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GROUPS WHICH ARE DETERMINED BY SUBGROUP
LATTICES

Simion Breaz1, Carolina Conţiu1

Abstract. Although the lattice of all (normal) subgroups of an Abelian
group does not determine the group up to an isomorphism, an Abelian group
A can be determined by the lattice of all (normal) subgroups of other groups,
e.g. if A is an Abelian group and G is a group such that Z×A and Z×G have
isomorphic (normal) subgroup lattices then A and G are isomorphic groups.
We present some results with this flavor. In the end of the paper, we discuss
the cancellation property for subgroup lattices.
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1 Introduction

It is known that the lattice L(G) of all subgroups of a group G does not de-
termine the group, that is, there exist non-isomorphic groups with isomorphic
subgroup lattices. The simplest example is given by the groups Z(2) = Z/2Z
and Z(3) = Z/3Z.

However, if we restrict the class of all groups to some specific subclasses,
subgroup lattices can determine some groups. For example, R. Baer proved in
[2] that if A and A′ are Abelian p-groups such that L(A) ∼= L(A′), then A ∼= A′

(see Theorem 3).
But, in general, an Abelian p-group is not determined by its subgroup

lattice in the class of all p-groups (with modular subgroup lattice):

Theorem 1 [3] Let G be a non-Hamiltonian locally finite p-group with modu-
lar subgroup lattice. There exists an Abelian p-group A such that L(A) ∼= L(G).

1The authors are supported by the grant PN2-ID489 (CNCSIS)
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Similar results are also true for other classes of Abelian groups. Sato proved
in [21] the following result.

Theorem 2 Let G be a non-Abelian group with elements of infinite order and
modular subgroup lattice. Then there exists an Abelian group A such that
L(A) ∼= L(G).

Moreover, there exist torsion-free Abelian groups of rank 1 (i.e. groups
which are isomorphic to subgroups of Q, the group of all rational numbers)
which are not determined by their subgroup lattices, even in the class of rank 1
torsion-free Abelian groups. If p is a prime and Rp = {m

pk | m ∈ Z, k ∈ N} ≤ Q
then

L(Rp) = { n

pk
Z | n ∈ N, k ∈ N ∪ {∞}, gcd(n, pk) = 1},

where n
p∞

Z = nRp. If p 6= q are primes and n = qsn1 is an integer such that

gcd(n1, pq) = 1 then we denote n′ = psn1. The function

ϕ : L(Rp) → L(Rq), ϕ(
n

pk
Z) =

n′

qk
Z

is a lattice isomorphism, but since they have different types Rp � Rq. The gen-
eral result concerning subgroup lattices of rank 1 Abelian torsion-free groups
was proved by L. Fuchs in [14, pp. 305] and states that two such groups are
lattice-isomorphic if and only if their types can be obtained from each other
by a suitable permutation of the primes. In conclusion, Q is determined by
its subgroup lattice, whereas, not all of its subgroups enjoy this property. We
mention here that recently Călugăreanu and Rangaswamy gave in [10] a com-
plete solution to the problem of deciding when two Abelian groups of will have
the lattices of their subgroups isomorphic.

As seen earlier, the cyclic groups are not determined by their subgroup lat-
tice (not even in the class of cyclic groups). The only cyclic group determined
by its subgroup lattice is the infinite one ([2, Theorem 3.2]).

Among the well-known non-Abelian groups: the quaternion groups and
the dihedral 2-groups are determined by their subgroup lattice. As a conse-
quence, every hamiltonian 2-group is determined by its subgroup lattice ([2]).
Moreover, Yakovlev proved in [25] that the free groups are determined by their
subgroup lattice.

The present paper has semi-expository character. Its main aim is to exhibit
a point of view on the problem which asks to determine a group (up to an
isomorphism) using some subgroup lattices.
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If G is a group, L(G) denotes the subgroup lattice of G, whileN (G) denotes
the lattice of all normal subgroups of G. If n is an integer, Z(n) denotes the
cyclic group Z/nZ. We denote by Grp the class of all groups, and by Lat the
class of all lattices.

