Direcţii de cercetare

  • teoria aproximării

  • metode numerice

  • procese liniare de aproximare

  • procese stochastice

  • ecuaţii cu derivate parţiale stochastice

  • filtrare stochastică neliniară

Colectivul

COORDONATOR PRINCIPAL: Prof. Dr. Habil. Sanda Micula

Domenii de interes: metode numerice, ecuaţii integrale, metode de colocaţie spline (website)

 

Coordonator: Conf. Dr. Habil. Teodora Cӑtinaş

Domenii de interes:  teoria aproximӑrii, metode numerice (website)

 

Coordonator: Conf. Dr. Habil. Hannelore Lisei

Domenii de interes: analiză stochastică, ecuaţii cu derivate parţiale stochastice, teoria probabilităţilor (website)

 

Prof. Dr. Emerit Octavian Agratini

Domenii de interes: procese liniare de aproximare, q-calculus (website)

 

Prof. Dr. Habil. Teodor Groșan

Domenii de interes: mecanica fluidelor, transfer de căldura, metode numerice (website)

 

Conf. Dr. Alin Vasile Roșca

Domenii de interes: metode de simulare Monte Carlo, mecanica fluidelor, metode numerice (website)

 

Conf. Dr. Natalia Roșca

Domenii de interes: metode Monte Carlo şi quasi-Monte Carlo, metode numerice (website)

 

Conf. Dr. Anna Soós

Domenii de interes: analiza stochastică, teoria fractalilor (website)

 

Conf. Dr. Radu Trîmbițaș

Domenii de interes: analiză numerică, statistică matematică, computer algebra (website)

 

Lector Dr. Oana Lang

Domenii de interes: analizǎ stocasticǎ, ecuații stocastice cu derivate parțiale, teoria probabilitǎților, filtrare stocasticǎ neliniarǎ (website)

 

Lector Dr. Mihai Nechita

Domenii de interes: analiză numerică, ecuații cu derivate parțiale, probleme inverse (website)

 

Lector Dr. Flavius Pӑtrulescu

Domenii de interes: metode numerice (website)

 

Lect. Dr. Voichița-Adriana Radu

Domenii de interes: teoria aproximării, operatori liniari și pozitivi (website)

 

Lect. Dr. Ildikó Somogyi

Domenii de interes: metode numerice, integrare numerică (website)

 

Asist. Dr. Florin Albișoru

Domenii de interes: mecanica fluidelor, ecuaţii cu derivate parţiale, teoria potenţialului (website)

Doctoranzi

  • Drd. Andra Malina

  • Drd. Paul Marin

  • Drd. Gheorghe Sârbu

Articole notabile ale membrilor colectivului:

