Direcţii de cercetare
-
teoria aproximării
-
metode numerice
-
procese liniare de aproximare
-
procese stochastice
-
ecuaţii cu derivate parţiale stochastice
-
filtrare stochastică neliniară
Colectivul
COORDONATOR PRINCIPAL: Prof. Dr. Habil. Sanda Micula
Coordonator: Conf. Dr. Habil. Teodora Cӑtinaş
Domenii de interes: teoria aproximӑrii, metode numerice (website)
Coordonator: Conf. Dr. Habil. Hannelore Lisei
Domenii de interes: analiză stochastică, ecuaţii cu derivate parţiale stochastice, teoria probabilităţilor (website)
Prof. Dr. Emerit Octavian Agratini
Prof. Dr. Habil. Teodor Groșan
Conf. Dr. Alin Vasile Roșca
Conf. Dr. Natalia Roșca
Domenii de interes: metode Monte Carlo şi quasi-Monte Carlo, metode numerice (website)
Conf. Dr. Anna Soós
Domenii de interes: analiza stochastică, teoria fractalilor (website)
Conf. Dr. Radu Trîmbițaș
Domenii de interes: analiză numerică, statistică matematică, computer algebra (website)
Lector Dr. Oana Lang
Domenii de interes: analizǎ stocasticǎ, ecuații stocastice cu derivate parțiale, teoria probabilitǎților, filtrare stocasticǎ neliniarǎ (website)
Lector Dr. Mihai Nechita
Lector Dr. Flavius Pӑtrulescu
Domenii de interes: metode numerice (website)
Lect. Dr. Voichița-Adriana Radu
Lect. Dr. Ildikó Somogyi
Asist. Dr. Florin Albișoru
Domenii de interes: mecanica fluidelor, ecuaţii cu derivate parţiale, teoria potenţialului (website)
Doctoranzi
-
Drd. Andra Malina
-
Drd. Paul Marin
-
Drd. Gheorghe Sârbu
Articole notabile ale membrilor colectivului:
- O. Agratini, A. Aral, Approximation of some classes of functions by Landau type operators, Results Math., 76 (2021) Article 12, 15 pages, https://doi.org/10.1007/s00025-020-01319-9
- O. Agratini, Approximation properties of a family of integral type operators, Positivity, 25 (2021), Issue 1, 97 – 108, https://doi.org/10.1007/s11117-020-00752-y
- U. Abel, O. Agratini, Simultaneous Approximation by Gauss–Weierstrass–Wachnicki Operators, Mediterr. J. Math, 19 (2022), Issue 6, Article 267, 13 pages, https://doi.org/10.1007/s00009-022-02194-0.
- O. Agratini, Properties of positive linear operators connected with squared fundamental functions, Numer. Funct. Anal. Optimiz., 45 (2024), no. 2, 103– 111, https://doi.org/10.1080/01630563.2024.2316579.
- A. F. Albişoru, A Poisson Problem of Transmission-type for the Stokes and Generalized Brinkman Systems in Complementary Lipschitz Domains in R^3, Taiwanese Journal of Mathematics, 24 (2020), no. 2., 331-354, doi.org/10.11650/tjm/190408
- A. F. Albişoru, D. Ghişa, Conformal Self Mappings of the Fundamental Domains of Analytic Functions and Computer Experimentation, WSEAS Transactions on Mathematics, 22 (2023), 652-665, doi.org/10.37394/23206.2023.22.106
- A. F. Albişoru, D. Ghişa, Global Mapping Properties of Some Functions of Class S, WSEAS Transactions on Mathematics, 23 (2024), 184-195, doi.org/10.37394/23206.2024.23.22
- A. F. Albişoru, M. Kohr, I. Papuc, W. L. Wendland, On some Robin-transmission problems for the Brinkman system and a Navier-Stokes type system, Mathematical Methods in Applied Sciences, 47 (2024), 12590-12617, DOI 10.1002/mma.10170
- T. Cătinaş, Nielson interpolation operators on an arbitrary triangle with one curved side, BIT Numerical Mathematics, 61 (2021), no. 3, 757–770; doi: 10.1007/s10543-021-00842-7
- T. Cătinaş, A Constrained Shepard Type Operator for Modeling and Visualization of Scattered Data, Symmetry 2022, 14(2), 240; doi: 10.3390/sym14020240
- T. Cătinaş, A Review on Some Linear Positive Operators Defined on Triangles, Symmetry 2022, 14, 1880, doi: 10.3390/sym14091880
- T. Cătinaş,, Cheney–Sharma Type Operators on a Triangle with Straight Sides, Symmetry, 2022, 14(11), 2446; doi: 10.3390/sym14112446
- T. Cătinaş, Andra Malina, Spherical interpolation of scattered data using least squares thin-plate spline and inverse multiquadric functions, Numerical Algorithms, 2024, 97(3), 1397-1414; doi.org/10.1007/s11075-024-01755-6.
