Sheet 3: chain rules

1. If $z=f(x, y)$ and $x=2 s+3 t$ and $y=3 s-2 t$ find

$$
\frac{\partial^{2} z}{\partial s^{2}}, \quad \frac{\partial^{2} z}{\partial s \partial t} \quad \text { and } \quad \frac{\partial^{2} z}{\partial t^{2}}
$$

2. If $x=e^{s} \cos t, y=e^{s} \sin t$ and $z=f(x, y)$, show that

$$
\frac{\partial^{2} f}{\partial s^{2}}+\frac{\partial^{2} f}{\partial t^{2}}=\left(x^{2}+y^{2}\right)\left(\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}\right)
$$

3. The atmospheric temperature depends on the position and time. If we denote the position by three spatial coordinates x, y, z (measured in Km) and time by t (measured in hours), then the temperature T is a function of four variables $T(x, y, z, t)$.
(a) If a thermometer is attached to a weather balloon that moves through the atmosphere on a path with parametric equations $x=f(t), y=g(t)$ and $z=h(t)$, what is the rate of change at time t of the temperature measured by the thermometer?
(b) Find the rate of change of the measured temperature at time $t=1$ if

$$
T(x, y, z, t):=\frac{100}{5+x^{2}+y^{2}}\left(1+\sin \frac{\pi t}{12}\right)-20\left(1+z^{2}\right)
$$

in degrees Celsius, and if the balloon moves along the curve

$$
x=f(t)=t, \quad y=g(t)=2 t \quad \text { and } \quad z=h(t)=t-\frac{t^{4}}{2}
$$

4. Laplace's equation in polar coordinates. Consider a function of two variables $f(x, y)$ which has continuous partial derivatives of 1 st and 2 nd order. Suppose that x and y can be expressed in terms of some new coordinates r and θ as follows

$$
x=x(r, \theta)=r \cos (\theta) \quad \text { and } \quad y=y(r, \theta)=r \sin (\theta)
$$

The new coordinates (r, θ) are called polar coordinates (see figure 7). By employing the chain rule prove that the following identity holds

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}
$$

Note: The operation

$$
\triangle f:=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

is called the Laplacian of f.

Figure 7: Relation between the polar coordinates (r, θ) and the cartesian coordinates (x, y).