2 Groups determined by projectivities

We consider a map S : Grp → Lat such that S(G) is a sublattice of L(G),
for all G ∈ Grp. If V : Grp → Grp is a map and C is a class of groups,
we say that a group G ∈ C is determined by V and S-projectivities in C if
G ∼= H whenever H ∈ C and S(V (G)) ∼= S(V (H)). If C is the class of all
groups we say that G is determined by V and S-projectivities. A group G is
determined by S-projectivities if it is determined by 1Grp and S-projectivities,
i.e. if G ∼= H whenever S(G) ∼= S(H).

We discuss two kinds of projectivities: if S(G) = L(G) (respectively if
S(G) = N (G), the lattice of all normal subgroups of G), we say that G is
determined by V and (N -)projectivities.

General results on Abelian groups determined by projectivities were found
by Baer in [2]. Moreover, Brandl in [4] and Curzio in [11] have found simi-
lar theorems concerning N -projectivities. We summarize these results in the
following theorem.

Theorem 3 The following statements are true:
i) Every Abelian group of torsion-free rank ≥ 2 (i.e. it has a subgroup

isomorphic to Z× Z) is determined by (N -)projectivities.
ii) Every Abelian p-group is determined by projectivities in the class Abp of

all Abelian p-groups.
iii) Every Abelian p-group which is not locally cyclic (i.e. which has a

subgroup isomorphic to Z(p)×Z(p)) is determined by projectivities in Ab, the
class of all Abelian groups. Consequently, every torsion group T whose primary
components are not locally cyclic is determined by projectivities in the class Ab.

iv) Every Abelian p-group which is not locally cyclic is determined by N -
projectivities.

Proof. The reader can find nice proofs for i), ii), and iv) in [22, Section 2.6
and Section 9.1].
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The statement iii) is proved in [14, 80.2]. Since every projectivity preserves
socles, we also can use [22, 2.2.6] in order to prove that if A is an Abelian p-
group which is not locally cyclic and G is an Abelian group such that L(A) ∼=
L(G) then G is a p-group.

We have already seen that in general an Abelian torsion group is not deter-
mined by projectivities in Ab, the class of all Abelian groups. However, such
groups are determined by other subgroup lattices. The following result is an
easy consequence of some known results. We state it here since it contains the
germ idea for the main subject of the paper.

Proposition 4 i) If B 6= 0 is a torsion-free Abelian group and B × T is
the class of all groups isomorphic to B × T , where T is a torsion Abelian
group, then every group G ∈ B×T is determined by projectivities in the class
B×T . Consequently, every torsion Abelian group is determined by B×− and
projectivities in the class T of all torsion Abelian groups.

ii) If A and G are finitely generated Abelian groups and n > 1 is an integer,
then A ∼= G whenever L(An) ∼= L(Gn), i.e. every finitely generated Abelian
group is determined by (−)n and projectivities in the class of all finitely gen-
erated Abelian groups.

Proof. i) is a consequence of [22, 2.6.15]. The statement ii) is a consequence
of Theorem 3 and the structure theorem of finitely generated Abelian groups.

Remark 5 If the groups B and T are as in the statement i) from the previous
Proposition, we cannot generalize and affirm that B × T is determined by
projectivities. For example, if B = Z and T contains an element of order 8
or an element of order p2 , for some prime p > 2, there exists a non-Abelian
group H such that L(Z× T ) ∼= L(H), as seen in [22, Exercise 5, pag100].

The point of view presented in the beginning of the section has appeared in
[19] for V (G) = G2, in [9] for V (G) = Gn and in [7] for V (G) = B ×G, where
B is a fixed group. In all these papers the following metatheorem is used:

Theorem 6 Let V : Grp → Grp be a map and S : Grp → Lat such that S(G)
is a sublattice of L(G) for all G ∈ Grp. Suppose that G is a group such that
there exists a class C of groups with the following properties:

• V (G) ∈ C;
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• V (G) is determined by projectivities in C;

• if S(V (G)) ∼= S(V (H)) then V (H) ∈ C.

