Sequences, Geometric and Telescoping Series

- 1. Given the sequence $\left\{\frac{1+\ln n}{n^3}\right\}_{n=1}^{\infty}$
 - (a) Is it monotonic? Is it bounded?
 - (b) What can be concluded from (a)?
- 2. Illustrate each of the following with an example.
 - (a) A bounded sequence need not converge.
 - (b) A monotonic sequence need not be bounded.
- 3. If possible, state an example for each of the following
 - (a) A convergent sequence which is not monotonic.
 - (b) A convergent sequence which is not bounded.
- 4. Determine whether each sequence is convergent or divergent? If convergent find what it converges to. If divergent, state when it diverges to ∞ or $-\infty$.

(a)
$$\left\{\frac{\sqrt{n}+1}{n}\right\}_{n=1}^{\infty}$$

(b) $\left\{\frac{n^{2}}{n!}\right\}_{n=0}^{\infty}$
(c) $\left\{\frac{n!2^{n}}{(2n)!}\right\}_{n=0}^{\infty}$
(d) $a_{n} = -2 + \ln\left[\frac{2+n}{3n}\right], \quad n = 1, 2, 3, ...$
(e) $a_{n} = (5n)^{3/\ln n}, \quad n = 2, 3, 4, ...$
(f) $\left\{\frac{2n+1}{3n-1}\right\}_{n=1}^{\infty}$
(g) $a_{n} = \ln(2n+1) - \ln n, \quad n = 1, 2, 3, ...$
(h) $\left\{\frac{n}{e^{n}}\right\}_{n=1}^{\infty}$
(i) $\left\{\frac{2^{n}}{n!}\right\}_{n=1}^{\infty}$
(j) $\left\{1 - (-1)^{n}\right\}_{n=1}^{\infty}$
(k) $\left\{\frac{\ln(n+1)}{(n+1)^{2}}\right\}_{n=1}^{\infty}$
(l) $\left\{e^{-n}\sin n\right\}_{n=1}^{\infty}$
(m) $\left\{\frac{n^{3}+2n}{2^{n}}\right\}_{n=1}^{\infty}$
(o) $\left\{\frac{3^{n+2}}{(n+1)!}\right\}_{n=1}^{\infty}$

(p)
$$a_n = \frac{n}{n^2 + n + 2}, \quad n = 3, 4, 5, ...$$

(q) $\left\{ \frac{e^n}{n!} \right\}_{n=1}^{\infty}$
(r) $\left\{ \frac{\sqrt{n}}{n-3} \right\}_{n=4}^{\infty}$
(s) $\left\{ \frac{2n^2 + 1}{5n^2 - 3} \right\}_{n=1}^{\infty}$

5. For each geometric sequence determine its common ratio r, whether it converges or diverges, and find its sum when it converges.

(a)
$$\sum_{n=2}^{\infty} \frac{4}{(-3)^n}$$

(b) $\sum_{n=1}^{\infty} \frac{3^n}{2^{n+2}}$
(c) $\frac{8}{3} + \frac{64}{27} + \frac{512}{243} + \cdots$
(d) $1 - e + e^2 - e^3 + \cdots$

6. Determine whether the telescoping sum converges or diverges. Find its sum when it converges.

(a)
$$\sum_{n=2}^{\infty} \frac{1}{(2n+1)(2n+3)}$$

(b) $\sum_{n=1}^{\infty} \frac{1}{(n+3)(n+5)}$
(c) $\sum_{n=1}^{\infty} \ln\left(1+\frac{1}{n}\right)$

Answers:

- 1. (a) Yes. Yes. (b) It converges.
- 2. (a) $\{(-1)^n\}$ is bounded and oscillating.
 - (b) $\{n\}$ is monotonic and unbounded.
- 3. (a) $a_n = \frac{(-1)^n}{n}$

(b) Not possible.

Answers:

- 4. (a) Converges to 0.
 - (b) Converges to 0.
 - (c) Converges to 0.
 - (d) Converges to $-2 \ln 3$.
 - (e) Converges to e^3
 - (f) Converges to $\frac{2}{3}$.

- (g) Converges to $\ln 2$.
- (h) Converges to 0.
- (i) Converges to 0.
- (j) Diverges.
- (k) Converges to $0. \,$
- (l) Converges to 0.
- (m) Diverges to ∞ .
- (n) Converges to 0.
- (o) Converges to 0.
- (p) Converges to 0.
- (q) Converges to 0.
- (r) Converges to 0.

- (s) Converges to $\frac{2}{5}$.
- 5. (a) $r = -\frac{1}{3}$. Converges to $\frac{1}{3}$
 - (b) $r = \frac{3}{2}$. Diverges to ∞ .
 - (c) $r = \frac{8}{9}$. Converges to 24.
 - (d) r = -e. Diverges.
- 6. Determine whether the telescoping sum converges or diverges. Find its sum when it diverges.
 - (a) Converges to
 - (b) Converges to
 - (c) Diverges to ∞ .