- T. Cătinaş, A. Malina, Spherical Shepard-Bernoulli operator, 2024, Journal of Applied Mathematics and Computing, DOI:1007/s12190-024-02285-z
- T. Groşan, I. Pop, Flow and heat transfer over a permeable biaxial stretching/shrinking sheet in a nanofluid, Neural Computing and Applications, 32 (2020), no. 9, 4575-4582, DOI: 10.1007/s00521-018-3770-0
- M.A. Sheremet, T. Groşan, I. Pop, Thermal convection in a chamber filled with a nanosuspension driven by a chemical reaction using Tiwari and Das’ model, International Journal of Numerical Methods for Heat & Fluid Flow 31 (2021), no. 1, 452-470, doi.org/10.1108/HFF-05-2020-0282
- T. Groşan, F.O. Pătrulescu, I. Pop, Natural convection in a differentially heated cavity filled with a Brinkman bidisperse porous medium, INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 33 (2023) no. 10, 3309-3326, doi/10.1108/HFF-10-2022-0600
- O. Lang, D. Crisan, P. J. van Leeuwen, R. Potthast, Bayesian Inference for fluid dynamics: a case study for the stochastic rotating shallow water model, Frontiers in Applied Mathematics and Statistics, Volume 8 (2022), doi.org/10.3389/fams.2022.949354
- O. Lang, D. Crisan, Well-posedness for a stochastic 2D Euler equation with transport noise, Stoch PDE: Anal Comp, Volume 11, pages 433–480 (2023), doi.org/10.1007/s40072-021-00233-7
- O. Lang, D. Crisan, E. Mémin, Analytical Properties for a Stochastic Rotating Shallow Water Model Under Location Uncertainty, Journal of Mathematical Fluid Mechanics, Volume 25, No 29 (2023), doi.org/10.1007/s00021-023-00769-9
- O. Lang, D. Crisan, Well-posedness Properties for a Stochastic Rotating Shallow Water Model, J. Dyn. Diff. Equat., Volume 36, pages 3175–3205 (2024), doi.org/10.1007/s10884-022-10243-1
- W. Grecksch, H. Lisei, An optimal control problem for a linear SPDE driven by a multiplicative multifractional Brownian motion, Stochastics and Dynamics, Vol. 22 (2022), Issue 7, Article number 22400202 , doi.org/10.1142/S0219493722400202
- G. Czibula, G. Ciubotariu, M.I. Maier, H. Lisei, IntelliDaM: A Machine Learning-Based Framework for Enhancing the Performance of Decision-Making Processes. A Case Study for Educational Data Mining, IEEE ACCESS, Volume 10, 80651-80666 (2022) DOI: 10.1109/ACCESS.2022.3195531
- W. Grecksch, H. Lisei, B. E. Breckner, Optimal control for a nonlinear Schrödinger problem perturbed by multiplicative fractional noise, Optimization, Volume 73 (2024), No. 11, 3411-3435, doi.org/10.1080/02331934.2024.2332619
- E. Burman, M. Nechita, L. Oksanen, A stabilized finite element method for inverse problems subject to the convection-diffusion equation. I: diffusion-dominated regime, Numer. Math. 144 (2020), pp. 451-477. doi.org/10.1007/s00211-019-01087-x
- C.D. Alecsa, I. Boros, F. Frank, P. Knabner, M. Nechita, A. Prechtel, A. Rupp, N. Suciu, Numerical benchmark study for flow in highly heterogeneous aquifers, Adv. Water Res., 138 (2020), 103558. doi.org/10.1016/j.advwatres.2020.103558
- E. Burman, M. Nechita, L. Oksanen, A stabilized finite element method for inverse problems subject to the convection-diffusion equation. II: convection-dominated regime, Numer. Math. 150 (2022), pp. 769-801. doi.org/10.1007/s00211-022-01268-1