Then G is determined by V and S-projectivities if and only if G is determined
by V (i.e. V (G) ∼= V (H) ⇒ G ∼= H).

This metatheorem was used in the mentioned papers in the case when C is
the class of all Abelian groups. Therefore, in order to apply this metatheorem
in our case, we should establish sufficient conditions such that V (H) is Abelian,
whenever V (G) is.

3 The case S = L

We will present here some results obtained in [7] and [19] concerning the prob-
lem: “Find sufficient conditions for the commutativity of a group using its
subgroup lattice.” We sketch some of the proofs for the reader’s convenience.

Lemma 7 [7] Let K and G be groups such that for every g ∈ G there exists
k ∈ K with ord(g) | ord(k) (here every non-zero positive integer is considered
to be a divisor of ∞).

a) If L(K ×G) is modular then every subgroup of G is normal.
b) If L(K × G) is isomorphic to L(A) for an Abelian group A, then G is

an Abelian group.

Proof. For a), we consider H ≤ G, g ∈ G, Hg = g−1Hg, k ∈ K such
that ord(g) | ord(k). Using the modularity law for the following subgroups of
K ×G: X = 1×〈H, Hg〉, Y = 〈(k, g)〉 and Z = 1×H, we deduce X = Z and
this implies that every subgroup of G is normal.

Applying the structure theorem of Hamiltonian groups, [22, Exercise 1, p.
68], b) follows from the fact that no Abelian group is lattice isomorphic to the
quaternion group H8 (according to [13, Theorem 3.1]).

Theorem 8 Let B be an Abelian group. The following statements are true
for a group G:

a) If B is not a torsion group and L(B×G) is modular then G is Abelian.
b) If B is an unbounded p-group, G is a p-group and L(B ×G) is modular

then G is Abelian.
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c) [19] If G is a group such that L(Gn) is modular for some integer n > 1
then G is Abelian.

Proof. Statement a) follows directly from Lemma 7 and Theorem 2. State-
ment b) is a consequence of Lemma 7 and of the fact that a Hamiltonian group
may be p-group only when p = 2.

For statement c), using again the previous lemma, we deduce that every
subgroup of G is normal. Supposing G is not Abelian, we have a direct de-
composition Gn ∼= H8 ×H8 ×K. But L(H8 ×H8) is not modular. To prove
this, it is enough to consider the following subgroups of H8×H8: X = 〈(i, i)〉,
Y = 〈(i, j)〉 and Z = 〈(i, i), (1,−1)〉. For these subgroups we observe that
X ≤ Z, but they do not satisfy the modularity law.

Recall that a group B has the cancellation property (with respect a class
C) if B × A ∼= B × G (and A, G ∈ C) implies A ∼= G. If n > 0 is an integer,
the group A has the n-root property if A ∼= G whenever An ∼= Gn.

Corollary 9 Let B be an Abelian group. The following statements are true:
a) If B is not a torsion group, A ∼= G whenever A is an Abelian group, G

is a group and L(B × A) ∼= L(B × G) if and only if B has the cancellation
property with respect to Ab.

b) If B is an unbounded p-group, A ∼= G whenever A is an Abelian p-group,
G is a p-group and L(B×A) ∼= L(B×G) if and only if B has the cancellation
property with respect to Ab.

c) If n > 1 is an integer, B ∼= G whenever G is a group and L(Bn) ∼= L(Gn)
if and only if B has the n-root property.

Proof. We consider V : Grp → Grp, V (X) = B×X for a) and b), respectively
V (X) = Xn for c), and we apply the previous metatheorem together with
Theorem 3 and Theorem 8. Moreover, for a) we apply Proposition 4 in the
case A is torsion. For b) we remark that Theorem 3 cannot be applied in the
case B ∼= Z(p∞) and A = 0. For this situation, we use again [13, Theorem 3.1]
to deduce that B × G is a cocyclic Abelian group, and this is possible if and
only if G = 0.

