SOLUTIONS TO THE TRAINING EXERCISES FOR THE FINAL EXAM

(1) Evaluate the limit $\lim _{(x, y) \rightarrow(1,1)} \frac{3 x y}{x^{2}+4 y^{2}}$ or prove it does not exists. Same question with $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x y}{x^{2}+4 y^{2}}$

Answer: At $(1,1)$ the denomintor $x^{2}+4 y^{2}$ has limit (and value) 5 , so we can apply the usual rules about the limit of a quotient of two functions, and we get $3 / 5$ for the limit $\lim _{(x, y) \rightarrow(1,1)} f(x, y)$ where $f(x, y)=\frac{3 x y}{x^{2}+4 y^{2}}$.

However at $(0,0), x^{2}+4 y^{2}$ vanishes, and we can't apply this method.
If we look at the limit of the function along the x-axis $(y=0)$ we have $f(x, 0)=0$ for $x \neq 0$ so the limit is 0 . If we look at the restriction to the function over the diagonal line $y=x$, we have $f(x, y)=\frac{3 x^{2}}{5 x^{2}}=3 / 5$ if $x \neq 0$, so the limit along this line is $5 / 3$. Since that limit is different of the first one, the function $f(x, y)$ has no limit when (x, y) goes to $(0,0)$.
(2) Find the domain and the partial derivatives of $f(x, y)=\sqrt{x^{2}+y^{4}}$. Same question for $f(x, y, z)=\frac{x}{y-z}$.
answer : The domain for the given $f(x, y)$ is the whole plane \mathbb{R}^{2} because $x^{2}+y^{4} \geq 0$ and it makes sense to take the square root of a number ≥ 0. The partial derivatives are $f_{x}(x, y)=\frac{x}{\sqrt{x^{2}+y^{4}}}$ and $f_{y}(x, y)=2 \frac{y^{3}}{\sqrt{x^{2}+y^{4}}}$.

The domain for $f(x, y, z)$ is $\{(x, y, z), y \neq z\}$, that is all the space \mathbb{R}^{3} excepted the plane $y=z$. The partial derviatives are $f_{x}(x, y, z)=\frac{1}{y-z}$, $f_{y}(x, y, z)=-\frac{x}{y-z^{2}}$ and $f_{z}(x, y, z)=\frac{x}{y-z^{2}}$
(3) Find all second partial derivatives of $f(x, y, z)=x^{2} y-y^{2} x+z x y$.
answer : Easy.
(4) Find the equation of the tangent plane of the surface $z=3 x^{2}-y^{2}+2 z$ at $(1,-2,1)$.

Answer : This equation can be rewritten $z=-3 x^{2}+y^{2}$, hence it is the equation of the graph of the function $f(x, y)=-3 x^{2}+y^{2}$. We check that $f(1,-2)=-3+4=1$, hence $(1,-2,1)$ is really a point of the graph, as the question says. The equation of the tangent plane was given in class :

$$
z-f(1,-2)=(x-1) f_{x}(1,-2)+(y+2) f_{y}(1,-2)
$$

Here $f_{x}(x, y)=-6 x$ so $f_{x}(1,-2)=-6$ and $f_{y}(x, y)=2 y$ so $f_{y}(1,2)=-4$. Thus the equation of the tangent plane is

$$
z-1=(x-1) \times(-6)+(y+2) \times(-4)
$$

or

$$
6 x+4 y+z=-1
$$

(5) If $z=y+f\left(x^{2}-y^{2}\right)$ and f is differentiable show that $y \frac{d z}{d x}+x \frac{d z}{d d y}=x$.

Answer : We compute $\frac{d z}{d x}$. We get $\frac{d y}{d x}+\frac{d f\left(x^{2}-y^{2}\right)}{d x}$. The first term of this sum is 0 because y is seen as a constant when computing the x-partlai derivative. To compute the second, simply note that you have to compute the derivative of the function of one variable $(x) f\left(x^{2}-y^{2}\right)$ (here y^{2} is nothing but a constant). So the chain rule for one-variable function gives $\frac{d f\left(x^{2}-y^{2}\right.}{d x}=2 x f^{\prime}\left(x^{2}-y^{2}\right)$. So

$$
\frac{d z}{d x}=2 x f^{\prime}\left(x^{2}-y^{2}\right)
$$

With the same method, we compute

$$
\frac{d z}{d y}=1-2 y f^{\prime}\left(x^{2}-y^{2}\right)
$$

Then

$$
y \frac{d z}{d x}+x \frac{d z}{d y}=2 x y f^{\prime}\left(x^{2}-y^{2}\right)+x=2 x y f^{\prime}\left(x^{2}-y^{2}\right)=x
$$

(6) Let $f(x, y, z)=x^{2} y^{3} z$. Find the gradient vector of f at $(1,1,1)$. When is the directional derivatives along a unit vector \vec{u} at that point equal to 0 ?

Answer : The gradient vector is $\nabla f(1,1,1)=\langle 2,3,1\rangle$. The directional derivative along \vec{u} is $D_{\vec{u}} f(1,1,1)=\nabla f(1,1,1) \bullet \vec{u}=2 a+3 b+c$ if $\vec{u}=\langle a, b, c\rangle$. Hence $D_{\vec{u}}(f)$ is 0 if and only \vec{u} is orthogonal to $\nabla f(1,1,1)$, that is if and only if $2 a=3 b+c=0$.
(7) Find the local maxima, minima, and saddle points of the function $f(x, y)=x y e^{y / 2}$

Answer : We first look for the critical points, that is points were $f_{x}(x, y)=$ $f_{y}(x, y)=0$. We compute $f_{x}(x, y)=y e^{y / 2}$ and $f_{y}(x, y)=\frac{1}{2} x y e^{y / 2}+x e^{y / 2}=$ $x(1+y / 2) e^{y / 2}$. Thus $f_{x}(x, y)$ vanishes if and only if $y=0$ and $f_{y}(x, y)$ vanishes if and only if $x=0$ or $y=-2$. Therefore, the only critical point is $(0,0)$.