  • O. Agratini, A. Aral, Approximation of some classes of functions by Landau type operators, Results Math., 76 (2021) Article 12, 15 pages, https://doi.org/10.1007/s00025-020-01319-9
  •  O. Agratini, Approximation properties of a family of integral type operators, Positivity, 25 (2021), Issue 1, 97 – 108, https://doi.org/10.1007/s11117-020-00752-y
  • U. Abel, O. Agratini, Simultaneous Approximation by Gauss–Weierstrass–Wachnicki Operators, Mediterr. J. Math, 19 (2022), Issue 6, Article 267, 13 pages, https://doi.org/10.1007/s00009-022-02194-0.
  • O. Agratini, Properties of positive linear operators connected with squared fundamental functions, Numer. Funct. Anal. Optimiz., 45 (2024), no. 2, 103– 111, https://doi.org/10.1080/01630563.2024.2316579.
  • A. F. Albişoru, A Poisson Problem of Transmission-type for the Stokes and Generalized Brinkman Systems in Complementary Lipschitz Domains in R^3, Taiwanese Journal of Mathematics, 24 (2020), no. 2., 331-354, doi.org/10.11650/tjm/190408
  • A. F. Albişoru, D. Ghişa, Conformal Self Mappings of the Fundamental Domains of Analytic Functions and Computer Experimentation, WSEAS Transactions on Mathematics, 22 (2023), 652-665, doi.org/10.37394/23206.2023.22.106
  • A. F. Albişoru, D. Ghişa, Global Mapping Properties of Some Functions of Class S, WSEAS Transactions on Mathematics, 23 (2024), 184-195, doi.org/10.37394/23206.2024.23.22 
  •  A. F. Albişoru, M. Kohr, I. Papuc, W. L. Wendland, On some Robin-transmission problems for the Brinkman system and a Navier-Stokes type system, Mathematical Methods in Applied Sciences, 47 (2024), 12590-12617, DOI 10.1002/mma.10170
  • T. Cătinaş, Nielson interpolation operators on an arbitrary triangle with one curved side, BIT Numerical Mathematics, 61 (2021), no. 3, 757–770; doi: 10.1007/s10543-021-00842-7
  • T. Cătinaş, A Constrained Shepard Type Operator for Modeling and Visualization of Scattered Data, Symmetry 2022, 14(2), 240; doi: 10.3390/sym14020240
  • T. Cătinaş, A Review on Some Linear Positive Operators Defined on Triangles, Symmetry 2022, 14, 1880, doi: 10.3390/sym14091880
  • T. Cătinaş,, Cheney–Sharma Type Operators on a Triangle with Straight Sides, Symmetry, 2022, 14(11), 2446; doi: 10.3390/sym14112446
  • T. Cătinaş, Andra Malina, Spherical interpolation of scattered data using least squares thin-plate spline and inverse multiquadric functions, Numerical Algorithms,  2024, 97(3), 1397-1414; doi.org/10.1007/s11075-024-01755-6.
  • T. Cătinaş, A. Malina, Spherical Shepard-Bernoulli operator, 2024, Journal of Applied Mathematics and Computing, DOI:1007/s12190-024-02285-z
  • T. Groşan, I. Pop, Flow and heat transfer over a permeable biaxial stretching/shrinking sheet in a nanofluid, Neural Computing and Applications, 32 (2020), no. 9, 4575-4582, DOI: 10.1007/s00521-018-3770-0
  • M.A. Sheremet, T. Groşan, I. Pop, Thermal convection in a chamber filled with a nanosuspension driven by a chemical reaction using Tiwari and Das’ model, International Journal of Numerical Methods for Heat & Fluid Flow 31 (2021), no. 1, 452-470,  doi.org/10.1108/HFF-05-2020-0282
  • T. Groşan, F.O. Pătrulescu, I. Pop, Natural convection in a differentially heated cavity filled with a Brinkman bidisperse porous medium, INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 33 (2023) no. 10, 3309-3326, doi/10.1108/HFF-10-2022-0600
  • O. Lang, D. Crisan, P. J. van Leeuwen, R. Potthast, Bayesian Inference for fluid dynamics: a case study for the stochastic rotating shallow water model, Frontiers in Applied Mathematics and Statistics, Volume 8 (2022), doi.org/10.3389/fams.2022.949354
  • O. Lang, D. Crisan, Well-posedness for a stochastic 2D Euler equation with transport noise, Stoch PDE: Anal Comp, Volume 11, pages 433–480 (2023), doi.org/10.1007/s40072-021-00233-7
  • O. Lang, D. Crisan, E. Mémin, Analytical Properties for a Stochastic Rotating Shallow Water Model Under Location Uncertainty, Journal of Mathematical Fluid Mechanics, Volume 25, No 29 (2023),  doi.org/10.1007/s00021-023-00769-9
  • O. Lang, D. Crisan, Well-posedness Properties for a Stochastic Rotating Shallow Water Model, J. Dyn. Diff. Equat., Volume 36, pages 3175–3205 (2024), doi.org/10.1007/s10884-022-10243-1
  • W. Grecksch, H. Lisei, An optimal control problem for a linear SPDE driven by a multiplicative multifractional Brownian motion, Stochastics and Dynamics, Vol. 22 (2022), Issue 7, Article number 22400202 ,   doi.org/10.1142/S0219493722400202
  • G. Czibula, G. Ciubotariu, M.I. Maier, H. Lisei, IntelliDaM: A Machine Learning-Based Framework for Enhancing the Performance of Decision-Making Processes. A Case Study for Educational Data Mining, IEEE ACCESS, Volume 10, 80651-80666 (2022) DOI: 10.1109/ACCESS.2022.3195531
  • W. Grecksch, H. Lisei, B. E. Breckner, Optimal control for a nonlinear Schrödinger problem perturbed by multiplicative fractional noise, Optimization, Volume 73 (2024), No. 11, 3411-3435, doi.org/10.1080/02331934.2024.2332619