Remark 10 It is known that countable torsion Abelian groups and countable
mixed Abelian groups of torsion-free rank 1 share the square-root property.
Hence, these groups are determined by (−)2 and projectivities. Moreover, the
Abelian groups with semilocal endomorphism rings have the n-th root property
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(see [12, Proposition 4.8]), for any positive integer n ≥ 2 and hence they are
determined by (−)n and projectivities, for any integer n ≥ 2. These groups
were studied in [8]. Other mixed groups with n-root property were studied in
[6].

We also recall that divisible Abelian groups of finite rank share the cancel-
lation property with respect to Ab. In particular, Z(p∞) and Q possess this
property. However, Z also has the cancellation property with respect to Ab
(see [1, Corollary 8]).

Corollary 9 provides a partial answer for the problems: ”When B is an
Abelian group, under which conditions Abelian groups are determined by B×−
and projectivities” and ”For some positive integer n ≥ 1, which groups are
determined by (−)n and projectivities?”

In what regards the second problem, the case of Abelian groups is solved
by the Corollary. For the case of non-Abelian groups, when n = 2, we just
mention that the Rottlaender groups (see [20] ) don’t make part of the solution.

When a group is not determined by projectivities, it might be possible
that one of its powers it is so. Baer’s results from 1939 imply that the cube
of an Abelian group is determined by projectivities in Ab. In what concerns
non-Abelian groups, Michio Suzuki proved in 1951 that the square of finite
simple group is determined by projectivities. This result was generalized by
Schmidt who proved that the square of a finite, perfect, centerless group G
is determined by projectivities. However, there are groups with the property
that none of their powers is determined by projectivities. When p is a prime
Z(p) is such a group (see [20, Section 6]).

4 The case V = N
For the lattice of all normal subgroups we have similar (not verbatim!) results.
In what follows we shall use the following result.

Theorem 11 [5] Let B 6= 0 be a torsion-free Abelian group. If G is a group
such that N (B ×G) ∼= N (A) for some Abelian group A then G is Abelian.

Proof. Let ϕ : N (B × G) → N (A) be an isomorphism. Every subgroup of
B is normal in B × G, hence the restriction of ϕ to B induces a projectivity
from B onto ϕ(B). Consequently ϕ(B) is not a torsion group. It follows that
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A is not a torsion group too. If the torsion-free rank of A is > 1 the conclusion
follows from [22, Theorem 9.1.12]. If A is of torsion-free rank 1, using the
direct decomposition A = ϕ(B) × ϕ(G), we deduce that G is a subgroup of
the centralizer of ϕ−1(〈x〉), for all x ∈ A \ T (A). Therefore, G is contained in
the center of B ×G and hence is Abelian.

Remark 12 The hypothesis “B is not a torsion group” is essential in the
previous theorem. For example, if we take B = Z(5) and G = S3, then
N (B ×G) ∼= N (Z(5)× Z(4)).

Remark 13 Theorem 11 still holds if we assume that all involved groups are
p-groups, as a consequence of [22, Theorem 9.1.11].

Remark 14 The condition from the hypothesis of the previous theorem can
be replaced with weaker one: if B and G are as above and N (B×G) ∼= L(H),
for some (not necessarily Abelian) group H, then G is Abelian. Indeed, if H
is Abelian we are in the conditions of the previous theorem. But if H is not
Abelian, we deduce that H is not a torsion group (in the same way as in the
proof of the Theorem 11). Since L(H) is modular we can apply Theorem 2
and we find ourselves again in the conditions of the previous theorem.

