j ∈ {0, . . . , k − 1}.

For the proof of the main results we recall that the endomorphism ring of each in-
decomposable module of finite length is local [13, 32.4(3)], so by the Krull-Schmidt
Theorem, every finite length module has a unique indecomposable decomposition
(where uniqueness is understood up to order and isomorphism of the indecompos-
able factors).

Recall that a moduleX is S-filtered ifX possesses a strictly increasing continuous
chain (Sα | α ≤ σ) of submodules of X such that Sα+1/Sα

∼= S for all α < σ.
By [4], for each module S there exists an S-filtered module X with Ext1A(S,X) =

0. The module X can be used to test for vanishing of Ext1A(S, S) in the case when
S is simple:

Lemma 20. Let X be any module, and S be any simple submodule of X such that
Ext1A(S,X) = 0.

Then Ext1A(S, S) = 0 if and only if N ∼= S2 for each S-filtered submodule N of
X with lg(N) = 2.

Proof. Assume that N is an S-filtered submodule of X such that lg(N) = 2 and
N � S2. Then the exact sequence 0 → Soc(N) → N → S → 0 is non-split, so
Ext1A(S, S) 6= 0.

Conversely, assume Ext1A(S, S) 6= 0, and consider a non-split exact sequence
0 → S

µ→ T → S → 0. By assumption, there is an embedding ν : S → X. We form
the pushout of µ and ν:

0 0y y
0 −−−−→ S

ν−−−−→ X −−−−→ X/S −−−−→ 0

µ

y y ∥∥∥
0 −−−−→ T −−−−→ P −−−−→ X/S −−−−→ 0y y

S Sy y
0 0

,

W.l.o.g., T is a submodule of P . Since Ext1A(S,X) = 0, the second column splits,
hence P = X⊕Y with Y ∼= S. Let π : P → X be the projection. By the assumption
on N , the restriction π � T : T → X is not a monomorphism. Since Ker(π) = Y is
simple, we have Y ⊆ T , so Y is a direct summand in T . This implies that T ∼= S2,
a contradiction. �

Theorem 21. Let A be a ring. The following are equivalent for a non-zero module
X of finite length:

a) X ∼= Y whenever Y has finite length, ◦X = ◦Y , and lg(X) = lg(Y );
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b) (I) X ∼=
⊕m

i=1Xi where Xi are bricks such that Hom(Xi, Xj) = 0 for all
i 6= j, or

(II) X ∼= Sr ⊕
⊕m

i=1Xi and
i) r > 0 and S is a simple module,
ii) X1, . . . , Xm are bricks such that Hom(Xi, Xj) = 0 for all i 6= j,
iii) If W is a submodule of

⊕m
i=1Xi such that s = lg(W ) ≤ r then

W ∼= Ss,
iv) Ext1A(S,Xi) = 0 for each i.

Proof. a)⇒b) By Lemma 18, there exists a submodule X ′ =
⊕m

i=1Xi of X such
that ◦X = ◦X ′, all Xis are bricks and Hom(Xi, Xj) = 0 whenever i 6= j. If
lg(X) = lg(X ′) then X = X ′ and we are in case (I).

Assume r = lg(X) − lg(X ′) > 0. If S is any simple submodule of X ′ then
◦X = ◦Y where Y = Sr ⊕X ′. So X ∼= Sr ⊕

⊕m
i=1Xi by a). Thus we are in case

(II) and the conditions i) and ii) hold.
Moreover, it follows that S is the only simple module, up to isomorphism, that

embeds into X ′, and the socle of every Xi is a finite direct sum of copies of S.
Let W be a submodule of

⊕m
i=1Xi such that s = lg(W ) ≤ r. Then ◦Y =

◦(
⊕m

i=1Xi) = ◦X for Y = W ⊕ Sr−s ⊕
⊕m

i=1Xi, so W ∼= Ss by a). This proves
condition iii).

