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Preface 

The purpose of this book is to isolate and draw attention to the most 
important problem-solving techniques typically encountered in undergradu­
ate mathematics and to illustrate their use by interesting examples and 
problems not easily found in other sources. Each section features a single 
idea, the power and versatility of which is demonstrated in the examples 
and reinforced in the problems. The book serves as an introduction and 
guide to the problems literature (e.g., as found in the problems sections of 
undergraduate mathematicsjoumals) and as an easily accessed reference of 
essential knowledge for students and teachers of mathematics. 

The book is both an anthology of problems and a manual of instruction. 
It contains over 700 problems, over one-third of which are worked in detail. 
Each problem is chosen for its natural appeal and beauty, but primarily for 
its unique challenge. Each is included to provide the context for illustrating 
a given problem-solving method. The aim throughout is to show how a 
basic set of simple techniques can be applied in diverse ways to solve an 
enormous variety of problems. Whenever possible, problems within sections 
are chosen to cut across expected course boundaries and to thereby 
strengthen the evidence that a single intuition is capable of broad applica­
tion. Each section concludes with "Additional Examples'' that point to 
other contexts where the technique is appropriate. 

The book is written at the upper undergraduate level. It assumes a 
rudimentary knowledge of combinatorics, number theory, algebra, analysis, 
and geometry. Much of the content is accessible to students with only a 
year of calculus, and a sizable proportion does not even require this. 
However, most of the problems are at a level slightly beyond the usual 
contents of textbooks. Thus, the material is especially appropriate for 
students preparing for mathematical competitions. 



VIII Preface 

The methods and problems featured in this book are drawn from my 
experience of solving problems at this level. Each new issue of The 
American Mathematical Monthly (and other undergraduate journals) con­
tains material that would be just right for inclusion. Because these ideas 
continue to find new expression, the reader should regard this collection as 
a starter set and should be encouraged to create a personal file of problems 
and solutions to extend this beginning in both breadth and depth. Obvi­
ously, we can never hope to develop a .. system" for problem-solving; 
however, the acquiring of ideas is a valuable experience at all stages of 
development. 

Many of the problems in this book are old and proper referencing is very 
difficult. I have given sources for those problems that have appeared more 
recently in the literature, citing contests whenever possible. I would appreci­
ate receiving exact references for those I have not mentioned. 

I wish to take this opportunity to express my thanks to colleagues and 
students who have shared many hours of enjoyment working on these 
problems. In this regard I am particularly grateful to 0. E. Stanaitis, 
Professor Emeritus of St. Olaf College. Thanks to St. Olaf College and the 
Mellon Foundation for providing two summer grants to help support the 
writing of this manuscript. Finally, thanks to all individuals who contrib­
uted by posing problems and sharing solutions. Special acknowledgement 
goes to Murray S. Klamkin who for over a quarter of a century has stood 
as a giant in the area of problem-solving and from whose problems and 
solutions I have learned a great deal. 

March 21, 1983 LOREN C. LARSON 
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Chapter 1. Heuristics 

Strategy or tactics in problem-solving is called heuristics. In this chapter we 
will be concerned with the heuristics of solving mathematical problems. 
Those who have thought about heuristics have described a number of basic 
ideas that are typically useful. Among these, we shall focus on the follow­
ing: 

(I) Search for a pattern. 
(2) Draw a figure. 
(3) Formulate an equivalent problem. 
(4) Modify the problem. 
(5) Choose effective notation. 
(6) Exploit symmetry. 
(7.) Divide into cases. 
(8) Work backward. 
(9) Argue by contradiction. 

( 10) Pursue parity. 
(II) Consider extreme cases. 
(12) Generalize. 

Our interest in this list of problem-solving ideas is not in their descrip­
tion but in their implementation. By looking at examples of how others 
have used these simple but powerful ideas., we can expect to improve our 
problem·solving skills. 

Before beginning, a word of advice about the problems at the end of the 
sections: Do not be overly concerned about using the heuristic treated in 
that section. Although the problems are chosen to give practice in the use 
of the heuristic, a narrow focus may be psychologically debilitating.' A 
single problem usually admits several solutions, often employing quite 
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different heuristics. Therefore, it is best to approach each problem with an 
open mind rather than with a preconceived notion about how a particular 
heuristic should be applied. In working on a problem, solving it is what 
matters. It is the accumulated experience of all the ideas working together 
that will result in a heightened awareness of the possibilities in a problem. 

1.1. Search for a Pattern 

Virtually all problem solvers begin their analysis by getting a feel for the 
problem, by convincing themselves of the plausibility of the result. This is 
best done by examining the most immediate special cases; when this 
exploration is undertaken in a systematic way, patterns may emerge that 
will suggest ideas for proceeding with the problem. 

1.1.1. Prove that a set of n (different) elements has exactly 2n (different) 
subsets. 

When the problem is set in this imperative form, a beginner may panic 
and not know how to proceed. Suppose, however, that the problem were 
cast as a query, such as 

(i) How many subsets can be formed from a set of n objects? 
(ii) Prove or disprove: A set with n elements has 2n subsets. 

In either of these fonns there is already the implicit suggestion that one 
should begin by checking out a few special cases. This is how each problem 
should be approached: remain skeptical of the result until convinced. 

Solution 1. We begin by examining what happens when the set contains 
0, 1,2,3 elements; the results are shown in the following table: 

Elements Number of 
n of S Subsets of S subsets of S 

0 none 0 I 
I x, 0, {x1} 2 
2 x1,x2 0, {x1}, {x2}, {x1,x2} 4 
3 xl>x2,x3 0, {xd, {x2}, {x1,x2} 8 

{x3}, {xl>x3}, {x2,x3}, {xt,X2,x3} 

Our purpose in constructing this table is not only to verify the result, but 
also to look for patterns that might suggest how to proceed in the general 
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case. Thus, we aim to be as systematic as possible. In this case, notice when 
n = 3, we have listed first the subsets of {x1,x2} and then, in the second 
line, each of these subsets augmented by the element x3• This is the key 
idea that allows us to proceed to higher values of n. For example, when 
n =4, the subsets of S = {x1,x2,x3,x4} are the eight subsets of {x1,x2,x3} 
(shown in the table) together with the eight formed by adjoining x4 to each 
of these. These sixteen subsets constitute the entire collection of possibili­
ties; thus, a set with 4 elements has 24 (= 16) subsets. 

A proof based on this idea is an easy application of mathematical 
induction (see Section 2.1). 

Solution 2. Another way to present the idea of the last solution is to argue 
as follows. For each n,let An denote the number of (different) subsets of a 
set with n (different) elements. Let S be a set with n + I elements, and 
designate one of its elements by x. There is a one-to-one correspondence 
between those subsets of S which do not contain x and those subsets that 
do contain x (namely, a subset T of the former type corresponds to 
T U {x}). The former types are all subsets of S - {x}, a set with n 
elements, and therefore, it must be the case that 

An+!= 2An • 

This recurrence relation, true for n = 0, I, 2, 3, ... , combined with the fact 
that A0 = I, implies that An= r. (An= 2An� 1 = 22An-l = · · · = rA0 

= 2n.) 

Solutiod 3. Another systematic enumeration of subsets can be carried out 
by constructing a "tree". For the case n = 3 and S = (a,b,c}, the tree is as 
shown below: 

Subset 

{a, b, c} 
[a, b} 

[a, c] 
I•J 

{b, c} 

{b) 

{o) 

� 

Each branch of the tree corresponds to a distinct subset of S (the bar over 
the name of the element means that it is not included in the set correspond­
ing to that branch). The tree is constructed in three stages, corresponding to 
the three elements of S. Each element of S leads to two possibilities: either 
it is in the subset or it is not, and these choices are represented by two 
branches. As each element is considered, the number of branches doubles. 
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Thus, for a three-element set, the number of branches is 2 X 2 x 2 = 8. For 
an n-element set the number of branches is 

2x2x · · · X2=2n; 
n 

thus, a set with n elements has r subsets. 

Solution 4. Suppose we enumerate subsets according to their size. For 
example, when S = {a,b,c,d), the subsets ire 

Number of Number of 
elements subsets 

0 
I 
2 
3 
4 

0 
{a}, {b), {c), {d) 

{a, b), {a, c), {a,d), {b,c), {b,d), {c,d) 
{a,b,c), {a,b,d), {a,c,d), {b,c,d) 

{a,b,c,d} 

I 
4 
6 
4 
I 

This beginning could prompt the following argument. Let S be a set with 
n elements. Then 

" 
No. of subsets of S = L (No. of subsets of S with k elements) 

k-0 

� ,t(�) � 

2" 

The final step in this chain of equalities follows from the binomial theorem, 
" 

(x + yf= L (")xkyn-k, 
k�O k 

upon setting x = l andy = I. 
Solution 5. Another systematic beginning is illustrated in Table !.I, which 
lists the subsets of S= {x1,x2,x3). To understand the pattern here, notice 
the correspondence of subscripts in the leftmost column and the occurrence 

Table 1.1 

Subset Triple Binary number Decimal number 

0 (0,0,0) 0 0 
{xJ} (0,0, I) I I 
{x2} (0, 1,0) 10 2 

{xz,X)} (0, I, I) II 3 

{xd (1,0,0) 100 4 
{xhx3} (1,0, I) 101 5 

{xl>x2} (I, 1,0) 110 6 
{xhx2,x3} (1, I, I) Ill 7 
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of I 's in the second column of triples. Specifically, 
S = {xpx2, ••• , x,}, define a;, (or i = 1,2, . . . , n, by 

if a; E A, 
if a,f/.A. 

5 

if A is a subset of 

It is clear that we can now identify a subset A of S with (ah a2, • • .  , a,), an 
n-tuple of D's and l's. Conversely, each such n-tuple will correspond to a 
unique subset of S. Thus, the number of subsets of S is equal to the 
number of n-tuples of D's and I 's. This latter set is obviously in one-to-one 
correspondence with the set of nonnegative binary numbers less than r. 
Thus, each nonnegative integer less than r corresponds to exactly one 
subset of S, and conversely. Therefore, it must be the case that S has 2" 
subsets. 

N onnally, we will give only one solution to each example-a solution 
which serves to illustrate the heuristic under consideration. In this first 
example, however, we simply wanted to reiterate the earlier claim that a 
single problem can usually be worked in a variety of ways. The lesson to be 
learned is that one should remain flexible in the beginning stages of 
problem exploration. If an approach doesn't seem to lead anywhere, don't 
despair, but search for a new idea. Don't get fixated on a single idea until 
you've had a chance to think broadly about a variety of alternative 
approaches. 

1.1.2. Let S,0, S,1, and S,2 denote the sum of every third element in the 
nth row of Pascal;s Triangl�, beginning on the left with the first element, 
the second element, and the third element respectively. Make a conjecture 
concerning the value of S100•1• 

Solution. We begin by examining low-order cases with the hope of finding 
patterns that might generalize. In :rable 1.2, the nonunderlined terms are 
those which make up the summands of 5,_0; the singly underlined and 

Pascal's triangle 

I 
I l 

I 1 l 
I 3 l I 

I 1 14 l 
15 10 1051 - = - = J,.� 1.; 20 ll � I 

I 1 � 35 35 ll 7 

Table 1.2 

n s,.o s,.l s,.2 
0 I+ 0 0 
I I o-
2 I z+ I 
3 2- 3 3 
4 ' ' 6+ 
' 11 w- 11 
6 22+ 21 21 

l 7 43 43 42-
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doubly underlined terms are those of S, 1 and Sn2, respectively. The three 
columns on the right show that, in each case, t�o of the sums are equal, 
whereas the third is either one larger (indicated by a superscript +)or one 
smaller (indicated by a superscript - ). It also appears that the unequal 
term in this sequence changes within a cycle of six. Thus, from the pattern 
established in the first rows, we expect the anomaly for n = 8 to occur in 
the middle column and it will be one le!:ls than the other two. 

We know that Sn.o+ S,_1 + S,,2::2" (see 1.1.1). Since 100=6X 16 +4, 
we expect the unequal term to occur in the third column ( S 100 2) and to be 
one more than the other two. Thus SuXJ.o = S100_1 = S100,2-I, 'and S100•1 + 
S100,1 + S100•1 +I= 2J00• From these equations we are led to conjecture 
that 

2too-I SIIXJ,l = 3 
A formal proof of this conjecture is a straightforward application of 
mathematical induction (see Chapter 2). 

1.1.3. Let x1,x2,x3, ••• be a sequence of nonzero real numbers satisfying 
-c:x" "'-c'<x.O" '?''­

x -' " 2x,_2 x,_1 n = 3,4,5, .... 

Establish necessary and sufficient conditions on x1 and x2 for x, to be an 
integer for infinitely many values of n. 

Solution. To get a feel for the sequence, we will compute the first few terms, 
expressing them in terms of x1 and x2• We have (omitting the algebra) 

x1x2 
x3 = 2.xl x2 

x1x2 X 4 = .,-c:-'--c2e::- ' 3x1 x2 
x1x2 Xs = . 4x1 3x2 

We are fortunate in this particular instance that the computations are 
manageable and a pattern emerges. An easy induction argument establishes 
that 

which, on isolating the coefficient of n, takes the form 

x
, 

= 
(x, 

x1x2 
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In this form, we see that if x1 =fo x2, the denominator will eventually exceed 
the numerator in magnitude, so x� then will not be an integer. However, if 
x1 = x2 , all the terms of the sequence are equal. Thus, x� is an integer for 
infinitely many values of n if and only if x1 = x2 • 

1.1.4. Find positive numbers nand a1,a2, ••• , a� such that a1 + · · · + a� 
= 1000 and the product a1a2 • • · a� is as large as possible. 

Solution. When a problem involves a parameter which makes the analysis 
complicated, it is often helpful in the discovery stage to replace it temporar­
ily with something more manageable. In this problem, we might begin by 
examining a sequence of special cases obtained by replacing 1000 in turn 
with 2, 3, 4, 5, 6, 7, 8, 9, .... In this way we are led to discover that in a 
maximum product 

(i) no a; wiil be greater than 4, 
(ii) no a; will equal I, 

(iii) all a/s can be taken to be 2 or 3 (because 4 = 2 X 2 and 4 = 2 + 2), 
(iv) at most two a;'s will equal2 (because 2 X 2 X 2 < 3 X 3 and 2 + 2 + 2 

-3 + 3). 
Each of these is easy to establish. Thus, when the parameter is 1000 as in 
the problem at hand, the maximum product must be 3332 X 22• 

1. 1.5. Let S be a set and • be binary operation on S slitisfying the two 
laws 

x•x = x 

( x • Y) • z = (y • z) • x 

Show that x•y = y•x for all x,y inS. 

for all x in S, 

for allx,y,zinS. 

Solution. The solution, which appears so neatly below, is actually the end 
result of considerable scratch work; the procedure can only be described as 
a search for pattern (the principle pattern is the cyclic nature of the factors 
in the second condition). We have, for.all x,y inS, x• y = (x• y)•(x•y) 
= [y•(x•y)J•x = [(x•y)•xJ•y = [(y•x)•xJ•y = [(x•x)•y]•y 
= [( y * y)] • (x • x) = y * x. 

Problems 

Develop a feel for the following problems by searching for patterns. Make 
appropriate conjectures, and think about how the proofs might be carried 
out. 
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1.1.6. Beginning with 2 and 7, the sequence), 7,J,4, 7,4,2,S., ... is con­
structed by multiplying successive pairs of its members and adjoining the 
result as the next one or two members of the sequence, depending on 
whether the product is a one- or a two-digit number. Prove that the digit 6 
appears an infinite number of times in the sequence. 

1.1.7. Let sl denote the sequence of positive integers 1,2,3,4,5,6, ... ' 
and define the sequenceS,+ 1 in terms of Sn by adding I to those integers in 

Sn which are divisible by n. Thus, for example, S2 is 2,3,4,5,6, 7, ... , S3 
is 3,3,5,5, 7, 7, .... Determine those integers n with the property that the 
first n - I integers in Sn are n. 

1.1.8. Prove that a list can be made of all the subsets of a finite set in such 
a way that 

(i) the empty set is first in the list, 
(ii) each subset occurs exactly once, and 
(iii) each subset in the list is obtained either by adding one element to the 

preceding subset or by deleting one element of the preceding subset. 

1.1.9. Determine the number of odd binomial coefficients in the expansion 
of (x + y)1000. (See 4.3.5.) 

1.1.10. A well-known theorem asserts that a prime p > 2 can be written as 
a sum of two perfect squares (p = m2 + n2, with m and n integers) if and 
only if p is one more than a multiple of 4. Make a conjecture concerning 
which primes p > 2 can be written in each of the following forms, using 
(not necessarily positive) integers x and y: (a) x2 + 16y2, (b) 4x2 + 4xy + 
5y'. (Soe 1.5.10.) 

1.1.11. H (a,) is a sequence such that for n >I, (2- a,)a,+1 =I, what 
happens to a, as n tends toward infilii.ity? (See 7.6.4.) 

1.1.12. Let S be a set, and let • be a binary operation on S satisfying the 
laws 

x•(x•y)=y 

(y•x)•x=y 

for all x, y in S, 

for all x, y inS. 

Show that x•y= y•x for all
.x,y inS. 

Additional Examples 

� 

Most induction problems are based on the discovery of a pattern. Thus, the 
problems in Sections 2.1, 2.2, 2.3, 2.4 offer additional practice in this 
heuristic. Alsu see 1.7.2, 1.7.7, 1.7.8, 2.5.6, 3.1.1, 3.4.6, 4.3.1, 4.4.1, 4.4.3, 
4.4.15, 4.4.16, 4.4.17. 
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1.2. Draw a Figure 

Whenever possible it is helpful to describe a problem pictorially, by means 
of a figure, a diagram, or a graph. A diagrammatic representation usually 
makes it easier to assimilate the relevant data and to notice relationships 
and dependences. 

1.2.1. A chord of constant length slides around in a semicircle. The 
midpoint of the chord and the projections of its ends upon the base form 
the vertices of a triangle. Prove that the triangle is isosceles and never 
changes its shape. 

Solution. Let AB denote the base of the semicircle, let XY be the chord, M 
the midpoint of XY, C and D the projections of X and Y on AB (Figure 
1.1). Let the projection of M onto AB be denoted by N. Then N is the 
midpoint of CD and it follows that t::. CMD is isosceles. 

To show that the shape of the triangle is independent of the position of 
the chord, .it suffices to show that L MCD remains unchanged, or equiva­
lently, that L XCM is constant, for all positions of XY. To see that this is 
the case, extend XC to cut the completed circle at Z (Figure 1.2). Then CM 
is parallel to ZY ( C and Mare the midpoints of XZ and XY, respectively), 

A 

FigUre 1.1. 

Figure 1.2. 
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and consequently LXCM= LXZY. But LXZY equals one-half the arc 
XY, and this arc depends only on the length of the chord XY. This 
completes the proof. 

One might ask: How in the world did anyone ever think to extend XC in 
this way? This is precisely the step that makes the argument so pretty, and 
it is indeed a very difficult step to motivate. About all that can be said is 
that the use of auxiliary lines and arcs (often found by reflection, extension, 
or rotation) is a common practice in geometry. Just the awareness of this 
fact will add to the possible approaches in a given problem. 

Another interesting approach to this problem is to coordinatize the 
points and to proceed analytically. To show that the shape of the triangle is 
independent of the position of the chord, it suffices to show that the 
height-to-base ratio, MN I CD, is constant. 

Let 0 denote the midpoint of AB, and let 8 = L YOB. It is clear that the 
entire configuration is completely determined by (J (Figure 1.3). 

Let a= L XOY. Using this notation, 

CD= cos8- cos(8 +a), 

sinO+ sin(8 +a) 
MN - --,2 -'------'-

and the height-base ratio is 

sin(}+ sin(8 +a) 
F(O) - =o:::n--:::'�� - 2(co<8 co<(O +a)) ' 

0 < 8 < w- a. 

It is not immediately clear that this quantity is independent of 8; this is the 
content of 1.8.1 and 6.6.7. 

1.2.2. A particle moving on a straight line starts from rest and attains a 
velocity v0 after traversing a distance s0• If the motion is such that the 
acceleration was never increasing, find the maximum time for the trans­
verse. 

Solutlob. Focus attention on the graph of the velocity v <= v(t) (Figure 1.4). 
We are given that v(O)-= 0, and the graph of v is never concave upward 
(because the acceleration, dv I dt, is never increasing). The area under the 
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Figure 1.4. 

curve is equal to s0 (distance traversed= f�v(t)dt). From this representa­
tion, it is clear that we will maximize the time of traverse when the curve 
v(t) from 0 to P is a straight line (Figure 1.5). At the maximum time !0, 
! t0v0 = s0, or equivalently, t0 = 2:>0/ v0• 

1.2.3. If a and b are positive integers with no common factor, show that 

Solution. When b = I, we will understand that the sum on the left is 0 so 
the result holds. 

It is not clear how a figure could be useful in establishing this purely 
arithmetic identity. Yet, the statement involves two independent variables, 
a and b, and afb, 2afb, 3a/b, . . .  are the values of the function 
j(x) = ax/b when x = 1,2,3, . . .  , respectively. Is it possible to interpret 
(a/b ], [2afb ], . . .  geometrically? 

To make things concrete, consider the case a= 5 and b = 7. The points 
Pk=(k,5k/1), k= l ,2, . . .  ,6, each lie on the line y= 5xf1, and 
(5k/7) equals the number of lattice points on the vertical line through Pk 
which lie above the x-axis and below Pk. Thus, Li-1(5k/7] equals the 

fillUTe 1.5. 
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D 
5 • 

4 • • • • • • • 

3 • • • • • • 

2 • • • • • • 

• • • • • • 

B 

A 2 3 4 5 6 7 8 

Figure 1.6. 

number of lattice points interior to !'-,ABC (see Figure 1.6). By symmetry, 
this number is one-half the number of lattice points in the interior of 
rectangle ABCD. There are 4 X 6 = 24 lattice points in ABCD, which 
means that triangle ABC contains 12 interior lattice points. 

The same argument goes through in the general case. The condition that 
a and b have no common factor assures us that none of the lattice points in 
the interior of ABCD will fall on the line y = axj b. Thus, 

b- 1 
� [":] =!(No. of lattice points in the interior of ABCD) 

k-1 
_ .,_( a_-----;1 �(i-b_-_lc_) 

1.2.4 (The handshake problem). Mr. and Mrs. Adams recently attended 
a party at which there were three other couples. Various handshakes took 
place. No one shook hands with hisjher own spouse, no one shook hands 
with the same person twice, and of course, no one shook his/her own hand. 

After all the handshaking was finished, Mr. Adams asked each person, 
including his wife, how many hands he or she had shaken. To his surprise, 
each gave a different answer. How many hands did Mrs. Adams shake? 

Solution. Although a diagram is not essential to the solution, it is helpful to 
view the data graphically in the following fashion. Represent the eight 
individuals by the eight dots as shown in Figure 1 .  7. 

Now the answers to Mr. Adams' query must have been the numbers 
0, I, 2, 3, 4, 5, 6. Therefore, one of the individuals, say A, has shaken hands 
with six others, say B, C,D, E, F, G. Indicate this on the graph by drawing 
line segments from A to these points, as in Figure 1.8. 

From this diagram, we see that H must be that person who has shaken 
no one's band. Furthermore, A and H must be spouses, because A bas 
shaken bands with six others, not counting his/her own spouse. 
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By supposition, one of B,C,D,E,F,G, has shaken five hands. By 
relabeling if necessary we may assume this person is B. Also, we may 
assume without loss of generality that the five with whom B has shaken 
hands are labeled A, C,D,E,F. This is shown in Figure 1.9. From this 
sketch we easily see that G is the only person who could have answered 
"one", and B and G must be spouses. 

Again, as before, by relabeling the points C, D, E if necessary, we may 
assume that C shook four hands and that they belonged to A,B, D,E. The 
corresponding diagram is given in Figure l.IO. Using the same reasoning as 
above, F and C are spouses, and consequently, D and E are spouses. 

Each of D and E has shaken hands with three others. Since Mr. Adams 
did not receive two "three'' answers, D and E must correspond to Mr. and 
Mrs. Adams; that is to say, Mrs. Adams shook hands with three others. 

Problems 

1.2.5. Two poles, with heights a and b, are a distance d apart (along level 
ground). A guy wire stretches from the top of each of them to some point P 
on the ground between them. Where should P be located to minimize the 
total length of the wire? (Hint: Let the poles be erected at points C and D, 
and their tops be htbeJed A and B, respectively. We wish to minimize 
AP + PB. Augment this diagram by reflecting it in the base line CD. 
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Suppose B reflects to 8' (PB = PB'). Now the problem is: Where should P 
be located to minimize A P  + PB '?) 

1,2.6. Let ABC be an acute-angled triangle, and let D be on the interior of 
the segment AB . Locate points E on AC and F on CB such that the 
inscribed triangle DEF will have minimum perimeter. (Hint: Reflect Din 
line AC to a point D'; reflect Din CB to a point D" and consider the line 
segment D'D".) 

1.2.7. A rectangular room measures 30 feet in length and 12 feet in height, 
and the ends are 12 feet in width. A fly, with a broken wing, rests at a point 
one foot down from the ceiling at the middle of one end. A smudge of food 
is located one foot up from the floor at the middle of the other end. The fly 
has just enough energy to walk 40 feet. Show that there is a path along 
which the fly can walk that will enable it to get to the food. 

1.2.8. Equilateral triangles ABP and ACQ are constructed externally on 
the sides AB and AC of triangle ABC Prove that CP = B Q. (Hint: For a 
nice solution, rotate the plane of the triangle 60"' about the point A ,  in a 
direction which takes B in the direction of C. What happens to the line 
segment CP?) 

1.2.9. Let a and b be given positive real numbers with a < b. If two points 
are selected at random from a straight line segment of length b, what is the 
probability that the distance between them is at least a? (Hint: Let x andy 
denote the randomly chosen numbers from the interval [O,b], and consider 
these independent random variables on two separate ax66. What area 
corresponds to \x -Yl > a?) 
1.2.10. Give a geometric interpretation to the following problem. Let f be 
differentiable withf' continuous on [a, b). Show that if there is a number c 
in (a, b] such that j'(c) = 0, then we can find a number din (a, b) such that 

f'(d) = f(d) - J(a) 
. b a 

1.2.11. Let a and b be real numbers, a < b. Indicate geometrically the 
precise location of each of the following numbers: (a+ b)/2 (=!a+ !b); 
t a+! b; ! a+ f b; [m/(m + n)]a + [n/(m + n)]b, where m > 0 and 
n > 0. (The latter number corresponds to the center of gravity of a system 
of two masses--one, of mass m, located at a, and the other, of mass n, 
located at b.) 
1.2.12. Use the graph of y = sinx to show the following. Given triangle 
ABC, 

(a) 

(b) 

sinB+sinC <sin B+C 
2 2 

__!!L_ sin B + -"-sin C < sin( __!!L_ B + .....-1!....... C )• m > 0, n > 0. m+n m+n m+n m+n 
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1.2.13. Use a diagram (a rectangular array (a1a1)) to show that 

(a) 

(b) 

(C) 

n n n n 
L La,ai- L La,a,, 

i-OJ-0 j=Oi=O 
n n n n 

L La,ai- L La,ai, J-0 i-j i-0 j�i 

Additional Examples 
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Most of the problems in Chaper 8 (Geometry); also 1.3. II, 1.9.2, 1.9.4, 
1.1 1.3, 2.1.3, 2.5.5, 2.6.11, 5.1.2, 6.2.2, 6.4.1, 6.6.3, 6.8.1, 7.1.14, 7.4.19, 7.6. 1 ,  
8.1.1. 

1.3. Formulate an Equivalent Problem 

The message of the preceding section is that the first step in problem 
solving is to gather data, to explore, to understand, to relate, to conjecture, 
to analyze. But what happens when it is not possible to do this in a 
meaningful way, either because the computations' become too complicated 
or because the problem simply admits no special cases that shed any 
insight? In this section we will co�sider some problems of this type. The 
recommendation of this section is to try to reformulate the problem into an 
equivalent but simpler form. The appeal is to one's imagination and 
creativity. Some standard reformulation techniques involve algebraic or 
trigonometric manipulation, substitution or change of variable, use of 
one-to-one correspondence, and reinterpretation in the language of another 
subject (algebra, geometry, analysis, combinatorics, etc.). 

1.3,1. Find a general formula for the,nth derivation of j(x) = I/(l- x2). 

Solution. A common simplifyi'ng step when working with rational functions 
is to write the function as a sum of partial fractions. In this case, 

'(x)- ! [ _I_ + _I_ ] 
J' 2 I- X I+ X , 
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and in this form it is easy to show that 

f'"'(x)="' [ I + (
-1)

" l 2 (J- x)Hl (J + xr+L • 

1.3.2. Find all solutions of x4 + x3 + x2 + x + I = 0. 

Solution. This equation can be solved by dividing by x2, then substituting 
y ... x + 1/ x, and then applying the quadratic formula. Thus, we have 

x2+j_+x+l+l=O, 
x' x 

( x1 + 2 + :2) + ( x +;)+(I- 2) = 0, 

(X+� )2 + (X+�)- I= 0, 

y2+y-I=O. 
The roots of this equation are 

-I+$ 
2 

-I -,15 
h= 2 

It remains to determine x by solving the two equations 
I X+-= Yt X and x+l=Yl, X 

which are equivalent to 
x1-y1x + 1 = 0 and x2-J2X + I"'" 0. 

The four roots found by solving these are 

x, = 

x, = 

-I + ,15 . ��10 -+-2$�5 4 +t 4 

-I+$ .. �10+2$ 
4 _, 4 

-1-,15 .�10-2$ 4 +t 4 

-1-,15 .�10-2$ 4 -, 4 
Another approach to this problem is to multiply each side of the original 

equation by x- I. Since (x -1Xx4 + x3 + x1 + x + I)= xs- I, an equiv-
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alent problem is to find all x (other than x = I) which satisfy x5 = I. These 
are the five fifth roots of unity, given by 

x1 = cos!'IT + isin t'IT, 
x2 = cos�'IT + i sin�'IT, 
x3 = cos!'IT + isin!'IT, 
x4 = cos�'IT + isin�'IT, 
x5 =I. 

As a by.product of having worked this problem two different ways, we 
see that 

- 1 + ,rs ,fw + 2$ cos 1 'IT + i sin 1 'IT = + i -'-�.-.c:..:-s s 4 4 

Equating real and imaginary parts yields 

cos72°= -I +/5 
4 

sin 72° = 

(Similar formulas can be found for x2, x3, and x4.) 

1.3.3. P is a point inside a given triangle ABC; D,E,F are the feet of the 
perpendiculars from P to the lines BC, CA, AB, respectively. Find all P for 
which 

is minimal. 

Solution. Denote the lengths of BC, AC, ABby a,b,c, respectively, and 
PD, PE, PF by p,q, r, respectively (see Figure 1.11). We wish to minimize 
ajp + b/q + ,;,. 

A 

Figure 1.11. 
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Notice that 

Area t::,ABC::: Area t::,BCP +Area t::,CAP +Area t::,ABP 

= -fap + !hq +fer 
ap + bq + cr - 2 

Thus, ap + bq + cr is a constant, independent of the placement of P. 
Therefore, instead of minimizing a/p + b / q + c / r ,  we will minimize 
(ap + bq + crXa/p + b/q + cjr). (This step will appear more natural 
after a study uf inequalities with constraints taken up in Section 7.3.) We 
have 

( ap + bq + cr) ( � + Q + £) p q ' 
= 02 + b2 + c2 + ab( �+�)+be(;+�) + /ac ( Jf + �) 
;;. a1 + b1 + c2 + 2ab + 2bc + 2ac 
=(a+b+c)1• 

The inequality in the second step follows from the fact that for any two 
positive numbers x andy we have xjy + yjx > 2, with equality if and 
only if x = y. As a result of this fact, (af + bq + crXa/p + bjq + cjr)will 
attain its minimum value (a+ b +c) when, and only when, p = q = r. 
Equivalently, aj p + b I q + c I r attains a minimum value when P is located 
at the incenter of the triangle. 

1.3,4, Prove that if m and n are positive integers and I < k < n, then 

Solution. The statement of the problem constitutes one of the fundamental 
identities involving binomial coefficients. On the left side is a sum of 
products of binomial coefficients. Obviously, a direct substitution of facto­
rials for binomial coefficients provides no insight. 

Quite often, finite series (especially those which involve binomial coeffi­
cients) can be summed combinatorially. To understand what is meant here, 
transform the series problem into a counting problem in the following 
manner. Let S = A U B, where A is a set with n elements and B is a set, 
disjoint from A, with m elements. We will count, in two different ways, the 
number of (distinct) k-subsets of S. On the one hand, this number is (m!n). 
On the other hand, the number of k-subsets of S with exactly i elements 
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from A (and k- i elements from B) is G'Xk�J It follows that (m; n) =No. of k-subsets of S 

k 
= � (No. of k-subsets of S with i elements from A) 

i=O 

19 

(Another solution to this problem, based on the properties of polynomials, 
is given in 4.3.2.) 

Counting problems can often be simplified by "identifying" (by means 
of a one-to-one correspondence) the elements of one set with those of 
another set whose elements can more easily be counted. The next three 
examples illustrate the idea. 

1.3.5. On a circle n points are selected and the chords joining them in pairs 
are drawn. Assuming that no three of these chords are concurrent (except 
at the endpoints), how many points of intersection are there? 

Solution. The cases for n = 4, 5, 6 are shown in Figure 1.12. Notice that 
each (interior) intersection point determines, and is determined by, four of 
the given n points along the circle (these four points will uniquely produce 
two chords which intersect in the interior of the circle). Thus, the number 
of intersection points is Gj). 
1.3.6. Given a positive integer n, find the number of quadruples of integers 
(a,b,c,d) such that 0.;;;; a <  b < c < d < n. 

Solution. The key idea which makes the problem transparent is to notice 
that there is a one-to-one correspondence between the quadruples of our set 

5 
Figure l.l2. 

15 
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and the subsets of four objects taken from {0, I ,  ... , n + 3}. Specifically, 
let (a,b,c,d), 0 < a <  b < c < d < n, be identified with the subset {a,b + 
l,c + l,d + 3}. It is easy to see that this correspondence is one-to-one­
each element of our set corresponds to exactly one subset of four from 
{0, 1, . . . 'n + 3), and vice versa. Thus, the desired number is er). 

1.3.7. The number 5 can be expressed as a sum of 3 natural numbers, 
taking order into account, in 6 ways, namely, as 5 = 1 + I +  3 = 1 + 3 + I 
= 3 + I + l = 1 + 2 + 2 = 2 + I + 2 = 2 + 2 + I. Let m and n be natural 
numbers such that m <; n. In bow many ways can n be written as a sum of 
m natural numbers, taking order into account? 

Solution. Write n as a sum of nones: 

n=1 + 1 + · · ·  + 1 .  
n 

The number we seek is the number of ways of choosing m - 1 plus signs 
from the n - I; that is,<:',.-_\). 

Problems 

1.3.8. Show that x7- 2x5 + 10x2- 1 has no root greater than 1 .  (Hint: 
Since it is generally easier to show that an equation has no positive root, we 
are prompted to consider the equivalent problem obtained by making the 
algebraic substitution x = y + 1.) 
1.3.9. The number 3 can be expressed as a sum of one or more positive 
integers, taking order into account, in four ways, namely, as 3, l + 2, 2 + 1, 
and 1 + I +  1. Show that any positive-integer n can be so expressed in r-1 

ways. 

1.3.10. In how many ways can 10 be expressed as a sum of 5 nonnegative 
integers, when order is taken into account? (Hint: Find an equivalent 
problem in which the _phrase "5 nonnegative integers'' is replaced by "5 

positive integers".) • 

1.3.11. For what values of a does the system of equations 

xl ""'yl, 
(x - a)2 +y2 = 1  

have exactly zero, one, two, three, four solutions, respectively? (Hint: 
Translate the problem into an equivalent geometry problem.) 
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1.3.12. Given n objects arranged in a row. A subset of these objects is 
called unfriendly if no two of its elements are consecutive. Show that the 
number of unfriendly subsets each having k elements is (n-z+1). (Hint: 
Adopt an idea similar to that used in 1.3.6.) 
1.3.13. Let a(n) be the number of representations of the positive integer n 
as a sum of 1's and 2's taking order into account. Let b(n) be the number 
of representations of n as a sum of integers greater than 1, again taking 
order into account and counting the summand n. The table below shows 
that a(4) = 5 and b(6) = 5: 

1+1+2 
1+2+1 
2+1+1 

2+2 
1+1+1+1 

b-sums 
-4+2 

3+3 
2+4 

2+ i+2 
6 

(a) Show that a(n) = b(n + 2) for each n, by describing a one-to-one 
correspondence between the a-sums and b-sums. 

(b) Show that a( I)= 1, a(2) = 2, and for n > 2, a(n) = a(n - I)+ 
a(n - 2). · ' 

1.3.14. By finding the area of a triangle in two different ways, prove that if 
P�t p2• p3 are the altitudes of a triangle and r is the radius of its inscribed 
circle, then 1/Pt + l/p2 + l/p3 = 1/r. 
1.3.15. Use a counting argument to prove that for integers r, n, 0 < r ( n, 

(;)+(':
1
)+('�

2
)+ . . .  +(;)-(;!�) 

Additional Examples 

1.2.3, 5.1.5, 5.l.l4, 7.4.6, 8.2.6. There are so many examples of this heuristic 
that it is difficult to single out those that are most typical. Noteworthy are 
the indirect proofs in Section 1.9, 1.10, 1.11, the congruence problems in 
Section 3.2, the limit problems in Section 6.8. Other examples of partial 
fractions (see 1.3.1) are 4.3.23, 5.3.1, 5.3.2, 5.3.3, 5.3.6, 5.3.12, 5.4.9, 5.4.13, 
5.4.20, 5.4.24, 5.4.25. Examples based on the identity x = exp(log x) are 
5.3.7(c), 6.3.3, 6.7.1, 6.7.4, 6.7.5, 6.7.7, 6.9.5, 7.4.1, 7.4.2, 7.4.9, 7.4.20. 
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1 .4. Modify the Problem 

In the course of work on problem A we may be led to consider problem. B. 
Characteristically, this change in problems is announced by such phrases as 
"it suffices to show that ... " or "we may assume that ... " or "without 
loss of generality ... ". In the last section we looked at examples in which 
A and B were equivalent problems, that is, the solution of either one of 
them implied the solution of the other. In this section we look at oases 
where the solution of the modified (or auxiliary) problem, problem B, 
implies the solution ·or A ,  but not necessarily vice versa. 

1.4.1. Given positive numbers a,b,c,d, prove that 

,a � ' �+ '-Cb,'� + '-'--c3 b3 + c3 + d3 c3 + d3 + a3 ,d,'�+ 7-" a,'�+Cfb-' + + + a + b + c  b + c + d  c + d + a  d + a + b  
;;;. a l + bl + cl + dl. 

Solution. Because of the symmetry in the problem, it is sufficient to prove 
that for all positive numbers x, y, and z 

For if this were the case, the left side of the original inequality is at least 

a2 + b2 + c2 b2 + cl + d2 cz + dz + a2 dz + a2 + bz 3 + 
3 

+ 3 + 3 

= a2 + b2+ cz+ dz. 
Now, to prove this latter inequality;- there is no loss of generality in 
supposing that x + y + z = I. For if not, simply divide each side of the 
inequality by (x + y + zi, and let X =  xj(x + y + z), Y = yj(x + y + z), 
and Z= z/(x + y +z). 

Thus, the original problem reduces to the following modified problem: 
Given positive numbers X, Y, Z such that X +  Y + Z = 1, prove that 

X 3+ y3 + z3 ;;. X z+ yz +zz 
3 

(For a proof of this inequality, see 7.3.5.) 

1.4.2. Let C be any point on the line segment AB between A and B, and 
let semicircles be drawn on the same side of AB with AB, AC, and CB as 
diameters (Figure 1.13). Also let D be a point on the semicircle having 
diameter AB such that CD is perpendicular to AB, and let E and F be 
points on the semicircles having diameters A C  and CB, respectively, such 
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A 
Figure 1.13. 

that EF is a segment of their coinmon tangent. Show that ECFD is a 
rectangle. 

Solution. Note that it is sufficient to show that A, E, and D are collinear (the 
same argument would show that B, F, and D are collinear), For if this were 
the case, L AEC:: 90° (E ison circleAEC), LADB = 90°, L CFB = 90°, 
and the result holds. It tums out, however, that without some insight, there 
are many ways of going wrong with this approach; it's difficult to avoid 
assuming ·the conclusion. 

One way of gaining insight into the relationships among the parameters 
in a problem is to notice the effect when one of them is allowed to vary 
(problem modification). In this problem, let D vary along the circumfer­
ence. Let G and H (Figure l .l4) denote the intersections of the segments 
AD and BD with the circles with diameters AC and CB (and centers 0 and 
0') respectively. Then LAGC = LADB "" L CHB = 90°, so that GDHC 
is a rectangle. Furthermore, L OGC = L OCG (6 OGC is isosceles), and 
L CGH = L GCD because GH and CD are diagonals of a rectangle. 
Therefore, L OGH = L OCD. Now, as D moves to make CD perpendicu­
lar to AB, L OGH will also move tO 90°, so that GH is tangent to circle 0, 
and G coincides with E. A similar argument shows GH is tanget to circle 
0', so H = F. This completes the proof. (Note the phrase "a similar 

Figure LJ4. 
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argument," another simplifying technique, has the same effect when placed 
after an argument as "it suffices to show that" has when placed before the 
argument.) 

Note that we have solved the problem by solving a more general 
problem. This is a common problem-solving technique; we will see more 
examples of it in Section 1.12. 

1.4.3. Prove that there do not exist positive integers x,y,z such that 

xl + yl + z2 =  2xyz. 

Solution. Suppose x, y, and z are positive integers such that x2 + y2 + z2 
= 2�z. Since x2 + y2 + z2 is even ( = 2xyz), either two of x, y, and z are 
odd and the other even, or all three are even. Suppose x, y,z are even. 
Then there are positive integers xhyPz1 such that x = 2x1, y = 2y1, z 
= 2z1• From the fact that (2x1l + (2y1)2 + (2z1)2 = 2(2x1X2y1)(2z1) it fol­
lows that x1, y1,z1 satisfy x� + yf + z; = 22x1y1z1• Again, from this equa­
tion, if x1,y1,z1 are even, a similar argument shows there will be positive 
integers x2, Y2,z2 such that xj + yj + zj = 23x2Y2z2• 

Continue in this way. Eventually we must arrive at an equation of the 
form a2 + b2 + c2 = 2nabc where not all of a,b,c are even (and hence two 
of a,b,c are even and one is odd). 

Thus, we are led to consider the following modified problem: Prove 
there do not exist positive integers x, y, z and n, with x, y odd, such that 

xl + y2 + z2 = 2nxyz. 
(This is Problem 1.9.3.) 

1.4.4. Evaluate Jf:'e-x' dx. 

Solution. The usual integration techniques studied in first-year calculus will 
not work on this integral. To evaluate the integral we will transform the 
single integral into a double integral. 

Let I =  JOe-x' dx. Then 

1' � [fr''dx ] [r·�,'�] 

� r[r•�''dx]e�''dy 

= L'"" .riO e - x
'
e-y

' dx� 

-fo"" L""e-(x'+y')dx�. 
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Now change to an equivalent integral by switching to polar coordinates. 
We then have 

It follows that I =  fi f2. 

12 = .("'"/2.("" e-.->rdrdO 

� (•12 _ _!_,-•']" d9 Jo 2 o = ! ("'12d9 
2 Jo 

= !w. 
A modified (auxiliary) problem can arise in many ways. It may come 

about with a change in notation (as in 1.4.4; see Section 1.5) or because of 
symmetry (as in 1.4.1; see Section 1.6). Often it is the result of "working 
backward" (see Section 1.8) or arguing by contradiction (as in 1.4.3; see 
Section 1.9). It is not uncommon to consider a more general problem at the 
outset (as in 1.4.2; see Section 1 . 12). Thus we see that problem modification 
is a very general heuristic. Because of this, we will defer adding more 
examples and problems, p"utting them more appropriately in the more 
specialized sections which follow. 

1 .5. Choose Effective Notation 

One of the first steps in working a mathematics problem is to translate the 
problem into symbolic terms. At the outset, all key concepts should be 
identified and labeled; redundancies in notation can be eliminated as 
relationships are discovered. 

1.5.1. One morning it started snowing at a heavy and constant rate. A 
snowplow started out at 8:00 A.M. At 9:00 A.M. it had gone 2 miles. By 
10:00 A.M. it had gone 3 miles. Assuming that the snowplow removes a 
constant volume of snow per hour, determine the time at which it started 
snowing. 

Solution. It is difficult to imagine there is enough information in the 
problem to answer the question. However, if there is a way, we must 
proceed systematically by first identifying those quantities that are un­
known. We introduce the following notation: Let t denote the time that has 
elapsed since it started snowing, and let T be the time at which the plow 
goes out (measured from t - 0). Let x(t) be the distance the plow has gone 
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at time t (we are only interested in x(t) for t >  T). Finally, Jet h(t) denote 
the depth of the snow at time t. 

We are now ready to translate the problem into symbolic terms. The fact 
that the snow is falling at a constant rate means that the depth is increasing 
at a constant rate; that is, 

dh = c dt ' 
Integrating each side yields 

h(t) = ct + d, 

c constant. 

c,d constants. 
Since h(O) = 0, we get d = 0. Thus h(t) = ct. 

The fact that the plow removes snow at a constant rate means that the 
speed of the plow is inversely proportional to the depth at any time t (for 
example, twicCf. the depth corresponds to half the speed). Symbolically, for 
t > T. 

dx = _!_ dt h(t) ' 
_ !i_ _ K 

ct t ' 

k constant 

K = f:!.  constant. ' 
Integrating each side yields 

x(t) = Klogt + C, C constant. 
We are given three conditions: x = 0 when t = T, x = 2 when t = T + I, 

and x = 3 when t = T + 2. With two of these conditions we can evaluate 
the constants K and C, and with the third, we can solve for T. It turns out 
(the details are not of interest here) that 

,15 - I 
T - �-2- � 0.618 hours �37 minutes, 5 seconds. 

Thus, it started snowing at 7:22:55 A.M. 

1.5.2. 

(a) If n is a positive integer such that 2n + I is a perfect square, show that 
n + I is the sum of two successive perfect squares. 

(b) If 3n + I is a perfect square, show that n + I is the sum of three perfect 
squares. 

Solution. By introducing proper notation, this reduces to a simple algebra 
problem. For part (a), suppose that 2n + I = s2, s an integer. Since s2 is an 
odd number, so also is s. Let t be an integer such that s = 2t + I .  Then 
2n + 1 = (2t + tl, and solving for n we find 

(2t + IJ' - I  
n - 2 = 4t2;4t = 2t2 + 2t. 
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A 

.�nc D 
Figure 1.15. 

Consequently, 
n + I =  2t2 + 2t + I =  t2 + (t + 1)2. 

(b) Suppose 3n + I =  s2, s an integer. Evidently, s is not a multiple of 3, 
so s = 3t ± I for some integer t. Then 3n + I =  (3t ::!:  Ii, and therefore 

Hence, 

(31 ::!: 1)1 - l  g 2 6 
n = 3 = t ; t = 3tl ± 2t. 

1.5.3. In triangle ABC, AB = AC, D is the midpoint of BC, E is the foot 
of the perpendicular drawn D to AC, and F is the midpoint of DE (Figure 
l .l5). Prove that AF is perpendicular to BE. 

Solution. We can transform the problem into algebraic terms by coordina­
tizing the relevant points and by showing that the slopes m8E and mAF are 
negative reciprocals. 

One way to proceed is to take the triangle as it appears in Figure. 1.15: 
take [) as the origin (0, 0), A =  (O,a), B = (- b,O), and C= (b, O). This is a 
natural labeling of the figure because it takes advantage of the bilateral 
symmetry of the isosceles triangle (see the examples in Section 1.6). How­
ever, in this particular instance, this notation leads to some minor complica­
tions when we look for the coordinates of E and F. 

A better coordinatization is to take A = (0, 0), B = (4a, 4b), C = (4c, 0), 
as in Figure 1.16. Then a2 + b2 = c2, D = (2a + 2c,2b), E = (2a + 2c, 0), 
and F = (2a + 2c, b). (AJmost no computation here; all relevant points are 
coordinatized.) It follows that 

mArtrBE "" { 2(a: c) ){ 4a 
and the proof is complete. 
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Figure 1.!6. 

1.5.4. Let - I < a0 < I and define recursively 
� ( l + a,_ 1 ) '/> a, 2 , n > 0. 

Let A, = 4n(l - an)· What happens to A, as n tends to infinity? 

I. Heuristics 

Solution. Direct attempts to express an in terms of a0 lead to hopelessly 
complicated expressions containing nested sequences of radicals, and there 
is no way to condense them into a closed form. 

The key insight needed is to obsetve that there is a unique angle fJ, 
0 < 8 < '1T, such that a0 = cosfJ. For this 9, 

Similarly, 

al = ( 1 + �osfJ f/2 = cos( ! )· 

a! = ( I + co
;
(B/2) )1/2 = cos( £ ) . . . . ' a, = cos( f, )· 

We can now compute 
A"

� 4"(1 - w'(0/2")) 

� _4 "_,_( 1_-_,_:_os
-i-
( 0
-i-
/
-::
2"
:::::
) )�( 1

0
+
=

"'_:'(--'0 /'--2_,_")) 
I + oo,(8/2") 

4n sin2(0/zn) 
I Hos(0/2") ( O' )( ,;n(0/2") )' 

� 

I + cos(B/2") 0/2" · 

As n becomes large, 92/(1 + cos(Ojr)) tends to fJlj2, and (sin(B/2"))/ 
(IJjzn) approaches l (recall that (sinx)/x� I as x ---'.l>O), and therefore, A, 
converges to fJ2j2 as n tends to infinity. 
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Problems 

1.5.5. Write an equation to represent the following statements: 

(a) At Mindy's restaurant, for every four people who ordered cheesecake, 
there were five who ordered strudel. 

(b) There are six times as many students as professors at this college. 

1.5.6. Guy wires are strung from the top of each of two poles to the base 
of the other. What is the height from the ground where the two wires cross? 

1.5.7. A piece of paper 8 inches wide is folded as in Figure 1 .17 so that one 
corner is placed on the opposite side. Express the length of the crease, L, in 
terms of the angle 0 alone. 

1.5.8. Let Pt, P2, • • •  , Pt2 be the successive vertices of a regular dodeca­
gon (twelve sides). Are the diagonals P1P9,P2P1p P4Pt2 concurrent? 

1.5.9. Use algebra to support your answers to each of the following. 

(a) A car travels from A to B at the rate of 40 miles per hour and then 
retums from B to A at the rate of 60 miles per hour. Is the average rate 
for the round trip more or less than 50 miles per hour? 

(b) You are given a cup of coffee and a cup of cream, each containing the 
same amount of liquid. A spoonful of cream is taken from the cup and 
put into the coffee cup, then a spoonful of the mixture is put back into 
the cream cup. Is there now more or less cream in the coffee cup than 
coffee in the cream cup? (This problem has an elegant nonalgebraic 
solution based on the observation that the coffee in the cream cup has 
displaced an equal amount of cream which must be in the coffee cup.) 

(c) Imagine that the earth is a smooth sphere and that a string is wrapped 
around it at the equator. Now suppose that the string is lengthened by 
six feet and the new length is evenly pushed out to form a larger circle 
just over the equator. Is the distance between the string and the surface 
of the earth more or less than one inch? 

' I 
I 
I 
I 
I 

�8------l_j 
Figure 1.17. 
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1.5.10. A well-known theorem asserts that a prime p > 2 can be written as 
a sum of two perfect squares (p = m2 + n1, with m and n integers) if and 
only if p is one more than a multiple of 4. Assuming this result, show that: 
(a) Every prime one more than a multiple of 8 can be written in the form 

x2 + 16y2, x andy integers. 
(b) Every prime five more than a multiple of 8 can be written in the form 

(2x + y)2 + 4y2, x andy integers. 

Additional Examples 

! . l . lO, 2.5.10, 3.2.15, 3.3.11 , 3.3.28, 3.4.2, 3.4.4, 4.1.5, 6.4.2, 7.2.4, 8. l .l5, 
8.2.3, 8.2.17. Also, see Sections 2.5 (Recurrence Relations), 3.2 (Modular 
Arithmetic), 3.4 (Positional Notation), 8.3 (Vector Geometry), 8.4 (Complex 
Numbers in Geometry). 

1.6. Exploit Symmetry 

The presence of symmetry in a problem usually provides a means for 
reducing the amount of work in arriving at a solution. For example, 
consider the product (a +  b + cXa1 + b2 + c1 - ab - ac - be). Since each 
factor is symmetrical in a, b, c (the expression remains unchanged when­
ever any pair of its variables are interchanged), the same will be true of the 
product. As a result, if a3 appears in the product, so will b3 and c3• 
Similarly, if a1b appears in the product, so will a1c, b2a, b2c, c1a, c1b, and 
each will occur with the same coefficient, etc. Thus, a quick check shows 
the product will have the form 

A(a3 + b3 + c3) + B(a2b + a2c + b2a + b1c + c2a + c2b) + C(abc). 
It is an easy matter to check that A =  I, B = 0, and C = -3. 

1.6.1. Equilateral triangles ABK, BCL, CDM, DAN are constructed inside 
the square ABCD. Prove that the midpoints of the four segments KL, LM, 
MN, NK and the midpoints of the eight segments AK, BK, BL, CL, CM, 
DM, DN, AN are the twelve vertices of a regular dodecagon. 

Soludon. The twelve vertices are indicated in Figure 1 .18 by heavy dots; 
two of these vertices are labeled a and b as shown. 

Using the symmetry of the figure, it suffices to show that L bOK = 15°, 
LaOb - 30°, and laOI - IbOI. 

Note that AN is part of the perpendicular bisector of BK, and therefore 
IKNI = INB I. Using symmetry it follows that MBN is an equilateral 
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Figure 1.18.  

triangle, say of side length s, and that L CBN = 15". Now consider triangle 
DBN; note that Ob joins the midpoints of DB and DN, so Ob is parallel to 
BN and half its length. Thus lObi = s/2 and LbOK= !5". From this it is 
easy to check that L aOb "" L DOK - L bOK = 45" - 15° = 30°, and I Oal 
� jKNJ/2 � '/2. 

The presence of symmetry in a problem also provides a clarity of vision 
which often enables us to see and discover relationships that might be more 
difficult to find by other means. For example, symmetry considerations 
alone suggest that the maximum v8Jue of xy, subject to x + y = I, x > 0, 
y > 0, should occur when x = y = 1 (x and y are symmetrically related). 
This is an example of the principle of insufficient reason, which can be stated 
briefly as follows: "Where there is no sufficient reason to distinguish, there 
can be no distinction." Thus, there is no reason to expect the maximum will 
occur when x is anything other than t ,  that is, closer to 0 or to l . To verify 
this, let X =  t + e. Then y = t -e, and, xy = 0 +ext - e) = -!  -e2. In 
this fonn it is clear that the maximum occurs when e = 0; that is, x = y 
- 1 -- , . 

The next problem offers several additional examples of this principle. 

1.6.2. 

(a) Of ail rectangles which can be inscribed in a given circle, which bas the 
greatest area? 
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Figure 1.!  9.  

(b) Maximize sin A +  sinB + sinC, where A,  B, C are the measures of the 
three angles of a triangle. 

(c) Of ail triangles of fixed perimeter, which has the greatest area? 
(d) Of all parallelepipeds of volume 1, which has the smallest surface area? 
(e) Of all n-gons that can be inscribed in a given circle, which has the 

greatest area? 

Solution. (a) The principle of insufficient reason leads us to suspect the 
rectangle of maximum area that can be inscribed in a circle is a square 
(Figure 1.19). To verify this, let x andy denote the length and width of the 
rectangle, and suppose without loss of generality that the units are chosen 
so that the diameter of the circle is unity. We wish to maximize -?' subject 
to x

2 + :l = 1. It is equivalent to maximize x)2 subject to x
2 + y = I. But 

this is the same problem as that considered prior to this example; the 
maximum value occurs when x

2 
= y2 = ! , that is, when the rectangle is a 

square. 
(b) Notice that the sum, sin A +  sinB + sin C, is always positive (since 

each of the terms is positive), and it can be made arbitrarily small (in 
magnitude) by making A arbitrarily close to 180°. There is no reason to 
expect the maximum will occur at any point other than A = B = C = 60° 
(an equilateral triangle). A proof of this follows from the discussion in 2.4.1 .  

In a similar manner, we suspect the answers to (c), (d), and (e) are an 
equilateral triangle, a cube, and a regular n-gon. Proofs for these conjec­
tures are given in 7.2.1, 7.2.12, and 2.4.1 .  

1.6.3. Evaluate 

Solution. Here is a problem that cannot be evaluated by the usual tech­
niques of integration; that is to say, the integrand does not have an 
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J/2 

OL----c•�/4;-_c�•/'2 

Figure 1.20. 
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antiderivative. However, the problem can be handled if we happen to 
notice that the integrand (Figure 1.20) is symmetric about the point Ow,t). 
To show this is so (it is not obVious), letf(x) = 1/(1 + (tanx)v2). It suffices 
to show that f(x) + f(w/2 - x) = I  for all x, 0 < x < w/2. Thus, we 
compute, for r = .ff, 

f(w/2 - x)+f(x) = l+tan'Uw x) + l+tan'x 
I + -cc-!:= 

I + cot'x T + tan'x 
� ---'f''an'\''C;x;:: + �-'-� T + tan'x I + tan'x 
� I. 

It follows from the symmetry just demonstrated that tl).e area under the 
curve on [0,! '11"] is one-half the area in the rectangle (see Figure 1 .20); that 
is, the integral is ('11"/2)/2 = '11"/4. 

Another way to take advantage of symmetry is in the choice of notation. 
Here are a couple of illustrations. 

1.6.4. Let P be a point on the graph of y = j(x), where f is a third-degree 
polynomial; let the tangent at P intersect the curve again at Q; and let A be 
the area of the region bounded by the curve and the segment PQ. Let B be 
the area of the region defined in the same way by starting with Q instead of 
P. What is the relationship between A and B? 

Solution. We know that a cubic polynomial is symmetric about its inflec­
tion point (see 8.2.17). Since the areas of interest are unaffected by the 
choice of coordinate system, we will take the point of inflection as the 
origin. Therefore, we may assume the equation of the cubic is 

f(x) =ax3 + bx, a -=1=- 0  
(see Figure 1.21). 

Suppose x0 is the abscissa of P. It turns out that the abscissa of Q is 
-2x0• 0Ne will not be concerned with the details of this straightforward 
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Figure 1.21. 

computation. There is, indeed, a very elegant way to arrive at this fact, but 
it uses ideas found in Section 4.3 (see 4.3.7).) 

A straightforward integration shows that the area A is equal to Kxri, 
where K is independent of x0• (Again, the details of this computation are 
not of concern here.) 

We now can apply our previous conclusions to the point Q. The tangent 
at Q will intersect the curve at R, the abscissa of which evidently is 

� 2(-2xo) = 4x0, and the area B is equal to K(-2x0)4 = 16Kxci = 16A. 

1.6.5. Detennine all values of x which satisfy 
tanx = tan(x + l0°)tan(x + 20°)tan(x + 30°). 

Solution. We will introduce symmetry by a simple change of variable. Thus, 
set y = x + !5°. The equation then is 

tan(y - W) � tan(y - 5°)tan(y + 5°)tan(y + W), 
which is equivalent to 

sin(Y - l5°)cos(y + 15°) 
cos(y W)sin(y + W) 

sin(y - 5°)sin(y + 5°) 
cos(y 5°)cos(y + 5°) 

Using the identities 

we get 

sin A cosB = H sin( A - B ) +  sin( A +  B) ] ,  

sinA sinB = H cos( A - B ) - cos( A +  B ) ], 

cos A cosB = H cos( A - B) +  cos( A + B)] ,  

sin( -30°) + sin2y cos(- 10°) - cos2y 
� 

sin(30°) + sin2y cos( 10°) + cos2y ' 
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or equivalently, 

2 sin2y - I 
2 sin2y + l  

cos 10° - cos2y 
= 

cos 10° + cos2y · 
This simplifies to 

sin4y = cos 10°, 

which implies that 

4y = 80° + 360° k, 100° + 360° k, 

x = 5° + goo k, 10° + goo k, 

Problems 

1.6.6. 

(a) Exploit symmetry to expand the product 

k = O, ± l, ±2, . . . , 
k = 0, ± 1, ±2, . . .  . 

(x); + y1z + z2x)(xy
2 + yz2 + zx2). 

(b) If x + y + z = 0, prove that 

( � +�+ •' )( •' +�+� ) - � +�+� 
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(Substitute z = -x - y and apply the binomial theorem. For another 
approach, see 4.3.9.) 

