Sheet 5: stationary points and Lagrange multipliers

1. Find and classify the extremes of the function

$$
f(x, y)=x^{2}+2 y^{2}-4 x+4 y
$$

2. Find and classify the extremes of the function

$$
f(x, y)=e^{2 x+3 y}\left(8 x^{2}-6 x y+3 y^{2}\right) .
$$

3. Find the minimum value of

$$
f(x, y)=x+8 y+\frac{1}{x y}
$$

in the first quadrant, e.g. $x>0$ and $y>0$.
4. Use the method of Lagrange multipliers to maximize $x^{3} y^{5}$ subject to the constraint $x+y=8$.
5. Find the maximum and minimum values of the function $f(x, y, z)=x+y-z$ over the sphere $x^{2}+y^{2}+z^{2}=1$.
6. Minimize $f(x, y)=x^{2}+y^{2}$ subject to the constraint $g(x, y)=x^{2} y-16=0$.
7. Using the method of Lagrange multipliers, find the shortest distance from the point $(0,0,1)$ to the curve $y^{2}+x^{2}+4 x y-4=0$ which lies in the $x y$-plane $(z=0)$.