- M. Nechita, Solving ill-posed Helmholtz problems with physics-informed neural networks, J. Numer. Anal. Approx. Theory 52 (2023), no. 1, pp. 90-101. doi.org/10.33993/jnaat521-1305
- E. Burman, M. Nechita, L. Oksanen, Optimal approximation of unique continuation, Found. Comput. Math. (2024), doi.org/10.1007/s10208-024-09655-w
- S. Micula, I. Pop, Numerical results for the classical free convection flow problem in a square porous cavity using spline functions, Int. J. Numer. Method. H. 31 (2021), no. 3, 753-765, https://doi.org/10.1108/HFF-03-2020-0159
- S. Micula, T. Groşan, I. Pop, Natural convection in a porous square cavity filled with a nanofluid: A numerical study using spline functions, J. Therm. Anal. Calorim. 147 (2022), 6931-6939, https://doi.org/10.1007/s10973-021-11001-z
- C. Nwaigwe, S. Micula, Fast and Accurate Numerical Algorithm with Performance Assessment for Nonlinear Functional Volterra Equations, Fractal Fract. 7 (2023), no. 4, Art. nr. 333, https://doi.org/10.3390/fractalfract7040333
- S. Micula, Numerical solution of two-dimensional Hammerstein integral equations via quadratic spline collocation, Numer. Algorithms 93 (2023), no. 3, 1225-1241, https://link.springer.com/article/10.1007/s11075-022-01465-x
- F. O. Pătrulescu, T. Groşan, I. Pop, Natural Convection From a Vertical Plate Embedded in a Non-Darcy Bidisperse Porous Medium, J. Heat Transfer, 142 (2020), no. 1, Article Number 012504, doi.org/10.1115/1.4045067
- M. Birou, C.V. Muraru, V.A. Radu, Convergence of Certain Baskakov Operators of Integral Type, Symmetry 2021, 13(9), 1747, doi.org/10.3390/sym13091747
- V. Gupta, C.V. Popescu Muraru, V.A Radu, Convergence of certain hybrid operators, Rocky Mountain Journal of Mathematics, 51(4) (2021), 1249-1258, doi.org/10.1216/rmj.2021.51.1249
- A. Radu, P. Agrawal, J.K. Singh, Better numerical approximation by $\lambda$-Durrmeyer-Bernstein type operators, Filomat, 35(2) (2021) https://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/view/12543
- A.M. Acu, M. Dancs, V.A. Radu, Representations for the inverses of certain operators, Communications on Pure and Applied Analysis, 19(8) (2020), 4097-4109, https://www.aimsciences.org/article/doi/10.3934/cpaa.2020182
- A. Jafarimoghaddam, M. Turkyilmazoglu, A.V. Roşca and I. Pop Ioan, Complete theory of the elastic wall jet: A new flow geometry with revisited two-phase nanofluids, Eur. J. Mech. B Fluids, 86 (2021), 25 – 36, doi.org/10.1016/j.euromechflu.2020.11.006
- A. Jafarimoghaddam, A.V. Roşca and I. Pop, Theoretical breakthrough in the dynamics of a jet in a free-stream flow around a corner, Appl. Math. Comput., 424 (2022), Article ID 127035, 1 – 12, doi.org/10.1016/j.amc.2022.127035
- I. Pop, T. S. Groşan, A.V. Roşca and C. Revnic, Unsteady flow and heat transfer of nanofluids, hybrid nanofluids, micropolar fluids and porous media: A review, Therm. Sci. Eng. Prog., 46 (2023), No. 1, 1 – 17, doi.org/10.1016/j.tsep.2023.102248
- A.V. Roşca, N.C. Roşca and I. Pop, Three-dimensional mixed convection stagnation-point flow past a vertical surface with second-order slip velocity, Appl. Math. Mech. (English Ed.) 44 (2023), no. 4, 641 – 652, doi.org/10.1007/s10483-023-2975-7