Corollary 15 Let B 6= 0 be an Abelian group. The following statements are
true:

a) If B is torsion-free, A ∼= G whenever A is an Abelian group, G is a group
and N (B×A) ∼= N (B×G) if and only if B has the cancellation property with
respect to Ab.

b) If B is a p-group, A ∼= G whenever A 6= 0 is an Abelian p-group, G
is a group and N (B × A) ∼= N (B × G) if and only if B has the cancellation
property with respect to Ab.

c) If n > 1 is an integer, B ∼= G whenever G is a group and N (Bn) ∼=
N (Gn) if and only if B has the n-root property.

Proof. a) Suppose B has the cancellation property with respect to Ab and
N (B × A) ∼= N (B × G). The fact that G is an Abelian group follows from
Theorem 11. By [22, Theorem 2.6.10 and Theorem 2.6.15], we get B × A ∼=
B ×G and so A ∼= G.

Statements b) and c) are consequences of Theorems 3 and 11.
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Remark 16 In the proof of a) we cannot deduce directly that ϕ(B) is Abelian,
even if N (B) ∼= N (ϕ(B)). In contrast with the case of subgroup lattices, it
is not known when a rank 1 torsion-free Abelian group B (even for B = Z)
is determined by N -projectivities. However, under additional assumptions
Curzio proved the following result.

Theorem 17 [11] If G is a rank 1 torsion-free Abelian group, K a soluble
group such that N (G) ∼= N (K) then K is Abelian and of torsion-free rank 1.

Using the normal subgroup lattice, a commutativity criterion for the nilpo-
tent groups is provided in [5].

Theorem 18 A nilpotent group G is Abelian if and only if there exists an
abelian group A such that N (G) ∼= N (A).

Corollary 19 If G is a finite p-group such that N (G) ∼= N (A) for some
Abelian group A, then G is Abelian.

Corolarry 19 does not work for the subgroup lattices of finite p-groups as
a consequence of 1.

Remark 20 In Corollary 9 b) the hypothesis “B is unbounded” is essential:
if G is a non-Hamiltonian locally finite p-group with modular subgroup lattice
then Z(p) × G is also a non-Hamiltonian locally finite p-group with modular
subgroup lattice, as a consequence of Iwasawa’s characterization [22, 2.4.14].
The existence of an Abelian p-group C such that L(C) ∼= L(Z(p) × G) is
assured by Theorem 1. Using this projectivity, we deduce the existence of a
direct decomposition C ∼= Z(p) × A. In conclusion, there exist an Abelian
group A and a non-Abelian group G such that L(Z(p)× A) ∼= L(Z(p)×G).

In Corollary 15 b) we have no such restrictions for the group B.

Corollary 21 Let A be an Abelian group and G a group. The following state-
ments are true.

(i) If Z × A and Z × G have isomorphic (normal) subgroup lattices then
A ∼= G.

(ii) If Q × A and Q × G have isomorphic (normal) subgroup lattices then
A ∼= G.

(iii) If A is an Abelian p-group and G is a p-group such that Z(p∞) × A
and Z(p∞)×G have isomorphic subgroup lattices then A ∼= G.
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(iii’) If A is an Abelian p-group and G is a group such that the groups
Z(pk)×A and Z(pk)×G, have isomorphic normal subgroup lattices, for some
k ∈ N? ∪ {∞}, then A ∼= G.

(iv) If A is a finitely generated Abelian group, G is a group, and there exists
n > 1 such that An and Gn have isomorphic (normal) subgroup lattices then
A ∼= G.

Proof. We only note that the proof is based on the fact that Z, Q and Z(p∞)
have the cancellation property, and finitely generated Abelian groups have the
n-root property. Since a finite group has the cancellation property (see [16]),
Z(pk) enjoys this property too. Full proofs for the case of subgroup lattices
can be found in [7], [9] and [19].