If Ext1(S,Xj) 6= 0, then there is a non-split short exact sequence 0 → Xj →
M

β→ S → 0. Since S is simple, M � S ⊕Xj . Note that Xj , and hence M , has a
submodule isomorphic to S. So we can view β as an endomorphism of M such that
β2 = 0. Then ◦M = ◦(Xj ⊕S) by Lemma 17.c). So ◦X = ◦(Sr−1⊕M ⊕

⊕
i 6=j Xi),

and M ∼= S⊕Xj by a), a contradiction. This proves that Ext1(S,Xj) = 0 for all j.
b)⇒a) The case (I) has been proved in Theorem 13. We will prove the case (II).
Let X be as in b)(II), and Y be a module such that ◦X = ◦Y and lg(X) = lg(Y ).

Note that the socle of X is isomorphic to a direct sum of copies of S, by iii). Then
Y has the same property: otherwise there exists a simple module T � S and a
non-zero homomorphism T → Y , but Hom(T,X) = 0.

Moreover, we claim that each submodule of Y of length ≤ r is isomorphic to
a direct sum of copies of S. We have just proved this for r = 1. So suppose
that U is a submodule of Y such that lg(U) ≤ r and r ≥ 2. Then there exists
a non-zero homomorphism f1 : U → X. Since lg(Im(f1)) ≤ r, condition iii)
gives that Im(f1) is isomorphic to a finite direct sum of copies of S. Suppose
U1 = Ker(f1) 6= 0. Hence Hom(Ker(f1), Y ) 6= 0, and there exists a non-zero
homomorphism f2 : U1 → X. Repeating the previous arguments we find a chain
of submodules U = U0 ) U1 ) · · · ) Uk ) · · · and a family of homomorphisms
fi : Ui−1 → X such that Ui = Ker(fi). Since U has finite length, there exists k
such that Uk = 0, i.e. fk is a monomorphism. Then Uk−1 is a finite direct sum

of copies of S. Then the exact sequence 0 → Uk−1 → Uk−2
fk−1→ Im(fk−1) → 0

splits since Ext(Im(fk−1), Uk−1) = 0 by Lemma 20. It follows that Uk−2 is a direct
sum of copies of S. Repeating this argument we obtain that all Uis are finite direct
sums of copies of S, and the claim is proved.

Finally, consider a sequence of submodules Y = Y0 > Y1 > · · · > Yk as in
Lemma 18. Then ◦(

⊕m
i=1Xi) = ◦Yk and using condition ii) and Theorem 13, we

obtain that
⊕m

i=1Xi
∼= Yk. Notice that for each i ∈ {0, . . . , k − 1}, the module

Yi/Yi+1 is of length ≤ r and it embeds into Y by Lemma 18. By the claim above,
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we infer that every module Yi/Yi+1 is isomorphic to a finite direct sum of copies of
S. If r = 1 then k = 1 and Y/Y1

∼= S, hence Y ∼= Yk ⊕ S by condition iv). If r > 1
then Y/Yk is a direct sum of copies of S by Lemma 20, so again Y ∼= Sr ⊕ Yk

∼= X
by condition iv). �

If A is any ring and S any non-empty finite set of non-isomorphic simple modules,
then the module X =

⊕
S∈S S satisfies condition b)(I) of Theorem 21.

Moreover, if S is a simple module and n > 1 then X = Sn satisfies condition a)
if and only if Ext1A(S, S) = 0, by condition b)(II) (here we consider r = n− 1).

Given r > 0 and m > 0, we will now present an example of a ring A and a
module X satisfying condition b)(II) for these r and m:

Example 22. Let K be a field and let (ri | i = 1, . . . ,m) be a sequence of integers
such that ri ≥ r for all i. Let A be the finite dimensional hereditary K-algebra
consisting of all (m+ 1)× (m+ 1) upper triangular matrices of the form

A =
(

K Θ Kr1
... ... ...
Θ K Krm

Θ 0 K

)
where Θ denotes the 1×(m−1) matrix all of whose entries are zero. In other words,
if we denote by Qi the quiver of the generalized ri-Kronecker algebra (such Qi has
only two vertices: a source and a sink, and ri arrows), then A is the path algebra of
the quiver obtained by identifying the sinks of the quivers Qi for all i = 1, . . . ,m.

For i = 1, . . . ,m+1 let ei be the i-th diagonal matrix unit (so ei has exactly one
non-zero entry, namely 1 in i-th row and i-th column). Then {ei | i = 1, . . . ,m+1}
is a complete set of primitive idempotents of A. Moreover, S = em+1A is the unique
projective simple module.