1.6.7. The faces of each of the fifteen pennies, packed as exhibited in 
Figure 1.22, are colored either black or white. Prove that there exist three 
pennies of the same color whose centers are the vertices of an equilateral 
triangle. (There are many ways to exploit symmetry and create "without 
loss of generality'' arguments.) 

1.6.8. Make use of the principle of insufficient reason to minimize xf + 
xi + · · · + x;, subject to the condition that 0 < X; <  I, and x1 + x2 + 
· · · + x, = I. Prove your conjecture. (For the proof, take X; = 1/n + e;.) 

1.6.9. A point P is located in the interior of an equilateral triangle ABC. 
Perpendiculars drawn from p meet each of the sides in points D, E, and F, 
respectively. Where should P be located to make PD + PE + PF a maxi­
mum? Where should P be located to make PD + PE + PF a minimum? 

I . 
' 

Figure 122. 
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· �-------------------, c 

A �----------------_JD 
Figure 1.23. 

Justify your answers. (Hint: It is helpful to reflect the figure about one of 
the sides. What happens to PD + PE + PF as P moves parallel to the line 
of reflection?) 

1.6.10. In Figure 1.23, ABCD is a square, L ECD = L EDC = 15"'. Show 
that triangle AEB is equilateral. (The key to this very beautiful problem is 
to create central symmetry. Specifically, add identical 15° angles on sides 
AB, BC, and AD (as on side CD) and create a diagram much like that 
constructed in 1.6.1.) 

1.6.11. The product of four consecutive terms of an arithmetic progression 
of integers plus the fourth power of the common difference is always a 
perfect square. Verify this identity by incorporating symmetry into the 
notation. 

Additional Examples 

1.4.1, 8.1.4, 8.1.5, 8.1.8, 8.2.3. 

1 .7. Divide into Cases 

It often happens that a problem can be divided into a small number of 
subproblems, each of which can be handled separately in a case�by-case 
manner. This is especially true when the problem contains a universal 
quantifier ("for ail x . . . "). For example, the proof of a proposition of the 
fonn "for all integers . . .  " might be carried out by arguing the even and 
odd cases separately. Similarly, a theorem about triangles might be proved 
by dividing it into three cases depending upon whether the triangle is acute, 
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Figure 1.24. 
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p 

(3) 

right, or obtuse. Occasionally, the subproblems can be arranged hierarchi­
cally into subgoals, so that the first cases, once established, can be used to 
verify the succeeding stages. Such a procedure is called hi/lclimbing. 

In the early stages of analysis, it is good to think about how a problem 
might be subdivided into a small number of (hopefully) simpler subprob­
lems. The heuristic of this section is often given in the following form: "If 
you can't solve the problem, find a simpler related problem and solve it." 

1.7.1. Prove that an angle inscribed in a circle is equal to one-half the 
central angle which subtends the same arc. 

Solution. We are given a circle, say with center 0, and an inscribed angle 
APB; some examples are shown in Figure 1.24. We are to prove that in ail 
instances LAPB = 1 LAOB. The three preceding figures represent three 
essentially different situations. Specifically, the center of the circle, 0, is 
either inside LAPB (diagram 2), or outside LAPB (diagram 3), or on one 
of the rays of L APB (diagram 1). We shall prove the theorem by 
considering each or these cases separately. 

Case 1. Suppose the center 0 is on PA. Then LAOB = L OPB + 
L OBP (exterior angle equals sum of opposite interior angles) = 2 L OPB 
(t:::,. OPB is isosceles) = 2 L APB. The result follows. 

Case 2. If 0 is interior to LAPB (diagram 2), extend line PO to cut the 
circle at D. We have just proved that 2 L APD = LAOD and 2L DPB = L DOB. Adding these equations gives the desired result. 

Case 3. If 0 is exterior to L APB (diagram 3), extend PO to cut the 
circle D. Then, using case I, 2 L  DPB = L DOB and 2 L  DPA = L DOA . 
Subtracting the second equation from the first yields the result. This 
completes the proof. 

1.7.2. A real-valued function f, defined on the rational numbers, satisfies 

f(x + y) � J(x) + J(y) 

for all rational x and y. Prove thatf(x) .. j(l) · x for all rational x. 
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Solution. We will proceed in a number of steps. We will prove the result 
first for the positive integers, then for the nonpositive integers, then for the 
reciprocals of integers, and finally for ail rational numbers. 

Case 1 (positive integers). The result holds when x = I .  For x = 2, we 
have f(2) � f(l + I) �  f(l) + f(l) � 2f( l). Fo' x � 3, f(3) � /(2 + I) 
= /(2) + j(l) = 2f(l) + f(l) = 3j(l). It is clear that this process can be 
continued, and that for any positive integer n,j(n) = nj(l). (A formal proof 
can be given based on the principle of mathematical induction-see Chap­
ter 2). 

Case 2 (nonpositive integers). First, j(O) = j(O + 0) = j(O) + j(O). Sub­
tract j(O) from each side to get 0 = f(O); that is, J(O) = 0 · j(l ). Now, 
O �f(O) �f(l + ( - l)) �f(I) +J(- 1). Fwm this, we see that f(- 1) �  
- j(l). Similarly, for any positive integer n, j(n) + j( - n) = j(n + ( - n)) 
� f(O) � 0, so thatf( -n) � - nf(l). 

Case 3 (reciprocals). For x = !, we proceed as follows: /(I) = JO + f) 
= j(!) + f(!) = 2/(! ). Divide by 2 to get /0) = /(1)/2. For x = L /(I) 
= /0 + t + ! ) = f( t )  + /0) + /( t)  = 3f( t ), or equivalently, /0) = 

f(l)/3. In a similar way, for any positive integer n, j(l/n) = /(1)/n. For 
x �  - 1/n, we havo f(l/n) + f( - 1 /n) �f(l/n + ( - 1/n)) �f(O) � O, so 
f( - 1/ n) � -J(l)jn. 

Case 4 (all rationals). Let n be an integer. Then f(2/ n) = j(lj n + 1/  n) 
= j(ljn) + J(l/n) = 2J(ljn) = (2/ n)j(I). Similarly, if mjn is any rational 
number, with m a positive integer and n an integer, then 

t(�) �t( � + . . .  + � ) �t( � ) + . . .  + !( � )  
m times 

� mf( � )  � � /(I) 

This establishes the result---a good example of hillclimbing. 

1.7.3. Prove that the area of a lattice triangle is equal to I +  t B - I, where 
I and B denote respectively the number of interior and boundary lattice 
points of the triangle. (A lattice triangle is a triangle in the plane with 
lattice points as vertices.) 

Solution. This is a special case of Pick's theorem (see 2.3.1). There are a 
number of ingenious proofs, each of which divide the set of lattice triangles 
into a few special types. One way to do this is to "circumscribe" about the 
triangle a rectangle with edges parallel to the coordinate axes. At least one 
vertex of the rectangle must coincide with a vertex of the triangle. Now it 
can be checked that every lattice triangle can be classified into one of the 
nonequivalent classes sketched in Figure 1.25. 
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In the first class are those right triangles whose legs are parallel to the 
coordinate axes. The second class includes acute-angled triangles one of 
whose sides is parallel to a coordinate axis. Such triangles are the "sum" of 
two triangles from the first class. In the third class are the obtuse triangles 
which have one side parallel to a coordinate axis. They are the "difference" 
of two triangles from the first class. The fourth and fifth classes cover those 
triangles having no sides parallel to the coordinate axes. 

The proof of the result follows a hi!lclimbing pattern. To get started, let 
us consider the rectangle ABCD in case 1. Suppose that line segments AB 
and AD contain a and b lattice points, respectively, not counting their 
endpoints. Then, with I and B the interior and boundary points of ABCD, 

I + -f B - l = ab + ! (2a + 2b + 4) - I 
= ab + a + b + l  
� (a +  l)(b + I )  
= AreaABCD. 

Now suppose that AB, BC, and AC contain a, b c lattice points, 
respectively, not counting their endpoints, and suppose that ABC contains i 
interior points. Then rectangle ABCD has 2i + c interior points, and we 
have, with I and B the interior and boundary points of ABC, 

I + tB - 1 = i + t(a + b + c + 3) - I 
= f(2i + a + b + c + l) 
� ![  (2i + c) +  l(2a + 2b + 4) - I ]  
= -f AreaABCD 

= AreaABC. 

The other cases can be handled in a similar way; we leave the details to 
the reader. 
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Problems 

1.7.4 (Triangle inequality). 

(a} Prove that for all real numbers x andy, lx + yl < lxl + IYI· 
(b) Prove that for all real numbers x, y, and z, lx - Yl < lx - zl + IY - z1. 
1.7.5. Find ali values of x which satisfy 

_3_ < _2_ 
x - I  x + l " 

1.7.6. Let S = {i(3,8) + j(4, - I ) +  k(5,4)1 i,j,k are integers}, and T 
= {m(1,5) + n(O, 7)1 m,n are integers}. Prove that S = T. (Note: Ordered 
pairs of integers are added componentwise: (s,t) + (s',t') = (s + s',t + t'), 
and n(s,t) = (ns,nt).) 
1.7.7. A rea!Mvalued function f, defined on the positive rational numbers, 
satisfies f(x + y) = j(x)j(y) for all positive rational numbers x and y. 
Prove that/( x) = {j(l )]-'' for ali positive rational x. 

1.7.8. Detennine F(x) if, for all real x andy, F(x)F(y) - F(xy) = x + y. 

Additional Examples 

1 . 1 .7, 2.5.11c, 2.5.12, 2.5.13, 2.6.3, 3.2.14, 3.2.15, 3.2. 16, 3.2.17, ).2.18, 3.4. 1 ,  
4.1 .3, 4.1.4, 4.4.14, 4.4.29, 5.2.1, 5.3.14c, 6.5.4, 7.4.3, 7.6.2, 7.6.4, 7.6. 10, 
8.2.4. Some particularly nice examples which reduce to the study of very 
special cases are 3.3.8, 3.3.9, 3.3.21, 3.3.22, 3.3.26. 

1.8. Work Backward 

To work backward means to assume the conclusion and then to draw 
deductions from the conclusion until we arrive at something known or 
something which can be easily proved. After we arrive at the given or the 
known, we then reverse the steps in the argument and proceed forward to 
the conclusion. 

This procedure is common in high-school algebra and trigonometry. For 
example, to find ail real numbers which satisfy 2x + 3 = 7, we argue as 
follows. Suppose that x satisfies 2x + 3 = 7. Then, subtract 3 from each 
side of the equation and divide each side by 2, to get x = 2. Since each step 
in this derivation can be reversed, we conclude that 2 does indeed satisfy 
2x + 3 = 7 and is the only such number. 
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Often, in routine manipulations, such as in the previous example, an 
explicit rewriting of the steps is not done. However, it is important to be 
aware of what can, and what cannot, be reversed. For example, consider 
the equation JX+T - ,;x=T = 2. (Here, as usual, the square root is 
interpreted as the positive square root.) Write the equation in the form 
Jx + l = Jx - 1 + 2, and squar.e each side to get x + I =  x - 1 + 
4,;x=T + 4, or equivalently, ,fX=T = - ±- Square a second time to get 
x - I =! , or x = i- We conclude that if there is a number x such that 
JX+T - ,;x=T = 2, it has to equal i .  However, i does not satisfy the 
original equation. The reason for this is that the steps are not ail reversible. 
Thus, in this example, we proceed from ,fX=T = - ! to x - I = � .  When 
this is reversed, however, the argument goes from x - 1 = ! to ,;x=T =! . 

1.8.1. Let a be a fixed real number, 0 < a < "'• and let 

sin O +  sin(O + a) 
F(9 ) ­- cosO - cos(O + a) 

0 < 0 < '" - a. 

Show that F is a constant. (This problem arose in 1.2.1.) 

Solution. Suppose that F is a constant. Then F(O) = F(O) for all 0, 
0 < 0 < 'll - a. That is, 

sin O +  sin(O + a) 

cosO cos(O + a) 
sino: 

I - coso: ' ( I )  

[sinO + sin(O + a) ] [  I - cos a J = sin a[ cosO - cos(O + a)] , (2) 

sinO + sin(O + a) - sinO cos a - sin(O + a)cosa 

=sin a cosO - sina cos(O + a), (3) 
sinO + sin(O + a) - [sinO cos a +  sin a cosO] 

- (sin(O + a)cosa - sina cos(O + a) ] = O, (4) 
sin O +  sin(O + a) - sin(O + a) - sin(O + a - a) = 0. (5) 

The last equation is an identity. For the proof, we must reverse these steps. 
The only questionable step is from (2) to (1): the proof is valid only if we 
do not divide by zero in going from (2) to (1). But (I - cos a) =I= 0 since 
0 < a <  1T, and cos 0 - cos(8 + a) > O since 0 .;;,: 0 <  0 +  a <  'fr. The proof 
therefore can be carried out; that is, starting with the known identity at (5), 
we can argue (via steps (4), (3), (2), (I)) that for all 8, 0 < 8 < 'fr - a, 
F(O) = sino:/(1 - coso:) = constant. 
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1.8.2. If a,b,c denote the lengths of the sides of a triangle, show that 

3(ab + be + ca) < (a +  b +  c/ <. 4(ab + be + ca). 

Solution. Consider the leftmost inequality: 

3( ab + be + ca) < (a + b + c)2, 
3( ab + be + ca) < a2 + b2 + c2 + 2( ab + be + ca), 

ab + be + ca < a2 + b2 + c2, 
a2 + b2 + c2 - ab - be - ca > 0, 

2a2 + 2b1 + 2c2 - 2ab - 2bc - 2ca > 0, 

(a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) > 0, 

(a - b)2 + (b - c/ + (c - a)2 > 0. 

This last inequality is true for ali values of a,b,c. Now consider the right 
inequality: 

(a + b + c)2 < 4( ab + be + ca), 
a2 + b2 + c2 + 2(ab + be +  ca) < 4(ab + be +  ca), 

a2 + b2 + c2 < 2( ab + be + ca), 
a2 + b2 + c2 < a(b + c) +  b(a + c) +  c(b + a). 

This final inequality is true, since the sum of any two sides of a triangle is 
larger than the remaining side. Thus, a2 < a(b + c), b2 < b(a + c), and 
c2 < c(b + a). 

The steps in each of these arguments can be reversed, so the proof is 
complete. 

1.8.3. Given: AOB is a diameter of the circle 0; BM is tangent to the 
circle at B; CF is tangent to the circle at E and meets BM at C; the chord 
AE, when extended, meets BM at D. P�ove that BC = CD. (See Figure 
1.26.) 

Solution. Suppose BC = CD. Then CE = CD, since BC = CE (tangents 
from C to the circle at E and B are equal). Thus, L CED = L CDE (base 
angles of an isosceles triangle are equal). We are led to consider the angles 
as labeled in Figure 1.26. 

Now, L d is complementary to L a  since 6.ABD is a right triangle, and 
L e is complementary to L c since L BEA is a right angle (A OB is a 
diameter). Therefore, La = L c. But we know that La = L c, since they 
both cut off the equal arc BE on the circle 0. 
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Figure 1.26. 

The proof can now be completed by reversing these steps. Thus (omit­
ting reasons), L a  = L c, and therefore, L e = L d. Hence CD = CE, CE 
= BC, and therefore BC = CD. 

1.8.4. In a round-robin tournament with n players P 1 ,P2, • • •  , P�, where 
n > 1 ,  each player plays one game with each of the other players and rules 
are such that no ties can occur. Let W, and L, be the number of games won 
and lost, respectively, by player P,. Show that 

" " 
"' w'- "' L' ..C.... ' ..C.... r • 

r-l r= I 

Solution. Suppose L�-1 W} = L�_,L;. Then, 
" 

L ( W,' - L;) - 0, 
,_ ,  

" 
L ( W, - L.J( W, +  q - o. 
r= l 

But W, + L, ::: n - I for each r, so 
" 

(n - I ) L ( W, - L.) - 0, 
r= l  

" " 
L w,- L L,. 
r= I r-1 

This last equation is true, since the total number of games won by the n 
players has to equal the total number of games lost. The proof follows on 
reversing the p�ing argument. 
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Problems 

1.8.5. 
(a) Given positive real numbers x andy, prove that 

2 rc x + y  
ljx + l jy <. vxy < 

-2- · 

I. Heuristics 

(b) Given positive real numbers a and b such that a +  b = I, prove that 

1.8.6. 

2 
I b! < ax + by, a x + y x > O, y > O. 

(a) If a,b,c are positive real numbers, and a <  b + c, show that 

_a_ < _b_ + _,_ 
l + a  ! + b  l + c  · 

(b) If a,b, c are lengths of three segments which can form a triangle, show 
that the same is true for 1/(a + c), 1/(b + c), lf(a + b). 

1.8.7. Two circles are tangent externally at A,  and a common external 
tangent touches them at B and C. The line segment BA is extended, 
meeting the second circle at D. Prove that CD is a diameter. 

1.8.8. Consider the following argument. Suppose 8 satisfies 

Then, since 

it follows that 

cot8 + tan 3D = 0. 

fi 
) 

_ tan a + tan,B 
tan(a + - 1 tana tan fl '  

cot O +  tan 0 + tan29 _
0 

I tan 9tan28 - ' 
coti/(1 - tan0tan29) + tanO + tan29 = 0, 

cotil - tan20 + tan9 + tan29 = 0, 
cotil + tani/ = 0, 

1 + tan:W = 0, 

tan:W = - I. 
Since this last equation cannot hold, the original equation does not have a 
solution (we don't need to reverse any steps because the final step doesn't 
yield any contenders). However, 0 = t 'IT  does satisfy coti/ + tan39 = 0. 
What's wrong with the argument? 

1.8.9. With Euclidean tools (straightedge and compass), inscribe a square 
in a given triangle so that one side of the square lies on a given side of the 
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triangle. (Hint: Begin with the square and construct a triangle around it 
similar to the given triangle. Then use the fact that similar figures have 
proportional parts.) 

Additional Examples 

2.1.5, 7.1 .1 ,  7.4.6. Also, see Section 2.2 (Induction) and Section 2.5 (Recur­
sion). 

1.9. Argue by Contradiction 

To argue by contradiction means to assume the conclusion is not true and 
then to draw deductions until we amve at something that is contradictory 
either to what is given (the indirect method) or to what is known to be true 
(reductio ad absurdum). Thus, for example, to prove II is irrational, we 
might assume it is rational and proceed to derive a contradiction. The 
method is often appropriate when the conclusion is easily negated, when 
the hypotheses offer very little substance for manipulation, or when there is 
a dearth of ideas about how to proceed. 

As a simple example of this method of proof, consider the following 
argument which shows that the harmonic series diverges. Suppose on the 
contrary, that it converges-say tor. Then 

r = l + ± + � + * + k + � + t + ! + 
> t + t + i + i + i + ! + ! + t + 

+ l + :t + 
= r, 

l • + 

a contradiction. We are forced to conclude that the series diverges. 

1.9.1. Given that a,b,c are odd integers, prove that equation ax2 + bx + c 
= 0 cannot have a rational root. 

Solution. Suppose p/q is a rational root, where (without loss of generality) 
p and q are not both even integers. We will first establish that neither p nor 
q is even. For suppose that p is even. From a(p/ qi + b(p/ q) + c = 0 we 
find that ap2 + bpq·+ cl = 0. Since ap2 + bpq is even, cq2 must be even, 
but this is impossible, since c and q are both odd. We get a similar 
contradiction if we suppose q is even. Therefore, both p and q are odd and 
ap2 + bpq + cq2 - 0. But this last equation states that the sum of three odd 
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numbers is zero, an impossibility. Therefore, the equation has no rational 
root. 

It is instructive to consider another proof of this result The roots of 
ax2 + bx + c = 0 are rational if and only if b2 � 4ac is a perfect square. So, 
suppose that b2 - 4ac = (2n + I )2 for some integer n (by supposition, 
b2 - 4ac is odd, and therefore, if it is a square, it must be the square of an 
odd integer). Collecting multiples of 4 we have 

b' - I - 4[ n(n + I) + "']. 
Since either n or n + I is even, n(n + 1) + ac is odd. Thus, the right side of 
the last equation is divisible by 4 but not by 8. However, the left side is 
divisible by 8, since b2 - I =  (b - IXb + I) and one of b - 1 and b + I is 
divisible by 4, while the other is divisible by 2. Therefore the displayed 
equation above cannot hold, and we have a contradiction. (In this proof, 
we have reached a contradiction by looking at how two numbers stand 
relative to multiples of 8, rather than multiples of 2 as in the first proof. We 
will return to a deeper consideration of this idea in Section 3.2.) 

The next two sections contain additional illustrations of proof by contra­
diction. 

Problems 

1.9.2. In a party with 2000 persons, among any set of four there is at least 
one person who knows each of the other three. There are three people who 
are not mutually acquainted with each other. Prove that the other 1997 
people know everyone at the party. (Assume that "knowing" is a symmetric 
relation; that is, if A knows B then B also knows A .  What is the answer if 
"knowing" is not necessarily symmetric?) 
1.9.3. Prove that there do not exist positive integers a, b, c, and n such that 
a2 + b2 + c2 = 2"abc. (From 1.4.3, we may assume that a and b are odd 
and c is even. How are the sides of the equation related to 4?) 
1.9,4, Every pair of communities in a county are linked directly by exactly 
one mode of transportation: bus, train, or airplane. All three modes of 
transportation are used in the county; no community is served by all three 
modes, and no three communities are linked pairwise by the same mode. 

Four communities can be linked according to these stipulations in the 
following way: bus, AB, BC, CD, DA ; train, AC; airplane, BD. 
(a) Give an argument to show that no community can have a single mode 

of transportation leading to each of three different communities. 
(b) Give a proof to show that five communities cannot be linked in the 

required manner. 
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1.9.5. Let S be a set of rational numbers that is closed under addition and 
multiplication (that is, whenever a and b are members of S, so are a + b 
and ab), and having the property that for every rational number r exactly 
one of the following three statements is true: r E S, - r E S, r = 0. 

(a) Prove that 0 does not belong to S. 
(b) Prove that ali positive integers belong to S. 
(c) Prove that S is the set of ali positive rational numbers. 

Additional Examples 

1.5.10, 1.6.7, 3.2.1, 3.2.6, 3.2. 1 1 ,  3.2.13, 3.2.15, 3.2.17, 3.2.18, 3.3.4, 3.3.14, 
3.4.2, 4.1.3, 4.4.6, 5.4.1. Also, see Section l.IO (Parity) and Section 1 . 1 1  
(Extreme Cases). 

1 . 10. Pursue Parity 

The simple idea of parity-evenness and oddness-is a powerful problem­
solving concept with a wide variety of applications. We will consider some 
examples in this section, and then generalize the idea in Section 3.2. 

1.10.1. Let there be given nine lattice points in three-dimensional Euclid­
ean space. Show that there is a lattice point on the interior of one of the 
line segments joining two of these points. 

Solution. There are only eight different parity patterns for the lattice points: 
(even, even, even), (even, even, odd}, . . .  , (odd, odd, odd). Since there are 
nine given points, two of them have the same parity pattern. Their mid­
point is a lattice point, and the proof is complete. 

1.10.2. Place a knight on each square of a 7-by-7 chessboard. Is it possible 
for each knight to simultaneously make a legal move? 

Solution. Assume a chess�oard is colored in the usual checkered pattern. 
The board has 49 squares; suppose 24 of them are white and 25 are black. 

Consider 25 knights which rest on the black squares. If they were to each 
make a legal move;- they would have to move to 25 white squares. However, 
there are only 24 white squares available, therefore such a move cannot be 
made. 
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Figure 1.27. 

1.10.3. Place a knight on a 4-by-n chessboard. Is it possible, in 4n 
consecutive knight moves, to visit each square of the board and return to 
the original square? 

Solution. Before considering this problem, it is interesting to consider the 
same question for the 7-by-7 chessboard. Suppose that such a "closed tour" 
is attempted. On the first move the knight moves to a square of the opposite 
color; on the second move it returns to a square of the same color; and so 
forth. We see that after an odd number of moves the knight will occupy a 
square opposite in color from its original square. Now a closed tour of the 
7-by-7 board requires 49 moves, an odd number. Therefore the knight 
cannot occupy its original square, and the closed tour is impossible. 

Consider, now, the 4-by-n board. The argument for the 7-by-7 does not 
carry over to this case, because 4n is an even number. To handle this case, 
color the 4-by-n board in the manner indicated in Figure 1.27. 

Notice that knight moves made from the white squares in the top and 
bottom rows lead to white squares in the second and third rows. Con­
versely, in a tour of the required type, knight moves from the inner two 
rows must necessarily be to the white squares in the outer two rows. This is 
because there are exactly n white squares in the outer two rows, and these 
can be reached only from the n white squares in the inner two rows. 
Therefore, the knight path can never move from the white squares to the 
black squares, and so such a closed tour is impossible. 

1.10.4. Let n be an odd integer greater than I, and let A by an n-by-n 
symmetric matrix such that each row and each column of A consists of 
some permutation of the integers I ,  . . .  , n. Show that each one of the 
integers I ,  . . .  , n must appear in the main diagonal of A.  

Solution. Off-diagonal elements occur in pairs i>ecause A is symmetric. 
Each number appears exactly n times, and this, together with knowing that 
n is odd, implies the result. 

1.10.5. Let a1,a2, • • •  , a2 .. + 1  be a set of integers with the following prop­
erty (P}: if any of them is removed, the remaining ones can be divided into 
two sets of n integers with equal sums. Prove that a1 = a2 = · · · - a2 .. + 1 • 
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Soludon. First, observe that ail of the integers a1, • • •  , a2n+ l have the same 
parity. To see this, let A =  a1 + · · · + a2n+ !· The claim follows after 
noting that for each i, A - a; is even (otherwise the remaining numbers 
could not be divided in the required manner). 

Let a denote the smallest number among a1, • • •  , a2n+ l• and for each i, 
let b; = a; - a. The problem is equivalent to showing that b; = 0 for ail i. 

Now b1,b2, • • •  , b2n+l satisfy property (P). Since one of them is zero, it 
must be the case that they ali are even. If they are not all zero, let k be the 
largest positive integer for which 2k divides each of the b;. For each i, let 
C; = b;/2k. Then c1,c2, • • •  , c2n+l  satisfy (P); however, they don't all have 
the same parity (since one of them is zero, and another is odd because of 
the choice of k). Therefore, all the b; are zero and the proof is complete. 

Problems 

'1.10.6. 
(a) Remove the lower left comer square and the upper right comer square 

from an ordinary 8-by-8 chessboard. Can the resulting board be cov­
ered by 3 1  dominos? Assume each domino will cover exactly two 
adjacent squares of the board. 

(b) Let thirteen points P1, • • •  , P13 be given in the plane, and suppose they 
are connected by the segments P1P2, P2P3, • • •  , P12P13, P13P1• Is it 
possible to draw a straight line which passes through the interior of 
each of these segments? 

1.10.7. 
(a) Is it possible to trace a path along the arcs of Figure 1.28(a) which 

traverses each arc once and only once? (Hint: Count the number of 
arcs coming out of each vertex.)' 

(b) Is it possible to trace a path along the lines of Figure 1.28(b) which 
passes through each juncture point once and only once? (Hint: Color 
the vertices in an alternating manner.) 

1.10.8. Let a1,a2, • • •  , an represent an arbitrary arrangement of the num­
bers 1,2, . . .  , n. Prove that, if n is odd, the product 

(a, - l)(a,- 2) · · · (a. - n) 
is an even number. 

1.10.9. Show that (2a - 1)(2b - I) = 2� + I is impossible in nonnegative 
integers a, b, and c. (Hint: Write the equation in the equivalent form 
2a+b - 2a - 2b = 22< and investigate the possibilities for a, b, and c.) 
1.10.10. Show that x2 -y2 - a3 always has integral solutions for x andy 
whenever a is a positive integer. 
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Additional Examples 

,,, 

(b) 

Figure 1.28. 

I. Heuristics 

1.5.10, 1.9.1, 2.2.7, 3.2. 13, 3.3.4, 3.3.20, 4.2.16(a), 4.3.4, 7.4.6. See Section 3.2 
for a generalization of this method. 

1 . 1 1 .  Consider Extreme Cases 

In the beginning stages of problem exploration, it is often helpful to 
consider the consequences of letting the problem parameters vary from one 
extreme value to another. In this section ,we shall see that the existence of 
extreme positions are often the key to understanding existence results 
(problems of the sort "prove there is an x such that P(x)"). 

1.11.1. Given a finite number of points in the plane, not all collinear, 
prove there is a straight line which passes through exactly two of them. 

Solution. If P is a point and L a  line, let d(P, L) denote the distance from P 
to L. Let S denote the set of positive distances d(P, L) as P varies over the 
given points, and L varies over those lines which do not pass through P but 
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p 

• I • • 
P, Q P, P, 

Figure 1 .29. 

which do pass through at least two of the given points. The set S is 
nonempty (because the given points are not all collinear) and finite (there 
are only a finite number of points and a finite number of lines which pass 
through at least two such points). Therefore S has a minimal element, say 
d(P,M). We claim that M passes through exactly two of the given points. 

Suppose that M passes through three of the given points, say P1, P2, and 
P3 • Let Q denote the point on M which is closest to P. At least two of the 
points P" P2, P3 lie on the same side of Q (one may equal Q), say P2 and P3 (see Figure 1.29). Suppose the points are labeled so that P2 is closer to P 
than P3• Now let N denote the line through P and P3, and note that 
d(P2, N) < d(P, M), a contradiction to our choice of P and M. It follows 
that M can only pass through two of the given points. 

1.11.2. Let A be a set of 2n points in the plane, no three of which are 
collinear. Suppose that n of them are colored red and the remaining n blue. 
Prove or disprove: There are n closed straight line segments, no two with a 
point in common, such that the endpoints of each segment are points of A 
having different colors. 

Solution. If we disregard line crossings, there are a number of ways the 
given n red points can be paired with the given blue points by n closed 
straight line segments. Assign to each such pairing the total length of all the 
line segments in the configuration. Because there are only a finite number 
of such pairings, one of these configurations will have minimal total length. 
This pairing will have no segment crossings. (If segments R1B1 and R2B2 intersected, R1, R2 being red points and B" B2 blue points, then we could 
reduce the total length of the configuration by replacing these segments 
with R1B2 and R2B1.) (For another solution, see 6.2.3.) 

1.11.3. At a party, no boy dances with every girl, but each girl dances with 
at least one boy. Prove there are two couples bg and b' g' which dance, 
whereas b does not dance with g' nor does g dance with b'. 

Solution. Although not necessary, it may make the problem more under­
standable if we interpret the problem in matrix terms. Let the rows of a 
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matrix correspond to the boys and the columns to the girls. Enter a I or 0 
in the b-row and g-column according to whether b and g dance or don't 
dance with one another. The condition that no boy dances with every girl 
implies that (i) every row has at least one 0 entry. Similarly, (ii) every 
column has at least one 1 entry. We wish to prove that there are two rows, 
b and b', and two columns, g and g', whose entries at their intersection 
points have the pattern 

Let h denote an arbitrary row. By (i) there is a 0 entry in this row, say in 
column k, and by (ii) there is a 1 entry in column k, say in row m: 

k 

h (--- : --- i ---) 
m --- �' --- ! ---

Now, we're done if there is a column which contains a I in row h and a 0 in 
column m. In general, such a column may not exist. However, if h had been 
chosen in advance as a row with a maximal number of l's, then such a 
column would have to exist, and the problem would be solved. 

With this background, we can rewrite the solution in language indepen­
dent of the matrix interpretation. Let b be a boy who dances with a 
maximal number of girls. Let g' be a girl with whom b does not dance, and 
b' a boy with whom g' dances. Among the partners of b, there must be at 
least one girl g who does not dance with b' (for otherwise b' would have 
more partners than b). The couples bg and b'g' solve the problem . 

• 
1.11.4. Prove that the product of n successive integers is always divisible 
by n!. 

Solution. First, notice that it suffices to prove the result for n successive 
positive integers. For the result is obviously true if one of the integers in the 
product is 0, whereas if all the integers are negative, it suffices to show that 
n! divides their absolute value. 
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So suppose there are n successive positive integers whose product is not 
divisible by n!. Of all such numbers n, choose the smallest; call it N. Note 
that N > 2, since the product of two successive integers is always even. We 
are supposing, therefore, that there is a nonnegative integer m such that 
(m + IXm + 2) · · · (m + N) is not divisible by N! .  Of all such numbers m, 
let M be the smallest. Note that M > 0, since N! is divisible by N!.  Thus, 
we are supposing that (M + IXM + 2) · · · (M + N) is not divisible by N! .  
Now, 

(M + I)(M + 2) · · · ( M +  N - I)( M + N) 
- M[(M + I)(M + 2) · · · (M + N - 1)) 

+ N[(M + I)(M + 2) · · · (M + N - 1 )) . 

By our choice of M, n !  divides M[(M + I)(M + 2) · · · (M + N - 1)]. By 
our choice of N, (N - I)! divides (M + l)(M + 2) · · · (M + N - 1), and 
consequently, N! divides N[(M + I)(M + 2) · · · (M + N - I)]. Combin­
ing, we see that N! divides the right side of the last equation, contrary to 
our supposition. This contradiction establishes the result. 

(A slick proof of this result is to recognize that the quotient (m + IXm + 
2) . . .  (m + n)/n! is equal to the binomial coefficient en!"'), and is there­
fore an integer if m is an integer.) 

Problems 

1,11,5. Letj(x) be a polynomial of degree n with real coefficients and such 
that j(x) > 0 for every real number x. Show that j(x) + j'(x) + 
· · · + pn>(x) > 0 for all real x. (fk1(x) denotes the kth derivative of 

j(x).) 
1.11.6. Give an example to show that the result of 1 . 1 1 . 1  does not 
necessarilf hold for an infinite number of points in the plane. Where does 
the proof 1of 1 . 1 1 . 1  break down for the infinite casei 

1.11.7. Show that there exists a rational number, c/d, with d < 100, such 
that 

for k = l,2,3, . . . , 99. 

1,11,8, Suppose that Pn is a statement, for n = 1,2,3, . . . . Suppose fur­
ther that 

(i) P 1 is true, and 
(ii) for each positive integer m, Pm+ ! is true if P'" is true. 
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Prove that Pn is true for all n. (Hint: Let S denote the set of all positive 
integers for which Pn is not true. Let m denote the smallest element in S, 
assuming that S is nonempty.) 

Additional Examples 

3. 1.9, 3.3. 1 1 ,  3.3.28, 4.4.7, 4.4.!0, and the referrals given in 6.3.7. Also, see 
Sections 7.6 (The Squeeze Principle) and 6.2 (The Intermediate-Value 
Theorem) for examples which require consideration of "extremelike" cases. 

1 . 12. Generalize 

It may seem paradoxical, but it is often the case that a problem can be 
simplifed, and made more tractable and understandable, when it is general­
ized. This fact of life is well appreciated by mathematicians; in fact, 
abstraction and generalization are basic characteristics of modern mathe­
matics. A more general setting provides a broader perspective, strips away 
nonessential features, and provides a whole new arsenal of techniques. 

1.12.1. Evaluate the sum L:'k � 1k2f2". 

Solution. We will instead evaluate the sum S(x) = 2":��1k2x" and then 
calculate S( f). The reason for introdm;ing the variable x is that we can 
now use the techniques of analysis. We know that 

± x" = 1 - xn+ t  
"""� 1 - x 

Differentiating each side we get 

x =F- 1. 

" _ ( 1 - x)( - (n + l )x" ) + ( l - x"+ ') 
L kx k ' '= -'--"'---'---'--';,---'-----"-
k- t  (1 - x)2 

1 - (n + l)xn + nxn+ l  
- -'--:-'-----,---( 1 - x)' 

Multiplying each side of this equation by x, differentiating a second time, 
and multiplying the result by x yields 

n l..- x( l + x) - xn+ l(nx - n - 1)2 - xn+2 
S(x) = L k2x'= 3 1<- 1 ( 1 - x) 
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It follows that 

L" k2 I 2 1 S(') � - � 6 - - (1n - n - 1) - -z k=l 2k 2n-2 2 2n- 1 

55 

1.12.2. Evaluate the following detenninant (Vandennonde's determinant): 

a, ai , _ ,  a, 
a, al __ , 

det 
a, 

a, a' 
" a:- l  

Solution. We will assume that a; =F aj, i =fo-j, for otherwise the detenninant 
is zero. In order to more clearly focus on the main idea, consider the case 
n = 3: 

det[: : ::]. 
I c c2 

In this determinant, replace c by a variable x. Then, the detenninant is a 
polynomial P(x) of degree 2. Moreover, P(a) = 0 and P(b) = 0, since the 
corresponding matrix, with c replaced by a or b respectively, then has two 
identical rows, Therefore, 

P(x) � A  (X. - a)(x - b) 
for so�e constant A. Now, A is the coefficient of x2, and, returning to the 
deterrhinant, this coefficient is 

det( :  :)· 
Thus, A = b - a, and the original 3-by-3 detenninant is 

P(c) � (b - a)[(c - a)(' - b)]. 
The general case is analogous. Let Dn denote the desired detenninant (of 

order n). Replace a, in the bottom row of the matrix by the variable x. The 
resulting determinant is a polynomial Pn(x) of degree n - 1, which vanishes 
at a1, a2, • • •  , a,_ 1• Hence, by the Factor Theorem (see Section 4.2), 

P,(x) = A(x - a1)(x - a2) • • • (x - a,_ 1), 
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where A is a constant. As before, A is the coefficient of xn, and expanding 
along the bottom row makes it clear that A =  D,_,. That is, 

Dn = P,(an) = Dn-t[(a, - a1)(an - Oz) · · · (an - a,_,)] . 

We can repeat the argument for D11_1 ,  etc, The final result will be . [ '- ' l D, - II II (a, - a,) . 
k-2 ; - J  

1.12.3. Given that JQ(sinx)/ xdx = i w, evaluate JQ(sin2x)/ x2 dx. 

Solution. We will evaluate the more general integral 

l(a) = Loo si:z�x dx, a >  0, 

by using a technique called parameter differentiation. 
Differentiating each side of the previous equation with respect to a, we 

get 

l'(a) = (00 2sinaxcosax · X dx Jo x2 

= ( ""' sin2ax dx. Jo x 
Now, with y =  2ax, we get dy = 2a dx, and 

(<>0 siny /'(a) = Jo ydy= !'��'· 

Integrating each side gives 

l(a) = }wa + C, C constant. 

Since /(0) = 0, we get C = 0. Thus I( a) = ! wa, a >  0. Setting a =  1 yields 
/(I) = JQ(sin2x)x2dx = � 'IT. (Incidentally, the value of JQ(sinx)jxdx can 
be found by evaluating a more general integral-an integral of a complex­
valued function over a contour in the complex plane.) 

Problems 

1.12.4. By setting x equal to the appropriate values in the binomial 
expansion 

• 
(I + x)"- � (Z)x' 

• - 0  
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(or one of its derivatives, etc.) evaluate each of the following: 

1.12.5. Evaluate 

d··[: = :: ::]· 
l c c2 c4 

I d d2 d4 

(Replace d by a variable x; make use of the fact that the sum of the roots 
of a fourth·degree polynomial is equal to the coefficient of x3 (see Section 
4.3).) 

1.12.6. 

(a) Evaluate JQ(e-"'sinx)/xdx. (Consider G(k) = JQ(e-"'sinkx)jx dx  
and use parameter differentiation.) 

(b) Evaluate JJ(x - 1)/lnxdx. (Consider H(m) = flex"' - I)jln xdx and 
use parameter differentiation.) 

(c) Evaluate 

Loo arctan( wx) - arctanx 
--'--�--- dx. 

0 X 

(Consider F(a) = {Q(arctan(ax) - arctanx)/xtU: and use parameter 
differentiation.) 

1.12.7. Whi9fl is larger {160 or 2 + . 'fi? (Cubing each number leads to 
complicatiohs that are not easily resolved. Consider instead the more 

general�-P�blem: Which is larger, v4( X + y) or rx + Vi, where X, J 
:<> 0? Take x = a3,y = b3.) 

Additional Examples 

1.4.2, 2.2.6, 2.2.7, 4.1 .4. 5.!.3, 5.1 .4, 5.1 .9, 5.1 . 1! ,  5.4.4, 5.4.5, 5.4.6, 5.4.7, 
6.9.2, 7.4.4. Also, see Section 2.4 (Induction and Generalization). 



Chapter 2. Two Important Principles: 
Induction and Pigeonhole 

Mathematical proposttwns come in two forms: universal propositions 
which state that something is true for all values of x in some specified set, 
and existential propositions which state that something is true for some 
value of x in some specified set. The former type are expressible in the form 
"For all x (in a set S), P(x)"; the latter type are expressible in the form 
"There exists an x (in the set S) such thatP(x)," where P(x) is a statement 
about x. In this chapter we will consider two important techniques for 
dealing with these two kinds of statements: (i) the principle of mathemati­
cal induction, for universal propositions, and (ii) the pigeonhole principle, 
for existential propositions. 

2. 1 .  Induction: Build on P(k) 

Let a be an integer and P(n) a proposition (statement) about n for each 
integer n > a. The principle of mathematical induction states that: 

If 
(i) P(a) ;, trne, and 
(ii) for each integer k > a, P(k) true implies P(k + I) trne, 

then P(n) is true for all integers n > a. 

Notice that the principle enables us, in two simple steps, to prove an infinite 
number of propositions (namely, P(n) is true for all integers n > a). The 
method is especially suitable when a pattern has been established (see 
Section I .I, "Search for a Pattern") for the first few special cases (P(a), 
•• 
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P(a + 1), P(a + 2), . . . ). In this section we consider induction arguments 
which, in step (ii), proceed directly from the truth of P(k) to the truth of 
P(k + I)-that is, the truth of P(k + I) is "built on'' an initial consider­
ation of the truth of P(k). This is in slight contras\ to arguments (consi­
dered in the next section) which begin with a considbration of P(k + 1). 

2.1.1. Use mathematical induction to prove the binomial theorem: 
" 

(a + b)"- � (�)a'b"-'. 
i=O I 

n a positive integer. 

Solution. It is easy to check that the result holds when n = I .  
Assuming the result for the integer k (we will build on the truth of P(k)), 

multiply each side by (a + b) to get 

(a + b)k(a + b) =  L#o( �)a1bk-}a + b) 
' ' - � (k)a" 'b'-'+ � (k)a'b'+ • -•. 

;�O I i=O I 
In the first sum, make the change of variable j = i + I, to get 

= 
kf1

( 
. �  

)aJbk+ 1 -j+ ± (k)a'bk+ 1-i 
1_ 1 J I ;�o 1 - [  ± ( . �  )aib>+ '-J +a'+ ' ] + [ ± (k)a'b>+' -• + b>+ ' ] 
J- 1  J I • = 1  I 

- a<+ ' + [
,
�

, 
[ (, � 1 ) + (  �) ]a'b>+ '- '] + b'+ '  

' 
= 0k+ 1 + � (k � ' )a'bk+ 1 -• +bk+! 

J ... 1 I 
k+f" ..... ...

. 

- � (k +  1 )a'b'+ • -•, 
;-o l 

where we have made use of the basic identity c� 1) + (�) = (ki 1) (see 2.5.2). 
This is the form for P( k + I), so by induction, the proof is complete. 

2.1.2. Let 0 < a1 < a2 < · · · < an, and let e1 = :I: I. Prove that L7- 1e1a1 
assumes at least C! 1) distinct values as the e1 range over the 2n possible 
combinations of signs. 

Solution. When n • I ,  there are exactly 2 distinct values (a1 and -a1), and 
(�) • I, so the result holds. 
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Suppose the result is true when n = k; that is, 2:�- 1e;a; assumes at least 
("'1 1) distinct values. Suppose another element ak+ 1 is given, with ak+ 1 
> ak. We must show that we can generate (k12) distinct sums. There are 
already (k1 1) distinct sums (generated by a1, • • •  , ak); we need to generate 
(k12) - (k1 1) = k + I  additional sums. These can be found in the following 
manner: let S = 2:�= 1a, (so S > 2:�- 1e;a, for all choices of e;), and note 
that S + ak+ I' S + (ak+ t - a,J, S + (ak+l - ak_1), . . . , S + (ak + l - a1), 
are distinct and greater than S. There are k + I numbers in this list, so the 
result follows by induction. 

Mathematical induction is a method that can be tried on any problem of 
the form "Prove that P(n) holds for ali n > a." The clue is orten signaled 
by the mere presence of the parameter n. But it should be noted that 
induction also applies to many problems where the quantification is over 
more general sets. For example, a proposition about ail polynomials might 
be proved by inducting on the degree of the polynomial. A theorem about 
ali matrices might be handled by inducting on the size of the matrix. 
Several results concerning propositions in symbolic logic are carried out by 
inducting on the number of logical connectives in the proposition. The list 
of unusual "inductive sets" could go on and on; we will be content to give 
just two examples here; other examples are scattered throughout the book 
(e.g. see the next four sections and the listings in the "Additional Exam­
ples"). 

2.1.3. If V, E, and F are, respectively, the number of vertices, edges, and 
faces of a connected planar map, then 

V - E + F = 2. 

Solution. Your intuitive understanding of the terms in this result are 
probably accurate, but to make certain, here are the definitions. 

A network is a figure (in a plane or in space) consisting of finite, nonzero 
number of arcs, no two of which intersect except possibly at their end­
points. The endpoints of these arcs are called vertices of the network. A path 
in a network is a sequence of different arcs in the network that can be 
traversed continuously without retracing any arc. A network is connected if 
every two different vertices of the network are vertices of some path in the 
network. A map is a network, together with a surface which contains the 
network. If this surface is a plane the map is called a plaiUlr map. The arcs 
of a planar map are called edges. The faces of a planar map are the regions 
that are defined by the boundaries (edges) of the map (the "ocean" is 
counted as a face). 

Figure 2.1 shows three examples of connected neworks. The first two are 
planar maps. In the first, V = 4, E = 4, F = 2; in the second, V = 5, E = 6, 
F = 3. The third network is not a planar map. However, if we should 
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D 
3 

Figure 2.1. 

flatten it onto a plane and place vertices at the intersection points, we 
would have V =  10, E = 20, F =  12. 

Now return to a consideration of the theorem. The key idea in the proof 
of this result is to realize that connected planar maps can be built from a 
single vertex by a sequence of the roilowing constructions (each of which 
leaves the map connected): 

(i) Add a vertex in an existing edge (e.g. becomes ). 
(ii) Add an edge from a vertex back to itself (e.g. • becomes 0 ). 

(iii) Add an edge between the two existing vertices (e.g. LJ becomes 

=:] ). 
(iv) Add an edge and a vertex to an existing vertex (e.g. • becomes .....----..). 

We will induct on the number of steps required to construct the 
connected planar map. If the network consists of a single point, then v = I, 
F= l, E = O, and V - E + F= 2. 

Suppose the result holds when k steps are required in the construction. 
The net ch"ange for each of the steps is given in the following table: 

Operation LI V  LIE oF II( V - E +  F) 

(i) .A· ! + I  0 0 
(ii) 0 + I  + I  0 
(iii) 0 + I  + I  0 
(iv) + I  + I  0 0 

Since the quantity V - E + F remains unchanged when the (k + l)st step 
is taken, the proof is complete by induction. 

2.1.4. Given a positive integer n and a real number x, prove that 

[ x J + [x + �] + [x + �] + . · · + [x + n � 1 ]  = 1 nx J .  

Solution. Although there is an integer parameter n in this problem, it will 
not work to induct on n for a fixed x. Also, of course, we cannot induct on 
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x, since x ranges over the real numbers (for a given real number x, there is 
no next larger real number y). Therefore, it is not clear that induction can 
be applied to this problem. 

The idea is to prove the result for all x in the subinterval [kfn,(k + I) 
/n) for k = O, ± I, :!:: 2, . . . . 

First, suppose x belongs to the subinterval [0, I/ n). Then [ x + i / n ] 
= 0  for i = O,l, . . .  , n - I, so that L:i:J ( x  + ijn ] = 0. Also [ nx ] = 0, 
so the result is true in the "first'' subinterval. 

Now suppose the result holds in the interval [(k - 1 )/ n,kj n), where k is 
a positive integer, and let x be any real number in this interval. Then 

( x I +  [x + �] + [x + �] + · · · + [x + n � 1 ] = ( nx ) . 

By adding 1/n to x (thereby getting an arbitrary number in [k/n,(k + I) 
/ n ), each of the terms, except the rinal term, on the left side of the previous 
equation is "shifted" one term to the right, and the rinal term, [ x + (n -
I)/ n I ,  becomes I x + I ] , which exceeds I x ] by I. Thus, replacing x 
by x + I In increases the left side of the previous equation by I .  

A t  the same time, when x in [ nx I is replaced by x + I 1 n, the value is 
increased by I .  Since each side of the equation increases by I when x is 
replaced by x + I  In, the result continues to hold for all numbers in the 
interval [kln,(k + I)ln). 

By induction, the result is true for all positive values of x. A similar 
argument shows it is true for all negative values of x (replace x by 
x � ljn). 

The next example is a good illustration of "bui!di�g" P(k + I) 
from P(k). 

2.1.5. If a >  0 and b > 0, then (n - ! )a� + b� ;;;. na�-1b, n a positive 
integer, with equality if and only if a = b. 

Soludon. The result is true for n = I; assume the result true for the integer 
k. To build P(k + I), we must, to get the proper left side, 

(i) multiply by a: 

(iii) subtract bka: 

kak+ I + bk+ I > kakb + ak+ ' - bka + bk+ '· 
We are assuming that this inequality is an equality if and only if a - b. It 
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only remains to show that kakb + ak+ l - bka\r b k + l > (k + l)akb 
with equality if and only if a =  b. To do this we work backwards: 

kakb + ak+l - bka + bk+ l > (k + l)akb, 

- akb + ak+ l - bka + bk + 1 > 0, 
ak(a - b) + bk(b - a) > 0, 

(ak - bk)(a - b) > 0, 

and this is true (a - b and ak - bk have the same signs) with equality if 
and only if a =  b. Thus, the proof follows by induction. (Note: This result 
is a special case of the arithmetic mean-geometric mean inequality; see 
Section 7.2.) 

Problems 

2.1.6. 
(a) Use induction to prove that 1 + 1/..fi + 1 /..ff + · · ·  + 1//n < 2/n. 
(b) Use induction to prove that 2!4! · · · (2n)! > ((n + 1)!)". 

2.1.7. The Euclidean plane is divided into regions by drawing a finite 
number of straight lines. Show that it is possible to color each of these 
regions either red or blue in such a way that no two adjacent regions have 
the same color. 

2.1.8. Prove that the equation x2 + y2 = z� has a solution in positive 
integers (x, y,z) for all n = I, 2, 3, . . . . (For a nice proof, divide into two 
cases: even n and odd n. For a noninductive proof, see 3.5.1.) 

2.1.9. A group pf n people play a round-robin tournament. Each game 
ends in either a win or a loss. Show that it is possible to label the players 
P1,P2, P3, . . .  , Pn in such a way that P1 defeated P2o P2 defeated 
P3, • • •  , P�_ 1  defeated Pn. 

2.1.10. If each person, in a group of n people, is a friend of at least half 
the people in the group, then it is possible to seat the n people in a circle so 
that everyone sits next to friends only. 

2.1.11. The following steps lead to another proof of the binomial theorem. 
We know that (a + x)" can be written as a polynomial of degree n, so there 
are constants A0,A 1, • • •  , A

� 
such that 

(a + x)� = A 0 + A 1x + A2x
2 + · ·  · + Anx�. 

(a) Use induction to describe the equation which results upon taking the 
kth derivative of each side of this equation (k = 1,2, . . .  , n). 

(b) Evaluate Ak for k - 0, I, . . .  , n by setting x = 0 in the kth equation 
found in part (a). 
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2.1.12. Suppose that J: R ----:) R is a function for which f(2x - j(x)) = x for 
all x, and let r be a fixed real number. 

(a) Prove that if j(x) = x + r, then j(x - nr) = (x - nr) + r for all positive 
integers n. 

(b) Prove that iff is a one-to-one function (i.e., J(x) = j(y) implies x = y) 
then the property in (a) also holds for all integers n. 

Additional Examples: 

1. 1.2, 1 . 1 .8, 3.2.8, 6.5.13, 7.1.4. 

2.2. Induction: Set Up P(k + I) 

In this section we consider induction arguments which begin with a direct 
assault on P( k + I) and which work backwards to exploit the assumed 
truth of P(k). Theoretically, the arguments in this section could all be 
recast into the fonn of the previous section, and vice versa. However, from 
a practical standpoint, it is often much more convenient to think the one 
way rather than the other. 

2.2.1. Prove that n5 /5 + n4/2 + n3 J3 - nj30 is an integer for n = 0, 1, 
2, . . .  

Solution. The result is obviously true when n = 0. Assume the result holds 
for n = k. We need to prove that 

(k + l)' (k + l)' (k + l)' 
5 + 2 

+ 
3 

(k + I) 

30 
is an integer. We expand, 

k5 + 5k4 + !Ok3 + !Ok2 + 5k + 1 
5 

and recombine (to make use of P(k)): 

r �5 + ;4 + �3 - fo l 

+ k4 + 4k3 + 6k2 + 4k +  I 
2 

+ k3 + 3k2 + 3k + I 
3 

k + l  
- 30 

+ [ (k' + 2k' + 2k' + k) + (2k' + 3k' + 2k) + (k' + k)] . 

The first grouping is an integer by the inductive assumption, and the 
second grouping is an integer because it is a sum of integers. Thus, the 
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proof follows by induction. (Notice how difficult it would have been to 
arrive at P(k + I) by starting from P(k).) 

2.2.2. Let a,b, p1, Pl• . . .  , Pn be real numbers with a =I= b. Define j(x) 
= (p1 - x)(p2 - x)(p3 - x) · · · (Pn - x). Show that 

p, a a a a a 
b p, a a a a 
b b a a a p, 

det b b b p, a a bf(a) - af(b) 
-

b a 

b b b b Pn-1 a 
b b b b b P. 

Solution. This is similar to many determinant problems that can be worked 
by mathematical induction. When n = I, we have j(x} = p1 - x, and 
det(p1) = p1, and 

bf(a) - af(b) b(p, - a) - a(p, - b) 
�--c--,-o-� -

- p,' 

so the result holds. 

b a b a 

Assume the result holds for k - I, k > I, and consider the case for k real 
numbers p1, • • •  , ft . (We begin by setting up the situation for P(k) and 
plan to fall back on the truth of P(k - 1) to complete the inductive step.) 
We wish to evaluate 

p, a a a a a 
b p, a a a a 
b 

det 
b p, a a a 

b b b b Pk-1 a 
b b b b b p, 

Subtract the second column from the first (this does not change the 
determinant): 

p, - a a a a a a 
b -P2 p, a a a a 

0 b p, a a a 
det 0 b b P• a a 

0 b b b Pk- 1  a 
0 b b b b a 
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The latter two determinants (on (k - 1)-by-(k - l) matrices) are of the 
form for which we can apply the inductive assumption P(k - 1). To do 
this, we will need to introduce some notation. For the first determinant, set 
F(x) = (p2 - xXp3 - x) · · · (PJc - x) and for the second, set G(x) = 
(a - x)(p3 - x) · · · (pk - x). Then, by the inductive assumption, the last 
expression equals [ bF(a) - aF(b) l [ bG(a) - aG(b) l 

(p, - a) b a - (b -p,) b a · 
But G(a) = 0 and (p1 - a)F(a) = j(a), and therefore we have 

bf(a) - a(p, - a)(p, - b) · · ·  (p, - b) - a(a - b)(p, - b) · · ·  (p, - b) 
b a 

bf(a) - a(p, - b) · · ·  (p, - b)[(p, - a) +  (a - b)] 
b a 

bf(a) - af(b) 
b a 

The result follows by induction. 

Problems 

2.23. Give a proof for the inductive step in 1 . 1 .3. 

2.2.4. For all x in the interval 0 < x < w, prove that 

lsinnxl < n sin x, n a nonnegative integer. 

2.2.5. Let Q denote the set of rational numbers. Find all functions f from 
Q to Q which satisfy the following two conditions: (i) j(l) = 2. and (ii) 
j(xy) � j(x)f(y) - f(x + y) + I fo< all x, y m Q. , 
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2.2.6. If a,b,c > I, prove that 4(abc + l) > (1 + a)(l + bX I + c). (Hint: 
Prove, more generally, that 2"- 1(a1a2 · · · a, +  I) > (1 + a1)(1 + aJ · · · 
(I + a").) 
2.2.7. Given a set of 51 integers between I and 100 (inclusive), show that 
at least one member of the set must divide another member of the set. 
(Hint: Prove, more generally, that the same property will hold whenever 
n + 1 integers are chosen from the integers between I and 2n (inclusive).) 
For a noninductive proof, see 2.6.1 . 
2.2.8. Criticize the proof given below for the following theorem: 

An n-by-n matrix of nonnegative integer$ has the property that for any zero entry, the sum of the row plus the sum of the column containing that uro U at least n. 
Show that the sum of all elements of the array is at lea.rt n2j2. 
Proof (?): The result holds for n = I. Assume the result holds for 

n = k - I ,  and consider a k-by-k matrix. If there are no zero entries, the 
result obviously holds. If aiJ = 0, the sum of row i and column) is at least k, 
by assumption, and the sum of the elements in the (k - 1)-by-(k - I) 
submatrix obtained by deleting row i and column) is at least (k - 1)2/2 
(by the inductive assumption). It follows that the sum of the elements in the 
k-by-k matrix is at least (k - 1//2 + k = (k2 - 2k + 1)/2 + k = (e + I) 
j2 > k2 j2. The result follows by induction. 

Additional Examples 

1. 1 . 1 1, 1 .12.2, 3.1 . 1 1 ,  4.2.21, 4.3.5-, 4.3.24, 6.5.12, 6.6.1, 7.1 .6, 7.1 . 13, 7.2.5, 
7.3.5. 

2.3. Strong Induction 

Let a be an integer and P(n) a proposition about n for each integer n > a. 
The strong form of mathematical induction states that: 

If 
(i) P(a) ;, trne, and 
(ii) for each integer k > a, P(a), P(a + I), . , . ,  P(k) true implie$ 

P(k + I) true, 
then P(n) is true for all integer$ n > a. 

This differs from the previous induction principle in that we are allowed 
a stronger assumption in step (ii), namely, we may assume P(a), P{a + 
1), . . .  , P(k), instead of only P(k), to prove P(k + 1). Theoretically, the 
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two forms of induction are equivalent, but in practice there are problems 
which are more easily worked with this stronger form. 

2.3.1 (Pick's theorem}. Prove that the area of a simple lattice polygon (a 
polygon with lattice points as vertices whose sides do not cross) is given by 

I +  { B - I ,  where I and B denote respectively the number of interior and 

boundary lattice points of the polygon. 

Solution. We will induct on the number of sides in the polygon. The case of 
a triangle is given in 1 .7.3. Consider, then, a simple lattice polygon P .with k 
sides, k > 3. We first establish that such a polygon has an interior diagonal. 
This is clear if the polygon in convex (equivalently, if all the interior angles 
are less than 180°). So suppose the interior angle at some vertex, say V, is 
more than 180°, Then a ray emanating from V and sweeping the interior of 
the polygon must strike another vertex (otherwise the polygon encloses an 
infinite area), and this determines an interior diagonal D with V as one 
endpoint 

Suppose that our polygon P has I interior points and B boundary points. 
The interior diagonal D divides P into two simple lattice polygons P1 and 
P2 with I1 and I2 interior points respectively, and B1 and B2 boundary 
points respectively. Suppose there are x lattice points on D, excluding its 
endpoints. Then B = B1 + B2 - 2 - 2x, and I =  I1 + I2 + x. 

Now, let A, A ! >  and A2 denote the areas of P, P1, and P2 respectively. 
Then 

A = A 1 + A2 
= (/t + 1Bt - 1) + (12 + 1 Bz - I) 
= (/1 + I2) + 1( B1 + B2) - 2 

= (11 + I2 + x) + HB1 + B2 - 2x) - 2 

= I + 1(B + 2) - 2  

= I + f B - I.  

The result follows by induction. 
Notice in this example that it is the first step of the induction argument 

which is the most difficult (done in 1.7.3); the inductive step (step (ii)) is 
conceptionally very simple. 

Problems 
2.3.2. 

(a) Prove that every positive integer greater than one may be written as a 
product of prime numbers. (b) Bertrand's postulate. once a postulate but now a known theorem, states 
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that for every number x > I ,  there is a prime number between x and 
2x. Use this fact to show that every positive integer can be written as a 
sum of distinct primes. (For this result, assume that one is a prime.) 

233. 

(a) Show that every positive integer can be written as a sum of distinct 
Fibonacci numbers. 

(b) Let k » m mean that k ;:;.. m + 2. Show that every positive integer n has 
a representation of the form n = Fk, + Fk, + · · · + Fk, • where Fk, are 
Fibonacci numbers and k 1 » k2 » · · · » k, » 0. 

(c) Show that the representation in part (b) is unique. 

Addit:j�:mal Examples 

3.1.1. 3.i .2. 3.1.18. 3.5.5. 6.2.3. 