- N.C. Roşca, A.V. Roşca, I. Pop and J. Merkin, Nanofluid flow by a permeable stretching/shrinking cylinder, Heat Mass Transf. 56 (2020), no. 2, 547 – 557, doi.org/10.1007/s00231-019-02730-x
- A. Jafarimoghaddam, N.C. Roşca, A.V. Roşca and I. Pop, The universal Blasius problem: New results by Duan–Rach Adomian Decomposition Method with Jafarimoghaddam contraction mapping theorem and numerical solutions, Math. Comput. Simulation, 187 (2021), No. 9, 60 – 76, doi.org/10.1016/j.matcom.2021.02.014
- N.C. Roşca, A.V. Roşca and I. Pop, Mixed convection flow of a hybrid nanofluid past a vertical wedge with thermal radiation effect, Internat. J. Numer. Methods Heat Fluid Flow 32 (2022), no. 2, 806 – 824, doi.org/10.1108/HFF-03-2021-0155
- N.C. Roşca, A.V. Roşca and I. Pop, Dual solutions on three-dimensional nanofluid flow and heat transfer over a permeable non-linearly shrinking surface with second-order velocity slips, Internat. J. Numer. Methods Heat Fluid Flow 33 (2023), no. 7, 2392 – 2408, doi.org/10.1108/HFF-10-2022-0624.
Cărţi:
- T. Groşan, F.O. Pătrulescu, C. Revnic, Transport Phenomena in Nanofluids, Porous Media and Bidisperse Porous Media, Casa Cărţii de Ştiinţa, Cluj-Napoca, 2021
- J. H. Merkin, I. Pop, Y. Y. Lok, T. Groşan, Similarity Solutions for the Boundary Layer Flow and Heat Transfer of Viscous Fluids, Nanofluids, Porous Media, and Micropolar Fluids, Elsevier, 2021
- H. Lisei, W. Grecksch, M. Iancu, Probability: Theory, Examples, Problems, Simulations. World Scientific Publishing, Singapore, 2020, doi.org/10.1142/11427
Capitole de cărţi:
- U. Abel, O. Agratini, On Wachnicki’s Generalization of the Gauss-Weierstrass Integral, In: Candela, A.M., Cappelletti Montano, M., Mangino, E. (eds), Recent Advances in Mathematical Analysis. Trends in Mathematics, Birkhäuser, Cham., pp 1–13, 2023, https://doi.org/10.1007/978-3-031-20021-2_1
- O. Lang, W. Pan, A pathwise parameterisation for stochastic transport, Stochastic Transport in Upper Ocean Dynamics (STUOD) Proceedings (2023), Springer, https://link.springer.com/book/10.1007/978-3-031-18988-3
- A. Lobbe, B. Chapron, D. Crisan, D. Holm, O. Lang, E. Mémin, Comparison of Stochastic Parametrization Schemes using Data Assimilation on Triad Models, Stochastic Transport in Upper Ocean Dynamics (STUOD) Proceedings (2024), Springer, https://link.springer.com/book/10.1007/978-3-031-40094-0.
- W. Grecksch, H. Lisei, Stochastic Schrödinger Equations, Chapter 3 in “Infinite Dimensional and Finite Dimensional Stochastic Equations and Applications in Physics”, World Scientific Publishing, 2020, p. 115-158, doi.org/10.1142/9789811209796_0003
- S. Micula, G. V. Milovanović, Iterative Processes and Integral Equations of the Second Kind, Chapter 16 in “Matrix and Operator Equations and Applications”, ed. M. S. Moslehian, Springer Cham, Switzerland, 2023, doi.org/10.1007/978-3-031-25386-7
Editare volume colective:
- W. Grecksch, H. Lisei (Editors), Infinite Dimensional and Finite Dimensional Stochastic Equations and Applications in Physics, World Scientific Publishing, Singapore, 2020, doi.org/10.1142/11538