Remark 22 Since there exist non-isomorphic groups G and H such that Z×
G ∼= Z×H (see [24, Theorem 13]), the group Z does not have the cancellation
property with respect to non-Abelian groups. However, when Z × G ∼= Z ×
H, for some non-isomorphic groups G and H, these groups must be infinite.
Hence, our next question is whether the Corollary 21(i) can be extended to
non-Abelian finite groups. The answer is still negative and it is presented in
Section 5.

Corollary 23 Let A be an Abelian group. If G is a group and B is a finite
rank torsion-free Abelian group such that L(B×A) ∼= L(B×G) (or N (B×A) ∼=
N (B ×G)) then there exists a positive integer n such that An ∼= Gn.

5 An open question

We have seen that in the case of non-Abelian groups, the group Z does not
have the cancellation property, hence it is not cancellable from the subgroup
lattices. A more general cancellation property is investigated.

A group B has the power cancellation property (with respect a class C) if
B ×A ∼= B ×G (and A, G ∈ C) implies An ∼= Gn, for some positive integer n.

Hirshon proved in [17, Theorem 1] that Z has the power cancellation prop-
erty and later Goodearl established in [15, Theorem 5.1] that actually the
torsion-free Abelian groups of finite rank possess this property . Corollary 23
follows from Goodearl’s result.
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The question “Does the property L(Z×G1) ∼= L(Z×G2) (or N (Z×G1) ∼=
N (Z×G2)) imply Gn

1
∼= Gn

2 , for some integer n > 0” seems to be natural. The
answer is negative one, see [5], and it uses some classes of groups constructed
in [23] and [18]. We present here, for the sake of completeness, a particular
example.

Example 24 Let us recall here the groups constructed in [23, V (i)]. We fix
two primes p and q such that q ≡ 1(mod 3), p ≡ 1(mod 3q), an integer m of
order 3 in Z(p)? and an integer n of order 3 in Z(q)?. Let G1 be the group

G(m, n) = 〈s, t, u | sp = tq = u3 = 1, st = ts, us = smu, ut = tnu〉.
We denote by G be the underlying set of G(m, n), and by ◦ the operation on
G(m, n), hence G1 = (G, ◦).

We consider the binary term T = xy[x, y]p−1, and denote by G2 the group
defined on the set G by the operation x?y = T (x, y), where T (x, y) is the image
of the term function induced by T on G1. In [23] it is proved that G2 = (G, ?)
is a group isomorphic to G(m2, n), and G1 � G2. If we repeat the construction,
using this time T and G2 we obtain a group G3

∼= G(m4, n) = G(m, n). This
means that G1 and G2 are term equivalent groups (see [18]). Moreover, for
every integer n > 0, the groups Gn

1 and Gn
2 are term equivalent and it follows

L(Gn
1 ) ∼= L(Gn

2 ).
Using the same term function T , it is not hard to see that the groups

Z × G1 and Z × G2 are term equivalent (see [5, Corollary 13]). Therefore,
L(Z × G1) ∼= L(Z × G2) and N (Z × G1) ∼= N (Z × G2) as a consequence of
[18, Lemma 2.6]. But Gn

1 � Gn
2 for all 1 ≤ n < ω since G1 � G2 and these

groups are finite groups. Hence, we have presented the promised example from
Remark 22.

So it seems to be reasonable to formulate the following

Conjecture 25 If B is a finite rank torsion-free Abelian group and G1, G2

are groups (non-necessarily Abelian) such that L(B × G1) ∼= L(B × G2) (or
N (B × G1) ∼= N (B × G2)) then there exists a positive integer n such that
L(Gn

1 ) ∼= L(Gn
2 ) (respectively N (Gn

1 ) ∼= N (Gn
2 )).

This conjecture can be viewed as a part of the more general problem:
Find (characterize) the groups which have the power cancellation property for
(normal) subgroup lattices: if L(A × G1) ∼= L(A × G2) (respectively N (A ×
G1) ∼= N (A × G2)) then there exists a positive integer n such that L(Gn

1 ) ∼=
L(Gn

2 ) (respectively, N (Gn
1 ) ∼= N (Gn

2 )).
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