2.4. Induction and Generalization 

We have seen (in Section l.l2) that a problem is sometimes easier to handle 
when it is recast into a more general form. This is true also in induction 
problems. For example, it may happen that the original propositions 
P(!), P(2), P(3), . . .  do not contain enough information to enable one to 
carry out the inductive step (step (ii)). In this case it is natural to reformu­
late the propositions into a stronger, more general form Q(l), Q(2), . . .  
(where Q(n) implies P(n) for each n), and to look again for an inductive 
proof. 

2.4.1. If A I + + A� =  w, 0 < A, <  w, i = I, . . . , n, then 
sin A 1  + · · · + sinAn < n sin .!!. . 

n 

Solution. Let P(k) be the statement of the theorem for a given k, and 
suppose P(k) is true. For the inductive step, suppose A 1 + · · · + Ak + 
Ak + l  = w, 0 < A; <  w, i = I , . . .  , k + I . In this form, it is not clear how to 
make use of P(k). We might, for example, group Ak and Ak+1 together, so 
that A 1 + · · · + Ak-t  + (Ak + Ak+ 1) = w, and then apply the inductive 
assumption to get 

sin A 1  + - · · + sinAk-t + sin(Ak + Ak+l) < k sin * . 

But now it is not at ali clear that this implies P(k + 1): 
sin A 1  + · · · + sinAk + sinAk+t < (k + l)sin 

k � 1 . 
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The requirement that the A,.'s add to w seems too restrictive. Consider 
instead the following proposition Q(n): 

If 0 < A; < "'· i = I, . . . , n, then 
. . . ( A , +  · · · A" ) stn A 1  + · · · + smA,. < nsm n . 

(Note that Q(n) implies P(n).) Obviously, Q(l) is true. Suppose that 
Q(k) is true, and suppose that 0 < A; <  w, i = I ,  . . . , k + I. Then 

sinA1  + · · · + sinAk + sinAk+ t  

( A , + · · · + A, ) < k sin k + sinAk + t  

. ( A 1 + · · · + Ak+ l )  = (k + l)sm k + l . 

(The inequality in the next to last step follows from the result in 1.2.12(b).) 
The result now follows by induction. 

We are now able to prove the conjecture made in 1.6.2(e): The polygon 
of greatest area that can be inscribed in a circle is the regular polygon. To 
do this, suppose that P1, P2, • • •  , P,., n > 3, are the successive vertices of an 
inscribed polygon (inscribed in a circle of radius r). Let 0 denote the center 
of the circle; let T,. denote the area of triangle P,.OP;+t •  i = I , . . . , n (we set 
P,+ 1 == P1); let A,. = L P,OP,.+ 1 (Figure 2.2). Then 

I; = 2[ !(rcos-fA;)(rsinfA;)] 

= r2cos}A,sinfA,. 

= lr2sinA.  ' ' . 

Figure 2.2. 
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The polygon of maximal area must satisfy 0 < A; < 'IT for each i. Thus, 
our preceding result shows that 

" 
Area of polygon = � T; 

" " 
= � t r2sinA,.= t r2 � sinA,. i= l  i- 1  

The right-hand side is the area of a regular n-gon, and this completes the 
proof, 

2.4.2. Let j(x) = (x2 - 1)112, x > I. Prove that fn1(x) > 0 for odd n and 
fn>(x) < 0 for even n. 

Solution. We might expect to be able to express fk+ll(x) in terms of 
J<k>(x). But a look at the first few derivatives makes this plan appear 
hopeless: 

f'(x) = 
2 

x 
1/2 ' (x - I) 

j"(x) - - 'I' , (x' - 1) 

f"'(x) _ 
3x 

(x2 - l)5/2 fiv)(X) = _ 12x2 + I 
(x2 - 1)7/2 ' 

fvl(x) = 60x3 + 3lx fviJ(x) = _ 522x4 + 266x2 + 31 
(x2 _ !)9/2 ' 

· 

(x2 _ l) l l/2 

Consider instead the following reformulation: If j(x) = (x2- 1)112, 
x > l , then 

where Cn(x) is a polynomial of degree n - 2, and {an odd function all of whose 

( ) 
. coefficients are nonnegative if n is odd, 

Kn X IS 
an even function all of whose 

coefficients are nonpositive if n is even. 
This propos1tton can be established by induction (we omit the messy 
details), and this implies the original result. 
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2.4.3. Let F; denote the ith tenn in the Fibonacci sequence. Prove that 

p�
2+ t  + F;? = Fl,.+ t· 

Solution. The result holds for n = I, so suppose the result holds for the 
integer k. Then 

F�c2+2 + F�c\t = (Fk+ t  + F�ci+ Ff+ 1 

= Ff+ t  + 2Fk+tFk + Ff + Ff+ t 

= (Ff+ t + Ff) + (2Fk+ tFk + Fk2+ t) 

= Flk+ t  + (2Fk+ tFk + Ff+ t)• 

the last step by the inductive assumption. 
We would be done if we could show 2Fk+ tFk + Ff+ t  = F2k+l• for we 

could then continue the previous argument, F2k+ t  + (2Fk+ tFk + Fk2+ 1) 
= F2k+ t  + F2k+l = F1k+ J• and this completes the inductive step. There­
fore, it remains to prove that 2Fk+!Fk + Ff+ t = F2k+l· We proceed by 
induction. It is true for n = 1 ,  and assuming it true for k, we have 

2Fk+2Fk+ I +  Ff+l "" 2(Fk+ I +  Fk )Fk+ I +  Ff+l 

= 2Ff+ I +  2Fk+ IFk + Ff+2 

= (2Fk+ IFk + Fl+ I) + ( Ff+ I +  F/+2) 

= F2k+2 + (Ff+ 1 + Ff+z)· 

But now we are back to the earlier problem: does Fk2+2 + Ff+ 1 = F2k+3? If 
so, F2"+2 + (F/+ 1 + F/+2) = F2k+2 + F2k+J = F2k+4 and the induction is 
complete. Thus, the problems are interrelated: the truth of the first depends 
upon the truth of the second, and conversely, the truth of the second 
depends upon the truth of the first. 

We can resolve the difficulty by proving them both in the following 
manner. Consider the two propositions 

P(n): F;+ 1 + F,2 = F2n+ 1, 

Q(n): 2F,+ 1Fn + F;+ 1 = F2n+2 · 
P(l) and Q(l) are each true. The previous arguments show that P(k) and 
Q(k) imply P(k + 1), and that P(k + I) and Q(k) imply Q(k + 1). It 
follows that P(k} and Q(k) imply P(k + l )  and Q(k + 1), and the proof is 
complete. 

2.4.4. Let j(x) - a1sinx + a2sin2x + · · · + ansin nx, where a1, . . .  , an 
are real numbers and where n is a positive integer. Given that 1/(x)l 
< lsinxl for all real x, prove that la1 + 2a2 + · · · + nan I < I .  
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Solution. Suppose we try inducting on the number of terms inj(x). When 
n = I, j(x) = a1sinx, and since IJ(x)j < jsinxj, it follows that lad "" 
la, >in(w/2)1 � lf(w/2)1 < l>in(w/2)1 � I. 

Suppose the result holds for k, and consider the function 
f(x) = a1sinx + a2sin2x + · · · + aksinkx + ak+ 1sin (k + l)x, 

for some choice of real numbers a1,a2, • • •  , ak+ 1, and suppose that jf(x)j 
< jsih,xj for all real x. Since sin (k + l)x = sinkxcosx + sinxcoskx, we 
can wljte 

f(x) = (a1 + ak+ 1coskx)sinx + a2sin2x + · · · 

+ ak- 1sin (k - I )x + ( ak + ak+ 1cosx)sin kx. 
We have now rewrittenj(x) as a sum of k terms, more or less of the type 
from which we can apply the induction assumption. The difficulty is that 
the coefficients of the sine terms in this expression are not constants; rather 
they contain functions of x. This suggests considering the foliowing more 
general problem. 

Let a1(x), . . .  , an(x) be differentiable functions of x, and let j(x) 
= a1(x)sinx + a2(x)sin2x + · · · + an(x)sinnx. Given that IJ(x)j < jsinxj 
for all real x, prove that 

la,(O) + 2a,(O) + · · · + na.(O)I < I .  

If we can prove this proposition, we will have solved the original 
problem also, because, taking a;(x) == a;, a; a constant, i = 1,2, . . . , n, for 
all x, we recover the original problem. 

Again we proceed by induction. We are given ja1(x)sinxj < jsinxj. As x 
approaches 0, sinx * 0, so that for these x, ja1(x)j < 1 .  Since a1(x) is 
continuous at x = 0, it follows that ja1(0)j < I. This implies that the result is 
true for the case n = I. 

Now suppose the result is true for n = k, and consider the function 
f(x) = a1(x)sinx + a2(x)sin2X + · · · + ak+ J(x)sin(k + l)x, 

where j j(x)j < jsinxj and a;(x) are differentiable. As before, this can be 
rewritten in the equivalent form 

f(x) = [ a1(x) - ak+ 1 (x)coskx ]sinx + a2(x)sin2x + · · · 

+ ak- 1( x)sin ( k - I )x + [ ak(x) + ak+ 1 (  x)cosx ]sin kx. 
We may now apply the inductive assumption, and conclude that 

l [a,(O) + a,. ,(O)] + 2a,(O) + · · · 
+(k - l)a, _ ,(O) + k[a,(O) + a,+ ,(O) ] I  < I. 

But this is the same as 
/a1(0) + 2a2(0) + · · · + kak(O) + (k + l}ak+ 1(0)j < I. 

which is the desired form. (A noninductive proof of this result is given in 
6.3.2.) 
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Problems 

2.4.5. Let S denote an n-by-n lattice square, n > 3. Show that it is possible 
to draw a polygonal path consisting of 2n - 2 segments which will pass 
through all of the n

2 
lattice points of S. 

2.4.6. Let j0(x) = 1/(1 - x), and define fn+ 1(x) = xf�(x). Prove that 
j,+ 1(x) > 0  for O <  X <  I .  

2.5. Recursion 

In the second solution to 1 . 1 . 1 ,  we let A, denote the number of subsets of a 
set with n elements. We showed that A,+ 1 = 2A,, A0 = I. This is an 
example of a recurrence relation. Even though we do not have an explicit 
formula for A, (as the method of induction requires), the recurrence 
relation defines a "loop" or algorithm which shows us how to compute 
AH 1. In this section we look at problems that can be reduced to equivalent 
problems with smaller parameters. The idea is to apply the reduction 
argument recursively until the parameters reach values for which the prob­
lem can be solved. 

2.5.1 (Tower-of-Hanoi problem). Suppose n rings, with different outside 
diameters, are slipped onto an upright peg, the largest on the bottom, to 
form a pyramid (Figure 2.3). Two other upright pegs are placed sufficiently 
far apart. We wish to transfer all the rings, one at a time, to the second peg 
to form an identical pyramid. During the transfers, we are not permitted to 
place a larger ring on a smaller one (this necessitates using the third peg). 
What is the smallest number of moves necessary to complete the transfer? · 

Soludon. Let Mn denote the minimal number of moves for a stack of n 
rings. Clearly M 1 = I, so suppose n > I. In order to get the largest ring on 
the bottom of the second peg, it is necessary to move the topmost n - I 
rings to the third peg. This will take a minimum of Mn- 1 moves (by our 

Figure 2.3. 
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choice of notation). One move is necessary to transfer the largest ring to the 
second peg, and then M,_ 1  moves are necessary to transfer the n - I rings 
to the second peg. Thus 

M, = 2M,_ 1  + I, 

An easy induction, based on this recurrence, shows that M, = 2"+ 1 - I 
(Mn+ l = 2M, + 1 = 2[2"+1 - 1] +  I = 2"+2 - 1). 

Let a1,a2, • • •  , a, be a permutation of 1,2, . . .  , n. We can interpret this 
permutation geometrically in the following way. Take an n by n chess­
board, and for each i, place a rook in the ith column (from the left) and the 
a;th row (from the bottom). For example, the permutation 3,2,5,4, 1 is 
represented in Figure 2.4. In this way we see that a permutation of 
I, 2, . . .  , n corresponds to a placement of n "nonattacking" rooks on the n 
by n chessboard. This correspondence enables one to think of permutations 
geometrically and to use the language and imagery of nonattacking rooks 
on a chessboard. 

2.5.2. Let Q, denote the number of ways of placing n nonattacking rooks 
on the n-by-n chessboard so that the arrangement is symmetric about the 
diagonal from the lower left corner to the upper right corner. Show that 

Q" � Q"_ ,  + (n - I) Q"_' . 

Solution. A rook in the first column may or may not occupy the square in 
the lower left corner of the board. If it does, there are Q,_ 1 ways of placing 
the remaining n - I rooks. If it doesn't, it can occupy any n - I squares in 
the first column. Once it is placed, it uniquely determines the location of a 
symmetrically placed rook (symmetric with respect to the given diagonal) in 
the first row. The remaining n - 2 rooks can be placed in Q,._2 ways. 
Putting these ideas together gives the result. 

2.5.3. A coin is tossed n times. What is the probability that two heads will 
turn up in succession somewhere in the sequence of throws? 
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Solution. Let Pn denote the probability that two consecutive heads do not 
appear in n throws. Clearly P1 = I, P2 = i · If n > 2, there are two cases. 

If the first throw is tails, then two consecutive heads will not appear in 
the remaining n - I tosses with probability P,._ 1  (by our choice of nota­
tion). If the first throw is heads, the second toss must be tails to avoid two 
consecutive heads, and then two consecutive heads will not appear in the 
remaining n - 2 throws with probability P,_2• Thus, 

n > 2. 

This recurrence can be transformed to a more familiar form by multiply­
ing each side by 2": 

2"P,. = 2"- 1P,_ 1  + r-lpn-2 ,  

and setting S, = 2"P, for each n: 

s, = s,_ l + s.,-2 ·  

This is the recurrence for the Fibonacci sequence (note that S,. = FH2). 
Thus, the probability we seek is Qn = I - Pn = I - Fn+2/2". 

The next example doesn't lead to an explicit recursive formula, but it 
illustrates the "working backward" thinking that is characteristic of the 
recursive concept. 

2.5.4. Prove that any positive rational number can be expressed as a finite 
sum of distinct terms of the harmonic series. 

Solution. Let mjn be any positive rational. Then 

m I I I - = - + - +  . . .  + ­n n n n 
is a sum of harmonic terms with n - I duplications. Recursively expand all 
duplicates by the identity I jn = 1/(n + I) +  1/n(n + I) until all terms are 
distinct. 

Problems 

2.5.5. Let Pn denote the number of regions formed when n lines are drawn 
in the Euclidean plane in such a way that no three are concurrent and no 
two are parallel. Show that Pn+ 1 = Pn + (n + I). 

2.5.6. 

(a) Let E" denote the determinant of the n-by-n matrix having - l's below 
the main diagonal (from upper left to lower right) and 1 's on and above 
the main diagonal. Show that E1 = I  and E,. == 2E,._1  for n > I. 
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(b) Let D,. denote the determinant of the n-by-n matrix whose (i,j)th 
element (the element in the ith row and jth column) is the absolute 
value of the difference of i and). Show that Dn = ( - l)"- 1(n - 1)2"-2• 

(c) Let F,. denote the determinant of the n-by-n matrix with a on the main 
4iagonal, b on the superdiagonal (the diagonal immediately above the 
rtJ.ain diagonal-having n - l entries), and c on the subdiagonal (the 
d'jagonal immediately below the main diagonal-having n - l entries). 
Show that F,. = aF,._ 1 - bcFit_2, n > 2. What happens when a =  b = I 
and c = - I ?  

(d) Evaluate the n-by-n determinant A,. whose (i,j)th entry is al'-jl by 
finding a recursive relationship between Alt and A,._ 1• 

2.5.7. 

(a) Let a1, a2, • • •  , a,. be positive real numbers and An = (a1 + + a,.) 
/n. Show that A It > A�':l l)/na�/lt with equality if and only if Alt- l = a,. . 
(Hint: Apply the inequality of 2.1.5.) 

(b) Arithmetic-mean-geometric-mean inequality. Using part (a), show that 
a + · · · + a ' " > (a · · · a ) 'l" n ' " 

with equality if and only if a1 = a2 = · · · = alt . 

2.5.8. Two ping pong players, A and B, agree to play several games. The 
players are evenly matched; suppose, however, that whoever serves first has 
probability P of winning that game (this may be player A in one game, or 
player B in another). Suppose A serves first in the first game, but thereafter 
the loser serves first. Let P,. denote the probability that A wins the nth 
game. Show that P,.+ 1 = P,.(l - P) + (I - P,.)P. 

2.5.9. A gambling student tosses a fair coin and scores one point for each 
head 'that turns up and two points for each tail. Prove that the probability 
of the student scoring exactly n pOints at some time in a sequence of n 
tosses is t(2 + ( - !  )"]. (Hint: Let Pit denote the probability of scoring 
exactly n points at some time. Express P,. in terms of P,. - I ' or in terms of 
P,._ 1 and P,._2• Use this recurrence relation to give an inductive proof.) 

2.5.10 (Josephus problem), Arrange the numbers 1,2, . . .  , n consecu­
tively (say, clockwise) about the circumference of a circle. Now, remove 
number 2 and proceed clockwise by removing every other number, among 
those that remain, until only one number is left. (Thus, for n = 5, numbers 
are removed in the order 2, 4, I ,  5, and 3 remains alone.) Letj(n) denote 
the final number which remains. Show that 

f(2n) � 2f(n) - I .  

f(2n + l) � 2j(n) + l. 

(This problem is continued in 3.4.5.) 



78 2. Two Important Principles: Induction and Pigeonhole 

2.5.11. 
(a) Let R., denote the number of ways of placing n nonattacking rooks on 

the n-by-n chessboard so that the arrangement is symmetric about a 
90° clockwise rotation of the board about the center. Show that 

R4n = (4n - 2)R4n-4 • 

R4n+ l  = R4n • 
R4n+2 = Q = R4n+3 • 

(b) Let S" denote the number of ways of placing n nonattacking rooks on 
the n-by-n chessboard so that the arrangement is symmetric about the 
center of the board. Show that 

S2,. = 2nS2n-2 , 
s2n + l  = sln ' 

(c) Let T,. denote the number of ways of placing n nonattacking rooks on 
the n-by-n chessboard so that the arrangement is symmetric about both 
diagonals. Show that 

S2 = 2, 
Sln+l = Sz,. ,  

S2 .. = 2S2 .. _2 + (2n - 2)S2,._4• 

2.5.12. A regular 2n-gon is inscribed in a circle. "Let Tn denote the number 
of ways it is possible to join its vertices in pairs so that the resulting 
segments do not intersect one another. If we set T0 = I, show that 

Tn = ToTn- 1 + Tl Tn-2 + T2Tn-3 + · · · + Tn- 1  To . 
(For a continuation of this problem, see 5.4.10.) 

2.5.13. Let a I ' a2, . . .  , an be a permutation of the set Sn = { I ,  2, . . .  , n}.  
An element i in Sn is called a fixed point of this permutation if  a; = i . 

(a) A derangement of Sn is a permutation of Sn having no fixed points. Let 

gn be the number of derangements of Sn. Show that 

g1 = 0, g2 = 1, 
and 

for n > 2. 

(Hint: a derangement either interchanges the first element with another 
or it doesn't.) 

(b) Let J, be the number of permutations of Sn with exactly one fixed 
point. Show that lfn - gnl = I .  

2.5.14. Suppose n men check in their hats as they arrive for dinner. As 
they leave, the hats are given back in a random order. What is the 
probability that no man gets back his own hat? (Hint: Let Pn denote this 
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probability. Then Pn = gnfn!, where gn is as in 2.5.13. Let en = Pn - Pn-l ·  
Use the recurrence relation found in 2.5.13(a) to show that e2 = L en = 
- en- Jn. Use this to show that Pn = lf2! - 1/3! + · · · + ( - It fn!. 
Then for large n, Pn � 1/ e.) 

2.5.15. 

(a) Let In = JQI2sinnx dx. Find a recurrence relation for In. 
(b) Show that 

(c) Show that 

I X 3 X 5 X · · · X (2n - I) w 
I2n = 

2 X 4 X 6 X · · · X 2n . 2 .  

2 X 4 X 6 X X (2n - 2) 
Iln+ l  = '1-cx003�x;c5o;;x--"x-;(_,2::n-"'1) · 

Additional Examples 

1.1.1 (Solution 2), 4.3.9, 5.3.5, 5.3.14, 5.3.15, 5.4.8, 5.4.9, 5.4.24, 5.4.25, 
5.4.26. Closely related to induction and recursion are arguments based on 
"repeated arguments". Examples of what is meant here are 4.4.4, 4.4.17, the 
proof of the intermediate-value theorem in 6.1, 6.1.5, 6.1.6, 6.3.6. 6.8.10, 
and the heuristic for the arithmetic-mean-geometric-mean inequality given 
in Section 7.2. 

2.6. Pigeonhole Principle 

When a sufficiently large collection Of objects is divided into a sufficiently 
small number of classes, one of the classes will contain a certain minimum 
number of objects. This is made more precise in the following self-evident 
proposition: 

Pigeonhole Principle. If kn + I objects (k > I) are distributed among n boxes, one 
of the boxes will contain at least k + I objects. 

This principle, even when k = I, is a very powerful tool for proving 
existence theorems. It takes some experience. however, to recognize when 
and how to use it. 

2.6.1. Given a set of n + 1 positive integers, none of which exceeds 2n, 
show that at least one member of the set must divide another member of 
the set. 
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Solution. This is the same as 2.2.7, where it was done by induction on n,i 
However, the problem is really an existence problem for a given n, and �t 
can be carried out very nicely by the pigeonhole principle, as we shall see. 

Let the chosen numbers be denoted by x1,x2, • • •  , xn+ 1, and for each 'i, 
write x1 = 2ny;, where n1 is nonnegative integer and y1 is odd. Let T = 
{y1: i = I, 2, . . .  , n + I ) .  Then T is a collection of n + I odd integers, each 
less than 2n. Since there are only n odd numbers less than 2n, the 
pigeonhole principle implies that two numbers in T are equal, say y1 = y1, 
i <j. Then 

x1 = 2"'y, and x1 = 2"'y1 •  

If n1 < n1
, then x1 divides x1; if n1 > n1, then x1 divides x1. This completes 

the proof. 

2.6.2, Consider any five points Ph P2, P3, P4, P5 in the interior of a square 
S of side length l. Denote by dy the distance between the points P, and Pr 
Prove that at least one of the distances d'l is less than ,fi /2. 

Solution. Divide S into four congruent squares as shown in Figure 2.5. By 
the pigeonhole principle, two points belong to one of these squares (a point 
on the boundary of two smaller squares can be claimed by both squares). 
The distance between these points is less than ,fi /2. 

2,6.3, Suppose that each square of a 4-by-7 chessboard, as shown below, is 
colored either black or white. Prove that in any such coloring, the board 
must contain a rectangle (fonned by the horizontal and vertical lines of the 
board), such as the one outlined in the Figure 2.6, whose distinct corner 
squares are all the same color. 

Solution. Such a �ctangle exists even on a 3-by-7 board. The color 
configurations of the columns each must be of one of the types shown in 
Figure 2.7. 

Figure 2.5. 

I 
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Figure 2.6. 
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Suppose one of the colUmns is of type I. We are done if any of the 
remaining six columns are of type I, 2, 3, or 4. So suppose each of the other 
columns is of type 5, 6, 7, or 8. Then, by the pigeonhole principle, two of 
these six columns must have the same type and we are done. 

The same argument applies if one of the columns is of type 8. 
So suppose none of the columns are of type I or type 8. Then we have 

seven columns but only six types. By the pigeonhole principle, two columns 
have the same type and the proof is complete. 

2.6.4. Prove that there exist integers a,b,c not ail zero and each of 
absolute value less than one million, such that • 

Solution. Let S be the set of 1018 real numbers r + s..ff + t..ff with each of 

r,s, t in {0, 1,2, . . . , Jij6 - J},  and let d = (l + ..ff + ..ff)Jij6. Then each x in 
S is in the interval 0 < x < d. Partition this interval into 1018 - 1 equal 
subintervals, each of length e = d j (I 018 - I). By the pigeonhole principle, 
two of the 1018 nurn.bers of S must be in the same subinterval. Their 
difference, a + bj2 + elf, gives the desired a,b,c, since e < 107/1018 
= w-u. 

2.6.5. Given any set of ten natural numbers between I and 99 inclusive 
(decimal notation), prove that there are two disjoint nonempty subsets of 
the set with equal sums of their elements. 
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Solution. With the chosen set of ten numbers, we can form 210 - I =  1023 
(different) nonempty subsets. Each of these subsets has a sum smaller than 
1000, since even 90 + 91 + · · · + 99 < 1000. Therefore, by the pigeonhole 
principle, two subsets A and B must have the same sum. By throwing away 
the elements which belong to both sets we obtain two disjoint sets X =  A -
A n B, Y = B - A n B, with the same sum. (Neither X nor Y is empty, for 
this would mean that either A C B or B c A, which is impossible. since 
their elements add to the same number.) 

Problems 

2.6.6. Let A be any set of 20 distinct integers chosen from the arithmetic 
progression 1,4, 7, . . .  , 100. Prove that there must be two distinct integers 
in A whose sum is I 04. 

2.6.7. 

(a) Let S be a square region (in the plane) of side length 2 inches. Show 
that among any nine points in S, there are three which are the vertices 
of a triangle of area < f square inch. 

(b) Nineteen darts are thrown onto a dartboard which has the shape of a 
regular hexagon with side length one foot. Show that two darts are 
within If /3 feet of each other. 

2.6.8. Show that if there are n people at a party, then two nf them know 
the same number of people (among those present). 

2.6.9. Fifteen chairs are evenly placed around a circular table on which 
are name cards for fifteen guests. The guests fail to notice these cards until 
after they have sat down, and it turns out that no one is sitting in front of 
his own card. Prove that the table can be rotated so that at least two of the 
guests are simultaneously correctly seated. 

2.6.10. Let X be any real number. Prove that among the numbers 

X.2X • . . . •  (n - I)X 

there is one that differs from an integer by at most I/ n. 

2.6.11. 

(a) Prove that in any group of six people there are either three mutual 
friends or three mutual strangers. (Hint: Represent the people by the 
vertices of a regular hexagon. Connect two vertices with a red line 
segment if the couple represented by these vertices are friends; other­
wise connect them with a blue line segment. Consider one of the 
vertices, say A.  At least three line segments emanating from A have the 
same color. There are two cases to consider.) 
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(b) Seventeen people correspond by mail with one another-each one with 
ali the rest. In their letters only three topics are discussed. Each pair of 
correspondents deals with only one of the topics. Prove that there are at 
least three people who write to each other about the same topic. 

2.6.12. Prove that no seven positive integers, not exceeding 24, can have 
sums of all subsets different. 

Additional Examples 

1.10.1, 32. 1, 3.2.5, 32.19, 32.20, 3.324, 4.4.10. 



Chapter 3. Arithmetic 

In this chapter we consider problem-solving methods that are important in 
solving arithmetic problems. Perhaps the most basic technique is based on 
the fundamental theorem of arithmetic, which states that every integer can 
be written uniquely as a product of primes. The theoretical background 
necessary for the proof of this key theorem requires a discussion of the 
notion of divisibility. Therefore, we will begin the chapter by considering 
problems about greatest common divisors and least common multiples. 
Important to this understanding are the division algorithm and the Euclid­
ean algorithm. 

In the second section we introduce the technique of modular arithmetic 
(a generalization of the notion of parity), and see in it an efficient and 
effective method for many problems concerned with relationships between 
integers. In the last two sections we are again reminded of the importance 
of notation in solving problems, and we consider problems related to the 
representation of numbers: the positional notation for integers, and the 
rectangular, polar, and exponential notations for representing complex 
numbers. 

3.1. Greatest Common Divisor 

Given integers a and b, we say that a divides b, and we write a I b, if there is 
an integer q such that b = qa. On the basis of this definition it is easy to 
prove the following very useful result: If n divides two of the terms in the 
expression a =  b + c, then n divides all three of the terms. (Note: In this 
chapter, unless otherwise stated, all variables are integer variables.) 

84 
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If a1 , • • •  , an are given integers, we will denote their greatest com­
mon divisor by gcd(ap . . .  , an), and their least common multiple by 
lcm(a�o . . .  , an). 

3.1.1. Find all functions f which satisfy the three conditions 

(i) j(x,x) - x, 
(ii) j(x, y) -j(y, x), 

(iii) j(x, y) - j(x,x + y), 

assuming that the variables and the values off are positive integers. 

Solution. A look at special cases leads us to suspect that/(x, y) = gcd(x, y). 
We will prove this by inducting on the sum x + y. 

The smallest value for x + y is 2, and this occurs when x = y = 1. By (i}, 
f(I ,  I) = I ,  and also gcd(l ,  I ) = I, so our supposition is confirmed in this 
case. 

Suppose that x andy are positive integers such that x + y = k > 2, and 
suppose the claim has been shown for ail smaller sums. By (i) and (ii), there 
is no loss in generality in supposing that x < y. By (iii), f(x,y) = 
f(x,x + (y - x)) = f(x, y - x). But by the inductive assumption,j(x, y ­
x) = gcd(x, y - x). The proof will be complete if we can show that 
gcd(x, y - x) = gcd(x, y). 

If c I x and c jy, then c I x and c IY - x. It follows that gcd(x, y) 
< gcd(x, y - x). Similarly, if c I x and c IY - x, then c I x and c jy, and 
therefore gcd(x, y - x) .;;;; gcd(x,y). Putting these together, it must be the 
case that gcd(x, y - x) = gcd(x, y), and the proof is complete. 

The following result rests at the very foundation of number theory. 

DivlsJon Algorithm. If a and b are arbitrary integers, b > 0, there are unique 
integers q and r such that 

a =  qb + r, 0 o;; r < b. 

By repeated use of the division algorithm we can compute the greatest 
common divisor of two integers. To see how this goes, suppose that b1 and 
b2 are positive integers, with b 1 > b2• By the division algorithm there are 
integers q and b3 such that 

It is easy to check, using this equation, that gcd(b1 ,  b2) = gcd(b2,b3). 
If b3 = 0, then gcd(b1 , b2) = b2. If b3 > 0, we can repeat the procedure, 

using b2 and b3 instead of b1 and b2, to produce an integer b4 such that 
gcd(b2, b3) = gcd(b3, b..), b3 > b4 > 0. 
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By continuing in this way, we will generate a decreasing sequence of 
nonnegative integers 

bl > b2 > b3 > . . .  

such that gcd(b1,b2) = gcd(b2, b3) =  · · · = gcd(b; ,b;+1), i =  1,2,3, . . . . 
Since such a sequence cannot decrease indefinitely, there will be a first n 

such that bn+ 1 = 0. At this point gcd(b1, b2) = gcd(bn,bn+ 1) = bn . 
This procedure for finding gcd(bl>b2) is called the Euclidean algorithm. 
Before giving an example of this algorithm, we will state and prove the 

major result of this section. 

3.1.2. Given-positive integers a and b, there are integers s and t such that 

sa + tb = gcd(a,b). 

Solution. We will prove the result by inducting on the number of steps 
required by the Euclidean algorithm to produce the greatest common 
divisor of a and b. (Another proof is outlined in 3.1.9.) 

Suppose a > b. If only one step is required, there is an integer q such 
that a = bq, and in this case gcd(a,b) = b. Also, in this case, gcd(a, b) = b 
= a +  (I �  q)b, so set s =  1, t = 1 - q, and the proof is complete. 

Assume the result bas been proved for all pairs of positive integers which 
require less than k steps, and assume that a and b are integers that require 
k steps, k > I .  By the division algorithm, there are integers q and r such 
that 

a =  qb + r, 0 < r < b. 

The greatest common divisor of b and r can be computed by the Euclidean 
algorithm in k - I steps, so by the inductive assumption, there are integers 
c and d such that 

cb + dr = gcd( b, r). 
From these last two equations, it follows that 

gcd(a,b) - gcd(b, ,) 
= cb + dr 
= cb + d(a � qb) 
- da + (c - dq)b, 

and the proof is complete upon setting s =  d and t = c - dq. 

The steps of this proof will be clarified by an example. 

3.1.3. Find integers x andy such that 
154x + 22ly = gcd(754, 221). 
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Solution. We first apply the steps of the Euclidean algorithm to find the 
greatest common divisor of 754 and 221. We find that 

754 = 3 X 221 + 91, 
221 = 2 X 91 + 39, 

91 = 2 X 39 +  13, 
39 = 3 X 13. 

This shows that gcd(754,221) = 13. 
To find the desired integers x andy, we proceed "backwards" through 

the steps of the Euclidean algorithm (this was the essence of the inductive 
proof given above): 

13 = 9J - 2 x 39 
� 91 - 2(221 - 2 X 91) 
= 5 X 91 - 2 x 221 

� 5(754 - 3 X 221) - 2  X 221 
= 5 X 754 - 17 x 221. 

Thus, one solution is x = 5 andy = - 17. 

The fol!owing result is often useful. 

3.1.4. The equation ax + by = c, a,b,c integers, has a solution in inte� 
gers x andy if and only if gcd(a,b) divides c. Moreover, if (x0, y0) is an 
integer solution, then for each integer k, the values 

x' = x0 + bkjd, 

y" = y0 - akjd, 
d � gcd(a,b), 

are also a solution, and ali integer solutions are of this form. 

Solution, For the first part, it is clear that gcd(a,b) must divide c, since 
gcd(a, b) divides ax + by. Therefore, gcd(a,b) I c is a necessary condition 
for the existence of a solution. On the other hand, if c is a multiple of 
gcd(a,b), say c = gcd(a,b) X q, we can find an integer solution in the 
following manner. We know there are integers s and t such that sa + tb 
= gcd(a,b). So set x = sq and y =  tq. Then ax + by = asq + btq = (as + 
tb)q = gcd(a,b)q = c. 

A straightforward calculation shows that (x', y'), as given, gives a 
solution, provided (x0, y0) is a solution. To show all integer solutions have 
this form we argue geometrically as follows (Figure 3.1). 

Note that the problem of solving ax + by = c in integers x and y is 
equivalent to the prob1em of finding the lattice points that lie on the 
straight line ax + by = c. Suppose that (x0, y0) is a lattice point on the line 
ax + by = c; that is, suppose that 

axo + by0 ,. c. 
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(x', y') 

Figure 3.1. 

The result is easy to prove if b = 0, so suppose here that b ¥= 0. If (x', y') is 
any other lattice point in the plane, then (x', y') will be on the line 
ax + by = c if and only if 

y' - yo a afd 
x' x0 = - b = - b/d ' where d= gcd(a,b). 

Since a f d and b / d are relatively prime, this equation will hold if and only 
if there is an integer k such that 

y' -y0 � -(a/d)k, 
x' - x0 � (b/d)k. 

It follows that all integer solutions of ax + by = c are gtven by the 
equations 

X' = Xo + bkjd, 
y' = y0 - akjd, 

k an integer, d = gcd(a,b). 

3.1.5. Prove that the fraction (2ln + 'l)j(l4n + 3) is irreducible for every 
natural number n. 

Solution. We need to prove that 14n + 3 and 2 ln + 4 are relatively prime 
for all n. Our preceding discussion shows that we will be done if we can 
prove that there exist integers s and t such that 

s(2 ln + 4) + t(l4n + 3) = I ,  
or equivalently, 

1n(3s + 2t) + (4s + 3t) = I. 
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This equation will hold for all n if we can find integers s and t which satisfy 
3s + 2t = 0, 
4s + 3t = I. 

It is straightforward to see that these equations are satisfied by s = -2 and 
t = 3, and this completes the proof. 

3.1.6. The measure of a given angle is 180° In, where n is a positive integer 
not divisible by 3. Prove that the angle can be trisected by Euclidean means 
(straightedge and compass). 

Solution. We do not expect this problem to have anything to do with 
numbers, and yet, what is the significance of the condition that n is not 
divisible by 3? This means 3 and n are relatively prime, so there are integers 
s and t such that 

ns + 3t = !. 
We wish to construct an angle of 60° In. When we multiply each side of the 
last equation by 60° In, we get 

60°s + ( 180° ln)t = 60° ln. 
But now observe that the left side of this equation describes how to 
construct 60° In. This is because we can construct a 60°angle, we are given 
the angle !80° In, the integers s and t can be found, and therefore we can 
construct 60°s + (180° /n)t. 

Problems 

3.1.7. If gcd(a,b) = I, prove that 
(a) gcd(a - b,a + b) <  2, 
(b) gcd(a - b,a + b, ab) = I, 
(c) gcd(a2 - ab + b2,a + b) .;;; 3. 
3.1.8, The_ .. .algebraic sum of any number of irreducible fractions whose 
denominators are relatively prime to each other cannot be an integer. That 
is, if gcd(a;, b;) = I, i = I, . . .  , n, and gcd(b1,b) = I  for i ¥=  j, show that 

is not an integer. 

� + a2 + + an 
b 1  b2 bn 

3.1.9. Let S be a nonempty set of integers such that 
(i) the difference x - y is in S whenever x andy are in S, and 
(ii) all multiples of x are in S whenever x is in S. 
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(a) Prove that there is. an integer d in S such that S consists of all multiples 
of d. (Hint: Consider the smallest positive integer in S.) 

(b) Show that part (a) applies to the set { ma + nb I m and n are positive 
integers}, and show that the resulting d is gcd(a,b). 

3.1.10. 

(a) Prove that any two successive Fibonacci numbers Fn, Fn+l•  11 > 2, are 
relatively prime. 

(b) Given that T1 = 2, and Tn + l = T} - Tn + I, n > 0, prove that Tn and 
Tm are relatively prime whenever n =1=- m. 

3.1.11. For positive integers a1 , • • •  , an, prove there exist integers 
k1,  • • •  , kn such that k1a1 + · · · + knan = gcd(a1, • . •  , an). 

3.1.12. Prove that (a + b)j(c + d) is irreducible if ad - be = 1 .  

3.1.13. Prove that gcd(a1, • • •  , am)gcd(b1, • • •. , bn) = gcd(a1h1 , a2b2, • • •  , 
ambn), where the parentheses on the right include all mn products a;bj, 
i = I, . . .  , m, j = I, . . .  , n, 

3.1.14. When Mr. Smith cashed a check for x dollars and y cents, he 
received instead y dollars and x cents, and found that he had two cents 
more than twice the proper amount. For how much was the check written? 

3.1.15. Find the smallest positive integer a for which 

IOOix + 770y = 1 ,000,000 + a  
is possible, and show that it has then 100 solutions in positive integers. 

3.1.16. A man goes to a stream with a 9-pint container and a 16-pint 
container. What should he do to get 1 pint of water in the 16-pint 
container? (Hint: Find integers s and t such that 9s + 16t = 1.) 

3.1.17. There is more than one integer greater than I which, when divided 
by any integer k such that 2 < k < I I ,  has a remainder of 1 .  What is the 
difference between the two smallest such integers? 

3.1.18. Let b be an integer greater than one. Prove that for every nonnega­
tive integer N, there is a unique nonnegative integer n and unique integers 
a;, i = 0, I, . . .  , n, 0 < a; < b, such that a� =I= 0 and 

N = anbn + a�� 1bn- t + · · ·  + a2b2 + a1b + ao .  
(The result is immediate for N < b, so assume N ;;. b. Use induction.) 

Additional Examples 

3.2.4, 3.2.21, 3.3.1 1 ,  3.3.19, 3.3.28, 4.1.9, 4.2.1 ,  4.2.2, 4.2.4, corollary (iii) of 
Lagrange's theorem in Section 4.4, 4.4.5, 4.4.6, 4.4.8. 
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3.2. Modular Arithmetic 

The parity of an integer tells us how that number stands relative to the 
number 2. Specifically, a number is even or odd according to whether its 
remainder when divided by 2 is zero or one respectively. This formulation 
of parity makes it natural to generalize the idea in the following manner. 

Given an integer n > 2, divide the set of integers into "congruence" 
classes according to their remainders when they are divided by n; that is to 
say, two integers are put into the same congruence class if they have the 
same remainders when they are divided by n. For example, for n = 4, the 
integers are divided into four sets identified with the possible remainders 
0, I, 2, 3. For an arbitrary n > 2, there will be n congruence classes, labeled 
0, 1,2, . . .  , n - I .  

Two integers x andy are said to be congruent modulo n, written 

x =y (mod n), 

if they each give the same remainder when they are divided by n (or, 
equivalently, and more conveniently in practice, if x -y is divisible by n). 

It is easy to prove that 

(i) x = x (mod n), 
(ii) x = y (mod n) implies y = x (mod n), and 

(iii) [x :=:: y (mod n) and y =  z (mod n)] imply x = z (mod n). 
These properties mean that congruence has the same characteristics as 
equality, and we often think of congruence as a kind of equality (in fact we 
sometimes read x = y (mod n) as "x equals y modulo n"). 

3.2.1. Prove that any subset of 55 numbers chosen from the set { I, 2, 3, 
4, . . .  , 100} must contain tWO numbers differing by 9. 

Solution. There are nine congruence classes modulo 9: 0, I, 2, 3, 4, 5, 6, 7, 8. 
By the (generalized) pigeonhole principle, seven numbers from the chosen 
55 are in the same congruence class (if each congruence class had six or 
less, this would account for at most 54 of the 55 elements). Let a" . . .  , a1 
be these numbers, and suppose they are labeled so that a 1 < a2 < a3 < · · · 
< a1• Since ai+ 1 = a1 (mod 9), ai+ 1 - a1 E {9, 18, . . .  }. We claim that 
a1+ 1 - a; = 9 for some i. For if not, then for each i, a1+ 1 - a1 > 18, and this 
would mean that a7 - a1 > 6 X 18 = 108. But this is impossible, since 
a1 - a1 < 100. Thus, two of the elements (among a1, • • •  , a1) differ by 9. 

The real power of congruences is a consequence of the following easily 
proved property. 
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Modular Arithmetic. If x � y (mod n) and u == v (mod n) then 

x + u =o y + v (modn), 
ond 

x · u :o-=y · v (mod n). 

3. Arithmetic 

This result allows us to perform arithmetic by working solely with the 
"remainders" modulo n. For example, since 

17 ;e 5 (mod 12) and 40 ;e 4 (mod 12), 

we know that 

17 + 40 = 5 + 4 = 9 (mod 12) 

and 

17 x 40 = 5 x 4 == 8 (mod 12). 

Let n be a positive integer, n > l, and let Zn = {0, 1,2, . . .  , n - l } .  
Observe that if x andy are elements of Zm there are unique elements r,s,t 
in zn such that 

x - y = r (modn), 

x + y = s (mod n), 

x · y = t (mod n). 

The set Zn together with these operators of subtraction, addition, and 
multiplication is called the set of integers modulo n. In this system, 
computations are carried out as usual, except the result is always reduced 
(modulo n) to an equivalent number in the set Zn . 

3.2.2. Let N = 22 X 31 + I I  X 17 + 13 x 19. Determine (a) the parity of 
N; (b) the units digit of N; (c) the remainder when N is divided by 7. (Of 
course, the idea is to make these determinations without actually comput­
ing N.) 

Solution. For part (a), 22 X 31  is even, since 22 is even, I I  X 17 is odd, and 
13 X 19  is odd, so the sum is even + odd + odd, and this is even. Notice 
that this reasoning is equivalent to computing modulo 2: 

22 X 31 + I I X 17 + 13 X 19 = 0 X I +  I X I + I  X l = 1 + I =  0 (mod 2). 

For part (b), we need only keep track of the units digit: 22 X 31  has a 
units digit of 2, I I  X 17 has a units digit of 7, and 13 X 19 has a units digit 
of 7. Therefore, the units digit of N is the units digit of 2 + 7 + 7, or 6. Here 
again, this analysis is equivalent to computing N modulo 10: 

22 X 31  + 1 1  X 17 + 13 X 19 = 2 X I +  I X 7 + 3 X 9 (mod 10) 

= 2  + 7 + 7 = 6  (mod 10). 
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Whereas parts (a) and (b) can be done without an awareness of modular 
arithmetic, it is not so apparent what should be done in part (c). The point 
of the example is that part (c) can be handled as a natural extension of the 
modular approach used in the previous cases. We work modulo 7: 

22 X 31  + I I X 17 + 13 X 19 =o I X 3 + 4 X 3 + ( - I) X 5 (mod 7) 
oo 3 + 5 - 5 oo 3 (mod 7). 

Thus N is 3 more than a multiple of 7. (As a check: N = 1 1 16 = 459 X 7 
+ 3.) 

3.2.3. What are the last two digits of 3 1234? 

Solution. We work modulo 100. There are many way to build up to 3 1234. 
For example, 32 = 9 (mod 100), 34 == 8 1 (mod 100), 38 = 81 x 81 = 61 (mod 
!00), 310 = 9 x 61 = 49 (mod 100), 320 = 49 x 49 = 1 (mod 100). Since 
1234 = 20 X 61 + 14, we have 31234 = (32f)61(3)14 :=o 314 = 34310 :::o 8 1  X 49 
= 69 (mod 100). The last two digits are thus seen to be 69. 

3.2.4. Show that some positive multiple of 21 has 241 as its final three 
digits. 

Solution. We must prove that there is a positive integer n such that 

21n oo 241 (mod 1000). 

Since 21 and 1000 are relatively prime, there are integers s and t such that 

2ls + IOOOt = I .  
Multiply each side of this equation by 241, and rearrange in the form 

21(24h) - 241 � -241 X 10001. 

In congruence notation, the last equation means that 

21 X 24ls = 241 (mod 1000). 

If s is positive, we are done, for we can set n = 241s. If s is not positive, let 
n = 241s + IOOOk, where k is an integer large enough to make n positive 
(by choosing k in the appropriate manner, we may even assume that n is 
between 0 and 1000). It follows that 

2ln = 21(241s + IOOOk) = 21 X 241s = 241 (mod 1000). 

3,2,5. Prove that for any set of n integers, there is a subset of them whose 
sum is divisible by n. 
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Solution. Let x�>x2, • • •  , xn denote the given integers, and let 

y, = x, ,  
Y2 =  x, + X2 ,  

Yn = x, + x2 +  · · ·  + Xn -

3. Arithmetic 

If y1 = 0 (mod n) for some i, we're done, so suppose this is not the case. 
Then we have n numbers y l '  . . .  •Yn• and n - I congruence classes modulo 
n (namely, 1 , 2, . . .  , n - I), so by the pigeonhole principle, two of the y/s 
must be congruent to one another modulo n. Suppose y,. = yi (mod n), with 
i <j. Then 

x1+ 1 + · · · + xj = y1 - y,. = 0  (mod n), 

and the proof is complete. 

In the preceding example, we made use of the fact that n divides a if and 
only if a =  0 (mod n). By means of this correspondence, problems concern­
ing divisibility can be translated directly into the language of modular 
arithmetic. 

3.2.6. Prove that if 2n + I and 3n + I are both perfect squares, then n is 
divisible by 40. 

Solution. It is enough to show that n is divisible by both 5 and' 8. This is 
equivalent to showing that n == 0 (mOd 5) and n o=  0 (mod 8). 

Consider modulo 5. The table below shows that a square number is 
either 0, I, or - 1  modulo 5:  

x (mod 5) 0 2 3 4 

x2 (mod 5) 0 - I  - 1 

Thus, 2n + I and 3n + I must be either 0,, I, or - I  modulo 5. There are 
nine cases to consider: 2n + 1 can be 0, 1 ,  or - I  modulo 5, and 3n + I can 
be 0, I ,  or - I .  Some thought however reduces the number of cases to just 
two, as we shall see. Suppose that 2n + I = a (mod 5) and 3n + I = b 
(mod 5), a,b E {0, I, - I }. 

Case I .  a �  b. I n  this case, we add the last two equations to get 

2 == a +  b (mod 5). 

But this equation cannot hold for our choices of a and b, therefore this case 
can never occur. 



3.2. Modular Arithmetic 95 

Case 2. a = b. In this case, subtract the first equation from the second to 
got 

n = b - a (mod 5). 

In this case n is divisible by 5 (which is part of what we wanted to prove). 
Now consider modulo 8. In this case, the table shows that a square is 

either 0, I, or 4 modulo 8: 

x2 (mod 8) 0 
x (mod 8) I 0 2 3 4 5 6 7 

4 0 4 

Again, there are nine cases, depending on the values of 2n + I and 3n + I 
modulo 8. These nine cases can be reduced to two exactly as in the modulo 
5 case, and the argument in each case is exactly the same. We conclude 
that 8 divides n, and the proof is complete. 

In congruence arithmetic, the operations of addition, subtraction, and 
multiplication behave as in ordinary arithmetic (except everything is taken 
with respect to the modulus under consideration). What about division? 

We say that a divides b modulo n if there is an integer c such that 
a ·  c == b (mod n). lf there is an integer c such that a ·  c = I  (mod n), then c 
is called the (multiplicative) inverse of a, sometimes denoted by a- 1 • Note 
that if a has an inverse, the equation ax = b (mod n) can be solved by 
simply multiplying each side of the equation by a� 1; x = a� 1b (mod n). 

An important theoretical fact is that an integer a has a multiplicative 
inverse with respect to modulo n arithmetic if and only if a and n are 
relatively prime (see 3.2.21). 

As a special case of the result of the previous paragraph, consider the 
case in which the modulus n is a prime number, say p. In this case, each of 
1 ,2,  . . .  , p - 1 is relatively prime to p, so they all have multiplicative 
inverses. In fact, the numbers ZP = {0, 1,2, . . . , p - I }  can be added, 
subtracted, multiplied, and divided (by nonzero elements), and they fonn a 
field (see Section 4.4). 

3.2.7. Prove that the expressions 

2x + 3y, 9x + 5y 

are divisible by 17 for the same set of integral values of x andy. 

Solution. It suffices to show that 

2x + 3y = O (mod l7) if and only if 9x + 5y :: 0 (mod 17). 
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The plan is to multiply each side of the left congruence by a suitable 
constant so as to transform it into the congruence on the right. So we ask: 
does there exist a constant c such that c(2x + 3y) = 9x + 5y (mod 17)? For 
this to be possible, it is necessary that 2c = 9 (mod 17). Since 2 is relatively 
prime to 17, it has an inverse. It turns out that 2-

1 = 9, and therefore, 
c = 9 X 9 = 81  = 13 (mod 17). Therefore, 2x + 3y = 0 (mod 17) implies 

13(2x + 3y) = 0 (mod 17), 

26x + 39y = 0 (mod 17), 

·9x + 5y = 0 (mod 17). 

Conversely, multiply each side of 9x + 5y = 0 (mod 17) by 4 to get 
2x + 3y = O (mod 17). 

The next example is a theoretical result which not only is interesting 
from a conceptional point of view, but also has many applications through­
out mathematics. 

3.2.8 (Chinese remainder theorem). If m and n are relatively prime 
integers greater than one, and a and b are arbitrary integers, there exists an 
integer x such that 

x = a  (modm), 

x � b (mod 11). 
More generally, if m 1 , m2, • . •  , mk are (pairwise) relatively prime integers 
greater than one, and a1 ,a2, • • •  , ak are arbitrary integers, there exists an 
integer x such that 

i = I, 2, . . . , k. 

Solution. Consider the 11 numbers a, a + m, a + 2m, . . .  , a + ( n - I )m. 
Each of these is congruent to a modulo m. Moreover, no two of them are 
congruent modulo n. For, if a +  im == a +  jm (mod 11), 0 < i < j  < n, then 
(i -j)m = 0 (mod n). But m and n are relatively prime, so this last 
congruence can hold only if n divides i -j. However, i -j cannot be a 
multiple of n because of the restrictions on i and j. Therefore, i = j. It 
follows that the numbers a, a + m, . . . , a + ( 11 - 1 )m are congruent in 
some order to the numbers 0, I, 2, . . .  , n - I modulo n. Therefore, for 
some i,a + mi = b (mod n). The proof of the first part is established upon 
setting x = a + mi. 

The more general statement can be proved in a similar way, using 
induction on k. (Let c =- m1 • • • mk� t>  and consider a, a +  c,a + 2c, 
. . .  ,a + (mk - l)c, where a is chosen by the inductive hypothesis so that 

a = a; (mod m1), i • l, 2, . . .  , k - l. Then a + ic = a; (mod m;), i =  
I, . . .  , k - 1, and no two of the numbers are congruent modulo mk> etc.) 
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3.2.9. Do there exist 1,000,000 consecutive integers each of which contains 
a repeated prime factor? 

Solution. Let p1 , p2, . • •  ,pi .OOOJJOO denote 1,000,000 distinct prime numbers. 
Then p? and p} are relatively prime if i =!=-j, so by the Chinese remainder 
theorem, there is an integer x such that 

x =  - k (modp/), k � 1 ,2, ' ' ' '  10'. 

It follows that x + k is divisible by p; (i.e., x + k has a repeated prime 
factor), and the answer to the question is yes: take the consecutive integers 
x + l , x  + 2,x + 3, . . .  , x + 1,000,000. 

3.2.10. A lattice point (x, y) E Z2 is visible if gcd(x, y) = I. Prove or 
disprove: Given a positive integer n, there exists a lattice point (a, b) whose 
distance from every visible point is ;;:. n. 

Solution. We will look at a very special case first, but the pattern for the 
general case is a simple generalization which will be clear. Begin by 
choosing nine distinct primes p1 ,  p2, • • •  , p9• We now look for a lattice 
point (a, b) such that 

and 

a - 1 = 0 (mod P1P2P3), 
a =  0 (mod p4p5p6), 

a +  1 = O (modp1p8p9), 

b + 1 = 0 (mod p1p4p1), 

b = 0 (mod P2PsPs). 
b - 1  =: O (modp3p6p9). 

( I )  

(2) 

Geometrically, (a, b) is a point characterized by the following diagram: 

Multiple of 

Multiple of 

I PtP4P7 ----+---+-----+---- b + I  

P2PsPs ----+---+-----+---- h 

PlP6P9 ----+---+-----+---- b - I 
a - 1  a +  I 
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Since p1p2p3, p4p5p6, p1Pf,p9 are relatively prime, the Chinese remainder 
theorem says that an integer a exists which satisfies equations (1). Similarly, 
since p1p4p7, p2p5p8, p3P6p9 are relatively prime, an integer b exists which 
satisfies (2). By the way a and b are chosen, it is clear that the eight lattice 
points closest to (a, b) are invisible. Take, for instance, the point (a,b + I), 
which has the form (k1p4p5p6, k2p1p4p1) for some integers k1 and k2• Since 
p4 is a common factor of the coordinates, this point is invisible. A similar 
argument applies to the other seven closest lattice points. 

The general case can be handled in exactly the same way, and we leave 
this as Problem 3.2.26. 

Problems 

3.2.1 1. Prove that any subset of 55 numbers chosen from the set { I, 2, 
3, . . .  , 100} must contain numbers differing by 10, 12, and 13, but need 
not contain a pair differing by I I .  

3.2.12. The elements of a determinant are arbitrary integers. Determine 
the probability that the value of the deterrninant is odd. (Hint: Work 
modulo 2.) 

3.2.13. 

(a) Determine whether the following matrix is singular or nonsingular: [54401 57668 15982 
33223 26563 23165 
36799 37189 16596 
21689 55538 79922 

1037901 
71489 
46152 

. 

51237 
(Hint: A matrix A is nonsingular if detA =F 0. Examine the parity of the 
determinant of the given matrix; that is, compute its determinant 
modulo 2.) 

(b) Determine whether the following matrix is singular or nonsingular: 

3.2.14 

[64809 91185 
61372 26563 
82561 39189 
39177 55538 

42391 443501 
21165 71489 . 
16596 46152 
79922 51237 

(a) Show that 22x+ t + I  is divisible by 3. 
(b) Prove or disprove: 2x = 2Y (mod n) if x = y (mod n). 
(c) Show that 4h+ 1 + 2Jx+ 1 + I is divisible by 7. 
(d) If n > 0, prove that 12 divides n4 - 4n3 + 5n2 - 2n. 
(e) Prove that (2903)" - (803r - (464)" + (26tr is divisible by 1897. 
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3.2.15. 

(a) Prove that no prime three more than a multiple of four is a sum of two 
squares. (Hint: Work modulo 4.) 

(b) Prove that the sequence (in base-10 notation) 

l l , l l l, l l l l , l l l l l, . . .  
contains no squares. 

(c) Prove that the difference of the squares of any two odd numbers is 
exactly divisible by 8. 

(d) Prove that 270 + 370 is divisible by 13. 
(e) Prove that the sum of two odd squares cannot be a square. 
(f) Determine all integral solutions of a2 + b2 + c2 = a2b2• (Hint: Analyze 

modulo 4.) \ 1 

3.2.16. 

(a) If x3 + y3 = z3 has a solution in integers x, y,z, show that one of the 
three must be a multiple of 7. 

(b) If n is a positive integer greater than I such that r + n2 is prime. show 
that n = 3 (mod 6). 

(c) Let x be an integer one less than a multiple of 24. Prove that if a and b 
are positive integers such that ab = x. then a + b is a multiple of 24. 

(d) Prove that if n2 + m and n2 - m are perfect squares, then m is divisible 
by 24. 

3.2.17. Let S be a set of primes such that a,b E S (a and b need not be 
distinct) implies ab + 4 E S. Show that S must be empty. (Hint: One 
approach is to work modulo 7.) 

3.2.18. Prove that there are no integers x andy for which 

x2 + 3xy - 2y2 = 122. 

(Hint: Use the quadratic equation to 
·
solve for x; then look at the discrimi­

nant modulo 17. Can it ever be a perfect square?) 

3.2.19. Given an integer n, show that an integer can always be found 
which contains only the digits 0 and I (in the base 10 notation) and which 
is divisible by n. 

3.2.20. Show that if n divides a single Fibonacci number, then it will 
divide infinitely many Fibonacci numbers. 

3.2.21. Suppose that a and n are integers, n > I. Prove that the equation 
ax = I (mod n) has a solution if and only if a and n are relatively prime. 

3.2.22. Let a, b, c,d be fixed integers with d not divisible by 5. Assume that 
m is an integer for which 
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is divisible by 5. Prove that there exists an integer n for which 

dn3 + cn2 + bn + a 
is also divisible by 5. 

3. Arithmetic 

3.2.23. Prove that (2l n - 3)/4 and (15n + 2)/4 cannot both be integers 
for the same positive integer n. 

3.2.24. 

(a) Do there exist n consecutive integers for which the jth integer, I .;;; j 
< n, has a divisor which does not divide any other member of the 
sequence? 

(b) Do there exist n consecutive integers for which the jth integer, I < j 
< n, has at least j divisors, none of which divides any other member of 
the sequence? 

3.2.25. Let m0,m" . . .  , mr be positive integers which are pairwise rela� 
tively prime. Show that there exist r + 1 consecutive integers s,s + I, 
. . .  ,s + r such that m; divides s +  i for i = O, 1, . . .  , r. 

3.2.26. Complete the proof of 3.2.10. 

Additional Examples 

3.3. 1 1 .  3.4.3. 3.4.9. 4.1.3. 4.2.4. 4.2.14. 4.3.4. 4.3.5, 4.4.6. 4.4.7. 4.4.8. 4.4.9. 
4.4.19. 4.4.20. 4.4.21. 4.4.22, 4.4.23. 4.4.24. 4.4.29, 4.4.30. 4.4.31 .  

3.3. Unique Factorization 

One of the most useful and far-reaching results at the heart of elementary 
number theory is the fact that every natural number greater than one can 
be factored uniquely (up to the order of the factors) into a product of prime 
numbers. More precisely, every natural number n can be represented in one 
and only one way in the form 

n = pf'p!f.' . . . p:' 

where p1 ,p2, • • •  • Pk are different prime numbers and a1,a2, • • •  , ak are 
positive integers. Here are some easily proved, but very useful, conse­
quences. 

3.3.1. All the divisors of 

n = pf'p!f.' · · · Pk" 
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are of the form 
m � pb'nb' · · · p6• 0 '  b. '  a. ,· - I k 1 r2 k , ""' , """ , , - , • • · , , 
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and every such number is a divisor of n. It follows that n has exactly 
(a1 + lXa2 + I) · · · (ak + I) distinct divisors. 

3.3.2. An integer n = P�'P2' · · · pk' is a perfect square if and only if a1 1s 
even for each i, a perfect cube if and only if each a1 is a multiple of three, 
and so forth. 

3.3.3. Let a,b, . . .  , g be a finite number of positive integers. Suppose their 
unique factorizations are 

a = pf'Pt' · · · Pk', b � pb 'n b ' . .  ·p'• 1 r2 k • . . . , 

where a�o . . .  , ak,b1, • • •  , bko . . .  , g1,  • • •  , gk are nonnegative integers 
(some may be zero). Then 

and 

gcd(a,b, . . .  , g) = Pi'Pi' · · · pt\ 

lcm(a,b, . . .  ' g) = pt''pf' . . . rt·, 
where m1 = min{a1,b1, • • •  , g,} and M1 = max{a1,b1, • • •  , g,.} for each 
= 1,2, . . .  -., k. From this it easily follows that 

gcd(a,b, . . .  , g)lcm(a,b, . . .  , g) = ab · · · g. 