  • E. Burman, M. Nechita, L. Oksanen, A stabilized finite element method for inverse problems subject to the convection-diffusion equation. I: diffusion-dominated regime, Numer. Math. 144 (2020), pp. 451-477. doi.org/10.1007/s00211-019-01087-x
  • C.D. Alecsa, I. Boros, F. Frank, P. Knabner, M. Nechita, A. Prechtel, A. Rupp, N. Suciu, Numerical benchmark study for flow in highly heterogeneous aquifers, Adv. Water Res., 138 (2020), 103558. doi.org/10.1016/j.advwatres.2020.103558
  • E. Burman, M. Nechita, L. Oksanen, A stabilized finite element method for inverse problems subject to the convection-diffusion equation. II: convection-dominated regime, Numer. Math. 150 (2022), pp. 769-801. doi.org/10.1007/s00211-022-01268-1
  • M. Nechita, Solving ill-posed Helmholtz problems with physics-informed neural networks, J. Numer. Anal. Approx. Theory 52 (2023), no. 1, pp. 90-101. doi.org/10.33993/jnaat521-1305
  • E. Burman, M. Nechita, L. Oksanen, Optimal approximation of unique continuation, Found. Comput. Math. (2024), doi.org/10.1007/s10208-024-09655-w
  •  S. Micula, I. Pop, Numerical results for the classical free convection flow problem in a square porous cavity using spline functions, Int. J. Numer. Method. H. 31 (2021), no. 3, 753-765, https://doi.org/10.1108/HFF-03-2020-0159
  • S. Micula, T. Groşan, I. Pop, Natural convection in a porous square cavity filled with a nanofluid: A numerical study using spline functions, J. Therm. Anal. Calorim. 147 (2022), 6931-6939, https://doi.org/10.1007/s10973-021-11001-z
  • C. Nwaigwe, S. Micula, Fast and Accurate Numerical Algorithm with Performance Assessment for Nonlinear Functional Volterra Equations, Fractal Fract. 7 (2023), no. 4, Art. nr. 333, https://doi.org/10.3390/fractalfract7040333
  • S. Micula, Numerical solution of two-dimensional Hammerstein integral equations via quadratic spline collocation, Numer. Algorithms 93 (2023), no. 3, 1225-1241, https://link.springer.com/article/10.1007/s11075-022-01465-x
  • F. O. Pătrulescu, T. Groşan, I. Pop, Natural Convection From a Vertical Plate Embedded in a Non-Darcy Bidisperse Porous Medium, J. Heat Transfer, 142 (2020), no. 1, Article Number 012504, doi.org/10.1115/1.4045067
  • M. Birou, C.V. Muraru, V.A. Radu, Convergence of Certain Baskakov Operators of Integral Type, Symmetry 2021, 13(9), 1747, doi.org/10.3390/sym13091747
  • V. Gupta, C.V. Popescu Muraru, V.A Radu, Convergence of certain hybrid operators, Rocky Mountain Journal of Mathematics, 51(4) (2021), 1249-1258,  doi.org/10.1216/rmj.2021.51.1249
  • A. Radu, P. Agrawal, J.K. Singh, Better numerical approximation by $\lambda$-Durrmeyer-Bernstein type operators, Filomat, 35(2) (2021) https://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/view/12543
  • A.M. Acu, M. Dancs, V.A. Radu, Representations for the inverses of certain operators, Communications on Pure and Applied Analysis, 19(8) (2020), 4097-4109, https://www.aimsciences.org/article/doi/10.3934/cpaa.2020182
  • A. Jafarimoghaddam, M. Turkyilmazoglu, A.V. Roşca and I. Pop Ioan, Complete theory of the elastic wall jet: A new flow geometry with revisited two-phase nanofluids, Eur. J. Mech. B Fluids, 86 (2021), 25 – 36, doi.org/10.1016/j.euromechflu.2020.11.006
  • A. Jafarimoghaddam, A.V. Roşca and I. Pop, Theoretical breakthrough in the dynamics of a jet in a free-stream flow around a corner, Appl. Math. Comput., 424 (2022), Article ID 127035, 1 – 12, doi.org/10.1016/j.amc.2022.127035
  • I. Pop, T. S. Groşan, A.V. Roşca and C. Revnic, Unsteady flow and heat transfer of nanofluids, hybrid nanofluids, micropolar fluids and porous media: A review, Therm. Sci. Eng. Prog., 46 (2023), No. 1, 1 – 17, doi.org/10.1016/j.tsep.2023.102248
  • A.V. Roşca, N.C. Roşca and I. Pop, Three-dimensional mixed convection stagnation-point flow past a vertical surface with second-order slip velocity, Appl. Math. Mech. (English Ed.) 44 (2023), no. 4, 641 – 652,  doi.org/10.1007/s10483-023-2975-7
  •  N.C. Roşca, A.V. Roşca, I. Pop and  J. Merkin, Nanofluid flow by a permeable stretching/shrinking cylinder, Heat Mass Transf. 56 (2020), no. 2, 547 – 557, doi.org/10.1007/s00231-019-02730-x
  • A. Jafarimoghaddam, N.C. Roşca, A.V. Roşca and I. Pop, The universal Blasius problem: New results by Duan–Rach Adomian Decomposition Method with Jafarimoghaddam contraction mapping theorem and numerical solutions, Math. Comput. Simulation, 187 (2021), No. 9, 60 – 76, doi.org/10.1016/j.matcom.2021.02.014
  • N.C. Roşca, A.V. Roşca and I. Pop, Mixed convection flow of a hybrid nanofluid past a vertical wedge with thermal radiation effect, Internat. J. Numer. Methods Heat Fluid Flow 32 (2022), no. 2, 806 – 824, doi.org/10.1108/HFF-03-2021-0155
  •  N.C. Roşca, A.V. Roşca and I. Pop, Dual solutions on three-dimensional nanofluid flow and heat transfer over a permeable non-linearly shrinking surface with second-order velocity slips, Internat. J. Numer. Methods Heat Fluid Flow 33 (2023), no. 7, 2392 – 2408,  doi.org/10.1108/HFF-10-2022-0624.