For i = 1, . . . ,m, the projective module Xi = eiA has length ri +1, and its socle
is isomorphic to Sri . If W is a submodule of

⊕m
i=1Xi of length s ≤ r, then W

is projective, hence a direct sum of some copies of S and Xi (i = 1, . . . ,m). But
each Xi has length > r, so no Xi occurs in the decomposition of W , and W ∼= Ss.
Since EndA(Xi) ∼= eiAei

∼= K, it is easy to see that X = Sr ⊕
⊕m

i=1Xi satisfies
conditions i)-v) of Theorem 21.b)(II) for the given r and m.

In the following example we will show that the conditions ii)-iv) in Theorem
21.b)(II) are independent.

Example 23. (a) Let A be a commutative local QF-ring which is not a field. If S
the simple A-module, then X = S ⊕A satisfies iii) and iv), but not ii).

(b) An example where only iii) fails comes from a modification of Example 22:
iii) will fail for the X defined there if ri < r for some i. Alternatively, we could take
any non-completely reducible ring A which has a simple projective module S, and
let {X1, . . . , Xm} be a finite set of non-projective pairwise non-isomorphic simple
modules.

(c) To show that iv) is independent it is enough to consider a ring A possessing
a simple module S such that Ext1A(S, S) 6= 0, and take X = Sr ⊕ S.

Returning to the annihilator classes of the form X⊥, we first observe that if
the ring A is as in Theorem 8 then Theorem 21 also characterizes the finite length
modules X with the property that X ∼= Y for each finite length module Y such
that X⊥ = Y ⊥ and lg(X) = lg(Y ). For the remaining case, the solution is given
by the following theorem:
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Theorem 24. Let A be a right hereditary ring with at least two non-isomorphic
simple modules, and X be a module of finite length.

(I) If A has at least two non-isomorphic projective simple modules then the
following are equivalent:

a) X ∼= Y whenever Y has finite length, X⊥ = Y ⊥, and lg(X) = lg(Y );
b) X ∼=

⊕m
i=1Xi is a direct sum of finite length non-projective bricks such

that Hom(Xi, Xj) = 0 for all i 6= j.
(II) If up to isomorphism A has exactly one projective simple module S, then

the following are equivalent:
a) X ∼= Y whenever Y has finite length, X⊥ = Y ⊥, and lg(X) = lg(Y );
b) X ∼= Sr ⊕

⊕m
i=1Xi for some r ≥ 0, and

i) all projective modules of length s ≤ r are isomorphic to Ss,
ii) each Xi is a finite length non-projective brick and Hom(Xi, Xj) =

0 for all i 6= j,
iii) U ∼= Ss whenever U is a submodule of

⊕m
i=1Xi of length s ≤ r.

Proof. a)⇒b) Let X be a finite length module as in conditions (I) a) or (II) a).
Without loss of generality, we can suppose that X is not projective. By Corollary
19, there exists a submodule X ′ ≤ X such that X ′ =

⊕m
i=1Xi is a direct sum

of finite length non-projective bricks such that Hom(Xi, Xj) = 0 if i 6= j, and
X ′⊥ = X⊥. Let r = lg(X)− lg(X ′).

If S and T are simple projective modules then X⊥ = (Sr ⊕X ′)⊥ = (T r ⊕X ′)⊥,
hence X ∼= Sr ⊕X ′ ∼= T r ⊕X ′ by a). So in the case (I), X = X ′, and b) holds.