3.3.4. Use unique factorization to show that fi is irrational. 

Solution. Suppose there are integers r and s such that fi = r / s. Then 
2s2 = r2 •. But this equation cannot hold (by unique factorization), for on the 
left side, the prime 2 is raised to an odd power, and on the right side, 2 is 
raised to an even power (2 occurs an even number of times (perhaps zero) 
in s2 and r2). This contradiction implies that /2 must be irrational. 

3.3.5. Find the smallest positive integer n such that n/2 is a perfect square, 
n/3 is a perfect cube, and n/5 is a perfect fifth power. 

Solution. Since n is divisible by 2, 3, and 5, we may assume it has the form 
n = 2"3bY. Then n/2 = 2"- 13bY, n/3 = 2"3b- 15c, nj5 = 2"3b5c- 1• The 
conditions are such that a - I must be even, and a must be a multiple of 
both 3 and 5. The smallest such a is a =  15. Similarly, the smallest values 
for b and c are b = 10 and c = 6. Thus n = 21531056 is the smallest such 
positive integer. 

3.3.6. Prove there is one and only one natural number n such that 
28 + 21 1  + 2� is a perfect square. 
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Solution. Suppose m2 = 28 + 211 + r. Then 

zn = m2 - 28 - 211 
= m2 - 2s( l  + 23) 

' = m2 - (3 X 24) 
� (m - 48)(m + 48). 

3. Arithmetic 

Because of unique factorization, there are nonnegative integers s and t such 
that 

m - 48 = 25, m + 48 = 2', 
Thus m = zs + 48, m = 2' - 48, so that 

2' + 48 = 21 - 48, 
2' - 2' = 96, 

2'(21- • - I) = 25 X 3. 

s + t = n. 

Since .2'-s - I is odd, unique factorization implies that zt-S - I =  3. It 
follows that s = 5, t = 7, and n = 12. 

3.3.7. Let n be a given positive integer. How many solutions are there in 
ordered positive-integer pairs (x, y) to the equation 

____2_ = n'! x +y 

Solution. Write the equation in the form 
xy = n(x + y), 

xy - nx - ny = O, 
(X - n)(y - n) = n2• 

Since we want positive integer solutions, it must be the case that x > n and 
y > n (0 < x < n and O < y  < n imply (x - n)(y - n) < n2). 

Suppose the prime factorization of n is p�'p!f' · · · p:•. Then n2 
= Pia'pf'' · · · pfa•. Each divisor of n2 determines a solution, and therefore 
the number of such solutions is (2a1 + 1)(2a2 + I) · · · (2ak + 1). 

3.3.8. Let r and s be positive integers. Derive a formula for the number of 
ordered quadruples (a,b,c,d) of positive integers such that 

3r7� = lcm(a,b,c) = lcm(a,b,d) = lcm(a,c,d) = lcm(b,c,d). 

Solution. In view of the result of 3.3.3, it is apparent that each of a, b, c, 
and d must have the form 3m7" with m in {0, 1, . . .  , r} and n in {0, 
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I .  . . . , s} .  Also, n must be r for at least two of the four numbers, and n 
must be s for at least two of the four numbers. There are (�)r2 allowable 
ways of choosing the m's in which exactly two m's will equal r; there are 
(�)r allowable ways in which exactly three m's will equal r; there are C!) 
allowable ways in which all m's equal r. Putting this together, there are 

choices of allowable m's. Similarly, there are 

allowable n's. The desired number is therefore (I + 4r + 6r2)(1 + 4s + 6s2). 

3.3.9. Given positive integers x, y, z, prove that 

(x, y)(x,z)(Y,z)[ x, y,z ]'� [ x, y] [ x,z] [ y,z ] (  x, y, z)', 

where (a, . . .  , g) and [a, . . .  , g] denote gcd(a, . . .  , g) and lcm(a, . . .  , g) 
respectively. 

• 
Solution. Because of unique factorization, it suffices to show that for each 
prime p, the power of p on the left side (in its prime factorization) is equal 
to the power of p on the right side. So suppose x = par, y = pbs, and 
z = p et, for integers r,s,t, each relatively prime to p. We may assume 
(because of symmetry, and by relabeling if necessary) that a < b < c. Then 
the power of p in the unique factorization of [x, y, zf is 2c; the powers of p 
in (x, y), (x, z), and (y,z) are a, a, and b respectively. Hence the power of p 
on the left side is 2a + b + 2c. 

In the same manner, the power of p on the right side is b + c + c + 2a 
= 2a + b + 2c. Thus, by our earlier ·remarks, the proof is complete. 

3.3.10. Show that 1000! ends with 249 zeros. 

Solutlou. Write 1000! =  2a5br, where r is an integer relatively prime to 10. 
Clearly, a ;;;. b, and the number of zeros at the end of 1000! will equal b. 
Thus, we must find b. 

Every fifth integer in the sequence 1, 2,3,4,5,6, . . .  , 1000 is divisible by 
5; there are ( 1000/5 ) = 200 multiples of 5 in the sequence. Every 25th 
integer in the sequence is divisible by 25, so each of these will contribute an 
additional factor; there are ( 1000/25 ] = 40 of these. Every I 25th integer 
in the sequence is divisible by 125, and each of these will contribute an 
additional factor; there are ( 1000/125 ) = 8 of these. Every 625th integer 
will contribute an additional factor; there are ( 1000/625 ) = I of these. 
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Thus, b � I 1000/5 I +  1 1000/25 I +  I 10001 125 I + I 1000/625 I 
= 200 + 40 + 8 + 1 = 249. 

In exactly the same manner, the highest power of p in n! is given by the 
(finite) sum 

(n/p l +  [ njp' l +  l n/p' l +  · ·  · .  

3.311. Prove that there are an infinite number of primes of the form 
6n - I. 

Solution. First, notice·that if p is a prime number larger than 3, then either 
p ';';;; I (mod 6) or p = - I  (mod 6). [If p = 2 (mod 6), for example, then 
p = 6k + 2 for some k, which implies that p is even, a contradiction. A 
similar argument works for p = 3 (mod 6) or p = 4 (mod 6).] 

Now suppose there are only a finite number of primes of the form 
6n - I .  Consider the number N = p !- I, where p is the largest prime of the 
form 6n - I .  Write N as a product of primes, say 

N = p!- 1 = plp2 · · · pm · (I) 

Observe that each of the primes p,. is larger than p. For, if Pk ..: p then 
equation (I) shows that Pk divides I ,  an impossibility. Since p is the largest 
prime congruent to - I  modulo 6, it follows that Pk = I (mod 6) for each k. 

If we now consider equation (I) modulo 6, we find that 

p!- I = I (mod 6), 
or equivalently, 

p! = 2 (mod 6). 

But this is clearly impossible, since p! = 0 (mod 6). Therefore, there must be 
an infinite number of primes of the fotm 6n - I. 

Problems 

3.3.12. In a certain college of under 5000 total enrollment, a third of the 
students were freshmen, two-sevenths were sophomores, a fifth were juniors 
and the rest seniors. The history department offered a popular course in 
which were registered a fortieth of all the freshmen in college, a sixteenth of 
all the sophomores, and a ninth of ali the juniors, while the remaining third 
of the history class were ali seniors. How many students were there in the 
history class? 

3.3.13. Find the smallest number with 28 divisors. 

3.3.14. Given distinct integers a,b,c,d such that 

(x - a)(x - b)(x - c)(x - d) - 4 � 0  

has an integral root r, show that 4r- a + b + c + d. 



3.3.15. 

(a) Prove that 3./Ti is irrational. 
(b) Prove that there is no set of integers m,n,p except 0,0,0 for which 

m + n.fi +p.f3 � 0. 
3.3.16. Given positive integers a,b,c,d .such that a3 = b1, c3 = d2, and 
c - a =  25, determine a, b, c, and d. 

3.3.17. Prove that if ab, ac, and be are perfect cubes for some positive 
integers a,b,c, then a, b, and c must also be perfect cubes. 

3.3.18. A changing room has n lockers numbered I to n, and all are 
locked. A line of n attendants P1 ,P2, • • •  , P, file through the room in 
order. Each attendant Pk changes the condition of those lockers (and only 
those) whose numbers are divisible by k: if such a locker is unlocked, Pk 
will lock it; if it is locked, Pk will unlock it. Which lockers are unlocked 
after all n attendants have passed through the room? What is the situation 
if each attendant performs the same operation, but they file through in 
some other order? 

3.3.19. The geometry of the number line makes it clear that among any set 
of n consecutive integers, one of them is divisible by n. This fact is 
frequently useful, as it is for example in the following problems. 

(a) Prove that if one of the numbers 2n - I and 2n + 1 is prime, n > 2, then 
the other number is composite. 

(b) What is the largest number N for which you can say that n5 - 5n3 + 4n 
is divisible by N for every integer n? 

(c) Prove that every positive integer has a multiple whose decimal represen� 
tation involves all ten digits. 

3.3.20. For each positive integer n, let H
n = I +  1/2 + · · · + lfn. Show 

that for n > I ,  Hn is not an integer. (Hint: Suppose Hn is an integer. 
Multiply each side of the equality by lcm(l,2, . . .  , n), and show that the 
left side of the resulting identity is even whereas the right side is odd.) 

3.3.21. If gcd(a,b) = I ,  then show that 

(i) gcd((a + b)". (a - b)") < 2". and 
(ii) gcd(a"' + bm, am - b"') < 2. 

3.3.22. For positive integers a, . . .  , g, let (a, . . .  , g) and [a, . . .  , g] de� 
note the gcd(a, . . .  , g) and lcm(a, . . .  , g) respectively. Prove that 

(a) xyz = (xy, xz,yz)[x,y,z], 
(b) (x(y. 'D � ((x, y). (x.,)]. 
(c) [x,(y.,)] � ((x. y]. (x.,D. 
(d) ([x. y], [x,,],[y, ,D - ((x, y). (x.,). (y.,)]. 
(e) [x, y,z](x, y)(x,z)(y,z) = xyz(x, y,z), (f) (x,y) � (x +  y,(x,yD. 



106 3. Arithmetic 

3.3.23. Let m be divisible by 1,2, . . .  , n. Show that the numbers I +  
m(l + i), i = 0, 1,2, . . .  , n, are pairwise relatively prime. 

3.3.24. The prime factorizations of r + I  positive integers (r > I) together 
involve only r primes. Prove that there is a subset of these integers whose 
product is a perfect square. 

3.3.25. 

(a) Determine all positive rational solutions of xY = y-". 
(b) Determine ali positive rational solutions of xx+y = (x + yy. 
3.3.26. Suppose that a2 + b2 = cl, a, b, c integers. Assume gcd(a,b) 
= gcd(a,c) = gcd(b, c) = I .  Prove that there exist integers u and v such that 
c - b = 2u2, c + fJ = 2v2, gcd(u,v) = I. Conclude that a =  2uv, b = v2 -
u2, c = v2 + u2. (Hint: By examination modulo 4, it is not the case that a 

and b are both odd; neither are they both even. So without loss of 
generality, a is even and b is odd.) 

Conversely, show that if u and v are given, then the three numbers a, b, c 
given by the above formulas satisfy a2 + b2 = c2. 
3.3.27. Find ail sets of three perfect squares in arithmetic progression. 
(Hint: Suppose a <  b < c and b2 - a2 = c2 - b2, or equivalently, a2 + c2 = 2b2

• Let s =  (c + a)/2, t = (c - a)/2. Show that s2 + t2 = b2• Now apply 
the result of 3.3.26.) 

3.3.28. 

(a) Suppose there are only a finite number of primes of the form 6n - 1 ;  
call them p1 ,  . • •  · Pk · Reach a contradiction by considering N 
= (Pt · · · Pd - I. 

(b) Prove that there are an infinite number of primes of the form 4n - I .  

Additional Examples 

1. 10.9, 1 . 10.10. 2.6.1, 3.1 .4, 3.4.8, 4.1.3, 4.2.3, 4.2.16b, 4.4.9, 5.2.1, 5.2.4, 
5.2.6, 5.2.9, 5.2.14, 5.2.15, 5.2.16, 5.2.17. 

3.4. Positional Notation 

We will assume a familiarity with the positional system of representing real 
numbers. Namely, if b is an integer greater than one (called the base), each 
real number x can be expressed (uniquely) in the positional form 

x = A,.A,._ 1  • • •  A 1A0.a1a2a3 • • •  
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where A0, • • •  , A,,a1,a2, • • •  (called the digits) are integers, 0 < A; <  b, 
0 < a1 < b, and there is no integer m such that ak = b - I for ail k > m. 
This representation is used to denote the sum of the series 

A,b" + A,_ 1b" -
1 + · · ·  + A 1b + A 0 + a1b- 1 + a2b -2 + 

3.4.1. Let C denote the class of positive integers which, when written in 
base 3, do not require the digit 2. Show that no three integers in C are in 
arithmetic progression. 

Soludon. Let d denote the common difference for an arbitrary arithmetic 
progression of three positive integers, and suppose that when d is written in 
base 3 notation its first nonzero digit, counting from the right, occurs in the 
kth position. Now, let a be an arbitrary positive integer, and write it in base 
3 notation. The following table gives the kth digit of each of the integers a, 
a + d, and a + 2d, depending upon the kth digit of d and a: 

Then the 
kth digit of 

If the kth digit of d is I 
"' 

kth digit of a is 

0 

0 

2 

a +  2d 2 0 

2 

2 

0 

kth digit of d is 2 
'"' 

kth digit of a is 

0 2 

0 2 

2 0 

2 0 

In every case, one of a, a +  d, a + 2d has a 2 in the kth digit, which means 
the corresponding number does not belong to C. 

3.4.2. Doe• ( x I +  (1x I +  (4x I +  (8x I +  ( !6x I +  (32x ) �  12345 
have a solution? 

Solution. Suppose that x is such a number. It is an easy matter to show that 
195 < x < 196 (since 63 X 195 = 12,285 < 12, 345 < 1 2,348 = 63 x 196). 
Now, write the fractional part of x in base-2 notation (the a,b,c, . . .  are 
either 0 or 1): 

x = 195 + .abcdef - . . . 
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Th<n 

2x = 2  X 195 + a.bcdej . . .  , 
4x = 4  X 195 + ab.cdef . . .  , 

8x = 8 X 195 + abc.def . . .  , 
l6x = 16 X 195 + abcd.ef . . .  , 
32x = 32 X 195 + abcde.J . 

In this form we see that 

lx J - 195, 
[ 2x ) = 2 X  195 + a, 
(4x ] = 4 X 195 + 2a + b, 
[8x ) = 8  X 195 + 4a + 2b + c, 

[ 16x ] = 16 X 195 + 8a + 4b + 2c + d, 
(32x J = 32 X  195 + 16a + 8b + 4c + 2d +  e. 

Adding, we find that (x ] + (2x ll +  (4x ] + (8x ] + [ 16x ] + (32x .II 
= 63 X 195 + 31a + 15b + 7c + 3d +  e. The problem is therefore reduced 
to finding a,b,c,d,e, each 0 or I ,  such that 31a + 15b + 7c + 3d +  e = 60. 
But this equation cannot hold under the restrictions on a,b,c,d,e, since 
3 1a  + 15b + 1c + 3d +  e < 3 1  + 1 5  + 7 + 3 + 1 = 57 <  60. Therefore, 
there can be no such x. 

When an integer is written in decimal notation (base !0), it is possible to 
determine very easily if it is divisible by 2 or 5. There are other divisibility 
tests that are easy to apply. For example: An integer N is divisible by 4 if 
and only if its last two digits are divisible by 4. To see this, write N in base 
JO, 

N = (an!O" + · · ·  + a2IOZ) + (a110 + a0) 
and note that anl(Y' + · · · + a2IOZ is always divisible by 4. Thus, 4 1  N if 
and only if 4 1  (a1 10 + a0). 

One of the most striking and useful divisibility tests is that an integer is 
divisible by 9 if and only if the sum of its digits (in decimal notation) is 
divisible by 9. To see why this is so, notice that 10 = I (mod 9), and 
therefore, by the properties of modular arithmetic, IOZ = I (mod 9), 103 == I  
(mod 9), and so forth. It follows that 

N = aniO" + · · ·  + a1 10 + a0 = an +  · · ·  + a1 + a0 (mod 9). 
A similar proof shows that an integer is divisible by 3 if and only if the 

sum of its digits is divisible by 3. As an application of this test, suppose we 
ask: for what digits x is 4324x98765223 divisible by 3? We simply need to 
add the digits modulo 3, and choose x that will make the sum congruent to 
zero modulo 3. In this case, the sum of the digits is I + x modulo 3, so the 
number is divisible by 3 if and only if x = 2, 5, or 8. 
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3.4.3. When 44444444 is written in decimal notation, the sum of its digits is 
A.  Let B be the sum of the digits of A.  Find the sum of the digits of B. (A 
and B are written in decimal notation.) 

Solution. Let N = 44444444. Then N < (105)4444 = 11f2220, which means that 
when N is written in decimal notation, it will have less than 22,220 digits. 
Since each of the digits of N must be less than or equal to 9, we are certain 
that A < 22.2fl X 9 = 199,980. 

In a similar manner, A has at most 6 digits, so that the sum of the digits 
of A must be less than 54 ( = 6 X 9); that is, B < 54. 

Of the positive integers less than 54, the number with the largest sum of 
digits is 49, and this sum equals 13. Let C denote the sum of the digits of B. 
We have just seen that C < 13. 

From our reasoning preceding the problem, we know that 
N " A  " B = C (mod 9), 

so let us calculate the congruence class of C by calculating the congruence 
class of N. First, 4444 = 9 X 493 + 7, and therefore 4444 = 7 (mod 9). Also, 
73 ::= I (mod 9). Since 4444 = 3 X  1481 + 1 ,  we have 

44444444 = 74444 (mod 9) 
= 73x 1481 X 7 (mod 9) 

= 7 (mod 9). 
Thus, C = 7 (mod 9) and C < 13. The only number which can satisfy both 
of these requirements is C = 7, and the problem is solved. 

3.4.4, An (ordered) triple (xl>x2, x3) of positive irrational numbers with 
x1 + x2 + x3 = 1 is called balanced if each X; < f. If a triple is not balanced, 
say if x1 > ! ,  one performs the folloWing "balancing act": 

B(x1 , x2 ,x3) = (x; , x; ,xJ), 

where x; = 2x, if i =F j and x; = 2x1 � 1 .  If the new triple is not balanced, 
one performs the balancing act on it. Does continuation of this process 
always lead to a balanced triple after a finite number of performances of 
the balancing act? 

Solution. Write x1 ,x2,x3 in base 2 notation in the manner described at the 
beginning of the section, say 

x1 = .a1a2a3 • • • , 
x2 = .b1b2b3 • • •  , 
x3 =.c1c2c3 • • •  , 

where a;, h,., c,. are each 0 or I .  



110 3 .  Arithmetic 

To say that each x, <1 is to say that a1 , b1 , and c1 are each equal to 
zero. Notice that the balancing act consists of moving the "decimal" point 
one place to the right and then disregarding the integer part. Thus, for 
example, if x1,x2,x3 were not balanced, the representations (base 2) of 
x; , x;, x; are given by 

Many examples can be given to show that the process need not termi­
nate in a balanced triple. For example, define x 1 , x2, x3 (using the earlier 
notation) by 

that is, 

a. - ( I 
' 0 

b - ( I 
' 0 

C; = { � 

if i is a perfect square, 
otherwise, 
if i is one more than a perfect square, 
otherwise, 
ifa, + b; = O, 
otherwise, 

XI = . J()()J()()()()J()()()()()()J()() . .  . 
x2 =.010010000100000010 . . .  , 
X) =.OOIOO l l lOOl l l l lOOI . . .  . 

Each of xl > x2, and x3 is irrational (rational numbers are those which 
correspond to periodic "decimal" representations), and their sum is 1 (since 
x1 + x2 + x3 = }  + i + 4 + · · · = 1). Repeated applications of the balanc­
ing act will never trans£orm x P x2,x3 into a balanced triple (because, in 
every case, one of a;,b;,c; is equal to I). 

3.4.5 (Continuation of 2.5.10). Suppose J is a function on the positive 
integers which satisfies 

f(2k) - 2f(k) - I, 
f(2k + I) - 2f(k) + I. 

Let a be an arbitrary positive integer whose binary representation is given 
by 

a =  anan- l . . .  a2a1ao ( = an2n + an - l2n- l + · · · + al2 + ao)· 
Show that 
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where 

b � ( I 
' - 1  

a, = I ,  
if a, = 0. 

I l l  

(The idea is to replace each of the O's in the binary sum for a with - l's; for 
example, for n = 10, /(10102) = 11I'f2 (the 'f's stand for - J's) = 8 - 4  + 
2 - 1  � s. 

Solution. We will induct on the number of digits in the binary representa­
tion or a. 

The result is true for a =  I, so suppose it holds whenever a has fewer 
than k + 1 digits. Now consider an integer a with k + I digits (in base 2), 
'"Y 

a =  akak- l . . .  a2a1a0 . 
If a0 = 0, then a = 2(akak _ 1  . . .  a1), f(a) = 2f(ak . . .  a 1) - 1 = 
2[bk2k- l + · · · + b22 + b1] - I = bk2k + · · · + b222 + b; + b0, and the 
result holds. I f  a0 = 1 ,  then a = 2(akak - l . . .  a 1 ) + I ,  f(a) = 
2/(ak . . .  a 1) + I = 2(bk2k- 1 + · · · + b1) + I = bk2k + · · · + b12 + b0, 
and again the result holds. 

This is a nice application of number representations. Notice how simple 
it is to compute: /(25) = /(110012) = I ITTI2 = 16 + 8 - 4 - 2  + 1 = 19. 

In the next example, a special number representation allows us to 
investigate and understand a set of real numbers of central importance in 
advanced analysis. 

3.4.6. Let K denote the subset of [0, I] which consists of all numbers 
having a ternary expansion 

in which a,. = 0 or 2. This is cailed the Cantor set. Show that K is the 
complement of the union of disjoint open intervals /,, n = 1 , 2, 3, . . .  , 
whose lengths add to 1. 

Solution. First observe that none of the numbers in the interval /1 = O.i)  
are in K .  This is because numbers in this interval have ternary representa­
tions of the form 

(.la2a3a4 • • • )3 . 
Similarly, none of the numbers in the interval /2 = ( !. ; ) are in K, 

because these numbers have ternary representations of the form 
(.Oia3a4a5 • • • )3 • 
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9 

Also, numbers in the interval /3 = (�,J) have ternary representations of the 
form 

(.2la3a4a5 . • •  h ,  
so these are not in K. In the same manner, none of the intervals /4 
= (-if,$), Is = (#,�). /6 = (-fi,.Jr), /7 = dL�) contain elements in K. 

It  is apparent that this process can be carried out systematically. Figure 
3.2 and Table 3.1 help make the idea precise. 

To find In (that is, Xn and Y,.) for an arbitrary positive integer 11, write n 
in base 2 notation: 

n = (akak- l . . .  a2a1h 

(i.e., n = a1 + 2a2 + · · · + 2kak, a; = 0 or 1), let b; = 2a;, i = 1,2, . . .  , k, 
and set /,. = (X,., Y,), where 

bk- I I + Jk- l + 
3k = (.blb2 . . .  bk- l lh ,  

bk- 1 2 + Jk- 1 + 3" = (.blbl · · · bk - 12)3 . 

It is easy to see that X,. and Y .. are elements of K for each n (note that x .. = b1/3 + b2/32 + · · · + (b��._ 1)/(3k- l) + ��'".o�(2/3k+;), and that no el­
ements in /, are in K (the kth digit of every element of I, = (X,, Y,) is I). 
From these facts it follows that the /,'s are disjoint. 

Table 3.1. 1, = (X,, Y,) 

n n x. Y. 
(base 10) (base 2) (base 3) (base 3) 1, (in fractional fonn) 

I 0.1 0.2 (j  ,j) 

2 10 0.01 O.o2 CLH 
3 I I  0.21 0.22 a ,n 
4 ]()() 0.001 0.002 ( -,1,- ,ft) 
5 10! 0.201 0.202 C:H ,N> 
6 ] ]0  0.021 0.022 c;.,,M 
7 ] ] ]  0.221 0.222 (#,#) 
8 1000 0.000! 0.0002 (-/r,ir) 
9 ]()()] 0.2001 0.2002 <H.�l 



3.4. Positional Notation 

Also, the length of I, is 1/3k, where k = ( log2n ) ,  and therefore 

i: l,= i: 3 D log�n D + l = i: [ l"'�- l ( 3 D iog!n n + t ) ] n-1 fl- 1 m=O n=2"' 

� 2m(� ) � _!_ � ( .?. )m � l (�) � 1 .  
m - o  3 3 m .. o 3 3 I 3 

1 13 

Our construction of the l,'s makes it clear that K is what remains after 
the intervals 1, are removed from [0, IJ, and the result is proved. 

Problems 

3.4.7. Prove that there does not exist an integer which is doubled when the 
initial digit is transferred to the end. 

3.4.8. Find the smallest natural number n which has the following proper­
ties: 
(i) its decimal representation has a 6 as its last digit, and 

(ii) if the last digit 6 is erased and placed in front of the remaining digits, 
the resulting number is four times as large as the original number n. 

3.4.9. 

(a) Solve the following equation for the positive integers x and y: 

(360 + 3x)'� 492y04. 

(b) Devise a divisibility test for recognizing when a number is divisible by 
1 1 .  (Hint: 10 � - I  (mod 1 1  ).) 

(c) If 62ab427 is a multiple of 99, find a and b. 
(d) Find the probability that if the digits 0, 1 ,2, . . .  , 9 are placed in 

random order in the blank spaces of 5_383_8_2_936_5_8_203_9_3_76_, 
the resulting number will be divisible by 396. 

3.4.10. Given a two-pan balance and a system of weights of 1 ,3,32, 33, 
34, . . •  pounds, show that one can weigh any integral number of pounds 
(weights can be put into either pan). (Hint: Show that any positive integer 
can be represented as sums and differences of powers of 3.) 

3.4.11. 

(a) Does the number 0.123456789101 1 12 1314 . . .  , which is obtained by 
writing successively all the integers, represent a rational number? 

(b) Does the number O.oi IOtOIOOOIOtOO . . .  , where a, = I if n is prime, 0 
otherwise, represent a rational number? 

3.4.12. Let S =  a0a1a2 • • •  , where a, = 0 if there are an even number of 
l's in the expression of n in base 2 and a, = 1 if there are an odd number of 
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l's. Thus, S = 01 101001100 . . . . Define T = b1b2b3 • . •  , where b; is the 
number of l's between the ith and the (i + l)st occurrence of 0 in S. Thus, 
T = 2102012 . . . .  Prove that T contains only three symbols 0, I ,  2. 

3.4.13. Show there is a one·to·one correspondence between the points of 
the closed interval [0, I ]  and the points of the open interval (0, I). Give an 
explicit description of such a correspondence. 

Additional Examples 

1 . 1 . 1  (Solution 5), 4.4.8, 5.2.5, 6.1.1,  6.1.4, 6.1.8, 6.2.13, 7.6.6. 

3.5. Arithmetic of Complex Numbers 

Recall that a complex number z can be written in several different forms: 
rectangular form: 

polar form: 

exponential form: 

z = a +  bi, 
z = r(cosU + isin9), 

z = re;9, 
where a, b, r, and 0 are related as in Figure 3.3, and e18 = cos9 + i sinU. 
The angle (J is the argument of z (determined only up to a multiple of 2'1T), 
and r is the magnitude (absolute value) of z; these are denoted by argz and 
lzl respectively. The numbers a and b are called the real part and the 
imaginary part of z respectively, and are denoted by Re(z) and Im(z). 

1£ z = a +  bi and w = c + di, then z + w = (a +  c) + i(b + d) corre. 
sponds geometrically to the diagonal of the parallelogram having z and w 
as adjacent sides (see Figure 3.4). 

If z = re;9 and w = sei<r, then zw = rse i(9+"'). Notice that lzwl = rs 
= jzj jwl and argzw = fJ + q:> = argz + argw; that is, under multiplication, 
the absolute values multiply and the arguments add. 

' 

Figure 3.3. 
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(a + c) + i(b + d) 

Figure 3.4. 

3.5.1. If a, b, and n are positive integers, prove there exist integers x andy 
such that 

Solution. Let z = a +  hi. Then (a1 + b2)" = (lzi1Y = lzl1" = (lzl")1. But z " 
= x + (Y for some integers x and y (because a and b are integers), so 
(iz"ll = lx + ryj1 = x2 + y1, and the proof is complete. 

3.5.2. Let n be an integer > 3, and let o:, {J, y be complex numbers such 
that o: " == {J" = y" = I, a +  fJ + y = 0. Show that n is a multiple of 3. 

Solution. We may assume without loss of generality that a = I (for if not, 
divide each side of a +  fJ + y = 0 by a to get I +  fJ/a + yja = 0, and 
then set a1 = I, /J1 = fJ/a, y1 = yja). We will ass.ume that 0 < arg fJ 
< argy < 2'1T. 

Now, fJ and y are of magnitude I (since pn = y" = 1), so they lie on the 
unit circle (center (0,0), radius I). From the equation fJ + y = - 1, we can 
equate imaginary parts to see that lm(/J + y) = lm(/J) + lm(y) = 0, or 
equivalently, Im( fJ ) =  - lm(y) (Figure 3.5). Equating real parts yields 

Figure 3.5. 
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Re( ,8) + Re(y) = - I. Since we also have established that I ,8 1  = lrl = I ,  it 
must be the case that Re( /J) = Re(y) = - ! , and therefore [3 = eh•/3, and 
y = e""'•/3. The fact that pn = I  implies that e2'1fin/J = 1 ,  and this can 
happen only if n is a multiple of 3. 

The following result is very useful; it can be proved by induction. 

De Moivre's lbeorem. For each integer n, 

(cosO + isin8)n= cosn8 + i sinnH. 

(In exponential notation, (e'8t = ejn9.) 

3.5.3. Express cos51J in terms of cosO. 

Solution. An efficient way to do this is to recognize that cos 59 is the real 
part of e5m. Then we can apply De Moivre's theorem: 

cos 50 + i sin 59 = (cosO + isinO )5 

= cos 59 + 5 cos� ( i sin 0 )  + I 0 cos30 ( i2sin� ) 

+ lOcos� (i3sin30 ) + 5 cosO ( i4sin� ) + i5sin50 

= (cos 59 - 10 cos30 sin� + 5 cos 0 sin"' ) 

+i(sin50 - 10sin39cos2f:l + 5sin9cos� ). , 

Equating real and imaginary parts, we get 

cos 59 = cos59 - l0cos39 sin� + 5 cos9 sin"e, 
sin 59 = sin59 � 10sin39cos� + 5 sin 9 cos�. 

For the case of cos 59, 

cos 5 9 =  cos59 � 10cos39 ( 1 - cos� ) + 5cos 9 ( 1 - cos� )2 

= 16cos59 - 20cos39 + 5 cos9. 

3.5.4. Find constants a0,a" . . . , a6 so that 

cos6fl = a6cos69 + a5cos59 + · · · + a1cos9 + a 0 •  

Soludon. As in the last problem, we can do this very nicely by exploiting 
the relationship between trigonometric functions (especially the sine and 
cosine) and complex variables. In this case, write cosO in the form 

t8 -ifJ 
cos O =  e + e 

2 
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and apply the binomial theorem to get 

M ( e;8 + e -i8 )' cos-, = 2 

= ;6 [ (eifl)6 + 6(eifl)5(e -16) + 15(e19)\e-i8)2 

1 1 7  

· + 20(e;8)3(e-18/ + 15(e19)\e-18)4 + 6(e19) (e -")5 + (e -'8)6] 

= ;6 [ ( e6;q + e-618) + 6( e4;9 + e -4;8) + 15( e2i8 + e -219 ) + 20 J 

= � [2cos69 + 2 X 6cos49 + 2 X 1 5 cos29 + 20] 
2 

= ;h [ cos69 + 6cos49 + 15 cos20 + to] . 

3.5.5. Let G,. = x"sinnA +ynsinnB + z "sinnC, where x,y,z,A,B,C are 
real and A + B + C is an integral multiple of "'· Prove that if G1 = G2 = 0, 
then Gn = 0 for all positive integral n. 

Solution. A standard trick (similar to 3.5.3) is to recognize that G, is the 
imaginary part of the expression 

Suppose that Hn is real for n = 0, I, . . .  , k, and consider Hk+ 1 •  We have 
H1H�c. = H�c.+ 1  + H, 

where 

H - a��u + •� � K + ���� 
+yeiBz keikC + ze;cxke ikA + ze;cy"e;ks 

= xyei<A+B>[yk-lei(k- lJB + x"- lei(k- llA J 
+ xzei(A + CJ[ zk- lei(k- I)C + x"- le•lk- 1 JA J 
+ yzei(B+C)[ Jk- lei(k - I )B + zk- lel(k - I )CJ 

= xyei<A +BJ[ Hk- 1 - z" - le i(k. - IJCJ 
+xze1<A +CJ[ Hk- l  _ yk- le•<k- I )B] 

+yzei(B+CJ[ Hk- l  _ xk- lel<k -OA ]  
= Hk- t [  xyei<A +B) + xzei(A +C) + yzei(B+CJ] - xyzei(A + B+C)Hk-2 
= H�c._ 1 K - xyze'(A+B+C)Hk_2, 

where K • xye'<A+BJ + xze1<A+CJ + yzei<B+CJ. 
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Observe that H2 
= H12 + 2K, and since H1 and H2 are real, by hypothe­

sis, it must be the case that K is real. Also, by the inductive assumption, 
Hk- t and Hk-l are real. Because A + B + C is a multiple of w, e;(A + B+C> 
is real. Putting these facts together, the formula of the last paragraph shows 
that H is real. Now since Hk is real, by the inductive assumption, and since 
Hk+ t = H1Hk - H, it follows that Hk+ l  is real. Thus, the result of the 
problem follows by mathematical induction. 

Problems 

3.5.6. 

(a) Given that 13 = 22 + 32 and 74 = 52 +  72, express 13 X 74 = 962 as a 
sum of two squares. (Hint: Let z = 2 + 3i, w = 5 + 7i, and use lzl21wl2 
= lzwl2.) 

(b) Show that 4 arctan t - arctan m- = i w. (Hint: Consider (5 - it( I + i).) 

3.5.7. Suppose A is a complex number and n is a positive integer such that 
A n =  l and (A + If =  I.  Prove that n is divisible by 6 and that A3 = I .  

3.5.8. Show that 

(�) -m + m - (;) + 

and 

(Hint: Consider (I + it.) 

3.5.9, By considering possible magnitudes and arguments, 

(a) find ali values of N; 
(b) find which values of (3 - 4i)-318 lie closest to the imaginary axis. 

3.5.10. 

(a) Prove that if x - x -
1 

= 2isin8 then xn - x -n = 2isinn8. 
(b) Using part (a), express sin2'W as a sum of sines whose angles are 

multiples of e. 

3.5.11. Show that 
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3.5.12. 

(a) Prove that 

.;o, 1 ,. '(") co'k9 ( 0 
k�o(- ) k cos"'

= 
( - 1 ) 1 +n/2tanne 

if n is odd, 
if n is even 

(Hint: Consider i tanll = - 1 + (cos O +  isinll)/cosll.) 
(b) Prove that 

if n is odd, 

if n is even. 

(Hint: Consider - 1  + cosll[cos8 + isin8] = isin9[cos8 + isinOJ.) 

3.5.13. Prove that 

-- = I - tan-v + tan u - · · · . co,n9 (") '" (") � 
cosno 2 4 

1 19 

3.5.14. Show that if e10 satisfies the equation zn + an _1zn- t + · · · + 
a 1z + a0 = 0, where the a, are real, then an_ 1sin 9 + an _2sin 28 + · · · 
+ a1sin(n - 1)8 + ao5inn8 = 0. 

Additional Examples 

1.3.2. 4.2.10. 4.2.1 1 .  4.2. 13. 4.2. 15. 4.2.17. 4.2.20. 4.2.22. 4.3.18. 5.2.2. 5.2.3. 
5.2. 1 1 ,  5.3.4, 5.3.10, 5.4. 1 1 ,  5.4.28, 5.4.29. Also, see Section 8.4 (Complex 
Numbers in Geometry). 



Chapter 4. Algebra 

Algebra is one of the oldest branches of mathematics, and it continues to 
be one of the most active areas· of mathematical research. The subject is 
still rich in new ideas, and it shows no signs of soon becoming exhausted or 
barren. 

In high�school algebra one learns to manipulate equations and formulas 
into equivalent forms which are more understandable and interpretable. A 
large proportion of the problems in this book attest to the usefulness of this 
basic subject. One of the most important algebraic manipulations involves 
factorization of algebraic expressions. In the first section we will look at 
problems whose solution depends upon knowing some elementary factor­
ization formulas. 

The middle two sections are devoted to problems from classical algebra: 
namely, the study of polynomials. Much of this material once belonged to a 
branch of algebra called the theory of equations. The rudiments of this 
subject are now scattered throughout the high-school and college curricu­
lum. In these sections we draw together the ideas of this subject that 
constitute essential knowledge for problem solving. 

In the final section we introduce those topics which professional mathe­
maticians think of when they speak of algebra. Here the emphasis· is on 
formal systems and formal thinking. The subject contains a whole new 
world of concepts which generalize the classical ideas and methods. We 
introduce the most fundamental structures that make up the subject mat­
ter: groups, rings, and fields . 

... 
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4.1. Algebraic Identities 

In this section we will look at applications of some of the most basic 
factorization formulas, which include the following: 

a2 - b2 = ( a- b)(a + b), 
a2 + lab + b2 = (a +  b)2, 

a2 + b2 + c2 + lab + 2ac + 2bc = (a + b + c)2, 
a" - b" = (a - b)(a"- 1 + a"-2b + · · · + ab"- 2 + b"- 1). 

If n is an odd positive integer, we can replace b by -b in the last formula 
and get a formula for the factorization of the sum of two perfect nth 
powers: 

a" + b" = (a + b)(a"- 1 - a"-2b + · · ·  - ab"- 2 + b"- 1), n odd. 

4,1,1, Show that n4 - 20n2 + 4 is composite when n is any integer. 

Solution. The idea is to try to factor the expression. If we proceed 
n4 - 20n2 + 4 = (n4 - 20n2 + 100) - %  = (n2 - ID? - 96, we are stymied 
because 96 is not a perfect square. It does work, however, to argue that 
n4 - 20n2 + 4 = (n4 - 4n2 + 4) - l6n2 = (n2 - 2i - (4n? = (n2 - 2 - 4n) 
X (n2 - 2 + 4n). If we can show that neither of these factors equals ::!: I ,  we 

are done. 
Suppose n2 - 1 - 4n = I ;  or equivalently, n2 - 4n - '3 = 0. By the qua­

dratic formula, n = 1 ± ff, and this is not an integer. Thus, if n is an 
integer, n2 - 2 - 4n is not equal to I .  A similar argument works for the 
other three cases. 

4.1.2. Determine all solutions in real numbers x, y,z, w of the system 
x+  y + z = w, 

l + l. + l :c l. . X y Z W 

Solution. Some initial guesses lead us to suspect solutions only when one of 
x, y,z is equal to w and the other two are negatives of one another (for 
example, x ""'  w, y = - z). Certainly, these are solutions, but how can we 
prove there are no others? 

From the second equation, 
y: + x: + xy _ 1 

xyz - w · 
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and this, together with the first equation yields 
(x + y +  z)(yz + xz + xy) = xyz. 

This expands to 

x)' + x2z + y�x + y1z + z2x + z).> + 2xyz = 0, 

which in tum factors into 

( x + y)(x + ')(y + ') � 0. 

4. Algebra 

Our initial conjecture follows (i.e. one of x + y, x + z, y + z equals zero, 
say y =  -z, and thus x = x + y +  z = w). 

4.1.3. 

(a) Find all pairs (m,n) of positive integers such that 13"' - 2n1 = l .  
(b) Find all pairs (m,n) of integers larger than 1 such that IP"' - qnl = I ,  

where p and q are primes. 

Solution. (a) When m = I or 2 we quickly find the solutions 

(m, n) � (I, 1), ( I .  2), (2, 3). 

We will show there are no others. 
Suppose that (m,n) is a solution of 13"' - 2n1 = I, where m > 2 (and 

hence n > 3). Then 3"' - zn  = I, or 3"' - 2n = - I. 
Case 1. Suppose 3"' - 2n = - l, n > 3. Then 3"' = - I  (mod 8). But this 

congruence cannot hold, since 3"' = I or 3 (mod 8), depending upon 
whether m is even or odd (3 � 3 (mod 8), 32 � I (mod 8), 33 = 3 (mod 8), 
34 = I (mod 8), . . .  ). 

Case 2. Suppose 3"' - 2n .., I, n > 3. Then 3"' = I (mod 8), so m is even, 
say m = 2k, k > I .  Then 2n = 32k - I =  (3k - IX3k + I). By unique factor­
ization, 3k + 1 = 2' for some r, r > 3. But, by case I, we know this cannot 
happen. This completes the proof of part (a). 

(b) It is immediate that not both p and q are odd, for this would imply 
that p"' - qn is even. So suppose that q = 2. We will show, by using only 
the algebraic identities of this section, that the only solution is that found in 
part (a), namely 132 - 231 = 1 .  

Suppose m and n are larger than I ,  and that IP"' - 2n1 = I. I t  cannot be 
the case that m and n are both even, for if m = 2r and n = 2s, then 

I �  lp" - 2"1 � lp'' - 2''1 � lp' - 2'llp' + 2'1, 
and this is impossible (since p' + 2s > I). 

Suppose that m is odd. Then 

2n = p"' ± I = (p ± l)(p"'- 1 + pm-2 + . . .  - p + J), 
and this is impossible, since the last factor on the right side of the equation 
is an odd number larger than I. 

Therefore, it must be the case that m is even and n is odd. 
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Suppose m = 2rk, where k is odd and suppose k > I .  Then 

2n =pm ± 1 = (p2'(± J = (p2' ± l)({p2y- l ± . .  , _ (p2') + 1 ), 
and again the factor on the right is odd, a contradiction. 
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Therefore, m = 2r for some positive integer r and n is odd, and our 
equation has the form lp2' - 2n1 = I .  Either p2' - 2n = I  or pr - 2n = - I. 

Case ]. Jfp2' - 2n =  - I, then 

p" � 2" - I �  (2 - 1)(2"-' + 2"-' + · · · + 2 + I) = 3  (mod4), 

but this is impossible, since for any odd integer x, x2 = I  (mod 4). 
Case 2. If p2' - 2n = I, then 2n = p2' - I =  (p2'_ , - l)(pr' + I). The 

only way both py- ' - I and p2' ' + 1 could be powers of 2 is for pr' - I 
= 2 and p2'- ' + I =  4. Adding these yields p2'- ' = 3, and this implies that 
p = 3, r = I, m = 2, and n = 3. This completes the proof. 

4.1.4. Prove that there are no prime numbers in the infinite sequence of 
integers 

I 000 I , I 000 I 000 I , I 000 I 000 I 000 I , . . . 

Solution. The terms of the sequence can be written as 

1 + 10", I + HY' + 108, • . •  , I + HY' + · · · + I04n, . . .  
Consider, more generally, then, the sequence 

I +  x4, I + x4 + xs, . . .  , I +  X4 + . . .  + x4n, . . . 
for an arbitrary integer x, x > I .  

If  n is  odd, say n = 2m +  I , 

l + x4 + xs +  . . .  + x4(2m+ IJ 
= ( 1  + x4) + xs(l + x4) + . . . + xs'"(l + x4) 

= (I +  x4)(1 + x8 +. · · · + x8'"). 

Thus, if m > 0, the number is composite. For m = 0 and x = 10, we also get 
a composite number, since IOOOI = 73 X 137. 

Suppose n is even, say n = 2m. Then 

l + x4 + · · ·  
1 4 2m+ I 

+ x4(2m) = 
- (x )  

I - x4 

= (l + x2 +  . . .  + (x2)2m) 
x (I - x2 +  · · ·  + (x2)2'"). 

This factorization shows the number is composite. 
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Problems 

4.1.5. 

(a) If a and b are consecutive integers, show that a2 + b2 + (abi is a 
perfect square. 

(b) If 2a is the hannonic mean of b and c (i.e., 2a = 2/(1/b + 1/c)), show 
that the sum of the squares of the three numbers a, b, and c is the 
square of a rational number. 

(c) If N differs from two successive squares between which it lies by x and 
y respectively, piove that N - xy is a square. 

4.1.6. Prove that there are infinitely many natural numbers a with the 
following property: The number n4 + a is not prime for any natural 
number n. 

4.1.7. Supposing that an integer n is the sum of two triangular numbers, 

a2 + a  b2 + b  n � -- + ---
2 2 

write 4n + I as the sum of two squares, 4n + I = x2 + y2, and show how x 
andy can be expressed in terms of a and b. 

Show that, conversely, if 4n + 1 = x2 + y2, then n is the sum of two 
triangular numbers. 

4.1.8. Let N be the number which when expressed in decimal notation 
consists of 91 ones: 

N = I I 1  . . . 1 .  � 
91 

Show that N is a composite number. 

4.1.9. Prove that any two numbers of the following sequence are relatively 
prime: 

2 + 1 ,22 + 1 ,24 + 1,28 + 1, . . .  , 22" + 1, . . . .  
Show that this result proves that there are an infinite number of primes. 

4.1.10. Determine all triplets of integers (x, y,z) satisfying the equation 

x3 + YJ + z3 = (x + y +  z)3. 

Additional Examples 

1 .8.4, 1 . 12.7, 3.3.6, 4.2.5, 5.2.15, 5.3.7, 7.1 . 1 1 .  Also, see Section 5.2 
(Geometric Series). 
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4.2. Unique Factorization of Polynomials 

A polynomial of degree n (n a nonnegative integer) in the variable x is an 
expression of the fonn 

anxn + an _ 1xn- l +  · · ·  + a1x + ao ,  
where a0,a 1 ,  • • •  , an are constants (called the coefficients), and an =I= 0. A 
polynomial all of whose coefficients are zero is called the zero polynomial; 
no degree is assigned to the zero polynomial. The coefficient an is called the 
leading coefficient; if it is equal to I we say the polynomial is a monic 
polynomial. Two polynomials are called (identically) equal if their coeffi­
cients are equal tenn for term, that is, their coefficients for the same power 
of the variable are equal. 

If the coefficients of the polynomial P(x) are integers, we say that P(x) 
is a polynomial over the integers; similarly if the coefficients are rationals, 
we say the polynomial is over the rationals, and so forth. 

In many respects polynomials are like integers. They can be added, 
subtracted, and multiplied; however, just as in the case of integers, when a 
polynomial divides another the result will be a quotient polynomial plus a 
remainder polynomial (more on this later). A polynomial F divides a 
polynomial G (exactly) if there is a polynomial Q such that G = QF (that 
is, G is a multiple of F). A polynomial H is a greatest common divisor of 
polynomials F and G if and only if ( I )  H divides F and G and (2) if K is 
any other polynomial that divides F and G, then K divides H. It can be 
shown that H is unique up to a constant multiple. 

Also, as in the case of integers, there is a division algorithm. 

DlvisJon Algorithm for Polynomials. If F(x) and G(x) are polynomials over a field 
K (for example, K might be the rmionals, the reals, the complexes, the imegers 
modulo p for p prime), there exist unique polynomials Q(x) and R(x) over the field 
K such that 

F(x) = Q(x)G(x) + R(x), 
where R(x) ;; 0 or degR(x) < degG(x) (deg denotes degree). 

Moreover, if K is an integral domain (such as the integers), the same result 
holds provided G(x) is a monic polynomial. 

As an example of the division algorithm for polynomials, let F(x) = 3x5 + 
2x2 - 5 and G(x) = 2x3 + 6x + 3. Then 

9x3+ -}x2 - 5  
- 9x3 - 27x - � 

1 x2+ 27x - t 
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In this case, Q(x) = tx2 - ;. and R(x) = tx2 + 27x - -f .  (This example 
should rnake it clear that the algorithm will work in the general case only if 
the coefficients come from a field; however, it also should be clear that an 
integral domain is sufficient if the divisor is monic.) 

As in the case of the integers, the division algorithm can be used to find 
the greatest common divisor of two polynomials. Furthermore, as in the 
case of the integers, if F and G are polynomials (over a field K), there are 
polynomials S and T (over K) such that 

gcd(F, G) � SF + TG, 
where gcd(F, G) denotes the greatest common divisor of F and G. 

4.2.1. Find a polynomial P(x) such that P(x) is divisible by x1 + I  and 
P(x) + I is divisible by x3 + x2 + 1 .  

Solution. By the conditions of the problem, there are polynomials S(x) and 
T(x) such that 

P(x) � (x' + IJS(x), 

P(x) + I =  (x3 + x2 + l )T(x). 
It follows that (x2 + l)S(x) = (x3 + x2 + l)T(x) - I, or equivalently 

(x3 + x2 + l)T(x) - (x2 + l)S(x) = I. 
By our remarks preceding the example, x3 + .x2 + I and x2 + I are "reJa. 
tively prime" and we can use the Euclidean algorithm for polynomials to 
find S(x) and T(x). Thus, we have 

x3 + x1 + I =  (x + l)(x2 + I) + (- x), 

x2 + I = - x(-x) + I, 

and "working backwards," we have 
l = (x1 + l) + x(-x) 
� (x' + l) + x[(x' + x' +  1) - (X +  l )(x' + IJ] 

� ( x' + IJ[ I - x( x + I )  J + x[ x' + x' + I ]  
= (x3 + x2 + l)x - (x2 + l)(x2 + x - 1). 

In this fonn, we find that we can take S(x) = .x2 + X - I and T(x} = x. It 
follows that 

P(x) = (x2 + l)(x2 + x - 1). 

4.2.2. Prove that the fraction (n3 + 2n)/(n4 + 3n2 + I) is irreducible for 
every natural number n. 
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Solution. We have 

n4 + 3n2 + I =  n(n3 + 2n) + (n2 + 1). 

n3 + 2n = n(n2 + l)  + n, 

n2 + I =  n(n) + I, 

n - n(l). 

127 

It follows that gcd(n4 + 3n2 + l,n3 + 2n) = I, and the proof is complete. 

Let F(x) be a polynomial over an integral domain D, and consider the 
polynomial equation F(x) = 0. If an element a of D is such that F(a) = 0, 
we say that a is a root of F(x) = 0, or that a is a zero of F(x). The following 
very useful theorem is an easy application of the division algorithm. 

Factor 1beorem. If F(x) is a polynomial over an integral domain D, an element a 
of D is a root of F(x) = O  if and only if x - a is a factor of F(x). 

By repeated application of the factor theorem, we can prove that there is a 
unique nonnegative integer m and a unique polynomial G(x) over D such 
that 

F(x) - (x - a)"G(x), 
where G(a) =F 0. In this case, we say that a is a zero of multiplicity m. 

The next two examples illustrate the use of the factor theorem. 

4.2.3. Given the polynomial F(x) = xn + an_ 1xn- l + · · · + a1x + a0 
with integral coefficients a0,a1, • • •  , an-I > and given also that there exist 
four distinct integers a,b,c,d such that F(a) = F(b) = F(c) = F(d) = 5, 
show that there is no integer k such that F(k) = 8. 

Solution. Let G(x) = F(x) - 5. By the factor theorem, x - a, x - b, x - c, 
and x - d are factors of G(x), and we may write 

G(x) - (x - a)(x - b)(x - ')(x - d)H(x). 
where H(x) is a polynomial with integer coefficients. If k is an integer such 
that F(k) = 8, then G(�) = F(k) - 5 = 8 - 5 = 3, or equivalently, 

(k - a)(k - b)(k - ')(k - d)H(k) - 3. 

The left side represents a product of five integers, and each of the integers 
k - a,k - b,k - c,k - d must be distinct, since a,b,c,d are distinct. But 
this is impossible, since at most one of the numbers k - a, k - b, k - c, 
k - d can equal ± 3, so the other three must be ± I. Thus, such a k cannot 
be found. 
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4.2.4. Prove that if F(x) is a polynomial with integral coefficients, and 
there exists an integer k such that none of the integers F(l), F(2), . . .  , F(k) 
is divisible by k, then F( x) has no integral zero. 

Solution. It is equivalent to prove that if F(x) has an integral zero, say r, 
then for any positive integer k, at least one of F(l), F(2), . . .  , F(k) is 
divisible by k. So suppose F(r) = 0. By the factor theorem, we can write 

F(x) - (x - ,)G(x), 
where G(x) is a polynomial with integer coefficients. From the division 
algorithm for integefs, there are integers q. and s such that r = qk + s, 
0 < s .;;; k (note the inequalities on s). Substituting s = r - qk into the 
equation above, we get 

F(') - (' - ,)G(') - - qkG(')· 
This equation shows that F(s) is divisible by k ( G(s) is an integer), and this 
completes the proof. 

A simpler approach for this problem, based on modular arithmetic, is to 
observe that if a === b (mod k) then F(a) = F(b) (mod k). The result follows 
directly from the fact that for any given integer a, F(a) is congruent to one 
of F(l), . . . , F(k) modulo k, and by assumption, none of these is divisible 
by k. 

The unique-factorization theorem for integers states that every integer 
can be written uniquely as a product of primes. There is a similar theorem 
for polynomials: every polynomial over a field can be written Uniquely as a 
product of irreducible polynomials (i.e., prime factors). In the case of the 
complex numbers, the irreducible factors are the first-degree (linear) poly­
nomials. In the case of the real numbers, the irreducible polynomials are 
the linear polynomials and the quadratic polynomials with negative dis­
criminant (that is, those of the form ax2 + bx + c, where b2 - 4ac < 0). 

As in the case of integers, unique factorization is often a useful way of 
representing a polynomial. The next two examples illustrate the idea. 

4.2.5. Prove that every polynomial over the complex numbers has a 
nonzero polynomial multiple whose exponents are all divisible by 
1,000,000. 

Solution. Let the given polynomial be represented by the unique factoriza­
tion 

P(x) = A (x - s,)m'(x - s2)m' · · · (X - sk)m', 
where A is a constant, s 1 ,  • • •  , sk are the roots of P(x) of multiplicities 
m�o . . .  , mk respectively. For any positive integer a (e.g., a =  1,000,000), 
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(xa - sr>/(x - s;) is a polynomial over the complex numbers (see Section 
4.1). Set 

Then Q(x) is a polynomial over the complex numbers, and 
P(x) Q(x) = A (x- s1)m, · · · (x - sk)"'' 

is a polynomial all of whose exponents are divisible by a. 

4.2.6. Let f be a polynomial with real coefficients. Show that all the zeros 
off are real if and only if f2 cannot be written as the sum of squares 

F = g2 + h2 
where g and h are polynomials with real coefficients and deg g =F degh. 

Solution. Suppose j2 = g2 + h2, where g and h are polynomials with real 
coefficients, deg g =F degh, and suppose that all the zeros of f are real. 
Write f in factored form: 

f(x) = A  (x - a1)"'• • • • (x � ak)''", 
where A is a nonzero real number. 

From the equation 

A'(x - a,)'•, · · · (x -.a<)'••� ( g(x))'+ (h(x))' 
it follows that for each i = 1 ,2 ,  . . . , k, 

o �  ( g(a,))'+ (h(a,))'. 
Since g(a;) and h(a;) are both real numbers, it must be the case that 
g(a;) = 0 and h(a;) = 0. In fact, it follows that the multiplicity of these zeros 
is at least m,. Thus, the factor theorem implies that there will be polynomi­
als g1(x) and h1(x) with real coefficients such that g(x) = f(x)g1(x) and 
h(x) = f(x)h1(x). It follows that 

I � ( g,(x))'+ (h,(x))'. 
But this equation is impossible, because deg g1 =1= degh1 (that is, not both 

of g1 and h1 are constants). This contradiction implies that f must have a 
zero that is not a real number. 
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Now suppose that not all the zeros off are real numbers, and write f in 
factored form: 

f m " { ' b )"' { ' b )"' (x) = A (x - a1) ' · · · (x - a,) ' x  + 1x + c1 • • •  x + ,x + cs , 
where A is a real number, m 1 , • • •  , m, are nonnegative integers, s is a 
positive integer and nl ' . . .  , ns are positive integers, a;.b1 ,c1 are real num­
bers, and b} - 4c1 < 0 for j = 1 ,  . . .  , s. We have 

x2 + b1x + c1 == (x2 + b1x + tb]) + (c1 - tbf) 
' 

= (x + !h1)2+ ( f�4c1 - b] ) , 
which shows that each quadratic factor off is a sum of squares. Replace 
each quadratic factor in the unique factorization of l by its representation 
as a sum of squares. This yields an equation of the form 

Jl(x) = Al(x - a,)lm, . . .  (x - a,)lm, 
x (gr(x) + hf(x))"' · · · (g;(x) + h;(x))"', 

where g1 , • • •  , &,h1, • • •  , h, are polynomials, deg g,. = 1 ,  and degh; = 0. 
The result now follows by repeated use of the fact that the product of a 

sum of two squares with another sum of two squares is itself expressible as 
a sum of two squares: 

(!' + g')(h' + k') � (Jh - gk)'+ (Jk + gh)'. 
Also, in this identity, if degf > deg g and degh > degk, then deg(jh - gk) 
> deg(jk + gh). Thus, we see that there are polynomials g(x) and h(x) with 
real coefficients, deg g(x) =fo- degh(x) such that J2 = g2 + h2. 

Problems 

4.2.7. Find polynomials F(x) and G(x) such that 

(x' - I)F(x) + (x' - l)G(x) � x - I. 
4.2.8. What is the greatest common divisor of xn - l and x"' - l? 

4.2.9. Letj(x) be a polynornial leaving the remainder A when divided by 
x - a and the remainder B when divided by x - b, a =fo- b. Find the 
remainder whenj(x) is divided by (x - a)(x - b). 
4.2.10. Show that x4a + x4f>+ 1 + x4c+l + x4d+3, a,b,c,d positive integers, 
is divisible by x3 + x1 + x + 1 .  (Hint: x3 + x2 + x + t = (x2 + l)(x + 1).) 

4.2.11. Show that the polynomials (cosfJ + x sinfJt - cosnfJ - x sinnfJ is 
divisible by x1 + 1. 
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4.2.12. For what n is the polynomial I +  x2 + x4 + · · · + x2n-2 divisible 
by the polynomial I + x + x2 + · · · + xn- t'? 

4.2.13. A real number is called algebraic if it is a zero of a polynomial with 
integer coefficients. 

(a) Show that If + ff is algebraic. 
(b) Show that cos('1T/2n) is algebraic for each positive integer n. (Hint: Use 

de Moivre's theorem to express cosnx as a polynomial in cosx.) 

4.2.14. If P(x) is a monic polynomial with integral coeHicients and k ts 
any integer, must there exist an integer m for which there are at least" k 
distinct prime divisors or P(m)? (Hint: First prove, by induction, that there 
are k distinct primes qt> . . .  , qk and k integers n t >  . . .  , nk such that q; 
divides P(n,) for i =  I, . . .  , k. Then prove that a prime q divides P(n) if 
and only if q divides P(n + sq) for all integers s. An a£firmative answer 
follows from these facts together with an application of the Chinese 
Remainder Theorem.) 

4.2.15. 

(a) Factor x8 + x4 + I into irreducible factors (i) over the rationals, (ii) 
over the reals, (iii) over the complex numbers. 

(b) Factor xn - I over the complex numbers. 
(c) Factor x4 - 2x3 + 6x2 + 22x + 13 over the complex numbers, given 

that 2 + 3i is a zero. 

4.2.16. Here are two results that are useful in factoring polynomials with 
integer coefficients into irreducibles. 

Ralionai·ROOI Theorem. If Ptx) = anx" + an_1xn- l + · · · + a1x + ao is a poly­
nomial with integer coefficients, and if the rational number rjs (r and s relatively 
prime integers) is a root of P(x) = 0, then r divides a0 and s divides an. 

Gauss' Lemma. Let P(x) be a polynomial with integer coefficients. If P(x) can be 
factored into a product of two polynomials with rational coefficients, then P(x) can 
be factored into a product of two polynomials with integer coefficients. 

(a) Let j(x) = anxn + an_1xn-! + · · · + a1x + a0 be a polynomial of de­
gree n with integral coefficients. If a0, an, and j(l)  are odd, prove that 
f(x) = 0 has no ration,al roots. 

(b) For what integer a does x2 - x + a  divide x13 + 1- + 90? 

4.2.17. 

(a) Suppose f(x) is a polynomial over the real numbers and g(x) is a 
divisor of f(x) and f'(x). Show that { g(x)i divides f(x). (This fact can 
be used to check j(x) for multiple roots.) 
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(b) Use the idea of part (a) to factor x6 + x4 + 3x2 + 2x + 2 into a 
product of irreducibles over the complex numbers. 

4.2.18. Determine all pairs of positive integers (m,n) such that I + x" + 
x2" + · · · + x""' is divisible by I +  x +  x1 + · · · + x "'. 
4.2.19. 