Next we use the second-derivative test, to find out which critical points are local minima, local maxima, saddle points, or neither of those three. We compute $f_{x x}(x, y)=0, f_{x y}(x, y)=(1+y / 2) e^{y / 2}, f_{y y}(x, y)=x e^{y / 2}(1+y / 4)$. So at the critical points $(0,0)$, we have $f_{x x}(0,0)=0, f_{x y}(0,0)=1$ and $f_{y y}(0,0)=0$ and $D=f_{x x}(0,0) f_{y y}(0,0)-f_{x, y}(0,0)=-1<0$, hence $(0,0)$ is a saddle point.
(8) Find the minimum and maximum values of $f(x, y, z)=x y z$ on the closed ball of center the origin and radius 3 (that is, the set of points whose distance to origin is ≤ 3)

Answer We first look for the critical point in the open ball of center the origin and radius 3 . They are the points (x, y, z) such that $f_{x}(x, y, z)=$ $f_{y}(x, y, z)=f_{z}(x, y, z)=0$, that is $y z=x z=x y=0$. So the critical points are all the points for which at least two out of three coordinates are zero. We
remark that at those points $f(x, y, z)=0$. (We don't have to determine if those points are local minimum, maximum, saddle points or nothing - we will simply have to compare the values at those critical points with the extremal values on the boundary - Nevertheless it is easy to see in this case that critical point are neither local minimum nor local maximum - Can you see why ?)

On the boundary, that is the sphere $x^{2}+y^{2}+z^{2}=9$, we use Lagrange's multipliers to find extremal values. Since the partial derivatives of $g(x, y, z)=$ $x^{2}+y^{2}+z^{2}$ are $2 x, 2 y$ and $2 z$

$$
\begin{aligned}
y z & =\lambda 2 x \\
x z & =\lambda 2 y \\
x y & =\lambda 2 z \\
x^{2}+y^{2}+z^{2} & =9
\end{aligned}
$$

We may first remark that x, y, z are all non zero. For suppose for example that $x=0$ (the same reasoning would work if y or z wass 0 , because the equation are symmetric with respect to x, y and $z)$. Then by the first equation $y z=0$ so either y or z is 0 . If y is zero then z is zero by the third equation and if z is zero, then y is zero by the second equation : in any case, we see that of x is 0 , so are y and z. But then x, y, z cannot be a solution of the fourth equation, sonce $0 \neq 9$.

Now multiply the three first equation : we get $(x y z)^{2}=8 \lambda^{3} x y z$. We have just seen that $x y z$ is not zero, so we can deduce $x y z=8 \lambda^{3}$. Note that λ is non zero too.

Multiplying the first equation by x we get $x y z=2 \lambda x^{2}$ so $8 \lambda^{3}=2 \lambda x^{2}$ and finally we get $x^{2}=4 \lambda^{2}$. Similarly, we get $y^{2}=4 \lambda^{2}$ and $z^{2}=4 \lambda^{2}$ usingthe second and third equation.

In particular $x^{2}=y^{2}=z^{2}$ but sicne $x^{2}+y^{2}+z^{2}=9$, we have $x^{2}=y^{2}=$ $z^{2}=3$.

So the solutions of our system are the eight points

$$
(z, y, z)=(\pm \sqrt{3}, \pm \sqrt{3}, \pm \sqrt{3})
$$

and the value of f at those points are either $3 \sqrt{3}$ or $-3 \sqrt{3}$.
Comparing with the value (0) found at critical point in the open ball we see that the maximum value of f is $3 \sqrt{3}$ and the minimum $-3 \sqrt{3}$.
(9) Find the minimum amd maximum values of $f(x, y)=\frac{1}{x}+\frac{1}{y}$ subject to the constraint $\frac{1}{x^{2}}+\frac{1}{y^{2}}=1$

Answer : We use Lagrange multipliers. Note that $f_{x}(x, y)=-1 / x^{2}$ and $f_{y}(x, y)=-1 / x^{2}$. The constraint is $g(x, y)=1$, with $g(x, y)=\frac{1}{x^{2}}+\frac{1}{y^{2}}$ so
$g_{x}(x, y)=-2 / x^{3}$ and $g_{y}(x, y)=-2 / y^{3}$. We thus have to solve

$$
\begin{aligned}
-\frac{1}{x^{2}} & =\lambda \frac{-2}{x^{3}} \\
-\frac{1}{y^{2}} & =\lambda \frac{-2}{y^{3}} \\
\frac{1}{x^{2}}+\frac{1}{y^{2}} & =1
\end{aligned}
$$

The first two equations may be rewritten as $x=2 \lambda, y=2 \lambda$. So $x=y$, and the third equation gives $\frac{2}{x^{2}}=1$ so $x=\sqrt{2}$. So the two solutions of the system are $(x, y)=(\sqrt{2}, \sqrt{2})$ and $(x, y)=(-\sqrt{2},-\sqrt{2})$ giving the values $\sqrt{2}$ and $-\sqrt{2}$ which are respectively the maximal and minimum value of $f(x, y)$ with the given constraint.