In the case (II), we obtain X = Sr ⊕
⊕m

i=1Xi where all Xis are finite length
non-projective bricks with Hom(Xi, Xj) = 0 for all i 6= j. Let U be a submodule
of

⊕m
i=1Xi of length s ≤ r. Since A is hereditary, (

⊕m
i=1Xi)⊥ ⊆ U⊥, hence

X⊥ = (Sr−s ⊕ U ⊕
⊕m

i=1Xi)⊥, and U ∼= Ss. Similarly, each projective module of
finite length q ≤ r is isomorphic to Sq. This proves b).

b)⇒a) In the case (I), the implication is a consequence of Theorem 15.
In the case (II), let Y be a module such that X⊥ = Y ⊥. Again by Corollary 19,

there exists a submodule Y ′ ≤ Y such that Y ′ =
⊕n

i=1 Yi is a direct sum of finite
length non-projective bricks, Hom(Yi, Yj) = 0 for i 6= j, and Y ′⊥ = Y ⊥ = X⊥ =
X ′⊥, where X ′ =

⊕m
i=1Xi. By Theorem 15, we have m = n and without loss of

generality we can assume Yi
∼= Xi for all i ∈ {1, . . . ,m}. By Lemma 5 there exists

a descending chain Y = Z0 ) Z1 ) · · · ) Zk such that Zk is projective, and for
each i ∈ {0, . . . , k − 1} there exist an index ji ∈ {1, . . . ,m} and a homomorphism
ϕi : Zi → Xji

such that Ker(ϕi) = Zi+1.
Let j ∈ {1, . . . ,m}. Since Yj is not projective, there exists i ∈ {0, . . . , k − 1}

such that Yj ⊆ Zi, but Yj * Zi+1. Then the restriction ϕi � Yj : Yj → Xji
is a

non-zero homomorphism, hence ji = j and ϕi � Yj is an isomorphism. Then ϕi is
a split epimorphism, and Zi = Zi+1 ⊕ Ui where Ui

∼= Yj
∼= Xj .

So for every j ∈ {1, . . . ,m} we can fix an index ij ∈ {0, . . . , k−1} such that Zij
=

Zij+1 ⊕ Uj with Uj
∼= Xj . Since Xj � Xj′ whenever j 6= j′, the correspondence

j 7→ ij is 1-1.
Let i ∈ {0, . . . , k− 1} \ {i1, . . . , im}. Since

∑k−1
i=0 lg(Zi/Zi+1)+ lg(Zk) = lg(Y ) =

lg(X) = r +
∑m

j=1 lg(Xj), we have ri = lg(Zi/Zi+1) ≤ r, hence Im(ϕi) ∼= Sri is
projective. Then Zi = Zi+1 ⊕ Ui, where Ui

∼= Sri .
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Moreover, we observe that iii) implies that lg(Xj) > r for all j. So the index
ij is uniquely determined by j since otherwise we would obtain, using the formula∑k−1

i=0 lg(Zi/Zi+1) + lg(Zk) = lg(Y ), that lg(Y ) > lg(X).
It follows that for all i ∈ {0, . . . , k − 1} there exists a direct sum decomposition

Zi = Zi+1 ⊕ Ui such that for every j ∈ {1, . . . ,m} we can find exactly one index
ij ∈ {0, . . . , k − 1} with Uij

∼= Xj , and Ui
∼= Sri for all i /∈ {i1, . . . , im}. Then

Y = U0 ⊕ · · · ⊕Uk−1 ⊕Zk
∼= X ′ ⊕ St ⊕Zk. Since lg(Y ) = lg(X), Zk is a projective

module of finite length equal to r − t, so i) gives that Zk
∼= Sr−t. This proves that

Y ∼= X ′ ⊕ Sr ∼= X. �

Let A be any right hereditary ring with at least two non-isomorphic projective
simple modules. If S is any finite non-empty set of non-isomorphic non-projective
simple modules then the module X =

⊕
S∈S S clearly satisfies condition (I) b) of

Theorem 24.
Finally, given r > 0 and m > 0, we will present an example of a hereditary ring

A and a module X satisfying condition (II) b) for these r and m:
We consider the algebra A from Example 22, but we require ri > r for all

i = 1, . . . ,m. Again, we take S = em+1R, the unique simple projective module,
but for i = 1, . . . ,m, we replace Xi by Xi, its factor modulo a simple submodule.
Let X = Sr ⊕

⊕m
i=1Xi. Then condition i) holds because each projective module

is a direct sum of some copies of S and of the Xis (i = 1, . . . ,m), and lg(Xi) > r
for all i. Since Xi is generated by the coset of the idempotent ei, we infer that
EndA(Xi) = K for all i = 1, . . . ,m, and it is easy to see that condition ii) holds.
Finally, each submodule of X =

⊕m
i=1Xi of length s ≤ r is contained in the socle

of X, so condition iii) also holds.
In the end we mention that the dual statements for Lemma 17, Lemma 18

and Theorem 21 are true. However, a dual of Theorem 24 is not available, as a
consequence of Example 28.