(a) Let F(x) be a polynomial over the real numbers. Prove that a is a zero 
of mutliplicity m if and only if F(a) = F'(a) = · · · = F("'l(a) = 0 and 
ptm+ I)( a) =!= 0. 

(b) The equation j(:X) = x" - nx + n - I =  0, n > I, is satisfied by x = 1 .  
What is the multiplicity of this root? 

4.2.20. If n > I, show that (x + It - x" - I = 0 has a multiple root if and 
only if n - 1 is divisible by 6. 

4.2.21. Let P(x) be a polynomial with real coefficients, and assume that 
P(x) > 0 for all x. Prove that P(x) can be expressed in the form 
( Q1(x)f + ( Q2(x))2 + · · · + ( Q,(x)/ where Q1(x), Q2(x), . . .  , (1(x) are 
polynomials with real coefficients. 

4.2.22. 

(a) Set w = cos(2w / n) + i sin(2w / n). Show that 

xn- l + xn-2 + . . .  + x + l = (x -w)(x - w2) · · · (x - wn- l). 
(b) Set x = I and take the absolute value of each side to show that 

· 'IT · 21T . (n - l)w n sm - sm - · · · sm = -- .  n n n 2n - 1  

Additional Examples 

1. 12.2. 1.12.5. 6.5.13. 6.9.3. 

4.3. The Identity Theorem 

Let P be a nonzero polynomial of degree n over an integral domain D. 
According to the factor theorem, if a is a root of P(x) = 0, there is a 
polynomial Q of degree n - I such that P(x) = (x - a)Q(x). Using this 
fact, an easy induction argument shows that P has at most n zeros. 

The preceding observation has a very important corollary. Suppose that 
F and G are polynomials over a domain D, each of degree less than or 
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equal to n, and suppose that F and G are equal for n + I distinct values. 
Then F- G is a polynomial of degree less than n + I with n + I zeros. If 
F- G is not the zero polynomial, we have a contradiction to the reasoning 
in the previous paragraph. Therefore, F - G is the zero polynomial, and it 
follows that F equals G (coefficient for coefficient). (For another proof, see 
6.5.10.) 

Identity Theorem. Suppose that two polynomials in x (Wer an integral domain are 
each of degre < n. If these polynomiolr have equal values for more than n distinct 
values of x, then the two polynomials are identical. 

4.3.1. Detennine all polynomials P(x) such that P(x2 + I) =  (P(x)? + I 
and P(O) = 0. 

Solution. We start by testing some cases: 

P(l) � P(O' + I) � (P(O))' + I � I, 
P(2) � P(l' + I) �  (P(I))' + I �  I +  I �  2, 
P(5) � P(2' + I) � ( P(2))' + I � 4 + I � 5, 

P(26) � P(5' + I) � ( P(5))' + I � 5' + I � 26. 

In general, define x0 = 0, and for n > 0 define x., = x;_ 1 + I. Then an easy 
induction argument shows that P(x.,) = xn . Thus, the polynomial P(x) and 
the polynomial x are equal for an infinite number of integers, and there· 
fore, by the identity theorem, P(x) = x. That is, there is only one polyno· 
mial with the stated property, namely, P(x) = x. 

4.3.2. Prove that if m an n are positive integers and I < k < n, then 

Solution. We proved this identity in Chapter I (see 1.3.4) by using a 
counting argument. Here is another proof, based on the identity theorem. 
The technique is standard: the polynomials ( I  + x)m(l + xt and ( I  + 
x)m+n are equal for all values of x. Therefore, by the identity theorem, 
their coefficients are equal; that is, for each k, the coefficient of xk in 
( I + x)m(f"+ xf is equal to the coefficient of xk in (1 + x)m+n. It follows 
that 

k � { m ){") _ (m + ")
· ,_0 k - r r k 
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4.3.3. For each positive integer n, show that the identity 
" 

(x +y(= � (" )x'Y�-\ x, y positive integers 
k -0 k 

implies the identity 
" 

(x +yf= � (Z}xkyn-k, x,y real numbers. 
k=O 

Solution. Let y0 be an arbitrary but fixed positive integer, and let 

P(x) � (x + y0)", 

4. Algebra 

P(x) and Q(x) are polynomials in x, and they are equal whenever x is a 
positive integer. Therefore, by the identity theorem, P(x) and Q(x) are 
equal for all real numbers x. 

Now, let x0 be a fixed real number, and let 
" 

S(y) = (x0 + y)� and T(y) = � ( Z)xtyn-k_ 
k•O 

S(y) and T(y) are polynomials in y, and since they are equal whenever y is 
a positive integer, it follows that S(y) = T(y) for all real numbers y. This 
completes the proof. 

(Incidentally, the identity 

x, y positive integers 

can be proved neatly as follows. Let S = { I ,  2, . . .  , n } ;  let A be a set with 
x elements and B be a set, disjoint from A, with y elements. Now, count, in 
two different ways, the number of functions from S to A U B. This, 
together with the preceding solution, constitutes another proof of the 
binomial theorem.) 

4.3.4. Is x5 - x2 + I irreducible over the rationals? 

Solution. By the rational-root theorem (see 4.2.16), the only possible ra­
tional zeros are ± I,  and neither of these is a zero. Therefore, if the 
polynomial is reducible, it must necessarily be the product of a quadratic 
and a cubic. So suppose 

x5 - x2 + I = (x2 + ax + b)(x3 + cx2 +  dx + e). 
By Gauss' lemma (see 4.2.16), we may assume that a,b,c,d,e are integers. 
Since these polynomials are equal for all x, their coe£ficients are equal; so, 



4.3. The Identity Theorem 

equating coefficients, we get the following equations: 

a +  c = 0, 
b + ac + d = O, 
c + ad + e =  - I , 

bd + ae = O, 
be �  I .  
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It is not difficult to show these equations cannot hold simultaneously. For 
example, the last equation shows that b and e are both odd. Thus, the 
fourth equation shows a and d have the same parity. Similarly, the first 
equation shows that a and c have the same parity. Therefore a, c, and d 
have the same parity. But then ac + d is even, and the second equation 
cannot hold (b is odd). Therefore x5 - x2 + I is not reducible over the 
integers, or the rationals. 

Another way to proceed with the problem is based on the following 
observation. If f, g, and h are polynomials over the integers and f = gh, 
then J � gii(mod n), where J, g, and h are the polynomials formed from J, 
g, and h respectively by taking their coefficients modulo n. If J is reduciQle 
over the integers, then J is reducible over the integers taken modulo n. In 
the case at hand, the polynomial x5 - x2 + I transfoms to x5 + x2 + I 
(mod 2). The only irreducible quadratic polynomial over Z2 = {0, 1}  is 
x2 + x + 1 (the other quadratic polynomials and their factorizations mod· 
ulo 2 are x2 = x ·  x, x2 + 1 = (x + 1)2, and x2 + x = x(x + I)). But x2 + 
x + I does not divide x5 + x2 + 1 in Z2 (x5 + x2 + 1 = (x3 + x2)(x2 + x + 
I) + 1 (mod 2)), and therefore, x5 + x2 + I is irreducible over Z

2
• It follows 

that x5 - x2 + I is irreducible over the integers, and the rationals. 

In the preceding discussion, we made use of the fact that polynomials 
over Z,. can be added, subtracted, and multiplied in the usual manner 
except that the arithmetic (on the coerricients) is done within Zn (i.e. 
modulo n). If n is a prime number, ·say n = p, then ZP is a field, so all the 
results concerning polynomials over fields (e.g., the factor theorem, the 
identity theorem) continue to hold. This is not the case if n is not a prime. 
For example, 2x3 - 2x, as a polynomial over Z4, has four distinct zeros in 
Z4, namely, 0, I, 2, and 3, whereas it would have at most three if the 
arithmetic were carried out in a field. 

Let p be a prime, and consider the binomial theo.:m modulo p 

( I  + xJ'= ± (:)x' (modp), 
k-0 

where each side is regarded as a polynomial over ZP. For l < k < p - I, 
we have en ;:::::; 0 (mod p), since none of the factors in k!(p - k)! divide the 
factor of p in p!. Thus, as polynomials over ZP, 

( I + xf==. I +  xP (modp). 
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More generally, for each positive integer n, 

( I + xy·� I +  xP" (mod p). 
The argument is by induction. It is true for n = 1, and assuming it true for 
k, we have 

' + I  ' i ' 
( l + x)' � ( l + x)' ( l + x)' · · · ( l + x)' (modp) 

p times 

� ( I + x'' )(l + x'') · · · ( I + x'') (modp) 
' ' � ( I + x' ) (modp) 
' ' � I +  (x' ) (modp) 

= ( I + xP
H') (modp). 

By equating coefficients of xi on each side, we find that 

4.3.5. Prove that the number of odd binomial coefficients in any finite 
binomial expression is a power of 2. 

Solution. A conjecture, based on the examination of several special cases 
(see 1 . 1 .9), is that the number of odd coefficients in (I + xY is·2", where k 
is the number of nonzero digits when n is expressed in binary notation. 

An example will make it clear how the proof goes in the general case. 
Consider n = 13. In binary notation, 13 = 1 1012 = 8 + 4 + I .  Therefore, 

( I + x)t3 = (I + x)8+4+ 1 

- (I + x)'( l  + x)'( l  + x) 

�( I +  x")(l  + x')(l + X) (mod 2), 

making use of the previously established result. From this we can see that 
there are eight odd binomial coefficients in ( I + x)13• This is because when 
the right side in the preceding equation is expanded, (I  + x4)(1 + x) will 
have four terms, and (I + x8)(1 + x4 + x + x5) will have eight terms. (In 
general, if 1 + xn is multiplied by a polynomial P(x) of degree smaller than 
n, the result will be a polynomial with twice as many nonzero coefficients 
as the corresponding number in P(x).) 

Consider the polynomial equation x2 + ax + b = 0, and suppose its 
roots are r1 and r2• Then we can write 

x2 + ax + b - (x - r1)(x - r�) 

= x2 - (r1 + r2)x + r1r2 • 
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From this, using the identity theorem, it follows that 
'• + 'z = -a, 

'•'2 = b. 
Similarly, if x3 + ax2 + bx + c = 0 has roots r1,r2, r3 we have 

x3 + ax2 + bx + c = ( x - r1)( x - r2)(x - r3) 

In this case, 

= x3 - (r1 + r2 + r3)x2 
+ (r,rz + r,r3 + 'z'3)x - r,rzr3 · 

't + 'z + r3 = - a, 
r,rz + r,r3 + 'z'3 = b, 

't'2'3 = - c. 
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In each case, we have expressed the coefficients of the polynomial 
equation in terms of the roots (in a rather patterned way). An induction 
argument shows this is true in general: specifically, 

If xn + an-lxn- l + · · · + a,x + ao = 0 has roots r1.r1, . . .  , rn then 
S, = r1 + r2 +  · · ·  + rn = -an- 1 .  
Sz= r,rz + · · ·  + rtrn + rzrl +  · · ·  + rzrn + · · ·  + rn - lrn = an-2 • 
S3 = r,rzrl + r1rzr4 + · · · + r1r3r4 + · • · + 'n-1'n- lrn = -an-3 .  

Sn = r1r2 · · · rn = ( - l)na0, 
where S; is the sum of all the products of the roots taken i at a time. 

4.3.6. Consider all lines which meet the graph 

y = 2x4+7x3 + 3x - 5  
in four distinct points, say (x;, y,), i = I, 2, 3, 4. Show that 

X 1 + Xz + x3 + x4 
4 

is independent of the line, and find its value. • 

Solution. Lety = mx + b intersect the curve in four points (x;,y;). i = 1 , 2, 
3,4. Then x1, x2,x3,x4 are the roots of the equation 

mx + b = 2x4 + 7 x3 + 3x - 5, 
or equivalently, of 

x4 + �x3 + ( 32m )x +  ( - 52- b ) = 0. 
It follows from our earlier remarks that (x1 + x2 + x3 + x4)/4 = (- :P/4 
= - t. and this is independent of m and b. 
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4.3.7. Let P be a point on the graph of j(x) = ax3 + bx, and let the 
tangent at P intersect the curve y = j(x) again at Q. Let the x-coordinate of 
P be x0• Show that the x-coordinate of Q is - 2x0. 

Solution. The straightforward approach is to write the equation of the 
tangent to the curve y = j(x) at P, say y = T(x), and to solve y = T(x) and 
y = f(x) simultaneously to rind Q. 

Another approach is to argue as follows. We recognize that solving 
y = T(x) and y =  j(x) simultaneously is the same as finding the roots of 
j(x) - T(x) = 0. Now x0 is a double root (that is, of multiplicity 2) of this 
equation, since T(x) is-tangent toy = j(x) at x0• What we seek is the third 
root, denoted by x 1 •  We know that the sum of the roots, 2x0 + x 1 ,  is equal 
to the coefficient of the x2 term. But the coefficient of the x2 term is 0, so it 
follows that x 1 = - 2x0. 

4.3.8. Let x 1 and x2 be the roots of the equation 

x2 - (a + d)x + (ad- be) = 0. 

Show that x� and xi are the roots of 

y2 - (a3 + d3 + 3abe + 3bcd)y + (ad- bc)3= 0. 

Solution. We know that 
X1 + x2 = a + d, 

x1x2 = ad - be. 
Since (x1 + x2/ = x� + 3xfx2 + 3x1x� + xi, we have 

Furthermore, 

x� + xi =  (x1 + x2)3- 3x�x2 - 3x1x� 

= ( a +  d)3- 3x1x2(x1 + x2) 

� (a +  d)'- 3(ad - be)( a +  d) 

= (a + d)[ a2 + 2ad + d2 - 3ad + 3bc] 

= ( a +  d)(a2 - ad + d2 + 3bc) 

= a3 + d3 + 3abc + 3bcd. 

X3x3 = (ad- be)' ,. 2 ' 
and the proof is complete. 

4.3.9. Let a,b,c be real numbers such that a +  b + c = 0. Prove that 
� +�+ � � ( � +�+ � )( � +�+ � ). 
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Solution. Here is a very clever solution based on the ideas of this section. 
Let A = ab + ac + be and B = abc. Then a,b, c are roots o£ the equation 

x3 + Ax - B = 0. 
For each positive integer n, let Tn = an +  bn + en. Then, 

T0 = 3, 
T1 = 0, 
T2 = ( a +  b + c)2 - 2(ab + ac + be) = -2A. 

For n > 0, Tn+J = - ATn+ 1 + BTn (substitute a, b,c into xn+J = -Axn+ 1 
+ Bxn and add), and this gives 

T3 = -AS1 + BS0 = 3B; 
T4 = -AS2 + BS 1 = 2A 2, 
T5 = -AS3 + BS2 = -5AB. , 

It follows that 

4.3.10. Show that the polynomial equation with real coefficients 

P(x) = anxn +  an_ 1xn- t + · · · + a3x3 + x2 + x  + I  = 0  
cannot have all real roots. 

Solution. Let r1 , r2, • • •  , rn denote the roots of P(x) = 0. None of 
'" . . .  , rn is zero. Divide each side or P(x) = 0 by xn and set y = 1/ x, to 
get • 

Q(y) =yn + yn- 1 + yn-2 + a-3yn-3 + . . .  + a1y + ao= 0. 
Note that r is a root of P(x) = 0 if and only if ljr is a root of Q(y) = 0. 
Therefore, the roots of Q(y) = 0 are sl 's2 , • . •  , sn , where s; = Ijr., i = 
I, . . .  , n. It follows that 

and therefore, 

" 
"' ' � - · -'-' ' , 

± sl= ( :± s,)2- 2 � s;s1= 1 - 2 =  - I. 
i= I i- 1  i<j 

This equation implies that not all the s;'s are real; equivalently, not all the 
r;'s are real. 
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Problems 

4.3.11, Let k be a positive integer. Find all polynomials 
P(x) = anxn + · · · + a1x + ao, 

where the a, are real, which satisfy the equation 

P( P(x)) � [ P(x) ]'. 

4.3.12. 

4. Algebra 

(a) Prove that logx cannot be expressed in the formj(x)/g(x) where f(x) 
and g(x) are polynomials with real coefficients. 

(b) Prove that e" cannot be expressed in the form f(x)/g(x) where j(x) 
and g(x) are polynomials with real coefficients. 

4.3.13. Show that 

( I  + xf- x(l + x)n+ x2(l + X)n� + 
� (I +  x)"-'(' - (-x)"'). 

and use this identity to prove that 

4.3.14. 

(a) Differentiate each side of the identity 
" 

(I + x)"= k�o (Z)xk. 

' " · · · :I: x (I + x) 

By comparing the coefficients of xk- J  in the resulting identity, show 
that 

(b) Use the result of part a to show that 
· - ·  
L ( - IJ ' ( " -: 1 ) -. �- � ! .  
i- l I I +  I n 

4.3.15. Let x(n) = x(x - I) · · · (x - n + 1 )  for n a positive integer, and let 
x<O) = 1 .  Prove that for ail real numbers x andy 
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(Hint: This can be done by induction, but consider a proof similar to 4.3.3 
which first establishes the result for positive integers x and y. For this, 
count in two different ways, the number of one-to-one functions from 
{ I, 2, . . . , n )  into A U B, where A is a set with x elements and B is a set, 
disjoint from A,  withy elements. Prove the identity for all real numbers by 
making use of the identity theorem.) 

4.3.16. Is x4 + 3x3 + 3x2 - 5 reducible over the integers? 

4.3.17. Let p be a prime number. Show that 

(a) (Pk 1) =: ( - It (modp), 0 < k < p - 1, 
(b) (P! 1) = 0 (mod p), 2 < k ...; p - I, 
(c) (:h) =  CD (mod p), a >  b > 0, 
(d) (�) � 2 (mod p). 

4.3.18. Let w = cos(2'1T / n) + i sin(2'1T / n). 
(a) Show that l,w, w2, . • .  , w�- l  are the n roots of x" - 1 = 0. 
(b) Show that (1 - w)(l - w2) • • • (l - w"- 1) = n. 
(c) Show that w +  · · ·  + w "- 1 = - 1. 

4.3.19. 

(a) Solve the equation x3 - 3x2 + 4 = 0, given that two of its roots are 
equal. 

(b) Solve the equation x3 � 9x2 + 23x - 15 = 0, given that its roots are in 
arithmetical progression. 

4.3.20. Given r,s,t are the roots of x3 + ax2 + bx + c = 0. 

(a) Evaluate 1 /  r2 + 1/ s2 + I/ t2, provided that c =I= 0. 
(b) Find a polynomial equation whose roots are r2,s2,t2• 

4.3.21. Given real numbers x, y,z such that 

X +  y + Z = 3, 

xz + y2 + z2 = 5, 
x3 +y3 + z3 = 7, 

• 

find x4 + y4 + z4• (Hint: Use- an argument similar to that used in 4.3.9.) 

We close this section with three problems which draw attention to some 
additional results about polynomials that are very useful in certain prob­
lems. 

4.3.22 {lbeorem). If x1, x
2
, • • •  , x, are distinct numbers, andy I ' . . . ,y, 

are any numbers, not all zero, there is a unique polynomial f(x) of degree 
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not exceeding n - I with the property that f(x1) = y1, f(x2) = Yz· . . .  , 
j(x") � Y"· 

Outline of Proof: 
(a) Let g(x) = (x - x1)(x - x2) · · · (x - Xn)· Show that 

g(x) (
� 

( x - x,)(x - x,) · · · (x - x") ) 
(x X1)g(x1) (x1 x2) · · · (x1 Xn) 

is a polynomial of degree n - I with zeros at x2, • • •  , xn and which 
equals I at x = x1• 

(b) Lagrange interpolation formula. Show that 
g(x) g(x) 

f(x) = (x xt)g'(x,) Yt + (x x2)g'(x2) Yz + . . .  

g(X) 
+ (X X")g'( X") 

y" 

takes the valuesy1 , Yz, . . . , yn at the points XI > • . •  , xn respectively. 
(c) Application. Suppose that P(x) is a polynomial which when divided by 

x - l, x - 2,x - 3 gives remainders of 3,5,2 respectively. Determine 
the remainder when P(x) is divided by (x - l)(x - 2)(x - 3). (Hint: 
Write P(x) = Q(x)(x - IXx - 2)(x - 3) + R(x), where R(x) is of de­
gree less than 3. Find R(x) by the Lagrange interpolation formula, 
since R(l) � 3, R(2) � 5, R(3) � 2.) 

4.3.23 (Partial Fractions). 

{a) Show that if f(x) is a polynomial whose degree is less than n, then the 
fraction 

f(x) 

where x1 ,x2, • • .  , xn are n distinct numbers, can be represented as a 
sum of n partial fractions 

A 1 A2 An -- + -- + · · · + -­x - x! x - x2 x - xn 
where A 1 ,  • • •  , An are constants (independent of x). (Hint: Use 
Lagrange's interpolation formula: divide each side by g(x), etc.) 

(b) Application. Let f(x) be a monic polynomial of degree n with distinct 
zeros x1 ,x2, • • •  , xn. Let g(x) be any monic polynomial of degree 
n - I .  Show that 

:± WJ) � I . 
J - l  f (xj) 

(Hint: Write g(x)/ f(x) as a sum of partial fractions.) 
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4.3.24. A sequence of numbers u0,u1 , u2, • • •  is called a sequence of kth 
order if there is a polynomial of degree k, 

P(x) = akx" + ak_ 1x"-!  + · · · + a1x + a0 

such that u; = P(i) for i =  0, 1 ,2, . . . .  
The first-difference sequence of the sequence u0, u�>  u2 . . . is the se-

(IJ (!)  ( I) d f' ed b quence u0 , u1 , u2 , • • •  e m  y 

u( IJ = u - u, , � n+ [  n = 0, 1,2,3, . . . . 

(a) Prove that if u0,u1 , u2, • • •  is a sequence of order k, then the first­
difference sequence is a sequence of order k - 1 .  Define the second­
difference sequence of u0, u1 ,u2, • • •  to be the first-difference sequence 
of the first-difference sequence, that is, the sequence u�2l ,  uF', u�2l, . . . 
defined by 

u!2l = u��� - u!ll 

= Un+2 - 2un+!  + Un , n = O, l,2, . . . . 

From part (a) it follows that u�2l, uj2l , u�2l, . . .  is a sequence of order 
k - 2. Similarly, define the third-difference sequence, the fourth­
difference sequence, and so forth. Repeated application of part (a) 
shows that if u0,ut . u2, • • •  is a sequence of order k, the (k + l)st 
difference sequence will be identically zero. We aim to establish the 
converse: if the successive difference sequences of an arbitrary se­
quence u0,ut > u2, • • •  eventually become identically equal to zero, then 
the terms of original sequence are successive values of a polynomial 
expression; that is, there is a polynomial P(x) such that un = P(n), 
n = 0, 1,2, . . . . 

(b) Use induction to prove that • 
un = ( �)uo + ( � )u�1l +.( ;)uh21 + · · · + ( � )u&n). 

(c) Suppose that the original sequence is described by the function F(x). 
That is, suppose that F(n) = un, n = 0, 1,2, . . . . For k =  0, 1 ,2,3, . . .  , 
let ll"F(O) = u&"J , and for x a real number and i a positive integer, let 
x(il = x(x - l)(x - 2) · · · (x - i +  I). Show that the result of part (b) 
can be written in the form 

_ � ll"F(O) <"J F(n) - "'-' -k-, - n . 
k-0 . 

Note the similarity to the Taylor expansion of F(x): 
� 

F(x) � L (F'''(O)/ki)x'. 
,_, 

(d) Prove that if the (k + l)st difference sequence is identically zero, then 
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the original sequence is given by 

' 6'F(O) P(n) = L �.-, - nii). 
1=0 t. 

4. Algebra 

(e) Use the result of part (d) to find a closed formula for the sum of the 
series 14 + 24 + · · · + n4• (Hint: Notice that the first-difference se­
quence is given by a polynomial of degree 4, and therefore, the sum will 
be a polynomial of degree 5.) 

Additional Examples 

4.4.30, 4.4.31, 7.2.10, 8.2.2, 8.2.3, 8.2.10, 8.4.1 L 

4.4. Abstract Algebra 

A group is a set G together with a binary operation • on G such that: 

(i) Associative property. For all elements a, b, c in G 
(a•b)•c = a•(b•c). 

(ii) Identity. There is a unique element e in G (called the identity of G) 
such that for every element a in G, 

a•e = a = e•a. 
(iii) Inverse. For each element a in G, there is a unique element a - l in G 

(called the inverse of a) such that 

When working with groups, we sometimes think of the operation • as 
"multiplication," and in this case we often suppress the • in writing 
products. Thus, a•b is written simply as ab, and a•(b•c) is written as a(bc), 
or abc, and so forth. Furthermore, when we think of • as a product, we 
sometimes denote the identity element as "I." In addition, we use exponen­
tial notation to simplify expressions; e.g., a4 = aaaa, etc. It is not difficult 
to show that the usual laws of exponents hold in a group, namely, 

n, m integers. 

The group operation need not be commutative; i.e., it may not be the 
case that ab = ba for all elements a,b of G. An example of such a group is 
the set of n-by-n nonsingular matrices over the real numbers. 

In any group G, it is the case that 

(ab)- 1 = b-•a- 1, a, b e  G. 



4.4. Abslrac! Algebra 145 

This identity is fundamental and can be proved in the following way. 
Observe that (ab)(b - Ia- 1) = a(b(b- 1a -1)) = a((bb - 1)a - 1) = a(ea- 1) 
= aa - l = e, and (b- 1a- 1)(ab) = b-\a - 1(ab)) = b - 1((a - 1a)b) = b -1(eb) 
= b - Jb = e. Therefore b - !a - I  is an inverse for ab. But ab has a unique 
inverse, denoted by (ab)- 1• It follows that (ab)- 1 = b - !a - 1• 

If the group G is commutative (i.e., if ab = ba for ail a,b E G), it is easy 
to show that 

a, b E G n an integer. 

4.4.1. Suppose that G is a set and • is a binary operation on G such that: 

(i) Associative property. For all a,b,c in G, a"'(b•c) = (a•b)•c; 
(ii) Right identity. There is an element e in G such that for every element a 

in G, a•e = a; and 
(iii) Right inverse. For each element a in G, there is an element a - I  in G 

such that a•a- 1 = e. 
Prove that G is a group. 

Solution. We will show that the right identity e is also a left identity, and 
the right inverse a-1 is also a left inverse for a. Then we will show that e 
and a- 1 are unique. 

Observe that a - I  is an element of G, and therefore by (ii), there is an 
element (a- 1)- 1 in G such that (a- 1)•(a-1)- 1 = e. We now compute 

a- 1a = (a- 1a)e = (a- 1a)( a- 1(a- 1f 1) 

- a- '[ a( a - '(a-')_ ,) J 
= a-'[  (aa- 1)(a- 1) - J J  

= a- 1 [ e(a- 1)- 1 ] = (a- 1e)(a- 1)- l 

= a- lca- lf l 
= e. 

• 

This shows that a- 1  is an inverse (left inverse and right inverse). 
Also, ea = (aa - 1)a = a(a- 1a) = ae = a, and therefore e is an identity 

for G (that is, for each a, ea = a =  ae). 
Suppose e' is also an inverse for G. Then e = e•e' (because e' is an 

identity) = e' (because e is an identity). This shows the identity element of 
G is unique. 

Suppose (a- 1)' is also an inverse for a. Then (a - ty = (a - ty e = (a- 1)' 
(aa - 1) = [(a- 1)' a]a- 1 = ea- 1 = a- 1. This shows the inverse of a is unique. 

It follows that G is a group. 
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4.4.2. Let G be a group. 
(a) Cancellation property. For all a,b,c in G, show that 

ab = ac implies b = c, 
ba = ca implies b = c. 

(b) Let a be an element in G, and consider the sequence 

4. Algebra 

Show that either all the elements in the sequence are different, or there 
is a smallest integer n such that an = I and I, a, . . .  , an- ! are distinct. 
In the latter situlition, n is called the order of a, denoted by ord(a); in 
the former case we say that a has infinite order. 

Solution. (a) This follows immediately by multiplying each side on the left 
(and right respectively) by a- !_ 

(b) Suppose that not all elements in the sequence are different, and let n 
be the smallest integer such that an is a repetition of a previous element in 
the sequence. Then an = I, for if an = a;, 0 < i < n, then by the cancella­
tion property, an- ! =  ai-l , and this contradicts our choice of n. 

4.4.3. Let a and b be two elements in a group such that aba = ba2b, 
a3 = e, and b2n- 1 = e for some positive integer n. Prove that b = e. 

Solution. Note that if ab = ba, then aba = ba2b is the same as a2b = a2b2, 
and the cancellation property implies b = e. Although the group may not 
be commutative, we shall prove that this particular set of equations for a 
and b does imply that ab = ba. 

Notice that ab = ba is the same as ab2n = b2na, since by assumption 
b2n = b. To show that ab2n = b2na it suffices to show that ab2 = b2a, since 
ab2n = a(b2r = (b2ta (by repeated application of ab2 = b2a) = b2na. 

Thus, the proof is complete after observing that ab2 = ( aba)( a - 1b) 
= (ba2b)(a- 1b) = (ba2)(ba- 1b) = (ba2)(ba2b) = (ba2)(aba) = ba3ba = b2a 
(since a3 = e). 

Let G be a group. We say that H is a subgroup of G if H is a subset of G 
which is itself a group (under the operation of G). The order of H is defined 
to be the number elements in H, and this number is denoted by ord(H). 

An important class of subgroups are the following. Let a E G, and let 
(a) = {an : n is an integer) .  

I t  is easy to check that (a) is a subgroup of G; it is called the cyclic 
subgroup generated by a. Note that ord(a) = ord((a)). 

The following theorem constitutes one of the most important results in 
the theory of finite groups. 
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Lagrange's Theorem. If H is a subgroup of a finite group G, then the order of H 
divides the order of G. 
Here are three important corollaries. 

(i) If G is a group of order n and a E G, then an = I .  
(ii) If G is a group of order p, where p is a prime, then G is a cyclic group 

(i.e., G =  (a) for some a E G). 
(iii) If G is a group and an = 1 ,  then the order of a divides n. 

We will leave the proof of Lagrange's theorem as a problem (see 4.4.18); 
however, it is instructive to see the arguments for the corollaries. 

Proof of (i). Let a E G and let m = ord(a). By Lagrange's theorem m 
divides n, &0 suppose n = mq for some integer q. Then an = amq = (am)q 
= lq = I .  

Proof of (ii). Let a be an element of G different from the identity. Then 
(a) is a subgroup of G with more than one element (namely, I and a). By 
Lagrange's theorem, the order of (a) dividesp, but since p is prime, it must 
be the case that (a) is of order p; that is, (a) = G. 

Proof of (iii). Let m = ord(a). By the division algorithm there are inte­
gers q and r such that n = qm + r, 0 ( r < m. Thus I =  an = aqm+r 
= (am)qar = a'. Since i,a, . . .  , am- t are distinct, it must be the case that 
r = 0, and it follows that m divides n (this is a typical application of the 
division algorithm for integers). 

4.4.4. If in the group G we have a5 = I, aba-1  = b2 for some a,b E G, 
find ord(b). 

Solution. Since a5 = l, the order of a is either I or 5. If ord(a) = I, then 
a =  I and it follows that b = b2, or b =  I, a,pd so ord(b) = I. 

Suppose ord(a) = 5. We have (aba- 1)(aba - 1) = (b2i, or equivalently, 
ab2a - 1  = b4• Substituting aba - 1  for b2 on the left side of this equation 
yields a2ba-2 = b4• Squaring this, we get (a2ba -2)(a2ba -2) = (b4/, or 
equivalently, a2b2a -2 = b8• Again, substituting aba - 1  for b2 on the left, we 
get a3ba -3 = b8. Squaring gives a3b2a -3 = b16, and substituting gives 
a4ba -4 = b16• One more time: a4b2a -4 = b32, or equivalently, a5ba-5 = b32• 
But a5 = a-5 = I ,  so b =  b32, and on cancellation, we get b31 = 1 .  Since 31 
is a prime number, the order of b is I (if b is the identity) or 31. 

4.4.5. If G is a finite group and m is a positive integer relatively prime to 
the order of G, then for each a in G there is a unique b in G such that 
bm = a. 

Solution. Let T:  G....::,. G be defined by T(x) = xm. We aim to show that T is 
a one-to-one function. So suppose that T(x) • T(y) for elements x andy 
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of G. Then xm = ym. Let n = ord(G). Since n and m are relatively prime, 
there are integers s and t such that sn + tm = I .  Hence x = xsn+rm 
= (x")'(xm)' = (xm)' (since x" = l )  = (ym)' (since xm = ym) ::: (y")' 
(ym)' (sincey" = I) =  Ysn+ rm = Y· 

Therefore T is a one-to-one function, and since G is a finite set, Tis onto 
G. That is, for a E G, there is a unique b in G such that T(b) = a  
(equivalently, bm = a). 

The first corollary to Lagrange's theorem states that aord{G) = I for each 
element in the finite group G. This has a number of interesting and 
important consequences when applied to particular groups. For example, 
let V, denote the set of positive integers less than n that are relatively prime 
to n. The elements of V, form a group under multiplication modulo n. Let 
tp(n) = ord(VJ. (The function 'P is called the Euler qJ-function.) Then 
Lagrange's theorem implies the following. 

Euler's lbeorem. If a is any integer relatively prime to n, then 
a'l'(nl =- I  (mod n). 

When n is a prime number, say n = p, we have ip(p) = p - l ,  so that 
aP- 1 = 1 (mod p) whenever a is not a multiple of p. If we multiply each 
side by a, we get aP = a  (mod p). This congruence holds even when a is a 
multiple of p, and thus we have the following result. 

Fermat's Littte lbeorem. If a is an integer and p is a prime, then 
aP =: a  (modp). 

4,4,6, Prove that each prime divisor of 2P - I, where p is a prime, is 
greater than p. (It is a corollary that the number of primes is infinite.) 

Solution. The result is true for p = 2, so henceforth assume that p is odd. 
Suppose that q is a prime that divides 2P - I .  Then q is odd and 2P = I 
(mod q). By Fermat's little theorem, 2q- J = I (mod q). If q = p we have 
2 = 2 X  1 = 2  x 2q- l �2q =  2P = I (mod q), a contradiction. If q <p, then 
q - 1 and p are relatively prime, so thf<J"e are integers s and t such that 
sp + t(q - I) = I. It follows that 2 = 2sp+t(q- IJ = (2P}'(2q- l)' = I (mod q), 
a contradiction. Thus q must be larger than p. 

4.4.7. Show that if n is an integer greater than I, then n does not divide 
r - t. 

Solution. Suppose that n divides r - 1 ;  that is, r =: 1 (mod n). Clearly, n 
is an odd number, since 2" - 1 is odd. Suppose that p is a prime divisor 
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of n. Then r ==: I (mod p). Now, regard 2 as an element of the group Vr 
We know that 2p- t = I (mod p) (Fermat's little theorem, since gcd(2,n) 
= 1). By the third corollary to Lagrange's theorem, p - I divides n. So far 

there is no contradiction. However, suppose p is chosen as the smallest 
prime which divides 11. Then these same conclusions hold, but now, the fact 
that ord(2) divides n and ord(2) divides p - I produces a contradiction to 
our choice of p. Therefore, n can never divide r - I. 

4,4.8. Show that for any positive integer n there exists a power of 2 with a 
string of more than n successive zeros (in its decimal representation). 

Solution. For any positive integer s, there exists a positive integer t such 
that 2' = 1 (mod 5') (for example, take t = ip(SS)). Let s = 2n. There exist 
positive integers q and r such that 2' - I =  q X 52". Multiply each side by 
22", rewrite as 

2r+2n = 22" + q X 102", 
and notice that 2'+2" has at least n consecutive zeros in its decimal 
representation, since 22" < HY'. 

4.4.9. Given positive integers a and b, show that there exists a positive 
integer c such that infinitely many numbers of the form an + b (n a 
positive integer) have all their prime factors < c. 

Solution. The result is obviously true when a =  1, so suppose a > I. First, 
consider the case in which gcd(a,b) = I . We will prove there are an infinite 
number of terms of the arithmetic s�quence an + b among the terms of the 
sequence (a + b)k, k ::: 1,2,3, . . . 

From Euler's theorem, b'l'{a) =: I (mod a), since b is relatively prime to a. 
It follows that for each positive integer s, 

(a + b)"""(a)+ 1 � b·"f!( a)+ 1 � ( b�la)}'b � b (mod a). 

This means that for each positive integer s there is an integer q, such that 

(a + b)'"'(a)+ 1 = qsa + b. 

It follows that each of the terms qsa + b, x = I , 2, 3, . . . has only those 
prime factors that occur in a + b. 

Now consider the case in which gcd(a,b) = d > I . Then gcd(a/d, bjd) 
= I, so from our preceding argument, there is a c such that infinitely many 
members of the sequence (a/ d)n + (b/ d) have all their prime factors < c. 
From this it follows that infinitely many members of the form an + b have 
all their prime factors < cd. This completes the proof. 
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A ring is a set R with two binary operations, + and · ,  such that 

(i) R is a commutative group with respect to the operation 
(ii) For all a,b,c in R, a( be) = (ab)c ("·" suppressed); 

(iii) For all a,b,c in R, 
a(b + c) =  ab + ac, 

( b + c)a = ba + ca. 

R need not have a multiplicative identity: if it does, we say R is a ring 
with identity. The multiplication in R need not be commutative: if it is, we 
say that R is a commutative ring. 

4.4.10. Let a and b be elements of a finite ring such that ab2 = b. Prove 
that bah = b. 

Solution. Obviously, if the ring were commutative the result would be 
immediate, but we must show the result holds even when the ring is 
noncommutative. In addition, we cannot assume the ring has a multiplica· 
tive identity. 

Suppose b = b2• Then bah = bab2 = b2 = b, and we are done. Sup· 
pose b = bm for some integer m > 2. Then bah = babm = b(ab2)bm-2 
= b2bm-l = bm = b, and we are done. Therefore it is sufficient to show 

that b = bm for some integer m > 2. 
Suppose the ring has n elements. By the pigeonhole principle, at least 

two elements in the sequence b,b2, • • •  , b",bn+1 are equal. Let i be the 
smallest integer such that b; equals some subsequent power of b in the 
preceding sequence; that is, b; = b; + J, I ,.;; i < i + j ,.;; n + 1 .  Suppose 
i > l. Then multiply each side of ab2 = b on the right by bi+J-2 to get 
abi+J = bi+J-1• But since b; = bi+J, we have ab' = bi+J-1• From here there 
are two cases to consider. 

Suppose i = 2. Then b = ab2 = IJ.i+ 1 (from the last equation), and this 
contradicts our choice of i. So, suppose i > 2. Then b;- 1 = b · bi-l 
= (ab2) X bi-l = ab; ""  abi+J- 1, which again contradicts our choice of i. 

Therefore, i = I ;  that is, b = bi for some j. By the argument in the first 
paragraph, the proof is complete. 

An integral domain D is a commutative ring with unity in which for a, b 
in D, ab = 0 implies a =  0 or b = 0. The cancellation property holds in an 
integral domain. For, suppose ab = ac and a #'  0. Then a(b - c) = 0, so 
b - c = 0, or equivalently, b = c. Similarly, ba = ca, a =F 0, implies b = c. 

A field is a commutative ring with identity in which every nonzero 
element has a multiplicative inverse. 



4.4. Abstract Algebra !51 

4.4.11. Show that a finite integral domain (an integral domain with only a 
finite number of elements) is a field. 

Solution. We must show that every nonzero element of the integral domain 
has a multiplicative inverse. So, let D* = {al' . . .  , an} be the nonzero 
elements of the integral domain, and consider an arbitrary element a of D*. 
Define T :  D*-? D* by T(a;) = aa;. If T(a;) ::= T(aj) then aa; = aaj, so by 
the cancellation property, a; = aF Thus we see that T is a one-to-one 
function. Since D* is finite, the mapping T is onto D•. But one of the 
elements in D* is the multiplicative identity, denoted by I .  Therefore, 
T(ak) = I for some ak E D*; that is, aak = I .  This shows that a has a 
multiplicative inverse. 

Problems 

4.4.12. Let G be a set, and • a binary operation on G which is associative 
and is such that for all a,b in G, a1b = b = ba2 (suppressing the • ). Show 
that G is a commutative group. 

4.4.13. A is a subset of a finite group G, and A contains more than 
one-half of the elements of G. Prove that each element of G is the product 
of two elements of A.  
4.4.14. Let H be a subgroup with h elements of a group G. Suppose that G 
has an element a such that for all x in H, (xai = I, the identity. In G, let P 
be the set of all products x1ax2a · · · xna, with n a positive integer and the 
X; in H. Show that P has no more than 3h2 elements. 

4.4.15. If a - 1ba = b- 1 and b - 1ab = a- 1 for elements a, b of a group, 
prove that a4 = b4 = I .  

4.4.16, Let a and b be elements of a finite group G. 

(a) Prove that ord(a) = ord(a-1). 
(b) Prove that ord(ab) = ord(ba). 
(c) If ba = a4b3, prove that ord(a4b) = ord(a2b3). 
4.4.17. Let a and b be elements of a group. If b - 1ab = ak, prove that 
b-'a'b' = a•k' for all positive integers r and s. 

4.4.18 (OutUne for the proof of Lagrange's Theorem). Let G be a finite 
group and H a subgroup with m distinct elements, say H = { l ,h2, 
h3, . . .  , hm}. For each a E G, let Ha = {a,h2a, h3a, . . .  , hma} .  
(a) Prove that Ha contains m distinct elements. 
(b) Prove that Hh; = H. 
(c) If b fl Ha, prove that Ha and Hb are disjoint sets . 

•• 
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(d) Prove that there are elements a�>a2, • • •  , ak in G such that G = Ha1 U 
Ha1 U · · · U Hak and Ha; n Ha1 = 0 if i =F j. 

(e) Use the previous results to formulate a proof of Lagrange's theorem. 

4.4.19. Find the smal!est integer n such that 2n - I is divisible by 47. 

4,4.20. Prove that if p is a prime, p > 3, then abP - baP is divisible by 6p. 
4.4.21. Let a and b be relatively prime integers. Show that there exist 
integers m and n such that a m +  bn = I (mod ab). 
4.4.22. H a,b,c,d are positive integers, show that 30 divides a4b+d -
04c+d_ 

4.4.23. Let Tn = 2n + I for all positive integers. Let qJ be the Euler q>­
function, and let k be any positive integer and m = n + kqJ(Tn)· Show that 
Trn is divisible by Tn . 

4.4.24. Prove that there exists a positive integer k such that k2n + I is 
composite for every positive integer n. (Hint: Consider the congruence class 
of n modulo 24 and apply the Chinese Remainder Theorem.) 

4.4.25. A Boolean ring is a ring for which a2 = a for every element a of the 
ring. An element a of a ring is nilpotent if an = 0 for some positive integer n. 
Prove that a ring R is a Boolean ring if and only if R is commutative, R 
contains no nonzero nilpotent elements, and ab(a + b) =  0 for all a,b in R. 
(Hint: Show that a4 - a5 = 0, and consider (x2 - x3i,) 
4.4.26, Let R be a ring with identity, and let a E R. Suppose there is a 
unique element a' such that aa' = I . Prove that a' a =  I. 
4.4.27. Let R be a ring with identity, and a be a nilpotent element of R 
(see 4.4.25). Prove that I - a is invertible (that is, prove there exists an 
element b in R such that b(l - a) = I =  (I - a)b). 
4.4.28. Let R be a ring, and let C = {x E R :  xy = yx for all y in R} .  
Prove that if x2 - x E C for all x in R, then R is commutative. (Hint: Show 
that xy + yx E C by considering x + y, and then show that x2 E C.) 
4.4.29. Let p be a prime number. Let J be the set of all 2-by-2 matrices 
(� �) whose entries are chosen from {0, 1,2, . . .  , p - I } and satisfy the 
conditions a +  d = I  (mod p), ad- be = 0 (mod p). Determine how many 
members J has. 

4.4.30. Letp be a prime number, and let ZP = {0, 1 ,2, . . .  , p - 1 } .  ZP is a 
field under the operations of addition and multiplication modulo p. 
(a) Show that 0, I, . . .  , p - I are the zeros of xP - x (considered as a 

polynomial over Zp). Conclude that xP - x = x(x - l)(x - 2) · · · 
(x - (p - I)) (mod p). 
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(b) Wilson's theorem. From part (a), show that 

(p - 1) '= - I  (modp). 
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(c) Consider the determinant jaijl of order 100 with arJ = i · j. Prove that the 
absolute value of each of the 100! tenns in the expansion of this 
determinant is congruent to I modulo 101. 

4.4.31. Let F be a finite field having an odd number m of elements. Let 
p(x) be an irreducible polynomial over F of the form x2 + bx + c, b,c E F. 
For how many elements k in F is p(x) + k irreducible over F? 

Additional Examples 

1. 1.5, l.l.l2. 



Chapter 5.  Summation of Series 

In this chapter we turn our attention to some of the most basic summation 
formulas. The list is quite short (e.g., the binomial theorem, arithmetic· and 
geometric-series formulas, elementary power-series formulas) but we shall 
see that a few standard techniques (e.g. telescoping, differentiation, integra­
tion) make them extremely versatile and powerful. 

5 . 1 .  Binomial Coefficients 

Here are some basic identities; we are assuming that n and k are integers, 
n > k > 0. 

Factorial representation: (n) - n !  
k - k! (n  k)! (I) 

Symmetry condition: 
(2) 

In-and-out formula: (" ) � !! (n - 1 ) 
k k k - I " k =I= 0. (3) 

Addition formula: 
k =F 0. (4) 

154 
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The next formula is obtained by repeated application of the addition 
formula. 

Summation formula: 

Sums of products (see 4.3.2 and 1.3.4): 

Binomial theorem (see 2.1 . 1 , 2.1 . 1 1 ,  4.3.3): 
" 2:; ( n)x)·n-k= (x + y(. 

k = O  k 

5.1.1. Use the summation formula to show that 

(a) 

(b) 

n( n + I )  1 + 2 + 3 + · · · + n = 2 ; 

2 2 2 n(n + l)(2n + l) 1 + 2 + · · · n = 
6 . 

Solution. (a) We have 

+ (7) 

- (n + l ) - (n + l ) _ n(n + l ) . n - I 2 2 
(b) We first look for constants a and b such that 

k1 = a(�) + b(�) = a k(\- l) +bk 

(7) 

for k =  1,2, . . .  , n. Think of each side as a polynomial in k of degree 2. 
The identity will hold if and only if the coefficients of like powers of k are 
equal; that is, if and only if 

I =  aj2, 
0 = -a/2 + b. 
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This yields a = 2 and b = I . It follows that 

12 + 22 + . . .  + nl 

� [z(�) + ( : )] + [  z(;) + (�)] + . . . + [z(;) + (�)] 
� z[(�) + (;) + . . .  + (;)] + [( : ) + (� ) + . . .  + (�)] 
� z[(�) + ( i ) + · · · + ( . � z)] + [(�) + (� ) + · · · + (. � I )] 
� z(: � �) + (: � : ) � z( n � I ) + ( 

n � I
) 

(n + I)(n)(n - I) (" + l)n 
= 2 6 + 2 

n(n + 1)(2n + I) 
6 

(Another approach for part (b) is given in 5.3. 1 1.) 
The preceding sums occur so often that it is desirable to memorize them 

or in some way be able to recall them easily. One way to remember the first 
formula is shown in Figure 5.1 (for n = 5). 

The diagram also prompts the following argument for the general case. 
Let S denote the sum of the first n positive integers. Then 

S = I + 2 + · · · + n, 
S = n +( n- 1)+ · · ·  + 1 . 

• • • • 

5 · 6 ! + 2 + 3 + 4 + 5  = -,-

Figure .S.l. 

• 
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Adding, we get 
2S � (n + I) +  (n + I) + · · ·  + (n + I) 

= n(n + l), 
and it follows that 

S = n(n + l) 
2 
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The technique of evaluating a sum by rearranging the terms is a 
common one. In particular, when the terms are represented as a double 
summation, it is often advantageous to exchange the order of summation. 
The next example is an illustration of this idea. 

5.1.2. Sum 

L L � '. · " " ( ) ( 
. 

) J-O i-j 1 ) 

Solution. The terms of this sum are indexed by ordered pairs ( i, j), where 
(i, j) vary over the elements in the following triangular array: 

'X 0 2 3 4 

0 • 
• • 

2 • • • 

3 • • • • 

4 • • • • • 

In the given sum, the elements are first added columnwise. When we 
interchange the order of summation, so that the terms are first added 
rowwise, the sum is expressed in the form 

± ± (")( i ). i-Oj-0 l ) 
or, equivalently, 
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This is easily evaluated in the following manner. According to the binomial 
theorem, 

When x = I, we get 

( I + x)'� ± ( i )xi. j-0 J 

± ( i ) � 2'. 
j-0 J 

The original sum is therefore 

which by the binomial theorem is (I + 2r = 3". 
5.1.3. Sum the following: 

(a) ( � ) + 2{; ) + 3(;) + · · ·  + n(�), 
(h) l + t {7 ) + ! G) + 

n! l (� ) 
Solution. The first sum is 

i >(" )· 
i- l I 

Our aim, in summations of this type, is to use the in-and-out formula to 
bring the index of summation "inside" the binomial coefficent. Since 

it follows that 

and therefore 

(") � " ( " - ' ), 
I I j - I 

� n ± (• - 1 ) 
1 - l  1 - I 
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The second sum is 

But 

" I n � -. I ( . ). i-0 l + I 

( n + I ) � .'!...±..! ("). 1 + l  z + l  1 
and therefore, 

± -. '  (� ) � ± �' (" + ' ) 1_0 1 + I  1 ,._0 n + I i + 1 

� � ± (n + l ) n + I i=O 1 + I  
"+ ' 

= n + l  1�1 (
n � l ) 

� ;;-±I [ ( ;#; ( n � I )) _ ( n � I ) ]  
� _I_ [2H' - l j .  n + l  
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There is another instructive way to handle these sums, based on differen· 
tiating and integrating each side of 

For part (a), we differentiate to get 

and, with x = I, we get 

� ·(" ) ,_ , _ (I )"
- ' 

L,. I . X · - n + X , 
i*'O l 

" "' ·( " ) � 2"_ ,  L.. 1 . n X • i- l I 
For part (b), we integrate to get 

" (l + x)H ' ( ") x'+t 

1�0 i -, +-1 � "--'n_:+"-cl - + C. 
When x = 0, the left side of this equation is 0, and this implies that 
C = - 1/(n + I). Thus, when x = I, we get (as before) 

± (") -. I_ �  _I_ [2"+ ' - I J. 1_0 1 1 + I n + I 
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5.1.4. Show that 

Cl - 1Gl + t (�) - · · ·  + ( - l)"' ' � (�) � l + 1 + 

Solution. The left side of the identity looks like the definite integral of a 
binomial series, and this provides the idea for the following argument: 

I - ( I  � x)n = ( �)x - (; )x2 + ( ;)x3 - • • •  , 

1 - (�- x)" � (�) - (� )x + (;)x' - · · · . 
We are now set up to integrate each side from 0 to I, and we get 

To finish the problem, we must show the integral on the left is equal to 
I + 1/2 + l/3 + · · · + ljn. Lety = I - x. Then 

i, _1_-_,(
-::
1 _-_x:_)" i, 1 -y" 

dx= -- dy 
0 X 0 1 -y 

= fol( l + y + }'2 + . . . y"- l)dy 

= y + l y + . . . + l y"] ' 2 n 0 

= 1 + 1 + + � -
The problem can be done without calculus, using the basic identities of 

this section, but it is technically harder. However, since it is instructive, we 
will sketch the idea. 

First, by repeated use of the addition formula and the in-and-out 
formula, we have, for n ) i ) I ,  

+ ( 7) � + [ ( n � I ) +  ( 7 � I
I ) l � + ( n � I ) + �  ( 7)  

� + [ (· � 2) + (7� nJ + � (7) 

� l ( • -: 2) + -1 ( • -: 1 ) + 1 ( "). 1 1 n - I 1 n 1 
and continuing in this way, we get 

l (�) � l (�) + -1 ( • -: 1 ) + . . .  + l ( ')· I I n I n - J I I 1 
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Th�refore, 

When we interchange the order of summation, we obtain 

Let k = n - j, so that the right side is 

("' 5.1 .9(a)). 

5.1.5. Sum 
"):' "±' (" + I )(�)· 
i""O )=i+ l } I 
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Solution. This can be evaluated using the basic identities of this section; 
however, we want to illustrate another technique. Although this approach 
will seem artificial and unlikely, the fact is that the thinking is not as 
unusual as it might at first appear. The idea is to interpret the sum in 
probabilistic terms, in the following manner. 

Multiply the sum by l/22n+ l  and write it in the form 

Now consider the following matching game between players A and B. 
Player A flips n + I coins and keeps n of the coins to maximize the number 
of heads. Player B flips n coins. The player with the maximum number of 
heads wins, with ties awarded to B. 

Observe that the above sum represents the probability that A wins. We 
will now calculate this probability in another way. 

The game is equivalent to the following. Let A and B each nip n coins. 
The player with the most heads wins. If they each have the same number of 
heads, but not all heads, A flips the (n + l)st coin, winning if it is heads 
and losing if it is tails. At this point, A and B have equal chances of 
winning. 

In the remaining case, both A and B have all heads. In this case B wins 
regardless of A's last toss. Thus, B wics in exactly 2 more cases than A .  
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That is, out of the 22"+ 1 total flips, B wins in the 2 cases last described, and 
B wins in exactly one-half of the other cases (!(22"+ 1 - 2)). Thus, the 
probability that A wins is 

2 + 1 (22n+ l _ 2) z 22" + ' - 2 - 22" + 1 l - Pr(B wins) = I - ---'-;=-.--'-
22" - I 
z2n+ I 

22n+I z2n+!  

It follows that the original sum is 22" - 1 .  

Problems 

5.1.6. 
(a) Sum all the numbers between 0 and 1000 which are multiples of 7 or 

I I .  
(b) Sum all the numbers between 0 and 1000 which are multiples of 7, I I, 

or !3. 
5.1.7. 
(a) Prove that for any integer k > I and any positive integer n, n" is the 

sum of n consecutive odd numbers. 
(b) Let n be a positive integer and m be any integer with the same parity as 

n. Prove that the product mn is equal to the sum of n consecutive odd 
integers. 

5.1.8. Use the summation formula (5) to sum (a) �'l-1k3; (b) �'l.1k4• 

5.1.9. Sum each of the following: 

(a) 1 - C ) + (;) - (� ) + + ( - Ij"(�) 
(b) I x 2{; ) + 2 x 3{; ) + . · + (n - IJn(�) 

(C) Cl + 2'(;) + 3'(�) + . . + •'(�) 
(d) Cl - 2'(;) + 3'(� ) - . . .  + ( - !)"+ '•'(�) 
(•l (�) - ! (�) + ± (;) - · · · + ( - 1)" . � , (�) 
(f) � [ (- IY( � 1 )/ 2: k] . 

j � l  J h k < j  

5.1.10. 
(a) What is the probability of an odd number of sixes turning up in a 

random toss of n fair dice? (To evaluate the sum, consider H<x + yt -
(x -yrJ.) 
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(b) Show that if n is a positive multiple of 6, 
( � ) - 3{;) + 3'(�) - - o. 

( �) - t (;) + ;, (� ) - - o. 

5.1.11. Prove the following identities: 

(a) (�) - ( ;) + (;) - + ( - I)H ' (�) 
1 x 2 2 x 3  3 x 4  n(n + l) 

I I I = - + - +  . . .  + --2 3 n + I  ' 

(�) (�) G) " (�) (b) - - - + - - , . .  + ( - 1) 12 22 32 (n + l)2 

= n � 1 [ t + i + · · · + � l 
5.1.12. Show that 
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(a) (�)(�) + ( ;)(n � J } + (; )(n � 2) + + (:){. � n) - (; .:': �). 
(b) (�)' + (�)' + (;)' + . . .  + (:)'- (2;) 

5.1.13. Use the identities of this section to show that 

5.1.14. Sum 

i [ n - 2k (") ]'- I ( 2n - 2). 
k�o n k n n - I 

2n-l 

� ( ; - 1 )2' - '· 
i=n n - 1 

(Hint: For i = n,n + I, . . .  , 2n - 1 ,  compute P(£;), the probability that i 
tosses of a fair coin are required before obtaining n heads or n tails.) 

5.1.15. A certain student, having just finished a particularly hairy summa­
tion, stared glassy-eyed at an "x1Y2" which was written on the scratch 
paper. After some doodling the student wrote: 

XI Y2 
(1 )  X1Y2YJX4 
(2) XIY2YJX4y5x6X1Y, 

(3) XIY2Y3X4YsX6X1YBY�IoXHY12XI3YI4YISxl6 • 
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On each line, the student copied the line above exactly, and then copied it 
again, changing x's toy's,y's to x's, and continuing the subscripts in order. 
The student noticed that the sum of the x-subscripts equals the sum of the 
y-subscripts in line (I). In line (2) the same equation holds, a similar one for 
the sums of the squares of the x- and y-subscripts, i.e., 1 2 + 42 + 62 + 72 
= 22 + 32 + 52 +  82• The student immediately made the inductive leap that 
in line (n), the sum of the kth powers of the x-subscripts would equal the 
sum of the kth powers of they-subscripts for k =  1,2, . . .  , n. Prove this for 
ail n >0. 

Additional Examples 

1.3.4, 1.3.15, 1 . 1 1 .4, 2.1.1, 2.1 .2, 4.3.5, 4.3.13, 4.3.14, 4.3.15, 4.3.24, 5.4.8, 
6.8.3, 7.2.9, 7.3.8. Applications of the binomial theorem: l . l . l  (Solution 4), 
1 . 1.2, 1.3.8, 1.6.6(b), 1 . 12.4, 3.5.8, 3.5.10, 3.5.1 1, 3.5.12, 3.5.13, 4.2.13, 4.3.5, 
4.4.9, 5.1.2, 5.1.15, 5.2.!3, 6.8.3, 7.1.5, 7.1.15. 

5.2. Geometric Series 

The geometric series arises naturally in many problems, and it is therefore 
imperative to know its sum: 

I - xn+ l 
I X X =I= I, 

� " 
� x1 =  lim L: x ' =  lim 
i=O 11 ..... 00 i=O n->oo 

I - xn+ l 
I X 

_ _ 1_ 
1 - x ' lxl < I . 

5.2.1. For a positive integer n, find a formula for a(n), the sum of the 
divisors of n. 

Solution. Clearly o(l) = I. If p i� a prime, the only divisors are I and p, so 
o(p) = p + I. 

If n is a power of a prime, say n = pm, the divisors are I, p, p2, • • •  , pm, 
ro o(pm) - 1  +p +  . . .  + pm - (1 -pm+')/( 1 -p). 

Suppose n = ab, where a and b are relatively prime integers, each larger 
than one. Suppose the divisors of a are ai>a2, . . .  , as and the divisors of b 
are hpb2, • • •  , b,. Then· the divisors of n are a1bj, i = 1 ,2, . . .  , s, j = I, 
2, . . .  , t, and the sum of these is 

(a1ht + · · · + alb,) + (a2bl + · · · + a2h,) + · · · + (ash! + · · · + ash,), 
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or equivalently, 
(a1 + a2 + · · ·  + a,)(h1 + h2 + · · ·  + h1). 

Thus, o(n) = o(a)a(b). 
Consider now an arbitrary positive integer n, and suppose its unique 

factorization is 
n = P�'Pl' · · · Pk" · 

From the preceding work, we find that 
•(n) � ( 1 -p�·+ '  )( 1 - p?+ ' ) . . .  ( 1 -p[<+' )

· l pt l f2 l pk 

5.2.2. Let n = 2m, where m is an odd integer greater than I. Let 8 = e2""i/n. 
Express ( I - 8)-1 explicitly as a polynomial in 8, 

ak8k + ak_1nk- l + · · · + a18 + a0, 
with integer coefficients a;. 

Solution. Notice that fJ is an nth root of unity, and that em = (e2•nf2mr 
= e"; = - I .  Thus, 

I n n 2  nm- t I - em 2 + u + u  + · · ·  + u  = --- � -- . 1 - 8 1 - 8 
Also, since m is odd, we have 

I - 8 + 82 - . . .  + em-1 = 
1 - (-9( 
I ( 9) � O. 

