CONF. DR. HABIL. MICULA SANDA – LISTA PUBLICAȚIILOR
DIN 2011 PÂNĂ ÎN PREZENT
Noeiaghdam, S., Micula, S., A Novel Method for Solving Second Kind Volterra Integral Equations with Discontinuous Kernel, MATHEMATICS, Vol. 9(17), 2172, 2021, doi: 3390/math9172172
Micula, S., Groşan, T., Pop, I., Natural convection in a porous square cavity filled with a nanofluid: A numerical study using spline functions, JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, doi: 10.1007/s10973-021-11001-z
Micula, S., Numerical Solution of Two-Dimensional Fredholm–VolterraIntegral Equations of the Second Kind, SYMMETRY, Vol. 13(8), 1326, 2021, 1-12, doi: 10.3390/sym13081326
Noeiaghdam, S., Micula, S., Nieto, J. J., A Novel Technique to Control the Accuracy of a Nonlinear Fractional Order Model of COVID-19: Application of the CESTAC Method and the CADNA Library, MATHEMATICS, Vol. 9(12), 1231, 2021, doi: 10.3390/math9121321
Micula, S., Pop, I., Free convection inside a porous square cavity with convective boundary condition using spline functions, BOUNDARY VALUE PROBLEMS, Vol. 2021(1), 57, 2021, 1 – 13, doi:10.1186/s13661-021-01533-6
Noeiaghdam, S., Micula, S., Dynamical Strategy to Control the Accuracy of the Nonlinear Bio-Mathematical Model of Malaria Infection, MATHEMATICS, Vol. 9(9), 1031, 2021, doi: 10.3390/math9091031
Micula, S., Pop, I., Numerical results for the classical free convection flow problem in a square porous cavity using spline functions, INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, Vol. 31(3), 753-765, 2021 (online July 2020), doi: 10.1108/HFF-03-2020-0159
Micula, S., A Numerical Method for Weakly Singular Nonlinear Volterra Integral Equations of the Second Kind, SYMMETRY, Vol. 12(11), 1862, 2020, doi:10.3390/sym12111862
Micula, S., A numerical method for two-dimensional Hammerstein integral equations, Stud. Univ. Babeş-Bolyai Math., Vol. 66(2), 2021, 267-277, doi:10.24193/subbmath.2021.2.03
Micula, S., Sobolu, R., On Some Applications and Simulations of Counting Processes, J. of Information Systems and Operations Management, Vol. 13(2), 2019, 126 – 138, http://jisom.rau.ro/Vol.13%20No.2%20-%202019/JISOM-WI19-A09.pdf
S. Micula, On some iterative numerical methods for mixed Volterra-Fredholm integral equations, Symmetry, Vol. 11(10), 1200, 2019, 1-10, doi:10.3390/sym11101200
Micula, S., An iterative numerical method for fractional integral equations of the second kind, J. Comput. Appl. Math., Vol. 339, 2018, 124-133, doi:10.1016/j.cam.2017.12.006;
Micula, S., Cattani, C., On a numerical method based on wavelets for Fredholm-Hammerstein integral equations of the second kind, Math. Method. Appl. Sci., 2018, doi:10.1002/mma.4952;
Micula, S., On some iterative numerical methods for a Volterra functional integral equation of the second kind, J.Fixed Point Theory Appl., Vol. 19, 2017, 1815–1824, doi:10.1007/s11784-016-0336-6;
Micula, S., Sobolu, R., Applications and Computer Simulations of Markov Chains, J. of Information Systems and Operations Management, Vol. 11(2), 2017, 243 – 253;
Micula, S.On some numerical iterative methods for Fredholm integral equations with deviating arguments, Stud. Univ. Babeş-Bolyai Math., Vol. 61(3), 2016, 331-341;
Micula, S., Pop, I. D., Simulations of Continuous Random Variables and Monte Carlo Methods, J. of Information Systems and Operations Management, Vol. 10(2), 2016, 435 – 447;
Micula, S., On Spline Collocation and the Hibert Transform, CARPATHIAN JOURNAL OF MATHEMATICS, 31(1), 2015, P. 89 – 95.
Micula, S., An iterative numerical method for Fredholm-Volterra integral equations of the second kind, APPLIED MATHEMATICS AND COMPUTATION, 270, doi:10.1016/j.amc.2015.08.110 , 2015, P. 935 – 942.
Micula, S., A fast converging iterative method for Volterra integral equations of the second kind with delayed arguments, FIXED POINT THEORY, 16(2), 2015, P. 371 – 380.
Micula, S., A spline collocation method for Fredholm–Hammerstein integral equations of the second kind in two variables, APPLIED MATHEMATICS AND COMPUTATION, 265, doi:10.1016/j.amc.2015.05.017, 2015, P. 352 – 357.
Micula, S., Wendland Wolfgang, L., Trigonometric collocation for nonlinear Riemann–Hilbert problems on doubly connected domains, IMA JOURNAL OF NUMERICAL ANALYSIS, 35(2), DOI:10.1093/imanum/dru009 , 2015, P. 834 – 858.
Micula, S., Statistical Computer Simulations and Monte Carlo Methods, Journal of Information Systems and Operations Management, 2015, P. 385-395.
Micula, S., Nonlinear Equations in MATLAB, Journal of Information Systems and Operations Management, 2014, P. 272-286.
Mironiuc, A., Palcău, L., Rogojan, L., Micula, S., Gherman, C., Is there a correlation between the CEAP score and the histopathological findings in varicose disease?, Rom. J. Morphol. Embryo., Vol. 52(1), 2011, 117 – 121.