Sheet 6: integrals

1. Prove that the volume under the surface

$$
f(x, y)=\frac{y}{x}, \quad \text { for } \quad e \leq x \leq e^{3} \quad \text { and } \quad 1 \leq y \leq 2,
$$

is $V=3$.
2. Prove that the volume under the surface

$$
f(x, y)=\frac{y}{1+x^{2}}, \quad \text { for } \quad 0 \leq x \leq 1 \quad \text { and } \quad 0 \leq y \leq 1,
$$

is $V=\pi / 8$.
3. By sketching first the integration region, prove that

$$
I=\iint_{R} \frac{d x d y}{\sqrt{x+2 y}}=\frac{3}{2},
$$

in the region determined by the conditions

$$
R=\left\{(x, y): x-2 y \leq 1 \quad \text { and } \quad x \geq y^{2}+1\right\} .
$$

4. Sketch the region of integration for

$$
I=\int_{y=0}^{y=4} d y \int_{x=y / 2}^{x=\sqrt{y}} e^{y / x} d x,
$$

and reverse the order of integration in order to evaluate $I=e^{2}-1$.
5. Find the Jacobian of the following changes of coordinates:

$$
\begin{aligned}
& \text { (a) } \quad x=2 u+4 v, \quad y=3 u+5 v, \\
& \text { (b) } \quad x=\alpha \beta, \quad y=\alpha^{2}+\beta^{2} \text {, } \\
& \text { (c) } \quad x=v+w, \quad y=u+w, \quad z=u+v \text {. }
\end{aligned}
$$

Hence, write the element of volume (or surface) in each case.
6. Show that in polar coordinates, the equation of the circle $(x-1)^{2}+y^{2}=1$ takes the form $r=2 \cos \theta$ with $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.
Hence, by using the cylindrical coordinates find the volume of the solid enclosed in the vertical cylinder $(x-1)^{2}+y^{2}=1$, bounded below by the plane $z=0$ and bounded above by the cone $z=2-\sqrt{x^{2}+y^{2}}$.
7. Show that the equation of the semicircle $x^{2}+y^{2}-a y=0$ with $x \geq 0$ in the polar coordinates takes the form

$$
r=a \sin \theta \quad 0 \leq \theta \leq \frac{\pi}{2} .
$$

Hence using the cylindrical coordinates find the volume of the solid that is inside of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1,
$$

above the $x y$-plane and inside the vertical cylinder $x^{2}+y^{2}-a y=0, x \geq 0$.
8. Find the Jacobian of the transformation of coordinates:

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad z=z
$$

where

$$
0 \leq \theta \leq 2 \pi, \quad 0 \leq r \leq \infty, \quad-\infty \leq z \leq \infty
$$

Using the cylindrical coordinates above, determine the mass of the solid bounded by the cone $z^{2}=x^{2}+y^{2}, z \leq 0$ and the cylinder $x^{2}+y^{2}=a^{2}$, given that the density of the solid is defined by the function $\left(x^{2}+y^{2}\right) z$.