Now, adding equations (I) and (2), we get 

or, equivalently, 

2 + 282 + · · · + 2nm-t = _2_ I - 9 '  

_I_ = J+ 82 + fJ4 + . . . + nm- t. 1 - 9  

5.2.3. Sum the finite series cos O +  cos28 + · · · + cosn8. 

( I) 

(2) 

Solution. The series we wish to evaluate is the real part of the geometric 
series 
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whose sum is 

ei(n+ 1)9 _ 1 
e'9 - I 

� 2
1. �,. [(cos(n+-!)0 - cos-tO) I SI0 2 !.7  

+ i(sin(n + -f )0 - sin -tO) J 

+ i(cos-!0 - cos( n + 1 )0) J. 
Equating real parts, it follows that 

cos0 + cos28+ · · ·  + cosnO = lsi!J.0 [sin(n+!)9 - sin !9] ' 
sin(n+t)O 1 = 2sin !9 - 2 · 

5.2.4. Prove that the fraction 
I X 3 X 5-· · · X (2n - I) 

2 X 4 X 6 · · · X 2n 
when reduced to lowest terms, is of the form a/2"' where a is odd and 
w < 2n. 

Solution. We can write the fraction in the form 

(ln)! _ I ( 2n) 22"n!n! - 22" n · 

Now, (�") is an integer, so the only question that remains is to show that 
w < 2n. The highest power of 2 in (2n)! is 

(see 3.3.10), and in n! is 
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It follows that 

But 

� n + � [ ", ]· 
k = l  2 

and therefore 

� n + � [ ", ] 
k = l  2 

= 2n. 

5.2.5. For x > 0, evaluate in closed form 

Solution. Write x in the form 
oo a x = [x ] + 2:  2: ,  

n= I 

where an is 0 or I, and where, if x has the form m/2n (m an odd integer), 
we take ak = 0 for all sufficiently large k. 

For each n, [2nx ) is even if and only if an is 0. It follows that for each 
n, (- l) n 2"x D = I - 2an . Therefore, 

"- t 

5.2.6. Evaluate in closed form 

� c_l ,�,?"-"" 
"- ' 
"" ! oo an 

� � 2" - 2 � 2" n= t  n - 1  

� l - 2(x - (x )). 

L p+! I ' (p,q)-1 X 
lxl > I, 
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where the sum extends over all positive integers p and q such that p and q 
are relatively prime. 

Solution. 

xf+q (p.q)-1 

� � )+, ( � ( )+, )") 
(p.q)= I n-O 

oo ( I ) 
� � n(p+q) • (p.q) - l n - 1  X 

Asp, q, and n vary over the index set in this sum, the powers of 1/  x will 
vary over all possible ordered pairs of positive integers (i,j). Since the 
series is absolutely convergent (lflx l < 1), we can rearrange the terms of 
the series into the form 

Problems 

oo I L: � n(p+q) {p.q)=l n= l  X 

oo oo I 
� � � ---;;; 

i = l  j = l  X 

5.2.7. Let n = 2r 1(2P - 1), and suppose that 2P - I is a prirne number. 
Show that the sum of ali (positive) divisors of n, not including n itself, is 
exactly n. (A number having this property is called a perfect number.) 

5.2.8. Sum the series I + 22 + 333 + · · · + n( I I  . . .  I ). 
n 

5.2.9. Let E(n) denote the largest integer k such that 5" is an integral 
divisor of the product 1 12233 · · • n". Find a closed-form formula for E(5m), 
m a positive integer. What happens as m --1- oo? 
5.2.10. A sequence is defined by a1 = 2 and a, = 3a,_1 + ! . Find the sum 
a1 + a2 + · · · + o,. 
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5.2.11. Verify the following formulas: 

± sin (2k - I )0 = si�2n0 ' 

i- 1  smO (a) 

(b) � · 2 (2k � J ) ll _ _  1 _ sin4n0 .c... sm u - 2 n  4 . 2" . 
i-1  Sill u 

5.1.12. 
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(a) If one tosses a fair coin until a head first appears, what is the 
probability that this event occurs on an even·numbered toss? 

(b) The game of craps is played in the following manner: A player tosses a 
pair of dice. If the number is 2, 3, or 12 he loses immediately; if it is 7 
or I I , he wins immediately. If any other number is obtained on the first 
toss, then that number becomes the players "point" and he must keep 
tossing the dice until either he "makes his point" (that is, obtains the 
first number again), in which case he wins, or he obtains 7, in which 
case he loses. Find the probability of winning. 

5.2.13. If a, b and c are the roots of the equation x3 - x2 - x - I = 0, 
(a) show that a, b and c are distinct; 
(b) show that 

is an integer. 

5.2.14. 

(a) Prove �.[rJ < IIpinPI/Jp-1), where the product on the right is over those 
positive primes p which divide n: (Hint: First prove that 

(b) Use part (a) to prove there are an infinite number of primes. (Hint: 
First prove that (n!)2 ;;. n".) 

5.2.15. Prove that IT::'-o(l + x2") = �::'-oxn = 1/(1 - x), lxl < I .  

5.2.16. Evaluate in closed form: �:'�0(x2"/(l - x2"+ ')), lxl < I . 

5.2.17. (a) Let p 1 ,  p2, • • •  , p, be all the primes less than m, and define 

A(mJ - TI (I � .l ) - '
. 

i = l  P; 
Show that A(m) - �(pj'pf' · · · p::-)-1, where the sum is over all n·tuples of 
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nonnegative integers (a1,a2, • • •  , a�). (Hint: 

(b) Show that I +  1/2 + lj3 + · · · 1/m < A.(m), and conclude that 
there are an infinite number of primes. 

Additional Examples 

1 .12.1, 4.1.4, 4.1.8, 4.1.9, 4.2.5, 4.2.8, 4.2.12, 4.2.18, 4.3.13, 4.3.18(c), 5.1.4, 
5. 1 . 1 1 , 5.4.1, 5.4.7, 5.4.9, 7.6.6. 

5.3. Telescoping Series 

Infinite series and infinite products can sometimes be evaluated by means 
of "telescoping." The examples are self-explanatory. 

5.3.1. Sum the infinite series 
00 
.�. "< 3"i =-"26)

1
(3"•"'+�1") . 

Solution. The trick is to break the summand into a sum of partial fractions, 
with the result that most of the terms in the partial sum will cancel. We 
look for numbers A and B such that 

This leads to 
I � A (3i + I) + B(3i - 2) 

and equating coefficients, we have 
3A + 3B = 0, 
A - 2B = I .  

It follows that A = t, B = - 1 .  Thus 

� ! [( 1 - ! ) + ( l - ! ) + (-'- - _!_) + . . . + (-1- - -1-)
] · 3 4 4 7 m 10 3n - 2 3n + I 
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In this sum we have the "telescoping" property: the second term in each 
pair cancels with the first term in the successive pair, with the result that 

S,. = t [I - 3n � I l 
It follows that the infinite series adds to lim,. .... � sn = t .  

5.3.2. Sum the infinite series 3 + 5 + 7 + 9 +  l x 2 x 3  2 x 3 x 4 3 x 4 x 5  4 x 5 x 6  

Solution. Again, by partial fractions, we look for real numbers A, B, C such 
that 

We get 

2n + l  = A +__!L__ +,...L 
n(n + l)(n + 2) n n + l n + 2 " 

2n + I == A  ( n + l)(n + 2) + Bn(n + 2) + Cn( n + I). 
Setting n = 0 yields A = t ;  setting n = - 1 yields B = I; setting n = -2 
yields C = - i .  Thus, the nth partial sum is 

[ l 1 ' l  [ ' 1 1 l + n� l + n - n � l  + * +  n + l - n � 2  · 

In this case, the telescoping takes place across groupings: the last term of 
one triple cancels with the sum of the middle term of the next grouping and 
the first term of the third grouping after that: 

1 I 
' 

- 2.. + - + l. = 0. i i i 
The resulting sum is therefore equal to 

s � [  j + l ] + [  ' ] + [2 ] + [�1 _ _Ll 
" I 2 2 n + l n + l n + 2 

It follows that the infinite sum adds to lim"_.""S" = �-
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5.3.3. Express oo oo I 
,?;1 m� 1 ml,r + mn2 + 2mn 

as a rational number. 

Solution. Let S be the desired sum. Then, leaving out the details of the 
partial-fraction decomposition, we have 

00 00 
s �  � � ' 

n - l m - J  mn(m + n + 2) 
IX) I IX) I = 

n�J n m�l m(m + n + 2) 
� 

� _!_ � [ l/(n + 2) _ 
l/(n + 2) l 

" * l n m - J  m m + n + 2 
� � I [ (I _

_ I ) + ( I _
_ 

I ) 
n � l n(n + 2) n + 3 2 n + 4 

oo ( l  l )  I ' ) 2: _3_ - �'- (t + - + . . . + �-

n = l  n n + 2 2 n + 2 
= -f [(I - t )(I + -} + :} ) + ( -} - t )(I + -f + t + ! ) 

+ ( } - !)(1 + -} + t + � + t ) +  . . . J 
= t [(I + -i + f ) +  -} (I + -} + } + i ) +  tO + t) 

+ -H! + !) + H i + -t ) +  · · · ] 
1 [ 1 1 1 25 ( 1 I I ) = 2 6 + 2 · 12 + 3 X 4 + 4 X 5 + 5 X 6 + . . . 

+ ( -'- + _I_ + _I_ + . . .  ) ]  3 x 5  4 x 6  5 x 7  
= t [ ¥ + 1i + ((t - !) + (! - !) +  · · · ) 

+ H0 - 0 + (! - i) + ( t - t) + · · · )] 
= H Jt + H + t + -k + t ]  
= ! [ 44 + 25 + 8 + 7 ] = 84 = 1 

2 24 48 4 '  
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5.3.4. Sum the series 

Solution. Using de Moivre's Theorem, 
sin 3D = Im(e3;0) = lm((e ;0)3) 

= lm[cos D + isinDf 

= Im[ cos38 + 3 coslf/ i sin 8 + 3 cosO i2sin:>e + i3sin38J 

= 3 cos:>e sin 8 - sin 3D 
= 3[  ( 1 - sin:>e )sinD] - sin38 

= 3sin8 - 4sin38. 
It follows that 

Thus, 
sin38 = � sin 0 - t sin 38. 

+ ( 3' ,in(� ) - � �in( -x )) 4 3k 4 3k- l 

J' . ( x ) l ·  = 4 sm 
3k - 4 smx. 

Therefore, the series adds to 

lim Sk= lim [ 34k sin( '; ) - .!. sinx] k->O<:J k-c>oo 3 4 

= hm - - - smx = . . [ x 'in(x/3') I . l x - ,;nx 
k---"""' 4 (x/3k) 4 4 
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The telescoping idea is particularly useful in solving recurrence relations. 
Here is an example; other examples are given in the next section. 
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5.3.5. A sequence of numbers satisfies the recursion 
x0 = 0, nx� = ( n - 2)x,._ 1  + I for n > 0. 

Find a closed-form expression for x,. . 

Solution. We see that x0 = 0, x1 = I, x2 = L x3 = h and consequently 
x,. = t for all n > 2. But finding a pattern for a given recursion is not 
always so simple, and it is instructive to consider the problem in the 
following manner. 

For n > 2, multiply each side of the recursion by n - I , and for each n, 
sety,. = n(n - l)x,.. The recursion in terms of they,.'s is 

y,. =y,._ 1 + (n - l), y 1 = 0. 

It follows that 
Y2 - Y1 = I, 
YJ - Y2 = 2, 

Y4 - YJ = 3, 

y,. -y,._ 1 = n - I.  

Adding (notice the telescope), we get 
( n - I )n 

y,. = l + 2 +  · · ·  + (n - 1) = 2 

and therefore, 

Problems 

5.3.6. Sum the following: 
..1 + 1.. + .1_ + . . . + n - 1 
2! 3! 4! n! 

n > 2. 

(a) 

(b) l X I ! +  2 X 2! + 3 X 3! + · · · + n X n!, 
2 4 6 (c) I x 2 x 3 + 2 x 3 x 4  + 3 x 4 x 5 + · · · 

5.3.7. Evaluate the following infinite products: 
(a) II:"- 1(1 - l jn2), (b) II:"- 1(n3 - l)/(n3 + 1). 

+ 2n 
n(n + l)(n + 2) 

(c) Show that an infinite product can be transformed into an infinite series 
by means of the identity P = elosP. Work part (a) in this way by 
evaluating the infinite series �:'-1log(l - Ijn2). 
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5.3.8. Prove that for each positive integer m, 
'm 

m < L _!_ < m + 3m + I 
(m + 1)(2m + l)  •=m+ t rl (m + l )(2m + l) 4m(m + l)(2m + l) 

(Hint: Notice that 1/ r(r + I ) < 1/ r2 < I j(r + l)(r - I).) 

5.3.9. Let F1, F2, • • • be the Fibonacci sequence. Use the telescoping 
property to prove the following identities: 

(a) F1 + F2 + · · · + F, = F,+2 - I. (Hint: F,_2 = F, - F,_ 1.) 
(b) F1 + F3 + · · · Fln- 1 = F2,· 
(c) Ft = Ff +  · · · F'! + F,FH J ·  (Hint: F'! = F,(F,+ 1 - F,_ !) =  

F,Fn+ l - F,F,_ 1.) 
(d) 2:::'-2 1 /  F,_ I Fn+ l  = I . (Show that 1 /  F,_ 1Fn+ l  = If Fn_ 1Fn - If  

F,F,+ 1.) 
(e) 2;';/ ... lF,j F,_ IFn+ l  = I. 
5.3.10. Sum the following infinite series: 

(a) 

(b) 

· 3 1 · 33 1 . '3' sm x + - sm x + -sm x +  · · ·  3 3' 
, 1 ,3 1 '3' cos x - - cos x + -cos x + · · ·  3 3' 

5.3.11. 
(a) Use the identity (k + 1)3 - k3 = 3k2 + 3k + I  to evaluate the sum of 

the first n squares. (Hint: Let k vary from I to n in the given identity, 
and consider the sum, on the left side and the right side, of the resulting 
n equations.) 

(b) Use the telescoping idea, as in part (a), to evaluate the sum of the first n 
cubes. 

(c) Find 

5.3.12. Show that the reciprocal of every integer greater than I is 
the sum of a finite number of consecutive terms of the infinite series 
2:�- , lfn(n + 1). 
5.3.13. If m > I is an integer and x is real, define 

Show that 

(Hint: See 1.2.3.) 

f(x) � ( (x ( 
(x  + 1 )  

if X � 0, 
if x < O. 
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5.3.14. Solve the following recurrence relations (by the methods of this 
section). 
(a) x0 = I, x" = 2x,_ 1 + I  for n > 0. [Hint: Divide each side by 2".] 
(b) x0 = 0, nx" + (n + 2)x11_ 1 + I for n > 0. 
(c) Xo = I, x1 = I, X2 = 2, xn+J = x11 + 3 for n > 0. 

5.3.15. Show that a plane is divided by n straight lines, of which no two 
are parallel and no three meet in a point, into ! (n2 + n + 2) regions. 
5.3.16, Let 

Show that 

I I d � -- + -- +  " n + l n + 2 

I I I d = 1 - - + - - - + n 2 3 4 
. . . + _l _ _  j_ 2n - l 2n " 

[Hint: Consider the telescoping series L7,:11(d;+ J - d;).] Co�clude that 
d" 4 log2 as n�oo.  (For another proof of the first part, consider the 
difference of each expression from the harmonic sum I + 1/2 + · · · + 
l/(2(n - I)). Also, see Section 6.8.) 

Additional Examples 

6.6.6, 7. 1.8, 7.2.2. 

5.4. Power Series 

A power series is an expression of the type 

a0 + a1x + a2x2 + · · ·  + anx" + · · ·  
where a0, a 1 , a2, . . • are real nwnbers. 

Given a power series, we can define a functionj(x), whose domain is the 
set of those real numbers x which make the power series into a convergent 
infinite series, and whose value is given by 

f(c) = ao + a1c + a2c2 + · · ·  + a"c" + · · ·  
for any c such that the right side converges. 

Given a power series L;":oa;x;, it can be shown that exactly one of the 
following holds: 
(i) The series is convergent for all real numbers x. 

(ii) The series is convergent only for x = 0. 
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(iii) There exists a real number r such that the series is convergent for 
lxl < r and divergent for lxl > r. 

We define the radius of convergence to be + oo if (i) holds, 0 if (ii) holds, 
and r if (iii) holds. 

We can ask the following question: Given a function f, is f represented 
by a power series? One result along these lines is Taylor's theorem (with 
remainder): If f can be differentiated as many times as we like on an 
interval [0, a J, then 

f' (D) j"(O) 
j(x) = f(O) + -1 1-x + �x2 + · · .  

J'"'(O) 
+ --1 - + Rn(x), n. 

where Rn(x) = j<n+ l l(c)an+ 1/(n + I)! for some c, 0 < c < a. The impor­
tant part here is that if Rn(x) is well behaved, so that Rn(x)�O as n � oo ,  

then 
oo f"'(O) f(x) � L; �1- x". 

n=O n 
This gives us a method of finding a power series for a given function j(x). 

Using this idea, one can find power-series expansions for the most 
common elementary functions. The following series occur so often they 
should be memorized: 

. x3 xs smx = x - - + � -3! 51 

x2 x4 cosx = I - -- + - -2! 4! 

_I_ = I + x + x2 + 1 - X 

x" . . .  + 1 + · · · ,  n. 
n x2n-l 

· · · + ( - !) + (2n I) !  
n X2n 

+ ( - 1) -- + (2n)! 

+ Xn + . . . ' lxl < I ,  

I I x2 x3 I " x" 
og( + X) =  X - - + - - · · · + ( - ) - + · · · 2 3 n 

(i) 

( ii) 

(iii) 

jxj < I, (v) 

( I + xf = I +  { ;}x + (;)x1 + · · · + (�)xn + · · · ,  r real, lxl < I, 

(vi) 
where 

r _ 
r(r- l)(r- 2) · · · (r - n + I) (n) - n! · 

5.4.1. Prove that e is an irrational number. 
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Solutkm. Suppose e = h/ k, where h and k are integers. Using the power­
series expansion for e", and setting x = I, we have 

e = I + -fT + i! + · · · + �! 
+ [ (k1 1) ! + (k1 2)! + . . . ] · 

Multiply each side by k!, and write in the form [ h  I I I ] I I k! k - I - If -
2! -

. . . - k ! = k + I  + (k + l)(k + 2) 
+ . . .  

Notice that the right side of this equation is positive, and the left side is an 
integer. Thus, the left side is a positive integer. However, on the right side, 

_I_ + I 
k + l  ( k + l)(k + 2) + I + (k + l)(k + 2)(k + 3) 

I [ I ( I )' 
< k + l  I +  k + l  + k + !  + 

+ l 
I [ I l I 

(
k + l

) 
I = k + I I _ ( k � I ) 

= k + I -k- = k < I .  

Thus, the right side is not a positive integer, and we have a contradiction. It 
must therefore be the case that e is irrational. 

5.4.2. Show that the power-series representation for the infinite series 
2::-ox"(x - 1/"/n! cannot have three consecutive zero coefficients. 

Solution. The series sums to j( x) = exrx - 1 1'. To find its power-series repre­
sentation, we need to compute pn\0) for n = I , 2, 3, . . . .  We have 

J'(x) = exr<-D'(3x2 - 4x + 1), 
which is of the form 

j'(x) � f(x)g(x) 

where g(x) is a polynomial of degree 2. It follows that 
f"(x) � j'(x)g(x) + f(x)g'(x), 

J"'(x) � J"(x)g(x) + 2J'(x)g'(x) + J(x)g"(x), 

f'">(x) � J"'(x)g(x) + Jj"(x)g'(x) + Jf'(x)g"(x) 
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(note: g"'(x) = 0). An induction argument shows that for n = 3,4,5, . . .  
r• "(x) � /"'( x)g( x) + a,r- ' '(x)g'(x) + b,J'"-'>( X) g'( x) 

for some integers an and bn . 
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Suppose that three successive terms in the power series for f(x) were 
zero, say Jfnl(O) = Jfn- 1\0) = J1"-2l(O) = 0. Then, the recursion of the last 
paragraph implies thatJik\0) = 0 for all k > n, and this means thatf(x) is 
a polynomial, a contradiction. Therefore we are forced to conclude that the 
power series for J(x) cannot have three successive zero coefficients. 

5.4.3. Evaluate limx .... ,[(e/2)x + x2[(1 + lfxY - e]J. 

Solution. We will find the first few terms of the Taylor series for (I + 1/xY 
in powers of ljx. We have 

( l + � )'� e' '"",. ,;,, � expH( l/x) -
(l

�x)' + 
( lj

3
x)' + · · · ] )  

� exp[ l - t ( � } + t ( � }
' 

- i ( � )' + · · · ] 

= e[ I - 2� + �! ( � )  � + higher powers of � ] . 
It follows that 

= }i..� [ i�e + higher powers of � J 
= 1

2� . 

An extremely useful fact about power series is that they can be differen­
tiated and integrated term by term in the interior of the interval of 
convergence. By this we mean that if 2:anxn has a radius of convergence r 
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and if j(x) = �a,x", then 

j'(x) = Z,na,x"- 1 and (X j(x)dx= 2, �I x"+ 1, Jo n + 
and both resulting series have radius of convergence r. 

One consequence of the preceding result is that the power-series repre­
sentation of a function J is unique; that is, if j(x) = Z,a,x" = Z,b,x", then 
a, = b" for all n. In fact, a, = b, = j<"\0)/n!. To see this, simply differenti­
ate each side of j(x) = �a,x" repeatedly and evaluate each successive 
derivative at x = 0. For example, j(O) = a0; j'(x) = Z,na,x"- 1, so f'(O) 
= a1 ; f"(x) = Z,n(h - l )a,x"-2, so j"(O) = 2!a2, or equivalently, a2 
= j"(0)/2 !, and so forth. 

5.4.4. Sum the infinite series 
Jl 22 32 42 
0! + T! + 2T + 3! + 

Solution. Begin with the series 

Multiply each side by x: 

and differentiate each side: 

00 n+ 1 
xex = "'=" x 

"' -,- , 
, .. o n. 

Multiply each side by x again: 

and differentiate to get 

Now set x = I, and find that 

"' (n + I)' 
-:, -'-----,-'-- = 5 e. n-o n! 

The following theorem is often useful. 
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Abel's Limit Theorem. Let r > 0 ,  and suppose L:'."-o'ln'n comerges. Then L:'-ollnXn conwrges absolutely for jxj < r, and 
• • 

lim � anxn= � anrn. 
_, ..... ,- n-o n -o 

5.4.5. Sum the infinite series 

Solution. We know that 

and therefore 

__ I_ = 1 � x3 + x6 - x9 + . . . 
I +  x3 lxl < I, 

fo
x 

I !xx3 = x - �4 + ;7 - �� + . . .  , lxl < I . 

Now, the series on the right side converges for x = 1 (by the alternating­
series test), and therefore, by Abel's limit theorem, 

1 - l + l - !'o +  · · · = hm --- . . L' dx 4 7 1 x--.1 - 0 I + x3 
This integral can be worked by partial fractions (the details are not of 
interest here), and we get 

(' ___!!2£_ � ! [ log I + x 
Jo I + x3 3 b - x + x2 

Thus, the series sums to 

+ .f3 [arctan 2x - 1 - arctan .=...! ] ] · . .[3 .[3 

l [ log2 + -"-- ]· 3 .[3 

5.4.6. Let Sn = L�-1(- Il+ 1 /i and S = limn--.ooSn. Show that 
L;'_ 1(Sn - S) = log 2 - i ·  

Soludon. We must evaluate the double series 
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For this purpose, consider the function 

Then 

It follows that 

and we find 

"' "' (-x)Hj F(x) � '�' '�' i + j lxl < I . 

F'(x) � L L (-x)'+i- '(- 1) j-1 i� l  
00 00 

� L (- 1)(-x) iL ( - x),_ , 
j- l  ;,., l 

00 
� L (- 1)(-x)i_l_ j-1 I + X  

00 � _x_ L (-x)l 
} + X j-e 

X I 
= ( I  + x)2 = 1 + x - ( I  + x)2 . 

(" F' X dx � (" --.'!!'_ - (" dx 
Jo ( ) Jo I + x Jo ( 1 + x)2 ' 

F(x) - F(O) �log( I + x) ]; + -1 -1- ] ' · + X o 

F(x) = log( l + x) +  1 ! x - I. 
The series for F(x) is convergent for x = I, so by Abel's limit theorem, 

F(l) = log2 + !  - 1  = log2 - 1- .  

5.4.7. Given the power series a0 + a1x + a2x2 + · · · with a, = (n2 + 1)3", 
show that there is a relation of the form 

a, + pa,+ 1 + qa,+l + ra,+3 = 0, 

in which p, q,r are independent of n. Find these constants and the sum of 
the series. 

Solution. Substituting the given values of a, into the recurrence, we find 

(n2 + 1)3" + p(n1 + 2n + 2)3"+ 1 

+q(n2 + 4n + 5)3"+1 + r(n2 + 6n + 10)3"+3 = 0. 
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Now divide each side by 3�. Then equating coefficients, we find that p, q, 
and r must satisfy 

3p + 9q + 27r = - I, 
2p + 12q + 54r = 0, 
6p + 45q + 270r = - I. 

These equations have a solution: p = - I, q = t, r = - -ft .  
For the second half, we wish to sum the series 

� 
� (n' + 1)3"x", n �o 

which breaks into two parts, 
� � 
� n'(3x)" + � (3x)". 

n"=O n-o 
Let S =  L:��0(3xY. If lxl <t. S = 1/(1 - 3x). Therefore, from 

it follows that 

� 
� (3x)"� -1 _13 , 

n-O X 

� 
� n(3x)" � 3x 

n�O (I - 3x)2 

lxl < ! ,  

� n2(Jxf- t · J = A.. [ 3x , ] = 9x + 3 2 , " - o  dx ( I - 3x) (I - 3x) 
00 2 n 3x(3x + I) � n (3x) � . 

n-O ( I - 3x)2 
Combining, we get 

00 3x(3x + l) 1 � (n' + 1)(3x)"� , + -1-3-n=O ( l - 3x) - X 

18x2 - 3:c + I 
( I - 3x)' 

5.4.8. Evaluate in closed form: 

s" � ± ( -4)'(" + k). k�O 2k 
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Solution. We can compute the first few terms: 
S0 = I, 
s, - (�) - 4(D - 1 - 4- -3. 
S2 = (�) - 4(;} + t6(:) = 1 - 12 + 16 = 5, 

s, _ m - 4(il + 16m _  64(�) 
= -I - 24 + 80 - 64=  -7. 

From this pattern, we expect that S� = ( - tr(2n + I). 
If we think of proving this conjecture by mathematical induction, we are 

led to look for a recurrence relation. This leads to .the following reasoning: 

(n + k) - (n + k - l ) + (n + k - 1 ) 2k 2k - I 2k 

Thus, 

- [(n + k - 2) + (n + k - 2) ] + (n + k - 1 ) 2k - 2 2k - I 2k 
- (" t/�_-;2) + [(" \k

k- 1 ) - ("\k
k
- 2)] + (" +2kk

- 1 ) 
- (n + k - 2) + 2(n + k - 1 ) - (n + k - 2). 2k - 2 2k 2k 

s. - ± ( -4)'(" + k) 
k-0 2k 

_ ± (-•)'(n + k - 2) k�O lk - 2  
+ 2 ± (-4)'(n + k - 1 ) - ± (-4)'(n + k - 2) 

k - o  2k k�o 2k 
- ± ( -4)'(" + k - 2) 

k-0 2k - 2  
n - 1  n-2 + 2 2; ( -4)'(" - I + k) _ 2; ( _4)'(" - 2 + k) 
k - o  2k k�o 2k 

- -4 ..; (-4)'- '(n + k - 2) + 2S - s  k�O 2k - 2 n- 1 n-2 

· - '  = -\�o (-4)k(n + 2�- I ) + 2S,_ I - S,_� 
= -4S,._ 1 + 2S,_ 1 - S,._2 
= - 28,_ 1 - S,._2• 
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Using this recurrence relation, we can use mathematical induction to 
establish the claim that S� = ( - lr(2n + I). 

Consider the recurrence relation 

S� = -2S�_ 1 - S�-2> S0 = 1, S1 = -3, 
and, for the sake of the illustration, let us suppose that we are not able to 
discover the formula for S� by a consideration of the first few cases. We 
wish to give here a technique for making this discovery. The method is to 
make use of a generating function F(x), in the following way. 

Let F(x) be the name of the power series whose coefficients are S0, SP S2, . • . •  namely, 

F(x) = S0 + S1x + S2x2 + · · ·  + Snx� +  
We will act as though the series converges at x to the function F(x). Then 

2xF(x) = 2SoX + 2 S1x2 + 2 S2x3 + · · · + 2 S�_ 1x� + 
x2F(x) = S0x2 + S1x3 + · · · + Sn_2xn + 

Adding, and making use of the fact that Sn + 2S�_ 1 + S�_2 = 0, we find 
that 

or, equivalently, 

F(x) � I - x 
( 1  + x)2 

We now express the right side of this equation as a power series. To do this, 
first differentiate each side of 

-1- � i: (- l)"x" 1 + X �=0 
to get 

- 1  2 = � ( - l)nnxn- t . ( l + x) �-o 
Then multiply each side by x - 1 to get 

� 
F(x) � L (- l)"n(x - l)x"- ' 

"-o � � 
� L ( - l)"nx"- L (- l)"nx"- ' �-o �-o 

� � 
� L ( - l)"nx"+ L ( - l)"(n + l)x" �-o n-O 

� 
� L (- 1)"(2n + l)x". "-o 

Here again, we find that Sn, the coefficient of xn, is S� - ( - 1Y(2n + I). 
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It is true that the generating-function approach shown here cannot be 
justified in a step-by-step manner, since we have completely disregarded 
convergence considerations. However, the method can nevertheless be used 
in similar problems to formulate conjectures (about the solution of the 
recurrence relation), and these conjectures can then be verified by other 
means (for example, mathematical induction). 

S,4,9, Sum the finite series a0 + a1 + · · · + a,, where a0 = 2, a 1 = 5, for 
n > I, a, = 5a,_ 1 - 6a,-2· 

Solution. The first few terms of the a;-sequence are 
2, 5, 13, 35, 97, 275, 393, . . .  

Here, a general formula for the nth term is not apparent, so we turn to the 
technique of generating functions. Consider 

We have 
F(x) = a0 + a1x + a2x2 + · · · + a,x" + 

-SxF(x)= -Sao:< - 5a1x2 -
6x2F(x) = 6a0x2 + 

Adding and using the recurrence an - San- l + 6an_2 :::= 0, we get 
(I - Sx + 6x2)F(x) = a0 + (a1 - 5a0)x, 

so that 
2 - 5x F ( x) - 7( l;--""2x"')-;'i( l-"--c3'-x"J · 

Write this as a sum of partial fractions, and make use of the geometric 
series, to find that 

I I F(x) - -- + --1 - 2x I - 3x 
00 00 

- 2; (2x)' + 2; (3x)' 
i•O 1�0 
00 - 2; (2' + 3')x'. 

i•O 
Thus, a, = 2; + 3; for i =  0, 1,2,3, . . . . [As a check, we can verify this 

formula by induction. Note that a0-= 2° + 3° = 2, a1 ""' 2  + 3 = 5, and, for 
i > 2, a, = Sa;- ! - 6a; = 5(21- 1 + 3'-I) - 6(21-2 + 3;-2) = 5(21- 1 + 31- 1) - 3  X 21- 1 - 2  X 31- 1  • 2; + 3;.] 
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We are now ready to compute the sum: 
" " " 

a0+ a 1 + · · · + an = L (2' + 3;) = L i+ L J' 

3"• ' I = 2n+ l - I + -
2 

5.4.10. Find a closed-form expression for Tn, if T0 = I and for n :> I 
T., = ToTn-1 + T1Tn-2 + · · · + Tn_ 1To · 

Solution. This recurrence relation arose in 3.5.12. To solve it, let 

f(x) =  T0+ T1x + T2x2 + · · · + Tnxn + · · · 
and set 

F(x) = xj(x) = ToX + T1x2 + T2x3 + · · · + Tnx"+ 1 + 
The reason for this step is that 

( F(x))2= TJx2 + (T0T1 + T1 To)x3 + · · · 
+ (ToTn- t + TtTn-2 + · · ·  + Tn- !To)�n

+ t + 
so in view of the recurrence relation we have 

(F(x))2= T1x2 + T2x3 + · · · + T.,xn+ l + 
� F(x) - T,x. 

Using the quadratic formula we find that 

F(x) �.� -� 

187 

(We choose the negative sign because F(O) = 0; the positive sign would 
yield F(O) = 1.) 

Now by the power-series expansion, 

JI - 4x � 1 + ( t )c-4x) + ( ; Jc -4x)' + 
+ ( l )( -4x)"+ t + 

n + I  
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It follows that the coefficient of xn->- l in F(x) is 

r" � - 1 ( t )c-4J"+ ' 2 n + I  

� - 1  ( ! )(- 1 )( - � )  (- ¥) c -W'4"+ ' 2 (n + l)! 
I I X 3 X 5 X  · · ·  X (2n - l ) ( - I)" = _

_ . ----c---c-,;-;-'--_c ( I )n+ l4n+ l 2 (n + l ) ! r+ l 

= n! I enn). 
In a manner analogous to the case for real numbers, we can introduce 

the notion of a complex valued power series 

where the coefficients may be complex numbers and z a complex variable. 
The values of z for which this series converges defines a function 

lt  can be shown that the power series (i)-(vi) given for the elementary 
functions at the beginning of the section continue to hold when the real 
variable x is replaced with the complex variable z. 

A useful fact regarding complex power series is that if j(z) = 2::=oanzn, 
then Re J(z) = L:'=0Re(anzn) and Im j(z) = L:'=0Im(anzn). 

As an example, we wiil justify the use of the formula e;6 = cosO + isinO 
introduced in Section 3.5. We have 

and 

_ ao (iO)" ao (iO)" 
Ree111 = Re � -- = L Re--

n=O n l  n-0 n 1  

ao (i9)" ao (iO)" ao ( - l)kfJ2k+ l  
lme 18 =  I m L -- = L Im -- =  L = sinO. 

n�o n ! , _0 n !  k-O (2k + l) !  
It follows that e19 = Reei8 + ilmei8 = cosO + isinO. 
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5.4.1 1. Sum the infinite series 

0 < r < 1 , 0 < 8 < w. 

Solution. Consider the infinite series 

z2 z3 - log( I - z) = z + T + J + · · · 

and set z = r(cos8 + isin8). Then 

-log( I - rcos 8 - irsinO ) 

,. + - + . . .  
n 

r2(cos20 + i sin28 ) = r(cosO + /sin O ) +  2 + 

and taking the real part of each side gives 

Re( - log( I - rcos O - irsin8)) 

r2 rJ = rcos 0 + 2 cos 20 + 3 cos38 + · · · .  

Now, for a complex number w, logw = loglwl + iargw. It follows that 

rcosO + ;2 
cos28 + · · · = - logJ( I - rco!Oi + (rsin0 )2 

= -Iogb - 2rcos8 + r2
• 

Problems 

5.4.12. Letp and q be real numbers with 1/p - 1/ q = I ,  0 < p < j-.  Show 
that 

5.4.13. Find the power-series expansions for each of the following: 

(a) l /(x2 + 5x + 6). 

(b) 1 + X 
(l + x2)( 1 - x)2 

(c) arcsin x. 
(d) arctan x (use this to find a series of rational numbers which converges 

to w). 
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5.4.14. Sum the following infinite series: 

(a) 

(b) 

(c) 

(d) 

oo (-4w2r2)" 
. 

� 2 1 1 , r a nonzero mteger. 
n=O ( n + ). 

5. Summation of Series 

5.4.15. Letf0(x) = e" andf,+1(x) = xj�(x) for n = 0, 1, 2, . . . . Show that 

� !"\') � , .. 
n=O n. 

(Hint: Consider g(x) = e"'.) 
5.4.16. Prove that the value of the nth derivative of x3 j(x2- I) for x = 0 
is zero if n is even and - n! if n is odd and greater than I . 
5.4.17. Show that the functional equation 

1( __2x_) � ( I + x')f(x) I + x2 
is satisfied by 

f(x) = l + lx2 + lx4 + lx6 + . . .  ) 5 7 ' lxl < I. 

5.4.18. Using power series, prove that sin(x + y) = sinx cosy + cosx 
sin y. 

5.4.19. Show that 

sinx = x + x2 + ( t _ .l )x' + (t - ..l)x' 
1- x  3! 3!  

+ ( 1 - j1 + �! 
)xs + (I - j1 + �! )x6 

+ ( I - 1.. + ___!__ - ..l )x' + ( I - ___!__ + ..l - ..l )x8 + · · · 
3! 51 7! 3! 5! 7! 

5.4.20. Let B(n) be the number of ones in the base 2 expression for the 
positive integer n. For example, 8(6) = 8(1 102) = 2 and 8(15) = B(l l l l2) 
= 4. Determine whether or not 

� 
exp L · - ·  

i s  a rational number. 

B(n) 

n(n + 1)  
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5.4.21. For which real numbers a does the sequence defined by the initial 
condition u0 = a and the recursion un+ 1 = 2un - n2 have un > 0 for all 
n > 0? 

5.4.22. Prove that 

( � � � )3 = I + 6x + 18x2 + · · · + (4n2 + 2)xn + · · · ,  lxl < I .  

5.4.23. Let Tn = �7� 1 (- I)'+ 
1 /(2i - 1), T = limn ..... .,., Tn . Show that 

� 
I � (T" - T) � i - 4 " - '  

5.4.24. Solve the recurrence relation a0 = I, a1 = 0, a2 = -5, and for n > 3 
an = 4an- l - 5an-l + 2an-3" 

5.4.25. Use the technique of generating functions to show that the nth 
Fibonacci number Fn is equal to 

F �  
(¥)" - (�)" 

,f5 " 
• 

5.4.26. Sum the finite series a0 + a1 + · · · + an, where a0 = 2, a1 = 17, 
and for i >  I, a, = 7a;_1 - 12a;_2• 
5.4.27. Show that the power series for the function eaxcosbx, a >  0, b > 0 
in powers of x has either no zero coefficients or infinitely many zero 
coefficients. 

5.4.28. Sum the infinite series 

S = I - 2rcos0 + 3r1cos20 - 4r3cos0 + · · · , 
5.4.29. Show that �:'�o(sin nO)/n!= sin(sin O)ecos/.1. 

5.4.30. Use infinite series to evaluate limx .... ,",[o/x3 - 5x1 + I - x]. 

Additional Examples 

1 . 12. 1, 5.3.16, 6.8.1, 7.6.7(c). Also, see Section 5.2 (Geometric Series) and 
Section 7.5 (Inequalities by Series). 



Chapter 6. Intermediate Real Analysis 

In this chapter we will review, by way of problems, the hierarchy of 
definitions and results concerning continuous, differentiable, and integrable 
functions. We will build on the reader's understanding of limits to review 
the most important definitions (continuity in Section 6.l, differentiability in 
Section 6.3, and integrability in Section 6.8). We will also call attention to 
the most important properties of these classes of functions. It is useful to 
know, for example, that if a problem involves a continuous function, then 
we might be able to apply the intermediate�value theorem or the extreme­
value theorem; or again, if the problem involves a differentiable function, 
we might expect to apply the mean-value theorem. Examples of these 
applications are included in this chapter, as well as applications of 
L'HOpital's rule and the fundamental theorem of calculus. 

Throughout this chapter, R will denote the set of real numbers. 

6.1 .  Continuous Functions 

A real�valued function f is continuous at a if j(x)� j(a) as x �a, or more 
precisely, if 
(i) j(a) is defined, 
(ii) limx--�oa j(x) exists, and 

(iii) limx--->a j(x) = j(a). 

(If a is a boundary point in the domain of J, it is understood that the x's in 
(ii) are restricted to the domain of f. We will assume the reader is familiar 
with these contingencies.) 
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A function J is continuous in a domain D if it is continuous at each 
point of D. 

It is not difficult to prove that Jis continuous at a if and only if for every 
sequence {x, }  converging to a, the sequence {j(x,)} converges to j(a). 

The sequential form for the definition of continuity of J is used most 
often when one wishes to show a function is discontinuous at a point. For 
example, the function J defined by { .  I 

J(x) = �n X if X 1= 0, 

if X =  0 

is discontinuous at 0 because, for instance, the sequence x, = 2/(4n + l)'lT 
converges to 0, whereas {j(x,)} = {sin(2'lTn + ! 'IT)} converges to I (rather 
than to j(O) = 0). 

6.1.1. Define J:  [0, 1 ] --':1- [0, I ]  in the following manner: j(l) = I, and if 
a =  .a1a2a3a4 • • • is the decimal representation of a (written as a terminat­
ing decimal if possible; e.g., .099999 . . . .  is replaced by .1), define j(a) = 
.Oa10a20a3 • • • • Discuss the contitl.uity of f. 

Solution. Observe that J is a monotone increasing function. We will show it 
is discontinuous at each terminating decimal number (i.e., at each point of 
the form N jHY', N an integer, I < N < 10"). 

Consider, as an example, the point a = .4 13 . By definition, j(a) = 
.040103. Now define a sequence x, by 

x1 = .4129, 
x2 = .41299, 
x3 = .412999, 

x, =.412999 . . . 9. 
n times 

The sequence {x,} converges to a; however, 

n paits 
and we see that {j(x,)} does not converge to f(a). Thus J is not continuous 
at a. 

A similar construction can be made to show that j is discontinuous at 
each terminating decimal number. The argument is based on the fact that 
the terminating decimal numbers have two decimal representations, 
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namely, 
a� i=- 0, 

a = .a1a2 • • •  a,_ 1(a,. - 1)999 . . .  
Now suppose that a in (0, 1)  is not a terminating decimal number. We 

will show that J is continuous at a. Write a in its unique decimal form: 
a =  a1a2a3a4 • • • • 

Because the number a is not a terminating decimal number, there are 
arbitrarily large integers n such that a, i=- 0 and a,+ 1 i=- 9. For each such n, 

define X, and Y, by 

X, = .a1a2 • • •  a, (= ± �). 
i� I JO' 

an+ I + I 
Y, =.a1a2 • • •  a,(a,+ 1  + I) =  X, + JO" + I  

Then a E (X,, Y,). Moreover, the first n digits of each of the numbers in 
(X,, Y,} are the same as those of X, and Y,. Consequently, ail the numbers 
within (X,, Y,) are mapped to the interval (j( X,), j( Y,)). 

It is clear that the sequences {X,} and { Y,} converge to a; furthermore, 
the sequences CJ(X,)} and {j( Yn)} converge to j(a). Since any sequence 
{x,.} which converges to a must eventually become interior to (X,., Y,.) for 
any n, it must be the case that {j(x,.)} converges to j(a). It follows that J is 
continuous at a. 

The preceding example is difficult to visualize geometrically, and a 
thorough understanding of the proof requires a clear understanding of 
continuity. The next example also demands a precise rendering of the 
definition: a function f is continuous at a if for every e > 0 there is a 
number 6 > 0 such that lx - al < 6 implies lf(x) -j(a)l < e. 

6.1.2. Suppose that j: R � R is a one�to-one continuous function with a 
fixed point x0 (that is, j(x0) = x0) such that j(2x - f(x}} = x for all x. 
Prove thatj(x) = x. 

Solution. Let S = { x lf(x) = x }. Because f is continuous, the set S is a 
closed subset of R (i.e., if x,. E S and x,. � x, then x E S; this is because 
x = lim,.__.00Xn = lim,.__.,.,j(x,.) = j(lim,.--.00x,.) = j(x).) 

Now suppose that S * R. Let x0 be a boundary point of S (every 
neighborhood of x0 contains points that are not in S; note that x0 E S 
because S is closed). 

If y is a point that is not in S, there is a nonzero real number r such that 
J(y) = y + r. The fact that f is one-to-one and satisfies j(2x - j(x)) == x 
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Figure 6.1. 
• 

implies that 

f(y + nr) = (y + nr) + r 

for every integer n (this is the content of 2.1. 12). This identity is crucial to 
the argument which follows. 

Here's the idea: Suppose x is not in S; that is, j(x) =I= x. Choose y in 
R - S so that y is "close" to x0 and j(y) is ''close" toy (this can be done 
because f is continuous at x0 and j(x0) = x0). Then, if r is such that 
j(y) = y + r, and if r is sufficiently small, the fact that j(y + nr) = 
(y + nr) + r will lead to a contradiction to the continuity of f and x (see 
Figure 6.1). 

A formal proof goes as follows. Suppose, as above, that x0 is a boundary 
point of S and x is such that j(x) =1= x. Let e = lf(x) - xi- Because f is 
continuous at x, there is a 8 > 0, and we may assume that 8 < !t, such that 
lz - xl < 6 implies IJ(z) - j(x)l < i e. Because f is continuous at x0, there 
is an 11 > 0, 11 < 6, such that lw - x0j < 11 implies IJ(w) - j(x0)1 < 8. 

Now choose y E (x0 - .,, x0 + 11) such that j(y) =1= y (such a y exists 
because x0 is a boundary point of S). Then 

0 < 1/(y) -Yl < 1/(y) - f(xo)l + lf(xo) - Yl 

- 1/(y) -/(xo)l + lx, -Yl 
< 6 + .,  
< 26. 

Let r = j(y) -y (note: r may be negative). Since 0 < lrl < 26, there is an 
integer n such that y + nr E (x - 6,x + 8). But we know that f(y + nr) 
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= (y + nr) + r. It follows that 

' � lf(x) - xl 
< If( x) -f(y + "')I + 1/(y + "') - xl 
<{-e + I(Y + nr) + r - xl 
•qe  + l(y + nr) - xl -i- lrl 
<te + 5 + 215 
<te + {-e + fE 
= f. 

This contradiction means that S = R and the solution is complete. 

Two of the most important facts about continuous functions over closed 
intervals [a, b) are that they have maximum and minimum values on the 
interval and take on every value between these two. This is the content of 
the following two theorems. 

Extreme-Value Theorem. If f is a continuous function on (a,b], then there are 
numbers c and d in (a, b] such that j(c) < j(x) < f(d) for all x in [a., b) (thm is to 
say, f(d) is the maximum value for f over (a,b], and j(c) is the minimum value). 

lntennediate-Va1ue lbeorem. Iff is a continuous function on (a, b) and if j(a) < y 
< j(b) (or,f(b) <y < f(a)), then there is a number c in (a, b) such that j(c) = y. 

These results can be proved in a variety of ways; we will sketch a proof of 
the intermediate-value theorem which makes use of a methodology (re­
peated bisection) that is applicable in other problems (e.g., see 6.3.6). 

Suppose that J is a continuous function on the closed interval [a, b), and 
suppose that J( a) < J( b) (a similar proof can be given if j(a) > j( b)). Let 
y E [j(a), j(b)]. We wish to find an element c in [a, b) such that j(c) = y. 
The procedure goes as follows (a diagram will help). Let a0 = a, b0 = b, and 
let x1 denote the midpoint of the interval [a,b] (the first bisection). If 
j(x1) <y, define a1 = x1, h1 = b, whereas if y < j(x1), define a1 = a, b1 
= x1 • In either case we havej(a1) o:,:;; y < j(b1), and the length of [al>bd is 
one-half the length of [a, b). 

Now, let x2 denote the midpoint of [a1,b1] (the second bisection). If 
j(x2) < y, define a2 = x2, b2 = hp and if y < j(x2), define a2 = a!> b2 = x2• 
Again, it follows that j(a2) < y < j(b2), and b2 - a2 = (b - a)/4. 

Continue in this way. The result will be an infinite nested sequence of 
closed intervals 

[� .�] � [a1 ,b1J � [ � .b2J � · · · � · · · 
whose lengths converge to zero (in fact, b1 - a; = (b - a)/21). These condi­
tions imply that {a;} and {b;} each converge to the same real number in 
[a, b): call this number c. 
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By the continuity of J, )im;__.00 j(a;) = j(c) and lim;__..00 j(b;) = j(c). Fur­
thermore, for each i, j(a;) < y < J(b;), and therefore (by the squeeze 
principle, which will be treated in Section 7 .6), 

/(c) � I;m j(a,) < y < I;m f(b,) � f(c). 1-->0<J 1-->0<l 
It follows thatf(c) = y, and the theorem is proved. 

The proof of the extreme-value theorem can be carried out in similar 
manner and is left as a problem (6.1.5). 

Problems 

6.1.3. Suppose that j is bounded for a < x < b and, for every pair of 
values xpx2 with a <  x1 < x2 < b, 

f(i(x, + x,)) < }(j(x,) + f(x,)). 
Prove that J is continuous for a < x < b. [Hint: Show that j(x + 8 ) -j(x) 
< t ff(x + 28) - j(x)] < · · · < ( l /2")[j(x + 2"8 ) -j(x)], a < x + 2"8 
< b. Let 8---+0.] 
6.1.4. A real-valued continuous function satisfies for all real x and y the 
functional equation 

J{Jx' + y' ) � /( x)f(y). 

Prove thatf(x) = [J(l)f'. [Hint: First prove the theorem for all numbers of 
the form zn!l where n is an interger. Then prove the theorem for ali 
numbers of the form mjzn, m an integer, n a nonnega�ive integer.] 
6.1.5. Use the method of repeated bisection to prove the extreme-value 
theorem. 
6.1.6. Let j(O) > 0, j(l)  < 0. Prove that f(x) = 0 for some x under the 
assumption that there exists a continuous function g such that J + g is 
nondecreasing. (Hint: Use repeated bisection-choose the right half of the 
interval if there is a point x in it such that j(x) > 0, otherwise choose the 
left half. This yields a nested sequence of intervals [a1 ,b 1] � [a2, b2] ;;;;;;} • • • 
which converge to a point c. Note that for each n there is a point Yn in 
[an,cl such thatf(Yn) > 0. Prove thatf(c) = O.) 
6.1.7. Letf be defined in the interval [0, I] by ( 0 if x is irrational, f(x) = 1/q if x = p/q (in lowest terms). 

(a) Prove that f is discontinuous at each rational number in [0, 1). 
(b) Prove that f is continuous at each irrational number in [0. I). 
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6.1.8. If x is an element of the Cantor set K (see 3.4.6), it can be expressed 
uniquely in the form 

where bn = 0  or I .  Define g : K----) [0, I] by setting 
� b 

g(X) � � 2: . 
n=l  

Now extend g to [0, I] in the following manner. If x E [0, I] is not in the 
Cantor set, then, using the notation of 3.4.6, there is a unique integer n such 
that x E In, where In = (Xn, Y,), X, and Y, in K. Define g(x) = g(Y,.). 
(Note that for all n, g(X,) = g( Y,), and thus we have simply made g 
constant on the closed interval [X,, Y,.].) Prove that g is continuous. (Also, 
see 6.2.13.) 

Additional Examples 

6.3.1, 6.3.5, 6.3.6, 6.4.3, 6.7.2, 6.7.7, 6.8.9, 6.8.10, 6.9.5. Continuity is an 
underlying assumption in most of the examples in Chapter 6; in particular, 
see Section 6.2 (intermediate-value theorem). 

6.2. The Intermediate-Value Theorem 

The intermediate-value theorem states that if J is a continuous function on 
the closed interval [a, b) and if d is between j(a) and j(b), then there is a 
number c between a and b such that /(c) = d. The power of the theorem 
lies in the fact that it provides a way of knowing about the existence of 
something without requiring that it be explicitly found. 

As an example, let us show that - 2x5 + 4x = I has a solution in the 
interval (0, 1). Consider f(x) = -2x5 + 4x, and take two "pOt-shots": j(O) 
is too small, and j(l) is too large. Therefore, by the intermediate-value 
theorem, there is a number in (0, 1)  that is just right. 

6.2.1. A cross-country runner runs a six-mile course in 30 minutes. Prove 
that somewhere along the course the runner ran a mile in exactly 5 minutes. 

Solution. Let x denote the distance along the course, measured in miles 
from the starting line. For each x in [0, 5], let j(x) denote the time that 
elapsed for the mile from the point x to the point x + I .  The function f is 
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Y "' h  

Figure 6.2 . • 
continuous. We are given that j(O) + j(l) + j(2) + j(3) + j(4) + f(5) = 30. 
It follows that not all of j(O), . . . , j(5) are smaller than 5, and similarly, not 
all of j(O), . . .  ,j(5) are larger than 5. Therefore, there are points a and b in 
[0, 5] such that /(a) < 5 < f(b). Thus, by the intermediate-value theorem, 
there is a number c between a and b such that j(c} = 5;  that is to say, the 
mile from c to c + I was run in exactly 5 minutes. 

6.2.2. Suppose that j: [a, b)� R is a continuous function. 

(a) Mean value theorem for integrals. Prove that there is a number c in [a, b) 
such that J! j(t)dt = j(cXb - a). 

(b) Prove there is a number c in [a,b) such that J� f(t)dt = f�f(t)dt. 
(Note: For this, it is enough to know that j is integrable over [a, b).) 

Solution. (a) Let M and m be the maximum and minimum values of f on 
[a, b) respectively (guaranteed to exist by the extreme-value theorem), and 
let A =  J! j(t)dt. The intuition for the argument which follows is shown 
(for the case of a positive function_D in Figure 6.2. As the liney = h moves 
continuously from y = m toy =  M, the area A (h) in the rectangle bounded 
by y = h, y = 0, x = a, x = b moves from being smaller than A (at A (m)) 
to being greater than A (at A (M)). Algebraically (and true independently 
of the "area" interpretation), A (m) = m(b - a) < J: j(t)dt < M(b - a) 
= A ( M). Since A (h) = h(b - a) is a continuous function of h, it follows 
from the intermediate-value theorem (note: A (h)= h(b - a) is a continu­
ous function) that there is a point d such that A(d) = A ;  or equivalently, 
d(b - a) = A.  But d is between m and M, so again by the intermediate­
value theorem, since f is continuous, there is a point c in [a, b) such that 
j(c) = d. It follows that 

i' f(t)dt� /(<)(b - a). 
(b) Again, the intuition is shown in Figure 6.3 (for the case of a positive 

function). Let A = J!J(t)dt, and let A(h) = J! j(t)dt. In the figure, for 
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Figure 6.3. 

a < h < b, A (h) represents the area bounded by y = j(x), y = 0, x = a, 
x = h (shaded). The problem asks us to find a point c such that A (c) = !  A . 
It is clear that as the vertical line x = h moves to the right from x = a  to 
x = b, the corresponding integral (area) will move from 0 to A, and must 
therefore pass through ! A at some point. 

The preceding argument is perfectly valid provided we prove that A (h) is 
a continuous function o£ h. To see this, note that 

(h+ " A (h + x) � A (h) � J, f(t)dt. 
From part (a), we know there is a point ex between h and h + x such that 

rh+x ), f(t)dt� c,lxl-
Therefore, 

lim [ A (h + x) � A (h)] � lim c,lxi� O. 
x--.0 x--->0 

(Note: ex is bounded because f is integrable.) Thus, A(h + x)�A (h) as 
x ----)0, and this means that A(h) is continuous at h. 

6.2.3. Let A be a set of 2n points in the plane, no three of which are 
collinear. Suppose that n of them are coiored red and the remaining n blue. 
Prove or disprove: there are n closed straight line segments, no two with a 
point in common, such that the endpoints of each segment are points of A 
having different colors. 

Solution. This problem was considered in 1 . 1 1.2, but it is instructive to see a 
proof based on the intermediate-value property. 

We shall prove that the result holds by induction on n. Certainly the 
property holds when n = 1 .  Suppose the result holds when n = I, 2, . . .  , k, 
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and consider a set A with 2(k + I) points, no three of which are collinear, 
such that k + I are colored red and k + 1 are colored blue. 

Suppose that two vertices of the convex huB of A have different colors. 
Then, there are two consecutive vertices along the perimeter of the convex 
hull, say P and Q, that have different colors. By the inductive assumption, 
the set of points A - {P, Q }  may be connected in the desired way. None 

.,of these segments will intersect the line segment PQ because of the way P 
and Q were chosen, and therefore, the result holds for the set A.  

It remains to consider the case in which all the vertices of the convex 
hull have the same color, say red. If L is any nonhorizontal line in the 
plane, let B(L) denote the number of points of A to the left of L that are 
colored blue, let R(L) denote the number of points of A to the left of L that 
are colored red, and let D(L) = B(L) - R(L). Now choose a nonhorizontal 
line L that lies to the left of all the points in A and which is not parallel to 
any of the line segments that can be formed by joining points of A.  In this 
position, D(L) = 0. As L moves continuously to the rght, it will encounter 
points of A one at a time, and in passing such a point, D(L) will change 
+ I if the point is colored blue and - I if the point is colored red. As L 
moves to the right, its first nonzero value wiil be negative (obtained just 
after passing the first point of A). Since the last·encountered point of A is 
also red, its last nonzero value will be positive (obtained just before passing 
the last point of A). 

It follows from these observations that D(L) will equal zero somewhere 
between the first and last encountered points of A (note that D(L) is an 
integer-valued function). When L is in such a position, the inductive 
assumption can be applied to the points to the left of L and also to the 
points to the right of L. Since none of the resulting segments will intersect, 
the result follows for the set A, and by induction, the proof is complete. 

Problems 

6.2.4. Suppose f: [0, 1 ) __.. (0, I] is continuous. Prove that there exists a 
number c in [0, I] such thatj(c) = c. 

6.2.5. A rock climber starts to climb a mountain at 7:00 A.M. on Saturday 
and gets to the top at 5:00 P.M. He camps on top and climbs back down on 
Sunday, starting at 7:00 A.M. and getting back to his original starting point 
at 5:00 P.M. Show that at some time of day on Sunday he was at the same 
elevation as he was at that.time on Saturday. 

6.2.6. Prove that a continuous function which takes on no value more than 
twice must take on some value exactly once. 
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6.2.7. Prove that the trigonometric polynomial 

a0 + a1cosx + · · · + a,cosnx, 

where the coefficients are all real and lao! + ja1j + · · · + la,�11 < a,, has 
at least 2n zeros in the interval [0,2w). 
6.2.8. Establish necessary and sufficient conditions on the constant k for 
the existence of a continuous real�valued function j(x) satisfying j(j(x)) 
= kx9 for ail real x. 
6.2.9. 

(a) Suppose that f: [a, b)-') R is continuous and g :  [a,b] ---'> R is integrable 
and such that g(x) ;;. 0 for ail x E [a, b). Prove that there is a number c 
in {a, b) such that 

f f(x)g(x)dx� f(c) f f(x)dx. 
(b) Suppose that j: [a,b] --)o R  is increasing (and therefore integrable), and 

g : [a,b] ---'> R is integrable and such that g(x) > O  for all x E [a,b]. 
Prove that there is a number c in [a,b] such that 

.C f(x)g(x)dx� f(a)f g(x)dx+ /(b)t g(x)dx. 
6.2.10. Let f: [0, I ]� R be continuous and suppose that j(O) = j(l). Prove 
that for each positive integer n there is an x in [0, I - 1/n] such that 
f(x) � f(x + 1/n). 

6.2.11. A polynomial P(x) of degree at most 3 describes the temperature 
of a certain body at time t. Show that the average temperature of the body 
between 9 A.M. and 3 P.M. can always be found by taking the average of the 
temperature at two fixed times, which are independent of which polynomial 
occurs. Also, show that these two times are 10:16 A.M. and 1:44 P.M. to the 
nearest minute. [Hint: Use the mean-value theorem for integrals; see 
6.2.2(a).] 

6.2.12. For any pair of triangles, prove that there exists a line which 
bisects them simultaneously. 

6.2.13. Give an example of a continuous real-valued function f from [0, 1 ]  
to [0, I ]  which takes on every value in [0, I ]  an infinite number of times. 
[Hint: One way to do this is to modify the continuous function defined in 
6.1.8.] 

Additional Examples 

6.1 .6, ().5.2, 6.5.3, 6.5.4, 6.5.)3, 6.6.4, 6.6.5, 6.6.6, 6.6.9, 7.6.13. 
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6.3. The Derivative 

The derivative o£ j :  [a, b)-? R at a point x in (a, b) is defined by 
, . f(X + h) - j(x) 

j (x) � hm h • •�o 
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provided this limit exists. We note that if f has a derivative at x, then f is 
continuous at x, because [( j(x + h) - j(x) ) l 

lim [J(x + h) -f(x) ] � lim h · h  
h_.O lr_,.O 

. ( j(x + h) - f(x) ) . = hm h hmh 
1r ..... o 1r ..... o 

� j'(x) lim h 
hO 

� o. 

6.3.1. If the function xj(x) has a derivative at a given point x0 -=1= 0, and if J 
is continuous there, show that f has a derivative there. 