rţi:

  • T. Groşan, F.O. Pătrulescu, C. Revnic, Transport Phenomena in Nanofluids, Porous Media and Bidisperse Porous Media, Casa Cărţii de Ştiinţa, Cluj-Napoca, 2021
  • J. H. Merkin, I. Pop, Y. Y. Lok, T. Groşan, Similarity Solutions for the Boundary Layer Flow and Heat Transfer of Viscous Fluids, Nanofluids, Porous Media, and Micropolar Fluids, Elsevier, 2021
  • H. Lisei, W. Grecksch, M. Iancu, Probability: Theory, Examples, Problems, Simulations. World Scientific Publishing, Singapore, 2020, doi.org/10.1142/11427

Capitole de cărţi:

  • U. Abel, O. Agratini, On Wachnicki’s Generalization of the Gauss-Weierstrass Integral, In: Candela, A.M., Cappelletti Montano, M., Mangino, E. (eds), Recent  Advances in Mathematical Analysis. Trends in Mathematics, Birkhäuser, Cham., pp 1–13, 2023,  https://doi.org/10.1007/978-3-031-20021-2_1
  • O. Lang, W. Pan, A pathwise parameterisation for stochastic transport, Stochastic Transport in Upper Ocean Dynamics (STUOD) Proceedings (2023), Springer, https://link.springer.com/book/10.1007/978-3-031-18988-3
  • A. Lobbe, B. Chapron, D. Crisan, D. Holm, O. Lang, E. Mémin, Comparison of Stochastic Parametrization Schemes using Data Assimilation on Triad Models, Stochastic Transport in Upper Ocean Dynamics (STUOD) Proceedings (2024), Springer, https://link.springer.com/book/10.1007/978-3-031-40094-0.
  • W. Grecksch, H. Lisei, Stochastic Schrödinger Equations, Chapter 3 in “Infinite Dimensional and Finite Dimensional Stochastic Equations and Applications in Physics”, World Scientific Publishing, 2020, p. 115-158, doi.org/10.1142/9789811209796_0003
  • S. Micula, G. V. Milovanović, Iterative Processes and Integral Equations of the Second Kind, Chapter 16 in “Matrix and Operator Equations and Applications”, ed. M. S. Moslehian, Springer Cham, Switzerland, 2023, doi.org/10.1007/978-3-031-25386-7

Editare volume colective:

  • W. Grecksch, H. Lisei (Editors), Infinite Dimensional and Finite Dimensional Stochastic Equations and Applications in Physics, World Scientific Publishing, Singapore, 2020, doi.org/10.1142/11538

Seminarii de cercetare