Lemma 25. Let A be a ring, and X, Y , and Z be modules.
a) (X ⊕ Y )◦ = X◦ ∩ Y ◦;
b) If 0 → X → Y → Z → 0 is a short exact sequence then (X ⊕ Z)◦ ⊆ Y ◦ ⊆

Z◦;
c) If f ∈ End(X) and H = Im(f) then X◦ = (H ⊕X/H)◦. If moreover

f2 = 0 then also X◦ = (X/H)◦.

Lemma 26. Let A be a ring and Y be a non-zero module of finite length. Then
there exists a chain of submodules 0 = Y0 ( Y1 ( · · · ( Yk such that

i) Y ◦ = (Y/Y1)◦ = · · · = (Y/Yk)◦,
ii) Y/Yk =

⊕m
i=1 Zi where each Zi is a brick such that Hom(Zi, Zj) = 0 for

all i 6= j.
iii) Every Yi+1/Yi is an epimorphic image of Y .

Proof. We proceed in the same way as in the proof of Lemma 18: Suppose that a
submodule Yi has been constructed. If Y/Yi has no non-zero nilpotent endomor-
phisms we take k = i. Otherwise there exists an endomorphism 0 6= f : Y/Yi →
Y/Yi such that f2 = 0, and we put Yi+1 ≤ Y the only submodule such that
Yi+1/Yi = Im(f). �

Theorem 27. Let A be a ring. The following are equivalent for a non-zero module
X of finite length:
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a) X ∼= Y whenever Y has finite length, X◦ = Y ◦, and lg(X) = lg(Y );
b) (I) X ∼=

⊕m
i=1Xi where Xi are bricks such that Hom(Xi, Xj) = 0 for all

i 6= j, or
(II) X ∼= Sr ⊕

⊕m
i=1Xi and

i) r > 0 and S is a simple module,
ii) X1, . . . , Xm are non-simple bricks such that Hom(Xi, Xj) = 0

for all i 6= j,
iii) If W is an epimorphic image of

⊕m
i=1Xi such that s = lg(W ) ≤

r then W ∼= Ss,
iv) Ext1A(Xi, S) = 0 for each i.

Proof. The proof is dual to the proof of Theorem 21. We present some details
about the last part of it.

Consider a sequence of submodules 0 = Y0 < Y1 < · · · < Yk as in Lemma 26.
Then (

⊕m
i=1Xi)◦ = (Y/Yk)◦ and using condition ii) and Theorem 14, we obtain

that
⊕m

i=1Xi
∼= Y/Yk. Then lg(Yk) = r. Therefore, for each i ∈ {0, . . . , k− 1}, the

module Yi+1/Yi is of length ≤ r and it is an epimorphic image of Y by Lemma 26.
Then every module Yi+1/Yi is isomorphic to a finite direct sum of copies of S.

If r = 1 then k = 1 and Y1
∼= S, hence Y ∼= (Y/Y1)⊕ S by condition iv).

If r > 1 then Y1
∼= Y1/Y0 is isomorphic to a direct sum of copies of S. Suppose

that Yi is isomorphic to a direct sum of copies of S. Since the exact sequence
0 → Yi → Yi+1 → Yi+1/Yi → 0 splits by iv), Yi+1 is isomorphic to a direct sum of
copies of S. Then Yk

∼= Sr, hence Y ∼= Sr ⊕ Y/Yk
∼= X by condition iv). �

If A and B are rings, we will denote by A�B the direct product (in the category
of all rings) of A and B.

Example 28. Let A be the ring from Example 12 and k be a field.
The ring A� k � k has two simple injective modules, but by Remark 16, under

V = L, it has two non-injective simple modules S1 and S2 such that ⊥S1 = ⊥S2.
So the dual of Theorem 24(I) is not provable for X = S1.

Similarly, we take the ring A � k to see that the dual of Theorem 24(II) in not
provable for r = 0 and X = S1.
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