Solution. Let 
. xj(x) - x0j(xo) L =  hm . x"""'"xo X Xo 

The limit on the right exists, since it represents the derivative of xj(x) at the 
point x0 (in the definition of the derivative given above, we have substituted 
x - x0 for h). For x sufficiently close to, but different from, x0 (and 
there£ore different from zero), 

f(x) - f(xo) 
X Xo 

� 

xf(x) · x0j(x0) 
X 

X Xo 
xx0f(x) - xx0f(x0) 

XX0(X Xo) 
xx0f(x) - x'f(x) - xx0j(x0) + x'f(x) 

XXo( X Xo) 
xf(x)(x0 - x) + x(xf(x) - Xof(x0)) 

xxo( x x0) 

� _!_ ( xf(x) - x0j(x0) ) _ f(x) . Xo X X0 Xo 
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It follows that 

/'( ) 
_ 1. /( x) - /(x0) 

x0 - 1m x-->xo X x0 

= ...1.. lim ( xf(x} - Xof(xo) ) - ...!.. lim f(x). 
x0 x-xo X x0 x0 x .... xo 

The fact that limx-.xof(x) = j(x0) follows from the hypothesis that f is 
continuous at x0• However, this assumption is not necessary, because 

f(x) - f(x0) xx0f(x) - xx0f(x0) 
xx0(x x0) 

xx0f(x) - xU(x0) - xx0f(x0) + xU(x0) 
XX0(x Xo) 

� l ( xf(x) - x,f(xo) ) -
f(xo) 

. 
X X Xo X 

Using this we find that 

!'(x,) � lim ( f(x) - /(Xo) ) 
x-->xo X x0 

� lim ( l ( xf(x) - xof(xo) ) _ f(xo) ) 
x--->x0 x x x0 x 

6.3.2. Let j(x) = a1 sin x + a2 sin2x + · · · + a., sin nx, where at> a2, . • . , 
a .. are real numbers and where n is a positive integer. Given that lf(x)l 
< lsinx l for all real x, prove that la1 + 2a2 + · · · + na .. l < I .  

Solution. We gave an induction proof of this problem i n  2.4.4; however, a 
more natural approach is based on noticing that j'(x) = a1cosx + · · · + 
na.,cosnx, from which we see that f'(O) = a1 + 2a2 + · · · + nan (which is 
the left side of the inequality we wish to prove). This prompts the following 
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argument: 

lf'(O)I � lim I f(x) -f(O) I 
x--->0 X 0 

� lim I f(x) I x--->0 X 

< lim l sinx l 
x ..... o x 

� I, 
and this completes the proof. 

6.3.3. Let f be differentiable at x = a, and J(a) + 0. Evaluate 

. [ f(a + l/n) ]" 
hm f . n->oo (a) 

Solution. It suffices to evaluate 

. [ f(a + x) ] '1' 
hm f . x_,.o (a) 
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For x small enough, J(a + x) and /(a) have the same sign, and it follows 
that 

log[ !�( f(;(:)
x) ("] � !� [ log( lf\;(:);)1 ("] 

. loglf( a +  x)l - loglf( a)l 
= hm . 

x-->0 X 
The last expression on the right is the definition of the derivative of 
loglf(x)l at x = a, which we know from calculus is J'(a)/ J(a). Thus, 

lim [ /(a +  x) l l/x = e/'(a)jj(a) . 
,_, f(a) 

Problems 

6.3.4. 

(a) Suppose that instead of the usual definition of the derivative, which we 
will denote by Df(x), we define a new kind of derivative D•J(x) by the 
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formula 

. f'(x + h) - J'(x) 
D*f(x) = hm h ,_, 

Express D*J(x) in terms of Dj(x). 
(b) Iff is differentiable at x, compute 

. ( /(x +  ah) - f(x + bh) ) 
hm h . ,_, 

(c) Suppose f is differentiable at x = 0 and satisfies the functional equation 
j(x + y) = j(x) + j(y) for all x and y. Prove thatf is differentiable at 
every real number x. 

6.3.5. Define f by 

if X 7" 0, 
if X =  0. 

(a) Show that j'(x) exists for all x but that it is not continuous at x = 0. 
(The derivative for x + 0 is 2x sin(l/x) - cos(ljx); what is the deriva­
tive at 0?) 

(b) Let g(x) = x + 2j(x). Show that g'(O) > 0 but that f is not monotonic 
in any open interval about 0. 

6.3,6, Let f: [0, 1]-+ R be a differentiable function. Assume there is no 
point x in [0, I ] such that j(x) = 0 = f'(x). Show that f has only a £inite 
number of zeros in [0, 1]. [Suppose there are an infinite number. Either [0,})  
or [! ,  I ]  contains an infinite number of these zeros (perhaps both will). 
Choose one that does, and continue by repeated bisection. Along the way, 
construct a convergent sequence of distinct zeros. Use this to reach a 
contradiction.) 

6.3.7. Prove that iff is differentiable on (a, b) and has an extremum (that 
is, a maximum or minimum) at a point c in (a, b), then j'(c) = 0. [For 
applications of this result, see 6.4.1, 6.4.2, 6.4.5, 6.4.6, 6.4.7, 6.6.4, 7.4.1.] 

Additional Examples 

6.6.2, 6.7.2, 6.9.1, 7.6.2. 

6.4. The Extreme-Value Theorem 

An existence theorem is a theorem which states that something exists (for 
example, a point within the domain of a function which has some stated 
property). Quite often this special object occurs at some "extreme" position. 
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• 

Figure 6.4. 

It is in this way that one comes to make use of the extreme-value theorem: 
I£ f is a continuous function over a closed interval [a,b], there are points c 
and d in [a,bJ such thatj(c) < f(x) < j(d) for all x in [a, b]. 

6.4.1. Suppose that f: [a, b] __. R is a differentiable function. Show that j' 
satisfies the conclusion of the intermediate-value theorem (i.e., if d is any 
number between j'(a) and j'(b), then there is a number c in the interval 
(a, b) such thatj'(c) = d). 

Solution. If j' were continuous we could get the result by a direct applica­
tion or the intermediate-value theorem (applied to j'). However, j' may not 
be continuous (for example, see 6.3.5(a)), so how are we to proceed? 

To help generate ideas, consider Figure 6.4. In this figure, a line L of 
slope d is drawn through the point. (a, j(a)), where j'(b) < d < j'(a). For 
each point x in [a,bJ, let g(x) denote the signed distance from the point 
j(x) to the line L (the length of AB in the figure). Our intuition is that the 
point we seek is that point which maximizes the value of g. We shall show 
that this is indeed the case, but to simplify the computation we look at a 
slightly different function. 

For each x in [a,bJ, let h(x) denote the signed distance of the vertical 
segment from the point (x, j(x)) to the line L (the length of BC in the 
figure). We observe that the point which maximizes the value of h on [a,bJ 
is the same as the point which maximizes the value of g on [a,b]. (fhis is 
because g(x) = h(x)cos a, where a is the inclination or L.) The advantage 
of considering h(x) is that we can easily get an expression for it in terms of 
j(x) and the equation of L. 

So now return to the problem as stated, and consider the function 

h(x) -f(x) - [f(a) + d(x - a)]. 
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We see that 

h'(x) -J'(x) - d. 

Since j'(b) < d < j'(a), we have h'(b) < 0 < h'(a). These inequalities 
imply that neither h(a) nor h(b) is a maximum value for h on [a,b] (this is 
a consequence of the definition of the derivative). Therefore, since h is 
continuous on [a,b], the extreme-value theorem says that h takes on a 
maximum value at some point c in (a, b). At this point, by 6.3.7, h'(c) = 0, 
which is to say,j'(c) = d. 

A similar argume_nt can be made if j'(a) < d < j'(b). In this case, h takes 
on a minimum value at some point c in (a, b), and at this point, f'(c) = d. 

6.4.2. P is an interior point of the angle whose sides are the rays OA and 
OB. Locate X on OA and Y on DB so that the line segment X Y contains P 
and so that the product of distances (PX)(PY) is a minimum. 

Solution. The situation is illustrated in Figure 6.5. 
The problem is typical of the "max�min" problems encountered in 

beginning calculus: it does not ask "Is there a minimum value?," but 
rather, "Where does the minimum value occur?.'' The technique is to apply 
the result of 6.3.7: if the minimum is in the interior of an open interval, it 
will occur at a point where the derivative is zero. Thus, we need to express 
(PX)(PY) as a function of a single variable, and find where it has a zero 
derivative. 

For each positive number x, there is a unique point X on OA such that 
x = lOX I, and this point in turn determines a unique point Y on OB such 
that X, P, and Y are collinear. Thus, (PX)(PY) is a function of x. How­
ever, an explicit expression for this function is very messy; perhaps there is 
another way. 

Notice that (PX)(PY) is uniquely determined by the angle y (see Figure 
6.5). To obtain an explicit expression for (PX)(PY), first use the Law of 

y 

lf - (�X + /3 + )') 
p 

� > " 
X 

Figure 6.5. 
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Sines in t:::. OXP and t:::. OPY to get 

sma smy 
PX 

= OP 
and 

sin /3 
= 

sin (w - a - {3 - y) 
PY OP 
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Then, it follows that 

F(y) � ( PX)(PY) � ( 'ina ) · (OP) · ( . 
sm y sm(w 

sin /3 ) · (OP) 
a P - Y) 

= C(cscy)(csc (w - a - [3 - Y)), 
where C = sina sin {3(0?)2 is a constant. 

The function F is continuous and differentiable on (0, w), and F(y) _... oo 
as y --7 o+ and as y _... w �, and there£ ore F will take on a minimum value at 
a point in (O,w). At this point F'(y) = 0; that is 

D = cscy csc(w - a - [3 - r)[ coty - cot(w - a - [3 - r)]. 
Since neither cscy nor csc(w - a - [3 - y) equal zero on (O,w), the mini­
mum occurs when coty = cot(w - a - [3 - y). But this happens for 
0 < y < w and 0 <  w - a - [3 - y < w only when y =  w - a - [3 - y. 
Thus, the minimum occurs when t:::.OXY is an isoceles triangle; that is, 
when OX = OY. (For another proof, see 8.1.3.) 

Problems 

6A.3. 

(a) Letf: [a, b)__. R be continuous and such that J(x) > 0 for all x in [a, b). 
Show that there is a positive constant c such that J(x) ;;. c for ail x in 
[a. b]. 

(b) Show that there is no continuous function J which maps the closed 
interval [0, 1 ]  onto the open interval (0, 1). 

6.4.4. Letf: [a, b) __. R be differentiable at each point of [a, b), and suppose 
thatj'(a) = f'(b). Prove that there is at least one point c in (a, b) such that 

6.4.5. 

/(c) - /(a) /'(c) � . c a 

(a) Rolle's theorem. Suppose J: [a, b)__. R is continuous on [a,b] and differ­
entiable on (a, b). If J(a) = f(b), then there is a number c in (a, b) such 
thatf'(c) = O. 

{b) Mean value theorem. If J: [a,b]_... R is continuous on [a,b] and differen­
tiable on (a, b), then there is a number c in (a, b) such that 

f(b) - f(a) 
b a � J'(c). 
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6.4.6. If A ,  B, and C are the measures of the angles of a triangle, prove 
that 

-2 < sin3A + sin 3 8 + sin3 C < ! /3 ,  
and determine when equality holds. 

6.4.7. Given a circle of radius r and a tangent line L to the circle through a 
point P on the circle. From a variable point R on the circle, a perpendicu­
lar PQ is drawn to L with Q on L. Determine the maximum of the area of 
triangle PQR. 

Additional Examples 

1 . 1 1 .5, 6.6.1, 6.6.4, 6.6.5. 

6.5. Rolle's Theorem 

One of the fundamental properties of differentiable functions is the follow­
ing existence theorem. 

Rolle's Theorem. Suppose f: [a, b]--clo R is continuous on [a,b] and differentiable on 
(a, b). If j(a) = j(b), then there is a number c in (a, b) such that j'('c) = 0. 

This result is a direct consequence of 6.3.7: For let c be a point in (a, b) 
such that j(c) is an extremum (such a point c exists by the extreme value 
theorem). Then by 6.3.7, j'(c) = 0. Rolle's theorem is important from a 
theoretical point of view (we shall subsequently show that the mean-value 
theorem and a host of useful corollaries are easy consequences of Rolle's 
theorem), but it is also important as a problem-solving method. 

6.5.1. Show that 4ax3 + 3bx2 + 2cx = a + b + c has at least one root 
between 0 and 1 .  

Solution. Any attempt to apply the intermediate-value theorem (as in the 
solution to a similar problem in Section 6.2) leads to complications, because 
not enough information is given regarding the values for a,b,c. But 
consider the function j(x) = ax4 + bx3 + cx2 - (a + b + c)x. Notice 
that j(O) = 0 = j(l). Therefore, by Rolle's theorem, there is a point d in 
(0, I) such that f'(d) = 0; that is to say, d is a root of 4ax3 + 3bx2 + 2cx 
= a +  b + c, and the solution is complete. 
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6.5.2. Prove that if the differentiable functions J and g satisfy j'(x)g(x) 
.=1= g'(x)j(x) for all x, then between any two roots of j(x) = 0 there is a root 
of g(x) = 0. 

Solution. Let a and b be two roots off, a < b. The condition implies that 
neither a nor b are roots of g(x) = 0. Suppose that g has no zeros between a 
and b. Then, as a consequence of the intermediate value theorem, the sign 
of g on [a, b) is always the same (that is, g(x) > 0 for all x in [a, b), or 
g(x) < 0 for all x in [a, b)). 

Now consider the function F(x) = j(x)/g(x). This function is continu­
ous and differentiable on [a,b] and F(a) = 0 = F(b). Therefore, by Rolle's 
theorem, there is a point c such that F'(c) = 0. But this leads to a 
contradiction, since 

�g'-( c'O)f--''(_-c)�
-_,g'-''(-'c)'-f('-'-c) F'(c) � g'( c) 

and, by supposition, g(c)j'(c) - g'(c)j(c) =I= 0. This contradiction implies 
that g must have a zero between a and b, and the proof is complete. 

A useful corollary to Rolle's theorem is that if J is a continuous and 
differentiable function, say on the interval [a,b], and if x1 and x2 are zeros 
off, a <  x1 < x2 < b, thenj' has a zero between x1 and x2• More generally, 
if J has n distinct zeros in [a, b], then j' has at least n - I zeros (these are 
interlaced with the zeros of j), f" has at least n - 2 zeros (assuming j' is 
continuous and differentiable on [a, b)), and so forth. 

6.5.3. Show that x2 = x sinx + cosx for exactly two real values of x. 

Solution. Consider j(x) = x2 - x sinx - cosx. Then j(-'IT /2) > 0, j(O) 
< 0, andj(w/2) > 0, so the intermediate-value theorem implies thatfhas at 
least two zeros. Iff has three or more zeros, then, by the remarks preceding 
this example, j' has at least two zeros. However, 

j'(x) = 2x - sinx - xcosx + sinx 

= x[2 - cosx ] ,  
has only one zero. Therefore,f has exactly two zeros and the result follows. 

6.5.4. Let P(x) be a polynomial with real coefficients, and form the 
polynomial 

Q(x) � (x' + l)P(x)P'(x) + x[ (P(x))' + (P'(x))'] · 



212 6. Intermediate Real Analysis 

Given that the equation P(x) = 0 has n distinct real roots exceeding I, 
prove or disprove that the equation Q(x) = 0 has at least 2n - 1 distinct 
real roots. 

Solution. Let a1,a2, . • •  , a" be n distinct real roots of P(x) = 0, where 
1 < a1 < a2 < · · · < a", and write Q(x) in the form 

Q(x) - (x - 1)2P(x)P'(x) + x[ P(x) + P'(x)]', 

Suppose that P(x) .has no zeros in the open interval (a;,a;+ 1), i = I , 
2, . . . , n - I. (There is no loss of generality here, for if there are more, say 
m, m > n, relabel the a,'s to include these, and the following proof will 
show that Q has at least 2m - I distinct real roots.) By Rolle's theorem, 
there is a point b, in (a;, a;+ 1) such that P'( b;) = 0. Since P is a polynomial, 
P'(x) = 0 has only a finite number of roots in (a;, a;+ 1), so for each i, we 
may assume that b, is chosen as the largest zero of P' in (a1,ai+ 1). 

Suppose that P(x) is positive for all x in (a;,a,+ 1) (see Figure 6.6), and 
consider the function F(x) = P(x) + P'(x). Our idea is to find a point c1 in 
(b1,a,.+1) where F(c1) < 0. Then, since F(b;) > 0, the intermediate-value 
theorem would imply that there is a point d; in (b,.,c,) such that F(d;) = 0, 
and consequently, 

Q(b;) - b,(F(b;))' > 0, 

Q(d;) - (d; - 1)2 P(d; )P'(d; ) < 0 

(note that P'(x) < 0 for all x in (b,.a;+ 1)), and 

Q(a,+ t) = ai+ t(F(a;+ t))2 ;;;. 0. 
Therefore, by the intermediate-value theorem, there are points x1 in (b1,d;) 
and y1 in (d;,a;+ t1 such that Q(x;) = 0 = Q(y;). 

P(x) 

Figure 6.6. 
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figure 6.7. 

For the preceding argument to work we must show there exists a point c; 
in (b,.,a,+ 1) where F(c,.) < 0. If ai+ l is a root of multiplicity one, then 
F(a; + 1) = P '(a,+ 1) < 0, and the desired c; can be found in a sufficiently 
small neighborhood of a;+ t · If a;+ t is a root of multiplicity greater than 
one, then P(a;+ 1) = 0 = P'( a,+ 1) and there is an interval (a,+ 1 - 8, a;+ 1) for 
sufficiently sma11 8 > 0, where P"(x) > 0 (see Figure 6.7). For such an x, it 
is the case that 

and therefore, 

F(x) � P(x) + P'(x) 

< P(x)[ I + x 
l
ai+ t J 

� P(x) ' . [ x - a . , + I l x ai+ l 
Therefore, let c; = x, where x is chosen sufficiently close to a,+ 1 so that 

the numerator of this last expression is positive and the denominator is 
negative. Then, for such a c;. F(c,.) < 0, b,. < c; < ai+ ! " This completes the 
argument: Q(x) = 0 has two roots in (b, ,a,+ 1]. 

The preceding argument was based on the assumption that P(x) > 0 for 
x in (a,,a;+ 1). For the case in which P(x) < 0 for all x in (a;.a;+ 1), an 
exactly analogous argument leads to the same conclusion. Thus, we have 
shown that Q has at least 2n - 2 zeros (two in each of the intervals 
(a,a;+ 1), i = 1 , 2, . . .  , n - 1). The solution will be complete if we can show 
Q has a zero in ( - oo,a,.). Again there are several cases to consider. 

Suppose that P'(x) = 0 has a root in the interval (O,a;). Then, without 
going through the details again, the same arguments show that Q has a zero 
in (b0,a1), where b0 is chosen as the largest zero of P' in (O,a1). 

We are left to consider what happens if P'(x) = 0 does not have a zero 
in (0, a1). If P(x) > 0 for all x in (O,a1), then P'(x) < 0 for all x in (0,a1) 
and therefore Q(O) < 0 and Q(a1) > 0. By the intermediate�value theorem, 
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Q(x) = 0 has a root in (O,a1). Similarly, if P(x) < 0 for all x in (0, a1), we 
get Q(O) > 0 and Q(ad < 0, etc. Thus, in all cases Q(x) == 0 has at least 
2n - 1 distinct roots. 

The preceding analysis, though tedious and complicated, was based 
entirely on first principles: Rolle's theorem and the intermediate-value 
theorem. With these two ideas the conceptional aspects of the proof are 
quite natural and easy to understand. There is another solution which is 
much easier going, after a clever, but not uncommon, key step (e.g., see 
6.5. 1 1  and 6.9.4). Since it is instructive, we will consider it also. 

First, notice that Q can be written as a product in the following manner: 

Q(x) - ( x' + I )P( x)P'( x) + x[ ( P(x))' + (P'( x)J'] 
- [ P'(X) + xP(x)] [ xP'(x) + P(x)] . 

Let F(x) = P'(x) + xP(x) and G(x) = xP'(x) + P(x). The key step, as we 
shall see, depends on noticing that F(x) = e-..-'12[ex'l2 P(x)]' and G(x) 
- [ xP(x)]'. 

Assume that P(x) has exactly m distinct real zeros a, exceeding I, with 
I < a1 < a2 < · · · < am (m > n). Then e..-';2 P(x) also has zeros at al> 
a2> . . .  , am, so by Rolle's theorem, (ex'/2 P(x)]', and hence also F(x), has 
at least m - I zeros b,. with a,. < b; < ai+ l · Similarly, by Rolle's theorem, 
G(x) has at least m zeros, c0,c" . . .  , em - ! •  0 < c0 < a1, a, < C; < ai+ l ' 
i = 1,2, . . .  , m - I . We will be done if we can show that b; =1= c1 for 
i = l, . . . , m - 1. 

So, assume that for some i, h; = c,., and let r be this common value. 
From F(r) = 0, we find that P'(r) = -rP(r). Substituting this into G(r) 
= 0, we get r[- rP(r)] + P(r) = 0, or equivalently, (r2 - !)P(r) = 0. Since 
r > I, the last equation implies P(r) = 0. But since a; < r < a,.+ 1 ,  we then 
have a contradiction to our assumptio.n concerning the roots of P(x) = 0 
(namely, a,. and a,+1 were assumed to be consecutive roots of P; i.e., all the 
roots of P exceeding I were included among the a;'s). It follows that the b,'s 
and the c;

'
s are different, and therefore Q(x) = 0 has at least 2m - I 

( > 2n - l) distinct real roots. 

Problems 

6.5,5, 

(a) Show that 5x4 - 4x + I has a root between 0 and 1 .  
(b) If a0,a1 , • . .  , an are real numbers satisfying 

a, . . .  + -- - 0  
n + I  ' 

show that the equation a0 + a1x + . · · + a.,x" = 0 has at least one real 
root. 
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6.5.6. 

(a) Suppose that j:  [0, 1]� R is differentiable, j(O) = 0, and j(x) > 0 for x 
in (0, I). Prove there is a number c in (0, I) such that 

2f'(') /'( I - ') 
/(') � !(I ') 

(Hint: Consider j2(x)j(l - x).) 
(b) Is there a number d in (0, I) such that 

6.5.7. 

3j'(d) j'(l - d) --- � ' 
f(d) !(I d) . 

(a) Cauchy mean-value theorem. If J and g are continuous on (a,bJ and 
differentiable on (a, b), then there is a number c in (a, b) such that 

[/(b) -J(a)] g'(c) � [ g(b) - g(a)]f'(q. 
(b) Show that the mean�value theorem (6.4.5(b)) is a special case of 

part (a). 

6.5.8. 

(a) Show that x3 - 3x + b cannot have more than one zero in [ - I , 1], 
regardless of the value of b. 

(b) Let j(x) = (x2 - I)e�x. Show that j'(x) = 0 for exactly one x in the 
interval ( - I ,  I )  and that this x has the same sign as the parameter c. 

6.5.9. How many zeros does the function j(x) = r - I - x2 have on the 
real line? 

6.5.10. Let j( x) = a0 + a 1x + · · · + anx n be a polynomial with real coef­
ficients such that J has n + I distinct real zeros. Use Rolle's theorem to 
show that ak = 0 for 0 < k < n. 
6.5.11. If f: R -4 R  is a differentiable function, prove there is a root of 
j'(x) - aj(x) = 0 between any two roots of f(x) = 0. 

6.5.12. Suppose n is a nonnegative integer and 

where c; and r, are real numbers. Prove that if J has more than n zeros in R, 
then f(x) =::: 0. (Hint: Induct on n.) 

6.5.13. The nth Legendre polynomial is defined by 

P"(x) � 2!.1 D"[ (x' - IJ
"] 

where nn denotes the nth derivative with respect to x. Prove that Pn(x) has 
exactly n distinct real roots and that they lie in the interval ( - 1 ,  1). (Hint: 
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(x2 - It = (x - l)"(x + 1)". Show, by an inductive argument, that the kth 
derivative of (x - l)"(x + It has I as a zero of multiplicity n - k, - I  as a 
zero of multiplicity n - k, and at least k distinct zeros between - I and 1.) 

6.6. The Mean-Value Theorem 

Suppose that j : [a,b]�R is continuous on [a, b) and differentiable on 
(a, b). In a manner similar to that used in the solution to 6.4.1, consider the 
function 

F(x) � j(x) - L(x). 

(see Figure 6.8), where y = L(x) is the equation of the line from (a, j(a)) to 
(b,j(b)). Geometrically, F(x) represents the signed distance along the 
vertical line segment from (x, j(x)) to the line y = L(x). Since F(a) = 0 
= F(b), we know from Rolle's theorem that there is a point c in (a, b) such 
that F'(c) = 0. At that point,f'(c) - L'(c) = 0, or equivalently, 

f(b) - j(a) 
J'(c) � L'(c) � ('lope of L) � b a . 

We have just proved the following. 

Mean. Value Theorem. Iff: [a, b]� R is continuous on [a,b] and differentiable on 
(a, b), then there is a number c in (a, b) such that 

f(b;-�(a) � F(c). 
If j(a) = j(b), this is just the statement of Rolle's theorem. Otherwise, it 
says that there is a point between a and b where the slope of the curve is 
equal to the slope of the line through (a, j(a)) and (b, j(b)). 

L 

' b 

Figure 6.8. 
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6.6.1. Let g(x) be a function that has a continuous first derivative g'(x) for 
all values of x. Suppose that the following conditions hold: 

(i) g(O) - 0, 
(ii) l g'(x)l < l g(x)l foc al! x. 

Prove that g(x) vanishes identically. 

Solution. We will give a rather unusual solution, simply to illustrate the use 
of the mean-value theorem. Begin by considering the interval [0, 1]. Let x 
be an arbitrary point in (0, 1]. By the mean-value theorem, there is a point 
c1 in (O, x) such that 

g( x) - g(O) g'(ct) = 
x 0 . 

It follow' that I g(x)l - lxg'(c,)l - lxl l g'(c,)l < lxl l  g(c,)I-
Similarly, there is a point c2 in (O, c1) such that jg(c1)1 < jc 1 j j g(c2)j, and 

substituting this into the last inequality, jg(x)j ,;;;; jxj jc1l l g(c2)j. 
Continuing in this way, we are able to find numbers cl'c2, • • .  , en, 

0 < en < · · · < c2 < c1 < x < 1, such that j g(x)j < jx l lcd · · · 
lcn- tl l g(cn)l· Since g is continuous on [0, 1], it is bounded (between its 
minimum and maximum values, which exist by the extreme-value theorem), 
and therefore, since the right side of this last inequality can be made 
arbitrarily small by taking sufficiently large n (each of the jc;j's is less than 
I), it must be the case that g(x) = 0. Thus, g(x) is identically equal to zero 
on [0, 1]. 

The same argument can now be applied to the interval [1,2] (for x in 
(1,2) there is a c1 in (l ,x) such that jg(x)j < jx - J j j g(c1)j, etc.). As a 
consequence of this argument, we will get g(x) identically zero on [I ,  2]. 

By an inductive argument, we will get g equal to zero on [ n, n + 1] for all 
integers n. Therefore, g is identically zero. (Notice that we did not use the 
hypothesis that g' was continuous.) 

The mean-value theorem has a number of important corollaries which 
are useful in practice. Among these are the following. 

Suppose f and g are continuous on [a,b] and differentiable on (a, b). 

(i) If J'(x) = 0 for all x in (a, b), then f is a constant. 
(ii) If j'(x) = g'(x) for all x in (a, b), then there is a constant C such that 

j(x) - g(x) + C. 
(iii) If j'(x) > 0 for all x in (a, b), then f is an increasing function. Similarly, 

if J'(x) < 0 (j'(x) > 0, j'(x) < 0) for all x in (a, b) then f is decreasing 
(nondecreasing, nonincreasing, respectively) on (a, b). [For applications, 
see Section 7 .4.] 
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Proof of (i): Let x E (a, b). By the mean·value theorem, there is a 
number c in (a,x) such that [f(x) - j(a)l/(x - a] = f'(c) = 0. It follows 
that j(x) = j(a) for all x in (a, b). 

Proof of (ii): Apply (i) to the function h (x) = j(x) - g(x). 
Proof of (iii): Consider x, y E (a, b), x <y. By the mean-value theorem 

there is a number c in (x, y) such that {j(y) -j(x)l/(y - x] = J'(c) > 0, 
from which it follows that j(y) > j(x), and f is increasing. 

6.6.2. Let f: R --+  R" be such that for all x and y in R, lf(x) - j(y)l ..;;; 
(x -yt Prove that J is a constant. 

Solution. By the first of the preceding corollaries, it suffices to show that 
f'(x) = 0 for all x. Therefore, we argue as follows: 

IJ'(x)l � � lim 
/(Y) - /(x) I 

y--->x y X 

� lim I /(Y) - f(x) I y-H J X 

� lim 
1/(y) - f(x)l 

y--->x IY xl 

< lim 
(y - x)2 

r' IY x1 

= lim ly- xl 
y�< 

- o. 

6.6.3. Suppose that J:  R --:t R is twice differentiable with j"(x) > 0 for all 
x. Prove that for all a and b, a < b, ( a +  b ) /(a) + f(b) f -2- < 2 . 

Solution. Figure 6.9 makes the conclusion believable, but it is the mean� 
value theorem that enables us to translate the local property, J"(x) > 0 
(/" at x is determined by those values of J close to x), into a global 
property (true for ali a and b regardless of their proximity). 

By the mean-value theorem there is a number x1 in (a,t(a + b)) such 
that 

f(}(a + b)) -j(a) , 
!(a + b) a =j (xi), 
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' d b  
2 

Figure 6.9. 

b 

and a number x2 in (-!-(a + b), b) such that 

/(b) - f(Ha + b)) 
b ±(a +  b) 

� f'(x,) . 
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But j"(x) > 0 for all x in (x1, x2), so j' is a nondecreasing function. Thus 
j'(x2) > j'(x1), or equivalently, 

/(b) - /( j (a + b)) f(j (a + h)) - /(a) 
b a  > b a  ' 

f(Ha + h)) < /(a) ; f(b) . 

In the remainder of the section we will consider problems which make 
use of all of the major existence theorems considered in this chapter: the 
intennediate-value theorem, the extreme-value theorem, Rolle's theorem, 
and the mean-value theorem. 

6.6.4. Let f be differentiable with f continuous on [a,b]. Show that there is 
a number c in (a,b] such that j'(c) = 0, then we can find a number � in 
(a, b) such that 

Solution, We begin by getting a geometrical feel for the problem: consider 
the graph in Figure 6.10, where B is located so that the line CB is 
horizontal. For a point x between a and b, the right side of the equation, 
i.e., 

f(x) -f(a) 
b a 



220 

' ' ' 

6. Intermediate Real Analysis 

b 

Figure 6.10. 

represents the slope of the line AB, whereas the left side, J'(x), represents 
the slope of the tangent to the curve at C. 

Consider, then, the function 

This is a continuous function of x (here we use the fact that f' is 
continuous), so by the intermediate-value theorem, there is a point � in 
(a, b) such that F(f;J = 0 provided we can find points x1 and x2 in (a, b) 
such that F(x1) > 0 and F(x2) < 0. 

Observe that F(x) moves from being positive at x = a  to being negative 
at x = c. Will this, or something similar, always be the case? 

Suppose that f(c) > j(a). Then j'(c) � 0, and [/(c) - j(a)JI[b - a] > 0, 
so that 

F(c) �/'(c) -
f(ci-�(a) < 0. 

By the mean-value theorem, there is a point d in (O,c) such that 
j'(d) � (/(c) -f(a)]/(c - a]. Thecefoce, 

F(d) �/'(d) - f(d;-;(a) 

/(c) -f(a) /(d) - f(a) 
c a b a 

/(c) -J(a) f(d) -f(a) > b a - b a  
f(c) -f(d) 

b a 



6.6. The Mean-Value Theorem 221 

' d b 

Figure 6.11. 

Now, we would he done if it were the case thatj(c) > f(d). Unfortunately, 
this may not be true, as the graph in Figure 6.11 indicates. 

To alleviate this difficulty, we can proceed as follows. Consider the 
function f over the interval [a, c). By the extreme-value theorem, it attains a 
maximum value on this interval, say at x = s (s may equal c). Since we are 
assuming that j(c) > j(a), we know that a <  s < c. If s = c then j'(s) 
= j'(c) = 0, whereas if a <  s < c then j'(s) = 0 by 6.3.7. Now proceed as 
before: There is a point d in (a,s) such that j'(d) = [j(s) - j(a)]/ 
[s - a], and 

F(d) -!'(d) -
f(d;-�(a) 

_ :._/('--')'-
-
---'/='-(a_,_) /(d) -/(a) 

s a b a 
/(') -/(a) /(d) -/(a) 

> b a - b a  
_ :_I('--' J,_---'f='-( d--'-) 

b a 
and this last expression is nonnegative, since j(s) > j(d) by our choice of s. 
This completes the proof for this case. The argument is similar for the cases 
f(c) <f(a) andf(c) -j(a). 

6.6.5. Suppose f is a twice continuously differentiable real-valued function 
defined for all real numbers such that 1/(x)l < I for all x and (/(0))2 + 
(/'(0))2 = 4. Prove that there exists a real number x0 such that j(x0) + 
f"(x0) - 0. 

Solution. There are two natural approaches we might consider. One is to try 
to apply the intermediate-value theorem: that is, to consider the function 
F(x) = j(x) + j"(x) and to find a and b for which F(a) > 0 and F(b) < 0. 
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Unfortunately, it is hard to see how the condition (j(O)P + (/"(0))2 = 4 
could be used in this approach. 

Another idea is to see if G(x) = (j(x)i + (j'(x))2 has an extremum in 
the interior of some interval. At such an extremum, G'(x) = 0. Notice that 
G'(x) � 2f(x)j'(x) + 2j'(x)/"(x) � 2j'(x)[f(x) + J"(x)]. Th;, look. moce 
like it! 

Our approach will be to show that there are points a and b, -2 < a < 0, 
0 < b < 2, such that I G(a)i < 2 and IG(b)l < 2. Since G(O) = 4, it will 
follow that G(x) attains its maximum at a point x0 in (a, b), and at this 
point, G'(x0) = 0. 

From the mean-value theorem there is a point a in (-2, 0) and b in (0,2) 
such that 

/'(a) �  /(
0) -;(-2) and /'(b) � 

/(2);/(0) . 

It follows that 

Thus, 

1/, I - I /(0) - /(
-2) I 1/(0)1 + 1/( -2)1 / !.±_! � I (a) - 2 < 2 

' 
2 ' 

1/'(b)l � I /(2) -f< -0) I < 
1!(2)1 : lf(O)

I < I ;  I � I. 
IG(a)l � I{!( a))

'
+ {f'(a))

'
l < lf(a)l' + lf'(a)l' < 2, 

IG(b)l � I(!( b))
'
+ (f'(b))

'
l < if(b)l' + IJ'(b)l' < 2. 

Let x be the point in (a, b) where G(x0) is a maximum. Then 

G'(x0) � 2f'(x0)[f(x0) + f"(x0)] � 0. 
If J'(x0) == 0, then G(x0) = (j(x0))2 + (j'(x0))2 = (j(x0))2 < I . But G(x0) 
> 4, since G(O) = 4. Therdore j'(x0) =I= 0, and it must be the case that 
f(x0) + f"(x0) = 0. This completes the proof. 

6.6.6. Let j(x) be differentiable on [0, 1] with j(O) = 0 and j(1) = 1 .  For 
each positive integer n, show that there exist distinct points xl>x2, • . •  , xn 
in [0, I ]  such that 

" I L -,- � n. ;- t f (x,) 

Solution. To help generate ideas, consider the case n = 1. We wish to find 
x1 in [0, 1] such that l /f'(x1) = I .  This is possible by the mean-value 
theorem, since on the interval [0, 1], there is a point x1 such thatf'(x1) = I . 
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Consider the case n = 2. Consider the subintervals [O,x] and [x, l ]  where 
x is some number between 0 and I yet to be determined. By the mean­
value theorem, there is an x1 in (O,x) and x2 in (x, I)  such that 

Thus, 

J'(x,) � 
f(x) - f(O) 

X 0 and f'(x,) � 
/(1) - f(x)

. I x 

I I 
f'(x,) 

+ f'(x,) 
� 2 

if and only if 

X I - X 
f(x) 

+ I J(x) 
� 2. 

x( l - f(x)) + (I - x)f(x) � 2f(x) - 2(f(x))', 

x - xf(x) + /(x) - xf(x)- 2f(x) + 2(f(x))
' � 0, 

x - 2xf(x) - f(x) + 2(f(x))
' � 0, 

x(l - 2f(x)) - f(x)( l - 2f(x)) � 0, 

[ x - f(x)] [ l - 2f(x) ] � 0. 

Now, had we chosen x in (0, I) so that j(x) = !  (this could be done, by the 
intermediate-value theorem), the proof would be complete upon reversing 
the previous steps. 

With this background we can consider the case for an arbitrary positive 
integer n. Let c; be the smallest number in [0, I] such that j(c;) = i/n (the 
existence of this number is a consequence of the intermediate-value theo­
rem together with the assumption of continuity). Then 0 < c 1 < c2 < · · · 

< en- I <  I. Define c0 = 0  and c� = I, and for each interval (c;_ 1 , c;), 
i = 1 , 2, . . .  , n, choose X; such that 

(this can be done, by the mean-value theorem). Then 

i. _ i - 1  

so that 
" I " 

.
L 

f'(x) 
� .L n(c, - c,_ ,) � n. 

,� [ l , _ , 
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Problems 

6.6.7. 

(a) Show that 
sinx + sin(x + a) 

F( X) - =�-=;::-;---', 
cosx cos(x + a) 

6. lnLermediate Real Analysis 

is a constant function by showing that F'(x) = 0. (This problem arose 
in 1.2.1.) 

(b) If P(x) is a polynomial of degee three in x, and y2 = P(x), show that 

D(y'Dy) 

y' 

is a constant, where D denotes the derivative operator. (Hint: first write 
the above expression in terms of P and its derivatives.) 

6.6.8. 

(a) If y = j(x) is a solution of the differential equation y� + y = 0, show 
that l + (j')2 is a constant. 

(b) Use part (a) to show that every solution of y" + y = 0 is of the form 
y = A  cosx + Bsinx. (Hint: It is easy to show that all functions A cosx 
+ Bsinx satisfy the difrerential equation. Let f(x) be a solution. For 

j(x) to have the form j(x) = A  cosx + Bsinx it is necel!sary that A 
= /(0) and B = f'(O). Now consider F(x) = f(x) - j(O)cosx ­
J'(O)sinx. Apply part (a) to F(x), making use of the fact that 
F(O) � 0 - F"(O). 

(c) Use part (b) to prove the addition formulas 

sin(x + y) = sinx cos y + cosx sin y, 
cos(x + y) = cosx cos y - sinx sin y. 

6.6.9. Let j(x) be differentiable on [0, 1] with j(O) = 0 and j(l) = 1. For 
each positive integer n and arbitrary given positive numbers k1,k2, • • •  , kn, 
show that there exist distinct x1,x

2, • • •  , xn such that 

Additional Examples 

6.9.6, 6.9.10, Section 7.4. 

" k " 
� -. -· - � k, .  

i oo l  / (X;) i oo l  
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6. 7. L'Hopital's Rule 

We will assume the reader is familiar with the various forms of L'H6pital's 
rule. 

6.7.1. Evaluate 
· ( I a"' - I )'1' hm - ---x-->oo X a - I ' where a > 0, a =F I. 

Solution. Rewrite the expression in the equivalent form 

( l a' - I )'1' _ exp[ l log( l a' - I )] · 
x a - 1  x x a - I  

In this way the problem is transformed to that of evaluating [ log l � l 
I
. x a - I •m ' x-->oo x 

or equivalently, [ log l l 
lim __ x_ + lim ( a"' - l  ) - lim ( a - l ) 

x-->oo x x-->oo X :c-->oo X 

provided each of these limits exists. 
Clearly, lim"'_,""'( a - 1)/x = 0, and by L'H6pital's rule, 

. log( l /x) . ( - logx ) hm = hm x-->oo X X-->00 X 

- l;m ( - l jx ) - o. x-->oo I 

Also, by L'HOpital's rule, 

It follows that 

. ( log( a' - I) ) . ( a'loga ) hm = hm x 1 = log a. x-->oo x x-->oo a 

lim ( l a-" - 1 )lfx = exploga = a. x-->oo x a - I 

6.7.2. Suppose that f is a function with two continuous derivatives and 
j(O) = 0. Prove that the function g defined by g(O) = j'(O), g(x) = j(x)/ x 
for x =F 0 has a continuous derivative. 
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Solution. For x =fo 0, 
xf'(x) - j(x) 

g'(x) � ' , 
X 

and since f' is continuous, so also is g' for all x + 0. It only remains to 
check that g has a derivative at x = 0, and if g'(O) exists, to see if g' ts 
continuous at x = 0. 

For the existence of g'(O) we must examine the following limit: 

, ( g(x) - g(O) ) g' = ltm x-.0 X 0 

� lim ( j(x)/x - j'(O) ) 
x ..... o x 

. ( j(x) - xj'(O) ) = hm 2 • 
X-->0 X 

Since j(x) - xf'(0) ----)0 as x-----+ 0, and since J and f' are differentiable, we 
may apply L'HOpital's rule to this limit to get 

'(0) � lim ( J'(x) - J'(O) ) g x-->0 2x 

= - hm I . ( J'(x) - J'(O) ) 
2 .Y-->0 X 

� j f"(O). 

(The last step follows from the definition of J"(O).) Thus g'(O) exists. 
To check continuity of g' at 0 we have 

lim g'(x) � lim ( xj'(x) - f(x) ) 
x ..... o x ..... o x2 

� lim ( J'(x) + xf"(x) - j'(x) ) 
x-->0 2x 

� lim ( J"(x) ) � J f"(O). -':-->0 2 

The last step follows because we are given that f has a continuous second 
derivative. Thus limx-'>0g'(x) = g'(O), and the proof is complete. 

Problems 

6.7 .3. Evaluate 
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6.7.4. Evaluate the following limits: 

(a) 

(b) 

(C) 
(d) 

lim ( t + l )" 
n-->IXl n 

lim ( n + l )" 
n-->IXl n + 2 

lim ( I + ...L )" 
n-->IXl nl 

I "' 
lim ( ! + - ) n-->IXl n 

6.7.5. Let 0 < a <  b. Evaluate 

6.7.6. Calculate 

[ 1 ] 'I' 
�� fo [bx + a( I - x) ' ]dt . 

lim X rxe t' - x' dt. 
x ..... oo )0 
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6.7.7. Prove that the function y = (x2)X, y(O) = I , is continuous at x = 0. 

6.8. The Integral 

Consider that happens to the sum 

1. + _I_ + 
n n + I  

· · · + -l-
2n - 1 

as n --:l> ao. One way to think about this is to interpret the sum geometri­
cally: construct rectangles on [n,2n] as shown in Figure 6.12. From the 
figure it is clear that 

1. + _I_ + 
n n + I  

1 ln I ]'" · · · + --- >J. - dx = Iogx 
2n - l  , x  n 

= log2n - logn = log2. 

Similarly, from Figure 6.13 it follows that 

_1_ + _1_ + 
n + l  n + 2  · · · + - < - dt- Jog2. I J.'" I 

2n , t 
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2n 

Figure 6.12. 

Putting these together, we have 

log 2 < 1 + -1- + · · · + -1- < (1 - -1 ) + log2. n n + I  2n - 1  n 2n 
Now, as n--4- ct::l it is apparent that the sum in question approaches log2. 

Another way to see this is to rewrite the sum in the form 
,- 1 I n- 1 ( I ) I  
k�o n + k = k�O J + kjn fi 

and to think of each term, 

( 1 + 1k/nH ' 
as the area of the rectangle with base [kjn,(k + 1)/n] and height 1/(1 + k/n). In this way, the sum represents the area in the shaded rectangles 

n n + I  2n 

Figure 6.13. 
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Figure 6.14. 

shown in Figure 6.14. As n -'�- oo, these areas approach the area bounded by 
y = I I(! + x),y == 0, x = 0, x = I . That is, 

6.8.1. Evaluate 

lim -1- = lim 1 -
"- ' 

" - ' (  ) ' 
,....,.oo kL;O n + k n->w k�O I +  kin n 

� -- dx = Iog2. L' I 
0 I +  X 

lim 1 i; ( IT 2n I - 21 !! 1). 
n-->oo n k = l U k U k ]  

Solution. The problem asks us to ev�luate definite integral 

We will do this geometrically by computing the area under the graph of 
j(x) = [21x ] - 2 ( 1 lx ) between x = 0 and x = 1 .  The points of discon· 
tinuity of/( x) in (0, 1) occur at the points where either 2 I x or I I x is an 
integer. In the first case, 21 x = n when x = 21 n, and in the second case, 
Ilx = n when x = lin. Thus, we concentrate on the points I >  213 > 214 
> 2/5 > 2/6 > . . . . 

It is easy to -check that for each n, 

if x E{ 2n 
2
+ I , 2

2
n ] . 

if  x E( 2n � 2 ' 2n � I l 
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I 

0 0 • •  

2 2 2 2 I 
0 0 .  

6 5 4 3 
Figure 6.15. 

The graph is as shown in Figure 6.15. The integral is therefore equal to 

oc 

Now recall that 

( "- - "- ) + ( "- - "- ) + ( "-- "- ) + · · ·  3 4  5 6  7 8
, 

2( t - i + ! - ! + + - ! + . . . ). 

x2 x3 x4 log( I +  x) = x - - + - - - + 2 3 4 
- l <. x < I. 

This means that 

2( :t - � + ! - i +  · · · )  = 2[ log 2 - l + t J = log 4 - l,  

and this completes the solution. 

6.8.2. Evaluate 

Soludon. We can change the product into an equivalent form by writing 

= exp[ � l tog(n2 + i2) - logn4]. 
i - L  n 



6.8. The Integral 

Therefore, we will examine 

}i� [ 1�1 � log(n2 + i2) - logn4] 
= lim 2: l 1ogn2 � - logn4 [ '" ( ' ., ) l n-->oo , _ 1  n n 

� }�"), [ ,�. � ( togn' + log( t + ( * n) - logn'] 
= lim 2: l togn2 + 2: l log t + ( � )  - logn4 [ '" '" ( · ') l n--.oo 1 _ 1  n ;- l n n 

� lim [ 2n logn' + � l tog( t + ( i )') - togn'] n-->oo n i = l  n n 

� t;m [ � log( t + ( i )') . l ]. n--.oo 1_ 1 n n 

We recognize this final expression as the definite integral 

Using integration by parts, 

log( I + x2) dx = x log(l + x2) - 2 --, dx L' l L' x' 
0 0 l + X  

Thus, the original limit is 

� 2 1og5 - 2 r' [ t - -1- ]dx 
Jo l + x2 

= 2 log5 - 2[ x - arctanx ]� 
= 2 log5 - 2[2 - arctan2J. 

exp[2 log5 - 4 + 2arctan2], 
or equivalently, 

25 exp(2 arctan 2 - 4). 

6.8.3. Prove that 

± ( - l)k(�) k + ! + t = i: ( - l )k(�) k + � + l k-0 k-0 

231 
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Solution. The key is to observe that 

Using this, we find that 

Now use a change of variable: let s = 1 - t. Continuing from the last 
integral: 

= 
f
o1sn(l - s)m ds 

= folsnk�O
( - l )k(;)s

kdr 

Problems 

6.8.4. Evaluate each of the following: 

(•) •m --- + --- + . . .  I. [ I I 
n .... oo 2n + I 2n + 2 

(b) a >  - I .  



6.8. The Integral 

6.8.5. Evaluate each of the following: 

(a) 
" 

lim n-3/2 2: If .  , .... oo k - l 

(b) ! i: I ��� � 2 2 k - t  k + n 
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6.8.6. Find the integral part of L:�o: 1n -213• (Hint: Compare the area under 
j(x) = x-213 over [ I ,  109 + I ] with the area under g(x) = (x - l)-213 over 
[2, JO' + 1 ].) 

6.8.7. Suppose that J and g are continuous functions on [O,a], and suppose 
thatj(x) = j(a - x) and g(x) + g(a - x) = k for ail x in [O,a], where k is a 
fixed number. Prove that 

J," f(x)g(x) dx� ik J," f(x) dx. 
Use this fact to evaluate 

6.8.8. 
(a) Let 

Compute 

in terms of A .  
(b) Let 

('" xsinx dx 
.lo I + cos2x · 

A = ('" cosx dx. Jo ( x + 2)2 

(�r/2 si.nxcosx dx Jo x + I  

J.x logt f(x) � - dt 
1 J + t for x > 0. 

Computo j(x) + j(l/  x). 
6.8.9. Find all continuous positive functions j(x), for 0 < x < I, such that 
f�j(x)dx = I ,  f�xj(x)dx = a, J}rx2_{(x)dx = a2, where a is a given real 
number. 
6.8.10. Letj(x,y) be a continuous function on the square 

s� ((x, y) • 0 <  x < 1, 0 <  y < ! ) .  
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For each point (a, b) in the interior of S, let S1a,bl be the largest square that 
is contained in S, centered at (a, b), and has sides parallel to those of S. If 
the double integral Jfj(x, y)dxdy is zero when taken over each square 
S1a.bp mustj(x,y) be identically zero on S? 

Additional Examples 

1 .4.4, 1.6.3, 1 . 12.3, l . t2.6, 2.5.15, 6.2.2, 6.2.9, 7.6.3. 

6.9. The Fundamental Theorem 

The fundamental theorem of calculus refers to the inverse relationship that 
holds between differentiation and integration. The fundamental theorem 
for integrals of derivatives states that if F(t) has a continuous derivative on 
an interval [a,b], then 

In other words, differentiation followed by integration recovers the function 
up to a constant, in the sense that 

F(x) � f,'F'(t)dt+ C 

where C = F(O). 
For example, the derivative of F(t) = sin2t is F'(t) = 2sint cost. Integra­

tion of F'(t) on [O,x] yields 

sin2x = fox2sintcostdt. 

In this case we have recovered the function exactly because F(O) = 0. But 
also observe that the integration can be carried out in another manner; 
namely (let u = cost), 

fox2sintcostdt = - cos2rJ: = -cos2x + l .  

It follows that sin2x = - cos2x + l,  or equivalently, sin2x + cos2x = l for 
all x. 

6.9.1. Find all the differentiable functions f defined for x > 0 which satisfy 

f(xy) � f(x) + /(Y). x,y > 0. 
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Solution. When x = y =  l, we get j( l ) = j( l  X l )=j(l) + j(l), and it fol­
lows that j( I) = 0. 

If x 'f= O, we have 0 =  /(I ) =  j(x X 1/x) = j(x) + j( ljx), and therefore, 
f(l /  x) � -j(x). It follow' that j(x/ y) � j(x) + j(l /  y) � j(x) - j(y). 

Now the idea is to look at the derivative of J and then to recover j by 
integration: 

f'(x) - lim ( f(x + h) - f(x) ) 
h-+0 h 

= hm . ( f((x + h)(x) ) 
h-+0 h 

. ( /( l + t) ) = hm , , ..... o tx where h/x = t  

� l;m ( l .  /(I + t) -/(I ) ) 
1-+0 X t 

- l f'( l ). X 

Therefore, by the fundamental theorem, 

i' i' J'( l )  
f(x) � f(x) - /( I ) �  f'(x) dx � - dx� J'(l )logx. 

t t X 

Thus, the functions we seek are those or the form j(x) = A logx, where A is 
an arbitrary constant. 

' 

6.9.2. Find the sum of the series 

1 - l + ! _ _L + . .  · · + _I _ _ _ I_ + . . .  
5 7 I t  6n - 5 6n - I 

Solution. Consider the function defined by the infinite series 

x5 x7 x l l  x6�-5 6�-l 
/( x) = x - 5 + 7 - IT + · · . + 6n - 5 - :n - I + 

for 0 < x < l .  The series is absolutely convergent for lxl < I, and therefore 
we can rearrange the terms: 

( x7 xlJ x6�-5 ) j(x) = x + - + - + · · · + -- + · · · 7 13  6n - 5  
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Our idea is to differentiate J, to change its form, and then to recover f by 
integration by use of the fundamental theorem. We have, for 0 < x < 1 ,  

/'(X) = (l + x6 +  . . .  + x6�-6+ · · · ) - (x• + x to + 

1 x4 (1 - x2)( l + x2) 
� ----- - ----- � 

l - x6 l - x6 ( l - x2)( l + x2 + x4) 

. . . + x6n-2 + 

Integrating (the details are not of interest here), and noting that f(O) = 0, we 
got 

j(x) = � [arctan( 2x{i l ) + arctan( 2x; I ) l 
Since the series representation of J is convergent for x = I, Abel's theorem 
(see Section 5.4) implies that the original series converges to 

f( I ) = -1-[arctan -1-+ arctan§ ] = ....:II_ . .J3 .J3 2.f3 

The fundamental theorem for derivatives of integrals states that iff is a 
continuous function in an interval [a, b), then for any x in (a, b) 

In other words, integration followed by differentiation recovers the function 
exactly. 

6.9.3. If a(x), b(x), c(x), and d(x) are polynomials in x, show that 

ix a(X)C(x)dx ixb( d)d( x) dx- �x a(x)d(x) dx {" b( x)C(x)dx 

is divisible by (x - tl. 

Solution. Denote the expression in question by F(x). Notice that F(x) is a 
polynomial in x. Also, notice that F(l) = 0 and therefore x - I  is a factor 
of F(x). 

Because F is a polynomial, we know that (x - 1)4 is a root or F(x) = 0 i£ 
and only if F"'( l) = 0. We can compute F' by use of the fundamental 
theorem: 

F'(x) = ac {"bd+ bd ix ac- ad �xbc- be _cad. 

(Note that F'(l) = 0 and hence that (x - Ii is a root of F(x) = 0.) The 
derivatives F" and F'" are done in a similar manner; it turns out that 
F'"(l) = (ac)'bd + (bd)'ac - (ad)' be - (bc)'adJx- !  = 0. This completes the 
proof. 
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The next three examples combine several ideas from this chapter. 

6.9.4. Let f: (0, oo) � R be differentiable, and assume that j(x) + j'(x)� 0 
when x�oo. Show thatj(x) �O as x�oo. 

Solution. First, a digression: If p(x) and q(x) are continuous functions, the 
equation 

1x +p(x)y �  q(x) 
can be solved in the following manner. Multiply each side of the equation 
by m(x) = efp(x)dx, and notice that the resulting equation can be put into 
the fonn 

fx (ym(x)) � m(x)q(x). 

Thus, by the fundamental theorem of calculus, for each constant a, there is 
a constant C such that 

ym(x) � fm(l)q(t) dt+ C. 

From this, we can solve for y. 
Now, return to our problem and set g(x) = j(x) + j'(x). According to 

the reasoning of the last paragraph, we can solve for j(x) (in terms of g(x)) 
by first multiplying each side by ex. As above, this leads to the equation 

f(x)'' � f''g(t)dt+ C. 
or equivalently, 

j(x) = e-xL�e'g(t)dt+ ce-x. 
Let e > 0. Since g(x)� 0 as x � oo, choose a so that I g(x)l < E for all 

x > a. Then 

1/(x)l < ,-tC''g(t)dtl+ IC,-'1 
< ,-·f,'l g(t)ldt+ IC,-'1 

< Ee - x  Lx e' dt+ ICe-xi 
= Ee-x(ex - ea) + ICe-xi 
= E(l - ea-x) + ICe-xl· 

Now, for sufficiently large x, we will have 1/(x)l < 2e. It follows that 
j(x)�O as x�oo. 
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6.9.5. Evaluate 

lim ( I  I X) rx(l  + sin 2t) 1/' dt. _.,_,.o Jo 

Solution. Our aim is to apply L'HOpital's rule, but some preliminary work 
must be done. First, there is a question concerning the existence of the 
integral because the integrand is undefined at t = 0. However, 

lim (I + sin 2x)1/-� = lim [exp l Jog( I + sin 2x) ] 
x--->0 x--->0 X 

= exp hm 
[ .  ( log( l + ,in2x) ) ] 

X--->0 X 
which by L'HOpital's rule is 

exp[ lim 2co�2x ] = exp 2 = e2. 
x--->0 I + sm 2x 

Thus, if we define 

f(x) = J ( l  + sin2x/fx 
\ e' 

the functionj is continuous, and g(l + sin2t)1i' dt = JOJ(t)dt. 
In order to apply L'HOpital's rule to this problem, we must show that 

JO(I + sin2t)11'dt�O as x --+0. To do this, let K be an upper bound for 
IJ(x)l for all x in ( - I ,  1). Then, for x in ( - 1, 1), 

jfo\ l + sin 21)1/' dt l < {"1 1  + sin 2tl 11' dt .;;; Klxl. 

It follows that 

fo\1 + sin 2t) 1;1 dt-+ 0 as x -+ 0. 

We are now able to apply L'H6pital's rule to the original problem: 

Lx( l  + sin2t) 1/'dt 
lim 0 = lim ( l + sin2x)1;x= e2• 
x�o x x�o 

6.9.6. Suppose that J :  [0, 1]-+ R has a continuous second derivative, that 
j(O) = 0 = j(l), and thatf(x) > 0 for all x in (0, 1). Show that r'l f"(x) ldx > 4 . 

.lo f( x) 



6.9. Tile Fundamental Theorem 239 

Solution. Let X denote a point in (0, I)  where j(x) is a maximum, and 
suppose that Y = j(X). Then 

(' I f"(x) I I (' " Jo f(x) 
dx > TYT Jo If (x)[ dx 

> _I I f'rc J d �� 
f'( I J - f'<OJ 

I Yl Jo x x Y · 

We appear to be stymied at this point, because it is certainly not necessary 
that f'( l ) - f'(O) ;;. 41 Yl. However, by the mean-value theorem, there are 
points a in (O, X) and b in (X, I )  such that 

and 

Thus, 

J'(a) � 
/(X ) - f(O) 

� f(X ) � y X 0 X X 

J'
(b) � 

/( I) - f(X ) � -=-.I::_ 
I X l - X . 

'I f"(x) I bl f"(x) I 1 b , J, f(x) 
dx >  l f(x) 

dx >  jY[ ll J (x)dxl , 
so applying the fundamental theorem to the last integral, we have 

fo'l !;(�) I  dx > rh If'( b) -' /'( a)[ 

I I - y y I � jY[  1 - X - X 

� rh I I! X + i H X ( I  
I 

But the maximum value of x( l - x) in (0, I) is � (when x = -!) and 
therefore 

(' I f"(x) I I 
Jo J(x) 

dx > [ X  ( I  X )l > 4· 

Problems 

6.9.7. What function is defined by the equation 

f(x) � f f(t)dt+ I? 
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c, 

Figure 6.16. 

6.9.8. Let f: [0, lJ-""(0, 1) be continuous. Show that the equation 

2x -J,' f(t)dt� I 
has one and only one solution in the interval [0, 1]. 

6.9.9. Suppose that f is a continuous function for all x which satisfies the 
equation 

rx r� 1 6  1 8  
Jo j(t)dt= Jx t:f(t)dt+ T + x9 + C. 

where C is a constant. Find an explicit form for j(x) and find the value of 
the constant C. 

6.9.10. Let C1 and C2 be curves passing through the origin as shown in 
Figure 6.16. A curve C is said to bisect in area the region between C1 and 
C2 if for each point P of C the two shaded regions A and B shown in the 
figure have equal areas. Determine the upper curve C2 given that the 
bisecting curve C has the equation y = x2 and the lower curve C 1 has the 
equation y = 1 x� 
6.9.11. Sum the series I + t - !  - t + � + -fr - TI - · · · · 
6.9.12. Suppose that f is differentiable, and that j'(x) is strictly increasing 
for x > 0. If f(O) = 0, prove that f(x)/ x is strictly increasing for x > 0. 

Additional Examples 

1.5.1, 5.1.3, 5.1 .9, 5 . 1 . 1 1 ,  5.4.6, 7.6.5. 



Chapter 7.  Inequalities 

Inequalities are useful in virtually ali areas of mathematics, and inequality 
problems are among the most beautiful. Among ali the possible inequalities 
that we might consider, we shall concentrate on just two: the arithmetic· 
mean-geometric·mean inequality in Section 7.2 and the Cauchy-Schwarz 
inequality in Section 7.3. In addition, we shall consider various algebraic 
and geometric techniques in Section 7.1, and analytic techniques in Sec· 
tions 7.4 and 7.5. In the final section, Section 7.6, we shall see how 
inequalities can be used to evaluate limits. 

7 . I . Basic Inequality Properties 

The most immediate approach for establishing an inequality is to appeal to 
an algebraic manipulation or a geometric interpretation. For example, the 
arithmetic-mean-geometric-mean inequality, 

0 < a <  b, 

can be established algebraically by writing it in the equivalent form 
' (Iii -Jb) > o. 

or geometrically by considering the semicircle in Figure 7 . 1 .  (The semicircle 
is constructed with diameter AB of length a +  b, and C is a point chosen so 
that AC = a  and CB = b. A perpendicular to A B  from C meets the circle at 
D. Triangles ACD and CDB are similar, and therefore a/CD= CDfb. 
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7. Inequalities 

It follows that CD = J(ib . Clearly, .fcib .;;; radius of circle = (a + b)/2.) 
Both derivations make it clear that equality holds if and only if a =  b. 

In this section we wiil consider examples of inequalities that can be 
verified by using only algebraic and geometric ideas. 

7.1.1. Show that for positive numbers a, b, c, 

a2 + b2 + c2 > ab + be + ca. 

Solution. Working backwards, 

a2 + b2 + c2 > ab + be + ca, 

2a2 + 2b2 + 2c2 > lab + 2bc + 2ca, 

( a2 - 2ab + b2) + ( b2 - 2bc + c2) + ( c2 - 2ca + a2) > 0, 

(a - b)2+ (b - c/+ ( c - a)2> 0. 

This last inequality is obviously true, and since the steps are reversible, the 
solution is complete. (The proof also makes it clear that equality holds if 
and only if a =  b = c.) 

This example illustrates a common theme: manipulate the expression 
into a form to take advantage of the fact that a squared number is 
nonnegative. 

7.1.2. Prove that for 0 < x < 1w, cos2x + x sin x < 2. 

Solution. Consider the function 
j(x) = 2 - cos2x - xsinx, 
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and perfonn the following manipulations: 

j(x) = I +  ( I - cos2x) - xsinx 

= I +  sin2x - xsinx 

= ( I - 2sinx + sin2x) - xsinx + 2sinx 

= ( 1 - sin xi + (2 - x)sinx. 

In this form we see that the desired inequality holds for 0 < x < 2. 

7.1.3. If 0 < a,b,c < I, show that 

b +: + l 
+ 

c +:+ l  + a + � + ! + ( 1 - a)( l - b)(l - c) < l.  

Solution. Here, straightforward algebraic expansion leads to horrendous 
and unenlightening complications. One simplification is to assume, without 
loss of generality, that 0 < a < b < c < J . Then, for example, we have 

a + b + c 
b + c + l c + a + l  a + b + l  

and we might try to prove that 

a +  t + c + ( I - a)( I - b)(l - c) < I. a +  + I  . 
This problem is easier algebraically, but still messy, and of course, we may 
have given away too much (that i� to say, this inequality may not even be 
true). However, we have the following: 

a +  b + c + ( I - a)( I - b)(l - c) a + b + l  

� a +  b + I  + c - I + (I - a)( I - b)( I - c) 
a + b + l  a + b + !  

� I - ( a ! b: I )r I - (I + a  + h)( I - a)(l - b) j .  
The desired inequality follows from this expression after noting that 

( I + a + b)(l - a)(l - b) < ( l  + a + b + ab)(l - a)(l - b) 

� ( I + a)( I +  h)( I - a)( I - b) 

� ( I - a')( I - b') 

< I .  
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7.1.4. Let n be a positive integer, and a, # I, for i =  I , 2, . . .  , n. Show that 

2" (I + a1)(1 + a2) · · · ( I +  an) > n + 1 (I + a 1  + · · · + an)· 

Solution. Induction is a natural strategy here, and it is not difficult to carry 
out in this manner. But the following "give a little" argument is more fun: 

( 1  + fl t)( l + 02) · · · ( 1  + an) 
- 2"( i + "; )( ± + i )  . . . ( ± + �" ) 
= r( I + at� I )(I + a2; I ) . . .  ( I + an� I ) 
> 2n l + -' - + -'-- + • · · + -"--( a - 1 a - 1 a - 1 ) 2 2 2 

> 2n 1 + -' - + -'-- + · · · + -"--( a - 1 a - 1 a - 1 ) n + l  n + l  n + I  
2" - --1 (n + I + a1 - I + a2 - I +  · · · + an - I ) n +  
2" = n + I ( 1  + G 1 + a2 + · · · + an)· 

7.1.5. For each positive integer n, prove that 

( I + � f < ( I + n l 1  r+ 1 . 
Solution, This is an important inequality that can be proved in a number of 
ways (see 7. 1 . 1 1, 7.2.8, 7.4.18). Here we wiil give a proof based on 
comparing corresponding terms in the binomial expansions of each side. 
On the left side, 

" n(n - l)(n - 2) · · · (n - k + l) 
= L n · n · n · · · n  , _ ,  k! 
- ± -\ ( 1 - 1 )( 1 - ;!. ) · · · ( 1 - k - 1 )· k -.o k. n n n 
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In a similar manner, 

( I )H '  "+ ' I ( I )( 2 ) ( k I ) 1 + -- � � - 1 - -- 1 - -- . . . 1 - -=--n + l  k=o k! n + I  n + I  n + I  

� ( "! � r · 
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d ;  J.. (l - _1_ )( 1 - _2_ ) . . . { I - k
n +
- I

I )· k=O k! n + I  n + l  
The inequality is now obvious, since comparing the coefficients of I /  k! in 
these expressions, we see that for each k, k = 0, 1,2, . . . , n, 

( 1 - � )(I - � )  . . .  ( I - k � I ) 
< ( 1 - _1_ )( 1 _ _  2_ ) . . .  (I _ k - I )· n + l  n + l  n + l  

It is worth noting that 

�-
< I +  � -\; � 3. 

k = O  2 
Thus, the sequence (l + I/nt is increasing and bounded above by 3. (It 
can be shown that the sequence converges to the number e.) 

The next result is important theoretically and is very useful (e.g., see 
7.4.9 and 7.4.20). 

7.1.6. Suppose that j: R --+  R satisfies 

f( x; y )  < /(x); f(Y) 

for all x andy is an interval (a, b), x =t= y. Show that 

( x1 + x2 + · · ·  + xn ) < J(xt) + J(x2) + · · · +j(xn) 
f n n 

whenever the x;'s are in (a, b), with X; =F- x1 for at least one pair (i,j). 
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Solution. Assume the result holds for n = m; we will show it holds also for 
n = 2m. We have 

( X1 + · · · + X2m ) f 2m 

= J( � ( -x�,_+_·���·_+_x:::_m + Xm+ l  + � · + X2m )) 

< !  [ J( XI + 
• �- + Xm ) + J( Xm+  1 + � · + X 2m ) J 

< l ( /( x ,) + · · · + /( x.) + �/(�x�•-+cc•)_+--=· ·c-·_+_/'-('--x"''"c-.) ) 
2 m m 
f(x,) + /(x,) + . . .  + f(x,.) 

2m 
Thus, by induction, the result holds for all positive powers of 2. 

Now suppose that n > 2 and n is not a power of 2; that is, suppose 
that 2m- t < 

n < 2m for some integer m. Let k = 2m - n, and set y, 
= (x1 + · · ·  + xn)/n for i = l , 2, . . . , k. Then x1,x2, . . .  , xn , Yt> · · · •Yk 
are zm numbers in the interval (a, b), and therefore our preceding argument 
implies that 

!( XI + . . .  

But note that 

= J l n 
• 

( x + · · · + x ) 
n 

Making this substitution into the last inequality, 

!( X1 + · � · + Xn )  < /(xt) + · · · + J(xn) ;J(Yd + 

_ "/,_( x_c,):_+_· _· _· _+.:_f.:_( x-""'-) +o;;;kf,_,(.:_( x_:,_+_· ·_·_+_x"""-)'-/ n-'-) -
2" 
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Multiplying each side by 2m yields 

2J( xl + ·� · + xn
) <J(xt) + +j(xn) 

+ (2m - n)J( xl + n + xn ) 

and from this we get the desired inequality for n: 

Problems 

7.1.7. Suppose that a.b,c are positive numbers. Prove that: 

(a) (a + b)(b + c)(c + a) >  Babe. 
(b) a2b2 + b2c2 + c2a2 > abc( a +  b + c). 
(c) If a +  b + c = I, then ab + be +  ca < j .  
7.1.8. Prove that 

l . l .  2 . . . 999999 <-1-
2 4 6 I 000000 1000 . 

(Hint: Square each side and "give a little" to create a "telescoping" product 
(see Section 5.3).) 

7.1.9. 

(a) If a and b are nonzero real " numbers, prove that at least one of the 
following inequalities holds: 

I a +}a' + 2b' I 1 
2b < ' 

(b) If the n numbers x�ox2, . • .  , xn lie in the interval (0, 1), prove that at 
least one of the following inequalities holds: 

7.1.10. 

(a) Let a1/b1,a2/b2, . • •  , anfbn be n fractions with b; > 0 for i = I, 
2, . . . , n. Show that the fraction 

a1 + a2 + · · · + an 
bl + h2 + · · • + bn 

is a number between the largest and the smallest of these fractions. 
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(Note the special case in which ail the fractions aJ b, are equal.) 
(b) If 

a + b _ c + d  
b + c - d + a '  

prove that either a =  c or a + b + c + d == 0. 

7.1.11. 

(a) For 0 < a < b, show that 

(n + l)(b·- a)an < bn+l - aH+ 1  <(n + l )(b - a)bn. 

(b) Apply this inequality to the special case a = I + I/ ( n + 1) and b = I + 
1/n to show that (I + !fnt < ( l  + 1/(n + l))n+ 1 • 

7.1.12. Prove that for ail n, 

7.1.13 (Cauchy-Schwarz inequality). By mathematical induction on n, 
prove that for ali real numbers a1, • • •  , an,bh . . .  , bn, 

7.1.14, In a convex quadrilateral (the two diagonals are interior to the 
quadrilateral) prove that the sum lengths of the diagonals is less than the 
perimeter but greater than one·half the perimeter. 

7.1.15. Prove that for any positive integer n, n[rl < I  +bi n .  

Additional Examples 

1.3.3. 1.7.4. 1.7.5. 1.8.2. 1.8.5. 1.8.6. 1 . 12.7. 2.1.5. 2.1.6, 2.2.4. 2.2.6. 2.4.1. 
2.4.4. 2.4.6, 5.3.8. 6.1.3. 7.3.1 .  7.4.8. 7.4:9, 7.4.20. 7.4.21. 7.4.22. 7.4.23. 

7 .2. Arithmetic-Mean-Geometric-Mean Inequality 

Let X; > 0 for i =  1,2, . . .  , n. The arithmetic mean of x 1,x2 , . • •  , x, is the 
number 
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and the geometric mean of x1, x2, . . . , x" is the number 
(x,x2 . . .  xn)lfn. 

The arithmetic-mean-geometric-mean inequality states that 
ljn XI + X2 + • • • + Xlt (X1x2 • • • xn) < , n 

with equality if and only if ali the x;'s are equal. 
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The special case n = 2 was verified both algebraically and geometrically 
in the beginning paragraphs of Section 7.1. A proof for larger values of rr 
can be handled by mathematical induction (e.g., see 7.2.5 or 2.5.7), or by 
considering the concavity of the functionj(t) = logt (see 7.4.20). However, 
a more enlightening heuristic (however, not a proof) can be made as 
follows. 

Consider the geometric mean (x1x2 • • • xn/1" and the arithmetic mean 
(x1 + · · · + xn)fn. If not ali the x;'s are equal, replace the largest and the 
smallest of them, say xM and xm respectively, by 1(xM + x,). Then, since 
-!(xM + xm) + f(xM + x,) = xM + x,, and [ t(xM + ;�,)f > xMx,, the re· 
suit of this replacement is that the geometric mean has increased while the 
arithmetic mean has remained unchanged. If the new set of n numbers are 
not ali equal, we can repeat the process as before. By repeating this process 
sufficiently often, we can make the quantities as nearly equal as we please 
(this step needs additional justification, but we won't worry about it here). 
At each stage of the process, the geometric mean is increased and the 
arithmetic mean is unchanged. If it should happen that ail the numbers 
become equal (this may never happen, however; e.g.1 take x1 = I ,  x2 = 3, 
x3 = 4), the two means will coincide. It must be the case, therefore, that the 
geometric mean is less than or equal to the arithmetic mean, with equality 
when and only when all the numbers are equal. 

As an example of this process, consider the case x1 = 2,x2 = 4, x3 = 8, 
x4 = 12. The algorithm described yields the following sequences of sets: 

{2,4,8, 12} � {7,4,8, 7} � {7,6,6, 7 } �  { -¥  ,lf , .lj , lf  } · 

The geometric means of the corresponding sets increase to 1f ;  the arithme­
tic means remain fixed at lf. 

7.2.1. Prove that the cube is the rectangular parallelepiped with maximum 
volume for a given surface area, and of minimum surface area for a given 
volume. 

Solution. Let the lengths of the three adjacent sides be a, b, and c. Let A 
and V denote the surface area and volume respectively of the para!lelepi· 
ped. Then 

A = 2(ab + bc + ca) and V = abc. 
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By the arithmetic-mean-geometric-mean inequality, 

V2 = a2b2c2 = (ab)(bc)(ca) 

7. Inequalities 

< ( ab + � + ca )3 = ( 2(ab + :c + ca) )J = ( � )3· 
Thus, for all a,b,c, 

6 V213 < A .  

Furthermore, 6 v213. < A in all cases except for when ab = be = ca (or 
equivalently, when a =  b = c), and in this case 6 V213 = A . Thus, if A is 
fixed, we get the greatest volume (namely V = (A /6)312) when a = b = c (a 
cube), and when V is fixed, we get the least surface area (namely A 
= 6 v213) when a = b = c (a cube). 

7.2.2. Prove the following inequality: 

n[ (n + 1 )1/n - I J < 1 + ! + t + · · · + l < n - (n - l)n- lf(n- tl _ n 

Solution. Let sn = I + !  + · · · + 1 J n. The leftmost inequality is equivalent 
to proving 

which has vaguely the look of an arithmetic-mean-geometric-mean in­
equality. We can make the idea work in the following way: 

n + sn n + (l + l/2 +  · · · + 1/n) 
n n 

( I + I) + ( I + 1/2) + · · · + ( I +  ljn) 
n 

2 + 3/2 + 4/3 +· · · ·  + (n + l)jn 

> (2 . .J. . � 2 3 

= (n + l)t/n. 

n 

For the rightmost inequality. we need to show that 
n - , 
__ n > n- lj(n- 1) . n - I 
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Again, using the arithmetic-mean-geometric-mean inequality, we have 

n - sn = n - (I + 1/2 + 1/3 + · · · + 1/n) 
n - 1  n - l 

(I - I) +  ( I - 1/2) + · · · + (I - 1/n) 
n I 

l/2 + 2f3 + · · · + (n - 1)/n 
n - 1  

> (! .  £ . l  . . . n - I ) l/(n-1) 
2 3 4 n ( l ) l/(�-1)  = _ = n - lj(n-1). 
n 
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7.2.3. If a,b,c are positive numbers such that ( I + a)(l + b)(l + c) = 8, 
prove that abc ,;;;; I . 

Solution. We are given that 

I + (a + b + c) + (ab + be + ca) + abc = 8. 

By the arithmetic-mean-geometric-mean inequality, 

a +  b + c .;;; 3(abc)'l3 and ab + be +  ca (; 3(abc)213, 
each with equality if and only if a = b = c. Thus, 

It follows that 

or equivalently, 

8 > I + 3( abc) '13 + 3( abc)21' + abc 
= [ ! + (abc) IJ3t 

abc ,;;;; I 
with equality if and only if a = b = c = ] .  

7.2.4. Suppose that X; > 0, i = I, 2, . . . , n and let x,.-+- 1 = x1• Show that 
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Solution. Consider the case n = 3. By the arithmetic� mean-geometric-mean 
inequality, we have 

Also, 

x3 X1 x3 - == - · - ! 
X2 Xz X1 
X 1 XI Xz - = - · - 1 
x3 X2 x3 

I = � . Xz . x3 .;; .l ( :.>_ 
)
3 + l ( x, 

)
3 + _! ( x, 

)
' 

x2 x3 x1 3 x2 3 x3 3 x1 
Adding these inequalities gives the desired result. The case for an arbitrary 
positive integer n is similar. 

Problems 

7.2.5. Fill in the steps of the following inductive proof of the arithmetic­
mean-geometric-mean inequality: For each k, let Ak = (x1 + x2 + · · · 
+ x1J/k, and G�c: = (x1x2 • • • xk)

1Jk_ Assume that we have shown Ak > Gk. 
Let 

and 

Then, using the inductive assumption, we have A > G, and it follows that 
A - '(A + A) > (A A)112 ..... (G G)112 = (Gk+IA k- t)l/(lk> From this k+ l - 2  k k "' k k+ l k+ l • 
it follows that Ak+ 1 > Gk+ 1 • On the basis of this argument it is easy to 
prove the equality holds if and only if all the X; 's are equal. 
7.2.6. If a,b,c are positive numbers, prove that 

(a2b + b2c + c2a)(a2c + b2a + c2b) � 9a2b2c2• 

7.2.7. Suppose that a1 , . • •  , an are positive numbers and h1, • • •  , bn IS a 
rearrangement of a�> . . . , an. Show that 

"" + b � n. " 

7.2.8. 

(a) For positive numbers a and b, a =F b, prove that 

(ab")l/(n+ t)< a +  nb . n + I  
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(b) In part (a), consider the case a =  I and b = I +  Ijn and show that 

( t + �r< ( l + n! l r+ l. 
(c) In part (a), replace n by n + I ,  let a =  I and b = 11j(n + 1), and show 

that 

( 
! )"+ '  

( 
I

)"+
' 1 + - > 1 + -- . n n + I  

7.2.9. For each integer n > 2, prove that 
(a) 

(b) 

(o) 

ir (") < ( 2"�2 )"- ' . 
k _0 k n I 
n !< ( n; I r 
I X 3 X 5 X  · · ·  X (2n - l) < nn. 

7.2.10. Given that all roots of x6 - 6x5 + ax4 + bx3 + cx2 + dx + I = 0 
are positive, find a,b,c,d. 
7.2.11. 

(a) Let X; > 0  for i =  1 , 2, . . .  , n, and let p 1, p2, • • •  , pn be positive inte­
gers. Prove that 

(b) Prove the same result as in part (a) holds even wlien the p,.'s are positive 
rational numbers. 

7.2.12. Use the arithmetic-mean-geometric-mean inequality for each of 
the following: 
(a) A tank with a rectangular base and rectangular sides is to be open at 

the top. It is to be constructed so that its width is 4 meters and its 
volume is 36 cubic meters. If building the tank costs $10 per square 
meter for the base and $5 per square meter for the sides, what is the 
cost of the least expensive tank? 

(b) A fanner with a field adjacent to a straight river wishes to fence a 
rectangular region for grazing. If no fence is needed along the river, and 
he has JOOO feet of fencing, what should be the dimensions of the field 
so that it has a maximum area? (Hint: It is equivalent to maximize 
twice the area.) 

(c) A fanner with 1000 feet of fencing wishes to construct a rectangular 
pen and to divide it into two smaller rectangular plots by adding a 
common fence down the middle. What should the overall dimensions 
of the pen be in order to maximize the total area? 

(d) Prove that the square is the rectangle of maximum area for a given 
perimeter, and of minimum perimeter for a given area. 
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(e) Prove that the equilateral triangle is the triangle of maximum area for a 
given perimeter, and of minimum perimeter for a given area. (Hint: 
The area of a triangle is related to the perimeter of the triangle by the 
formula A =  (s(s - a)(s - b)(s - c))112, where a,b, c are the lengths of 
the sides of the triangle and s = !  P, P the perimeter of the triangle.) 

Additional Examples 

Introduction to Section 7.6; 7.3.1, 8 .1 .4. 

7.3. Cauchy-Schwarz Inequality 

Let a, > 0 and b, > 0 for i ::: 1,2, . . .  , n. The Cauchy-Schwarz inequality 
states that 

with equality if and only if a1/b1 = a2jb2 = · · · =:: anfbn. 
A proof can be given using mathematical induction (see 7.1. 13). But 

an easier approach is to consider the quadratic polynomial P(x) = 
L�-1(a;x - b;i. Observe that P(x) > 0 for ali x; in fact, P(x) = 0 only 
under the conditions in which a1/ b1 = a2/ b2 = · · · = anf b., and x 
= bJa, . Now 

' 
P( x) = 2: ( a,2x2 - 2a;b,x + h;2) 

i - 1  

and since P(x) > 0, the discriminant of P cannot be positive, and in fact 
will equal zero only when P(x) = 0. Thus, 

or equivalently, 

(- 2  .£ a,b,)' - 4( .£ a,')( ± b.') < O. • = 1  1 = 1  ,� ,  

with equality if and only if a1/b1 = · · · = a,/b,. 
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In this inequality, note that the requirement that the a, and b, be positive 
is redundant, since for all a,, b, 

7.3.1. If a,b,c > 0, is it true that a coslfJ + b sin'1fl < c implies {ci cos'1fl 
+ lb sin'1fl </C? 

Solution. By the Cauchy-Schwarz inequality 
{Q cos'1fl +$sin'1fl 

" [ (Jlicos 0 )2 + (f sin 0 )2 f12[ (cos 0 )2 + (sin 0 )2 f12 

'" b . 21> lj2 = (acos-u + sm-u) 

<lc. 
There is also a nice solution based on the arithmetic-mean-geometric­

mean inequality: 
' ( {ci coslfJ + fb sin20 ) = acos"' + 2/{i If) cos'1fl sin'1fl + b sin40 

< acos"' + (a +  b)cos'1flsin'1fl + bsin"' 

= (a cos'1fl + b sin'1fl )(c0s2fJ + sin'1fl) 
< '· 

Another solution, more geometric in nature, is given in 7.4.19. 

7.3.2. Let P be a point in the interior of triangle ABC, and let rl>r2,r3 
denote the distances from P to the sides a1,a2,a3 of the triangle respec­tively. Let R denote the circumradius of ABC. Show that 

with equality if and only if ABC is equilateral and P is the incenter. 

Solution. By the Cauchy-Schwarz inequality 

F; + r,:; + r,:; = )alrl ..fl'/a: + Ja2r2 �I/ az + Ja3r3 Jt/ a3 
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with equality if and only if 

Ja1r1 Ja1r1 Ja3r3 
Jl/a, � Jl/a, 

� 
Jl/a, ' 

or equivalently, if and only if 

a;r, = air2 = air3 •  

7. Inequalities 

In the preceding inequality, we recognize that a1r1 + a2r2 + a3r3 = 2A, 
where A is the area of the triangle. Also, we know that the area of a 
triangle, in terms of .the circumradius R, is given by A = a1a2a3j4R (see 
8.1 . 12). Therefore, a1r1 + a2r2 + a3r3 = a1a1a3/2R, and we have 

c- r r ( a,a2aJ )'!'( I I 1 ) '1' 
yrl + vr2 + vr2 .;;; � -;; + a2 + aJ 

� ( a1a2a3 ) '!'( a2a3 + a3a1 + a1a2 ) 'I' 
2R a1a1a3 

_ I ( + )'I' - -- a2a3 a3a1 + a1a2 • 

.ffR 
Now, again by the Cauchy-Schwarz inequality, 

2 2 2 1/2 2 2 2 1/2 a2a3 + a3a1 + a,a2 < (a2 + a3 + a1) (a3 + a1 + a2) 

= (af + ai + aD 
with equality if and only of a2/ a3 = a3j a1 = a1/ a2 ( = (a2 + a3 + a1)/ 
(a3 + a1 + a2) = I ; see 7.1. 12), or equivalently, if and only if 

Thus, we have 
c- c- c- I 2 2 2 112 vr1 + vr2 + vr2 < -- ( a1 + a2 + a3) 

.ffR 
with equality if and only if afr1 = a�r2 = ah and a1 = a2 = a3; that is, if 
and only if a1 = a2 = a3 and r1 = r2 = r3 • This completes the proof. 

7.3.3. Given that a,b,c,d,e are real numbers such that 
a + h + c + d + e = 8, 

a2 + b2 + c2 + d2 + e2 = 16, 
determine the maximum value of e. 

Solution. The given equations can be put into the form 
8 - e = a + b + c + d, 

16 - e2 = a2 + b2 + c2 + d2. 
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We wish to find an inequality involing only e; the Cauchy-Schwarz 
inequality provides a way, since 

(a + b +  c + d) < ( I + I +  I + 1) 1/2(a2 + b2 + c2 + d2)
112• 

Making the substitutions given 'above, and squaring, we have 

(8 - e)2 .;;;; 4(16 - e2), 
64 - 16e + e2 .;;;; 64 - 4e2, 

5e2 - I6e < O, 
'(5' - 16) < 0. 

It follows that 0 < e < 1f .  The upper bound, Jf, is attained when a = b = c 
= d=Jf. 

7.3.4. Suppose that a1 ,a2> . . .  , an are real (n > I) and 

A + .± a?< n � 1 ( .± a;)'. 1= 1 • - 1  

Prove that A < 2a,a, for I < i <j < n. 

Solution. By the Cauchy-Schwarz inequality 

( .± a,)
2 
= [(at + a2) + a) +  . . .  + anr 

, _ ,  

< (I + · · ·  + l)((a1 + a2)
2 + a; +  · · · + a�) 

= (n - I)[ .± al + 2a1a2]· , _ ,  
This, together with the given inequality, implies that 

A < - ( .± a,') +  n � 1 ( ± a,)' 
1= 1 1= 1 

< -Ct, a,') + n� 1 [<• - IU,a,' + 2a,a,l ] 

= 2a1a2 . 
In a similar manner, A < 2a;a1 for 1 < i <j < n. 

7.3.5. Let X; >  0 for i =  1 ,2, . . .  , n .  For each nonnegative integer k, prove 
that 

. . . + x,k+ l  

. . .  + Xn 
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Solution. We may assume without loss of generality that x 1 + · · · + x� 
= 1, for if not, we can replace X; by X; = x;/(x1 + · · · + X11). 

The result holds when k = 0. Assume the result holds for all nonnegative 
integers less than k. By the Cauchy-Schwarz inequality, 

II k II (k-1)/2 L � = L xlk+ l)/2 _x,�. -:--
i=l  n i= l n ( " )'I'( " x'-'  ) 'I' 

< L x,k+ l  L -'-,-
, .. � , .. t n 

By the inductive assumption, L'J .. 1x/'-1 / n < �'l- 1x/', and therefore, con­
tinuing from the last inequality, we have 

Thus, 

( " )'I'( " x'-' ) '/> ( " )'I'( " x' )'I' � x/'+ t 2: -'-,- < 2: x/'+ t 2: -' . 
i=l  ; .. 1 n i=l  ; - t  n 

By induction, the proof is complete. 

Problems 

7.3.6. Use the Cauchy-Schwarz inequality to prove that if a 1, • • • , a" are 
real numbers such that a 1 + · · · + a" =  I ,  then a

i 
+ · · · a: > ljn. 

7.3.7. Use the Cauchy-Schwarz inequality to prove the following: 

(a) If p1, • • • ,p,,x1, . . .  , x, are 2n positive numbers, 

(ptxt + · · · + PnX,)2 < (Pt + · · · + p,)(plxf + · · · + p,x'!;). 
(b) If a,b,c are positive numbers, 

(a2b + b2c + c2a)(ab2 + bc2 + ca2) ;;. 9a2b2c2• 
(c) If x�n yk, k = 1 ,2, . . .  , n, are positive numbers, 
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(d) If ak,bk>ck, k = 1,2, . . . , n, are positive numbers, 

(e) If ck = CD for n > 2, I " k " n, 
" 
� /c: <Jn(2" - 1) .  

, _ ,  
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7.3.8. For n a positive integer, let (a�>a2, • • •  , an) and (bl>b2, • • •  , bn) be 
two (not necessarily distinct) permutations of (1,2, . . . , n). Find sharp 
lower and upper bounds for a1b1 + · · · + anbn. 
7.3.9. H a,b,c,d are positive numbers such that c2 + d2 = (a2 + b2?, 
prove that 

a3 b3 
c + d > 1 • 

with equality if and only if ad = be. (Hint: Show that (a3 I c + b3 I dXac + 
bd) > (a2 + b2)2 > ac + bd.) 
7.3.10. Let P be a point in the interior of triangle ABC, and Jet rl>r2 ,r3 
denote the distances from P to the sides a1,a2,a3 of the triangle respec­
tively. Use the Caucby-Schwarz inequality to show that the minimum 
value of 

at az a3 � + � + � 

r 1 '2 r3 

occurs when P is at the incenter of triangle ABC. '(Hint a; = � Jaj r; .) 

Additional Example 

7.6.14. 

7.4. Functional Considerations 

In this section we will give examples to show how the techniques of 
analysis, particularly differentiation, can be used effectively on a wide 
variety of inequality problems. 

7.4.1. Given positive numbers p, q, and r, such that 2p = q + r, q =1= r, 
show that 
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Solution. Suppose that q and r are positive integers, and consider the q 
numbers lfq, . . .  , 1/q and the r numbers lfr, . . . , !Jr. By the arithme· 
tic-mean-geometric-mean inequality, ( _!_. _!_ )'/"H' < q(l I q) + '( I  I') � _!_ , qq r' q + r p 

which is equivalent to the desired inequality. 
Of course, this method breaks down if either q or r is not an integer, so 

how shall we proceed? One idea is to rewrite the inequality in the following 
manner: 

( ! )'+' < (-q )'( -' )'. 
2 q + r  q + r  

! < ( _q_ )q/(q+r)( -'- )rj(q+r). 
2 q + r  q + r  

Set x = q/(q + r) and y = r/(q + r). Observe that x + y = ! and 
0 < x, y < 1 .  Then the problem is equivalent to proving that 

0 < x < 1, x 'f= ! -
By introducing the function in this way, we are able to use the methods 

of analysis. The idea is to find the minimum value of F on (0, I). To 
simplify the differentiation, we will consider the function G(x) = log F(x). 
To find the critical points, we differentiate: 

G'(x) � :fx [ x logx + (I � x)log(l � x)] 
� (logx + I) �  I �  log( I �  x) 
= log

-x- . l � x  
We see that G'(x) = 0 if and only if x = -}. Furthermore, G'(x) < 0 on the 
interval (0,!), and G'(x) > 0 on the interval (!, I). Therefore G(x) takes its 
minimum value on (0, 1) at x = f .  Thus, the minimum value of F(x) on 
(0, I)  is F(!) = CD112(!)112 = ! .  It follows that F(x) >! for all x in (0, 1), 
x =fo!, and the proof is complete. 

7.4.2. Let p and q be positive numbers with p + q = I .  Show that for all x, 
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Solution. Consider the function 
,p�e_'_l '-+i--;:;q�e�--·_1_' F(x) = -

e"'/Sp'q' 

26! 

Our problem is to prove that F(x) < I for all x. Because of the symmetry in 
the problem, it suffices to prove that F(x) < I for all x ;;;. 0. 

We note that F(O) = I. By Corollary (iii) of the mean-value theorem (see 
the discussion preceding 6.6.2), it suffices to prove that F'(x) < 0 for all x. 
To simplify the computation, consider the function G(x) = logF(x). Rou­
tine differentiation and algebraic simplification yields 

F'(x) 
G'(x) - -- ­F(x) 

e"lpq - I x 
pexJpq + q - 4p2q2 • 

Since F(x) > 0 for all x ;;.. 0, F'(x) < 0 if and only if G'(x) < 0. Unfortu­
nately, the preceding expression for G'(x) makes it difficult to determine 
whether or not G'(x) .;;;; 0. Therefore, we will carry the analysis through 
another step. Namely, G'(O) = 0, and (again leaving out the details) 

(pe'IN - q)' 
G"(x) - - , 

4p2q2(pe"/pq + q) 
Here is is clear that G"(x) < 0 for all x > 0. This, together with G'(O) = 0, 
implies that G'(x) < 0 for all x > 0, and this in turp implies F'(x) < 0 for 
ail x > 0. Therefore, since F(O) = I ,  it must be the case that F(x) .;;; I for all 
x > 0, and the proof is complete. 

The procedure used in the preceding problem is very common. To 
recapitulate, it goes like this: To prove an inequality of the form 

f(x) > g(x), 
it is equivalent to prove either that 

f(x) 
Q(x) '= g(x) > I, 

or that 

x > a, 

x > a, 

D(x) '= f(x) - g(x) > 0, x > a. 

Each can be done by showing the inequality for x = a and then by showing 
that Q'(x) > 0 (or D'(x) > 0 respectively) for all x > a. 

In the previous example, if we had considered instead the function 
D(x) "" ex'/Sp'tf - pex/p - qe-xlq, 

this analysis wouldn't have been conclusive: even though D(O) - 0, it is not 
necessarily the case that D'(x) > 0 (for enmple, when p - f. q = j, x = n. 
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7.4.3. Prove that for all real numbers a and b, 
Ia + bl' < lal' + lbl', O < p < l. 

Solution. The inequality is trivial in several special cases. For example, the 
result holds if a =  0, or if a and b have opposite signs. Also, if p = 0 or 
p = I, the result is true. Therefore, it suffices to show the result is true when 
a and b are positive and 0 < p < I. 

For such a and b and p, let x = b/ a. Then, the problem is to show that 

(l + x)P < ! + xP, x > O, O < p < ! . 
For this, let D(x) = I + xP - (I + x)P. We have D(O) = 0 and D '(x) 
= pxp- 1 - p( l + x)P- 1 > 0, so by our earlier remarks, the proof is com­
plete. (Note that if p > I ,  the inequalities would be reversed.) 

7.4.4. On [0, 1], let f have a continuous derivative satisfying 0 < j'(t) < I .  
Also, suppose that j(O) = 0. Prove that [ ' ]' ' fo f(t) dt > fo [ /(') ]' 

dt. 

Solution. Here, as in the last example, it is not clear how to make use of 
differentiation. The idea is to introduce a variable and prove a more 
general result. For 0 < x < I ,  let 

F(x) �[ft(t)d•]'-fuun'dt. 

Then F(O) "" 0, and 

F'(x) � 2 [ f f(t)dt ]!( x ) - [ f(x) ]' 

� f(x)[ 2 J," f(t)dt - [f(x) J'l 
We do know that j{x) > 0 for 0 < x < I (since we are given j(O) = 0 and 
J'(x) > 0); however, it is not clear thai the second factor in the last 
expression for F' is nonnegative. Therefore, let 

G(x) � 2 J,' /(l)dt- [ f(x)]', 

Then G(O) ""' 0, and 

O < x < l . 

G'(x) � 2f(x) - 2f(x)f'(x) 

� 2f(x)[ l - f'(x)] > 0 
(the last inequality holds because j(x) > d and, by hypothesis, I - j'(x) 
> 0). 
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It follows from these argument� that F(x) > 0 for all x, 0 < x < I ; in 
particular, F(l) > 0 and the proof is complete. 

7.4.5. Show that if x is positive, then log(l + 1/x) > 1/(1 + x). 

Solution. Let f(x) = log(l + l/x) - 1/( l + x) (= log( l + x) - logx -1/(1 + x)). Then 
/'(X) - I I + I ) + X X (1 + x)2 

x(l + x) - (1 + x)2 + x  
x(l + x)2 

- 1  < 0  
x( l + x)2 

for x > O. 

Furthermore, limx_,.,.,f(x) = 0, and this, together with f'(x) < 0 for x > 0, 
implies that f(x) > 0 for x > 0. 

7.4.6. Find all positive integers n such that 
3" + 4" +  · · ·  + (n + 2)"= (n + 3)". 

Solution. A direct calculation shows that we get equality when n = 2 and 
when n = 3. A parity argument shows that it can't hold when either n = 4 
or n = 5. Based on this beginning, we might expect that the key insight 
should involve modular arithmetic in some way. However, these attempts 
aren't fruitful, and we look for another approach. We will show that 

3" + 4" +  · · · +.(n + 2)"<(n + 3)3 
for n > 6, and thus equality holds only when n = 2 or n = 3. 

The inequality we wish to prove can be written in the following form: . 
-- + -- + · · · + -"-- < I  ( 3 )" ( 4 )" ( + 2 )" 
n + 3  n + 3  n + 3  ' 
" ( I )" ( I )" ( 1 - -"- ) + I - E...=_ + · · · + 1 - -- < I  n + 3  n + 3  n + 3  ' 

or, reversing the order for convenience, ( I )" ( 2 )" n " l - n + 3  + l - n + 3  + · · · + ( l - n + 3 ) < 1. 
To prove this inequality it suffices to show that ( 1 - -k-)"< ( l ) ' 

n + 3 2 ' k =  1,2, . . .  , n. 
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For then, 

( I )
" ( 2 )" " l - n + 3  + ! - n + 3  + · · · + ( l - n: 3 ) 

< t + ( tf+ . . . + ( tf< I . 
It remains, then, to prove that 

k = 1,2, . . .  , n. 
By Bernoulli's inequality (a very useful inequality; see 7.4. 10), 

and therefore, 
1 - -- > l - --( I )' ( k ) n + 3  n + 3 ' 

( I - n! J )" < ( I - n! J )'" � [ ( I - n! J]' 
The final step is to show that 

( I - -1-)n < ! when n > 6. n + 3 2 

For this, consider the function 
F(x) = ( ]  - x! 3 r 

I t  is straightforward to show that F'(x) < 0 for x > 6, and that F(6) < f . 
Thus, the proof is complete. 

7.4.7. Prove that for 0 < a <  b <tw, 
b - a < tan b - tan a < b - a . cos2a cos2b 

Solution. Consider the function j(x) = tanx on [a,b]. According to the 
mean-value theorem there is a point c in (a, b) such that 

f( bt �(
a) �!'(c). 

In this case, this means that 
tanh - tan a = sec2c b a 

for some c in (a, b). The desired inequality follows from the fact that 
sec1a < sec2c < sec2b for 0 < a < b < .,  j2. 

Many inequalities can be established by considering an appropriate 
convex (or concave) function. The idea is based on the result of 6.6.3: if 
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f: R � R  is such thatj"(.x) > 0, then 
f( x; y

) 
< f(x) � f(Y) 

' 
and if j"(x) < 0, then 

f( X; y ) > j(x) � j(y) , 
For example, for real numbers a and b, 

( 
x + y )2 x2 + 12 

2 
< 

2 
because j(x) = x2 ts a convex function. As another example, if 
0 < x,y < w, 

. 
(
x +y

) 
sinx + sin y 

"" -2- > 2 
because j(x) = sin x is a concave function on (0, 7T). 

7.4.8. Prove that if a and b are positive numbers such that a + b = I, then 

(a + �f+ (b + i-f> 2i . 

Solution. We have seen that 
X! + y2 

2 

Take x = a +  I I a andy = b + I I b. Then 

1 [ (a + � )' + ( b + t n > ( 1 [ (a + � ) + ( b + t )  l ) '  
� [ t ( l + � + t )J' 

But by the Cauchy-Schwarz inequality (I  I a + 11 bXa + b) ;;;. (I + 1)2 = 4, 
so that 

[ t { l + � + t )J' > [ ± { I + a!b ) j'� ( 1 �4 )'� 2,f · 

The result follows after putting together the two preceding inequalities and 
multiplying each side by 2. 

7.4.9. Let 0 < X; <  '1t, i = I , . . . , n, and set x = (x1 + x2 + · · · + xn)ln. 
Prove that 

ft ( •inx, ) < { •inx )". 
; ... l XI X 
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Solution. The problem is equivalent to proving that 

Consider the function 

" sinx. · 

2: log--' < n log smx . 
i = l  X; X 

f(t) = log sin t . I 

7. Inequalities 

It is a straightforward matter to show that J is concave (j"(t) < 0) on the 
interval (0, w). Therefore 

. ( x1 + x2 ) f(x,) +f(x2) f 2 > 2 . 
In a manner completely analogous to the proof of 7.1.6, it follows that 

J( x1 + -�· + x" ) ;;. f(x1) + -� · +f(x11) . 
Direct substitition into this inequality completes the proof: 

log( sin :X) > !  (log sinx1 + . . .  + log sinx, )· x n x1 x, 

Problems 

7.4.10 (Bernoulli's inequality). Prove that for 0 < a <  I , 
( I  + x)"< 1 + ax, x ;;. - 1 . 

How should the inequality go when a <  0, or when a >  I? 
7.4.11. Prove that 

x x(x + 2) 
I +  x < log( I + X) < 2(x + I) ' 

X >0. 

7.4.12 (Huygens's inequality). Prove that 
2sinx + tanx > 3x, 0 < x < w/2. 

7.4.13. For all x > 0, (2 + cosx)x > 3sinx. 
(a) Prove this inequality by considering the function F(x) = x - (3 sinx)/ 

(2 + cosx). 
(b) Prove this inequality by considering the function F(x) = (2 + cosx)x -

3sinx. 
7.4.14. Prove that 

0 x logx 1 < -,-- <; -2 ' x - I  
x > O, x =l= l. 
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7.4.15. Prove that 
I ( I I ) -�,;'ex ::--:-= og - _x_+_3 + (X+ 2)(x + 3) < 0, X >  - 2. 

7.4.16. Prove that 

(!!..±...! )' . . ( !! )' 
b + I  > b ' 

7,4.17. Prove that 
sin a < 5! < tan a 
sinh b tanb ' 

a, b > 0, a =1= b. 

O < b < a <!'"· 

267 

7.4.18. Use the methods of this section to prove that for each positive 
integer n, 

( l + �r<(l +  
n! l r+ l

. 

(That is, show that j(x) = ( I  + 1/ x}" is an increasing function.) 
7.4.19. Use the concavity of j(x) = .[X to prove that if a, b,c are positive, 
then a cos28 + b sin2fJ < c implies /a cos2fJ + .fb sin2fJ <.fC. (Hint: Sketch the 
graph of j(x) =IX. In the domain, where is the point a cos2fJ + b sin2fJ, and 
in the range, where is ra cos2fJ + .fli sin2fJ?) 
7.4.20. Let X; > 0 for i = I ,  2, . . .  , n. Consider the function j(t) = logt, 
and in a manner similar to that used in 7.4.9, prove.that 

>/ X I + X2 + . . .  + X� (X 1 X 2 • • · X,) n ,;;;; --'-�-'---,-��-" 
n 

with equality if an only if all the x1 are equal. 
7.4.21. 

(a) Let x1 > 0 for i =  1,2, . . .  , n. Use the result of 7.4.20 to show that 
n 

.;;; ( ) 11� 
_!_ + ___L + . . . + ..l 

x1x2 • • • x, . 

x1 x2 x, 
(b) For positive numbers a,b,c such that l ja + 1/b + Ijc = I, show that 

(a - IXb - l)(c - I) > 8. 

7.4.22. Show that if a,b,c are positive numbers with a +  b + c = I, then 

(a + � f+ (b + t f+ (c + ?f>  I� . 

7.4.23. Let a,b,c denote the lengths of the sides of a triangle. Show that 
]. < �a� + -b� + �c� < l. 
2 h + c  c + a  a + h  



268 7. Inequalities 

Additional Examples 

6.4.6, 6.4. 7. 

7.5. Inequalities by Series 

Another way to prove an inequality of the form 
J(x) < g(x). D < x < c  

(see the discussion preceding 7.4.3) is to expand f and g in power series, say 
j(x) = L:'-oa,x" and g(x) = L:'-0b.,x", for x in the interval ( - d,d). If it 
should happen that a., < b., for all n, then it is obvious thatj(x) < g(x) for 
all x in the interval (0, d). 

7.5.1. For which real numbers c is !(ex + e-x) < e<"x' for all real x? 

Solution. If the inequality holds for all x then 
0 < ecx' - t(ex + e-x) 

oo (  I '" = 2: c" - n ) � -
n - t  

2 n .  

To see that c > -!, divide each side by x2 and set x = 0. 
On the other hand, if c > ! , 

00 ,, 
< �  2':., 

, .. o n. 

= e"''/2 

It follows that the stated inequality holds for all x if and only if c ;> ! . 
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Another important series technique with application to inequality prob­
lems concerns alternating series. Recall that if a0,a1 ,a2, • • •  is a sequence 
of positive numbers, then the series L:"=o(- l)"a, converges provided the 
terms steadily decrease to zero (i.e., a,+ 1 < a, and a, --:�> 0  as n--:�> oo). More 
importantly for our purposes here, the sum of the series lies between any 
two successive partial sums. (If S denotes the sum of the series and S, 
denotes the nth partial sum, then {S2,+ d  is an increasing sequence, {S2,} 
is a decreasing sequence, and for all n, S2,+ 1 < S < S2, .) 

7.5.2. Show that for ali x, 

x'" + (2n)! > O. 

Solution. Certainly the claim is true when x is positive or zero. When x is 
negative the series on the left is an alternating series, and because 2n is 
even (so·the last term in the finite sum on the left is positive), the reasoning 
preceding the problem implies that 

x'" + (2n)! 

· · · = ex >  0. 

7.5.3. Prove that (2 + cosx)x > 3sinx, x > 0. 

Solution. This is the same probleffi as 7 .4. !3, but here we will give a 
solution based on series considerations. 

On the left side of the desired inequality, we know that for x > 0, 

( x2 x4 x6 ) (2 + COSX)X > 2 + ] - 2! + 4! - 6! X, 

and on the right side 

3 sinx < 3  x - - + -( x' x' ) 
3!  5! . 

Therefore, it is sufficient to prove that 
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This is true for x > 0 if and only if 
xs x7 3x5 
4! - 6! > sr · ( I  3 ) I '  
4! - 5! > 6! X ' 

x2 < 6! ( ffr ) = 12. 
This proves the desired inequality for the case in which 0 < x <ff2. 
But the inequality is obvious for x > /12, and therefore, it is true for all 
x > 0, and the proof is complete. 

In the preceding proof, one might ask why these many terms from the 
infinite series were chosen. Why not more or less? To keep the inequalities 
going in the right direction, we need to underestimate cos x and overesti­
mate sinx, thus dictating the signs of the final terms in the series approxi­
mations. The crudest estimate would be to replace cosx by I - x1 /2 and to 
replace sinx by x. This leads us to investigate 

{3 - �1 }x > 3x, 

which is equivalent to 
x' - T > 0, 

and this is not true for any positive value of x. 
As the number of terms in the series increases, the apptoximations 

improve, so the next try might be to replace cosx by I - x2j2 + x4/4! ­
x6 /6! and sinx by x - x3 /31 + x5 /5!. This leads to the solution as it was 
presented. 

7.5.4. Prove that ( si�x f ;a cosx, 0 < x < f'1T. 

Solution. For x > 0, 

and 

( sinx )' ( x' )3 x2 x4 -- > 1 - - = 1 - - + -x 3! 2 12 

x2 x4 x6 xB cosx < I - T + 4! - 6! + 8! . 
Therefore, it suffices to show that 

x2 x4 x6 x2 x4 x6 xB 1 - T + 12 - 216 > 1 - T + 4! - 6T + 8t 



7.6. The Squeeze Principle 

or equivalently, 
' ( ' ' ) 2 1 4 0 4! + - 216 + 720 X - 8! X > . 
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The left side is decreasing on the interval (0,! w], and therefore takes its 
minimum when x := !  w. In particular, for 0 < x < 2, 

dr + (- 2!6 + 7�o )x2 - s\ x4 > d! +(- 2:6 )(2)2- i! (2)4 
> ...!.. _ _! + 1._ = 30 - 24 - 1  > 0 4! 5! 6! 6! . 

This completes the proof. 

Problems 

7.5.5. Use infinite series to prove the following inequalities: 
(a) ex > I +  (I + x)log( l + x), x > 0. 
(b) (I + x)/(1 - x) > e2x, 0 < x < I. 
(c) arcsinx < xj(! - x2), 0 < x < I. 

7.5.6. Prove that 3,ff""+""X - I - ! x  + �x2 <ifx3, x > 0. 
7.5.7. Prove that 

x <t(2sinx + tanx), x > 0. 
[Hint: Show the equivalent inequality, 

sinx(2cosx + I) >  3xcosx, x > 0.] 

7.5.8. Show that sin2x < sinx2 for 0 < x/i; . 

7.6. The Squeeze Principle 

In this section we will see how inequality considerations can play an 
important role in evaluating limits. The key idea (which has many varia­
tions) is expressed in the following result. 

The Squeeze Principle. If (a,}, { b� }, { c,} are infinite sequences such that a, .;;: b, 
< c, for ali sufficiently large n, and if (a�} and (r�l converge to the same 
number L. then {b,} also converges to L. 

As innocuous as this principle appears (obviously, there is no alternative 
for {b,}; it is "squeezed" between {a,} and {c,.}, both of which are 
converging to the same limit), it is surprising that it can be useful in 



272 7, Inequalities 

problem solving. Nevertheless, it is applicable in the following situation. 
Suppose we wish to evaluate the limit of a sequence {bn}, and suppose the 
bn's are hopelessly complicated, so that they cannot be handled directly. 
The squeeze principle suggests that we try to "squeeze" {bn} with two 
simpler sequences {an} and {c.,} .  

For example, consider the sequence {n11"). We could evaluate this limit 
by L'HOpital's rule; however, consider the following argument. By the 
arithmetic-mean-geometric-mean inequality, 

I < n11n = ( I  X 1 X · . .  X I X .[n" X f,l ) ' /" 
" 2 

< ( n 
- 2) + 2,in � I + 2( _I - l )

· 
n [,1 n 

Now, by the squeeze principle (with a, = 1, and c., = I +  2(1 /,f,i - 1 /n)) 
we see that n11" is forced to converge to I .  

7.6.1. Prove or disprove that the set of all positive rational numbers can be 
arranged in an infinite sequence {b,.} such that {(b,.)11" } is convergent. 

Soludon. We begin by ordering the rational numbers by following the usual 
serpentine path through the square array of rationals shown in Figure 7 .2, 
where we omit all fractions not reduced to lowest terms. The sequence thus 
begins 1,!,2,3,t,±,- L4,5,!,!, . . . .  If b, denotes the nth -term of this 
sequence, we would like to prove that { b�fn } converges to I. 

In Figure 7.2, observe that every element in the nth row is less than or 
equal to n, and every element in the nth column is greater than or equal to 

/) /7 1/2 1 /3 1/4 
/ / / / 2 2{2 2{3 2{4 t3/3// 3/! 3f4 
/ /  

t:/::: 4/3 4/4 5/3 5/4 
. . . . . .  

Figure 7.2. 

/7 1/5 . . .  

2/5 . . .  

3/5 . . .  

4/5 5/5 
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1/n. Also, if b� occurs m row i and column j, then i < n and j < n. 
Therefore 

for all n, 
and consequently, 

a = -'- � ( ! ) 1/�
< bl/n o;;; n l/n = c . n n ljn n n n 

Now, by the squeeze principle, {b�fn ) converges to I .  

7.6.2. Let j(x) be a real-valued function, defined for -I < x < I ,  such 
thatj'(O) exists. Let {an}, {bn} be two sequences such that 

Prove that 

Solution. The quotient 

lim (an) =  0 = lim (b�)· n-->O<J n--><X> 

can be interpreted geometrically as the slope· of the line segment 
Pn(an , j(an)), Qn(bn, j(bn)) (see Figure 7.3.) 

Let R be the point (0, j(O)). Either the y-intercept of the line segment 
Pn Qn is less than or equal to j(O) (case 1), or it is greater than j(O) (case 2). 

Figure 7.3. 
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In the first case, 

Slope RQ11 < Slope P,Q, < S1opeP11R, 

or equivalently, 

In the second case, 

Slope P,R < SlopeP11Q, < Slope RQ, , 

or equivalently, 

f(a,) - f(O) f(b,) - j(a,) f(b,) - f(O) 
a" 0 < b, a, < b, 0 · 

In case 2, the inequalities are just reversed from those in case I. To 
correct this, we define two new sequences which reverse the roles of 011 and 
h11 in case 2. Thus, let {c.,} and {d11} be defined by 

c" = b" and d11 = a, 

en = all and d/1 = bn 
Then, for all n, 

if case I holds for a, and b, , 
if case 2 holds for a,. and b11 • 

j(c,) - f(O) 
< f(b,) - j(a,) 

< '--f('-c
d,

i-
)
_
-

i.'
J('-'-

0) 
C11 0 h11 011 d, O 

Since j'(O) exists, and since lim,--"ooc, = 0 = lim,_,.00d11 , 

I. f( c.) - j(O) 
j'(O) d tm 0 = an 11--+00 c, 

The result now follows from the squeeze principle. 
Another instructive solution, also based on the squeeze principle, 1s 

based on the fact that if a and b are real numbers, a < b, then 

a < ra + sb < b  
for all positive numbers r and s that add to I (see 1.2.11). In this problem, 
write 

and set r .. b,./(b,. - an) and s - - an/(b,. - a,.). Then r > 0, s > 0, and 
r + s ..,  I .  Therefore [j(bn) - f(a,.))/[b,. - a,.] lies between [j(b,.) - f(O)]/ b,. 
and [J(a,.) -j(O)]/ a,.. Since these latter quotients converge to j'(O), so also 
must [f(b,.) - j(a,.)]/[b,. - a,.] by the squeeze principle. 
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Figure 7.4. 

7.6.3, Evaluate 

Solution. The sum 
£ �" 

_ £ ( 1/n ) 
p••1 n2 +/ j-1 I + (J/n)2 

can be regarded as a Riemann sum for the functionj(x) = 1/(1 + x2) over 
the interval [O,n] (see Figure 7.4). Unfortunately, it is not really a Riemann 
sum, because the interval over which it is taken is not a fixed interval; thus, 
as n--:) oo, we don't get a definite integral. We can say, however, that for 
each n 

/12 ,2 
2: ( --·-) ' r .  � = arctann2• 

j - 1  n2 + / Jo I + x 
To get a lower bound for the sum under consideration, let k be a fixed 

positive integer, and fix the interval [O,k]. Then, for any n greater than k, 
kn kn · l jn 
2: � - 2: 1 + ( ./ )' j - 1  n +; j= d ; n 

is a Riemann sum for j(x) = 1/(l + x2) over the interval [O,k]. Also, 
kn n2 
� � < � 2 +

n ·2 · j - 1  n +) j-1 n J 
Putting all of this together, we have 

kn n2 
'<' __ n_ < '<' --"- < arctann2, ..::... 2 ·2 ..::... 2 +  ., j - 1  n + 1 j - 1  n 1 
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so, by the squeeze principle, 

"' (k ____!!£__ .;;; lim � --"- <-}w. )0 1 + x� ,. __ .,,., 1 _ 1  n2 +f 
But, since k was an arbitrary positive integer, we must have 

"' 
-!1r = lim arctank < lim � k--+OJO n_,.oo J - l  

It follows that the desired limit equals tw. 

7. Inequalities 

Another important application of inequalities to the evaluation of limits 
is based on the following important fact. 

Monotonic, bounded sequences converge. 

That is to say, if {an } is a sequence of real numbers such that an+ I > a .. for 
all sufficiently large n (or a .. + 1  < a  .. for all sufficiently large n), and if for 
some constant K, a .. < K for all n (or an > K respectively), then the 
sequence {a,.} converges. 

For example, to prove that the sequence (1 + 1/nt converges, it is 
sufficient to prove it is monotonic (increasing in this case) and bounded 
above (by 3; see 7.1.5). 

7 .6.4. If {a,.} is a sequence such that for n ;;-,. 
(2 - an)a,+ 1 = I ,  

prove that limn__.ooan exists and is equal to I .  

Solution. First we will prove that if the sequence converges, it must 
converge to I .  The argument is standard when a sequence is defined recur· 
sively as it is here. Let limn__.ooan = L. Then, taking the limit of each side of 
the recurrence relation (2 - an)an+ l  = I, we see that (2 - L)L = I, or 
equivalently, (L - Ii = 0, from which we conclude that L = I. 

Now, to prove that the sequence converges, we will prove that it is 
bounded, and "eventually" becomes monotonic. (For another solution of 
this problem, see 1.1 .1 1.) 

Suppose that for some a,. , 0 < a,. < I. Then 

I - (2 - a")a" 
an+ I - a,. = _2_

1
_ - a, = -�2c---:�-" - a,. a,. 

- (I - a,.)2 
2 

> 0  a" 
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and On+ ! =  1/(2 - a,) < I. Therefore, a, < a,+ ! <  a,.+2 < < I, so the 
sequence is monotonic and bounded and therefore converges. Thus, it 
suffices to prove that for some n, 0 < a, < I. There are several cases. 

If a1 < 0, then 0 < a2 < 1/(2 - a1) < I, so we're done by the preceding 
argument. 

If a, > 2, then a2 = l /(2 - a1) < 0, so again we're done. 
If a1 = I, then a, = I for all n. 
It remains to check the case I < a1 < 2. Some playing around with 

special cases in this interval leads to the following (each of which can be 
proved by induction). 

First, the recursion cannot hold for all n if a, has the fonn (n + 1)/ n. 
For if a1 = (n + 1)/n, then (one can show that) a,. = 2 and consequently 
a,+ 1 cannot be defined. Secondly, if a1 belongs to the interval 

(!!..±..! _n ) 
n ' n - I for n > I, 

then (one can show that) a,+ 1  lies in the interval (0, I) and the proof is 
complete by previous reasoning. 

Thus, in all cases (for which the sequence is defined) the sequence 
converges. 

7.6.5. Letf(x) be a function such thatj(l) = I  and for x > I  

f'(x) - I 
x2 + f2(x) 

Prove that limx_oof(x) exists and is less than I +  -!'IT. 

Solution. By the fundamental theorem of calculus 
f(x)-/(I) F J,"f(x)dx. 

Observe that f(x) is increasing; moreover, j(x) > I for all x > I, since 
j(l) = I  and j'(x) > 0. Therefore 

/(x)-/(I) = J.x x2 +
d
;2(x) .;;; 

J:x I �
X
x2 

=arctanx]; 
= arctan x - arctan I 
<fw - !w = !'��"· 

Thus,j(x) is increasing and bounded above by I +  !w, and consequently, 
lim

x
....,.,.,f(x) exists and is less than I +  !w. 

7.6.6. Consider all the natural numbers which represented in the decimal 
system have no 9 among their digits. Prove that the series formed by the 
reciprocals of these numbers converges. 
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Solutioo. Let S,.. denote the mth partial sum of the series under consider­
ation. The sequence { S,..} is monotone increasing, so to prove convergence, 
we need only prove that the sequence is bounded. 

For a given partial sum Sm, let n denote the number of digits in the 
integer m. The number of integers of exactly n digits which have no 9 in 
their decimal representation is 8 x �-I  (the first digit cannot be zero). 
Therefore, the sum of their reciprocals is less than 8 X 9"- 1 j 10"-1• Thus 

Sm < 8 + 8 X � + 8 X (fo )2 + · · ·  + 8 X ( for- l 

< 8( I +  fo + ( -fld + · · · ) = 80, 

and the proof is complete. 

Problems 

7.6.7. Prove the inequalities which follow and apply the squeeze principle 
to evaluate a limit: 

" 
(a) n < 2: I 

Jn1 + n ;-t  Jn2 + i 
< n . 

rnr+l 
(b) a < (an + b")11" < a"fi, 0 < a <  b. 
(c) e i - I/(lnJ < (I + I/ nY < e'- l/(2nJ + lfPn'>. 

7.6.8. Prove that each of the following sequences converges, and find its 
limit: 

(a) .ff,�t +.ff ,Jt +� ,�I + Jt +� 

(b) .fi.�2 + .fi .J2 +�2 + .fi ,�2 +J2+�2 + .fi 

7.6.9. Prove that the sequence {an} defined by 

an = I + ! + 

converges. 

+ !  - logn 
n 

7.6.10. Prove that the sequence {an} defined by 

6(l + a") 
an+ I = 

converges, and find its limit. 

, . . .  

' . . . .  
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7.6.1t. Let a1 and b1 be any two positive numbers, and define {a�} and 
{ b,) by 

Prove that the sequences {a�} and {b�} converge and have the same limit. 
7.6.12. S1 = log a, and S� = 2:7:::: 11 1og(a - S;), n > t. Show that 

lim S�= a - 1 .  ,_00 

(Hint: Note that Sn+ l  = Sn + log( a +  Sn).) 

7.6.13. The sequence Q,(x) of polynomials is defined by 

and for m )  I ,  

Q,(x) � I +  2x, 

Q2m-t-1(x) = Q2m(x) + (m + l)xQ2m_1(x), 

Q2m+2(X) = Q2m+.(x) + (m + l )xQ2m(x). 

Let x, be the largest real solution of Q,(x) = 0. Prove that {x,} is an 
increasing sequence and that lim, .... ,.,x, = 0. 

7.6.14. Prove that if L::'� 1a; converges, so does L:'� 1(a,j n). 

7.6.15. Prove that 
. 22 X 42 X 62 X · · · X (2ni hm ;-;-c:;c;-;-;o>:;<>--,---,;o;-:ccc-;7.ci:--;-= ,_oo ( I  X 3)(3 X 5) · · · ((2n 1)(2n + I)) 

. 22 X � X � X · · · X �� ( 1 ) 1 = hm -- = -'IT 
, .... "" t2 x 32 x 52 x  . . .  x (2n � 1)2 2n + I 2 · 

(Hint: For 0 .;;; (J .;;; !'IT, JOI2sin2"+ 'tJdfJ .;;; JQI2sin2"0d(J .;;; JQI2sin2"-10d8. 
Apply the result of 2.5.14 together with the squeeze principle.) 

Additional Examples 

6. t.S, 6.3.7, 6.4.4, 6.6.2, Section 6.8, 6.94. Also, see examples of "repeated 
bisection" in Section 6.1. 



Chapter 8. Geometry 

In this chapter we will look at some of the most common techniques for 
solving problems in Euclidean geometry. In addition to the classical syn­
thetic methods of Euclid, we will see how algebra, trigonometry, analysis, 
vector algebra, and complex. numbers can be useful tools in the study of 
geometry. 

8 . 1 .  Classical Plane Geometry 

In this section we will review the ideas and methods characteristic of 
classical plane geometry: namely, the study of those properties of triangles, 
quadrilaterals, and circles that remain invariant under motion (e.g., transla­
tion, rotation, reflection). We will be concerned with synthetic geometry, 
which builds on an understanding of the basic notations of congruency, 
similarity, proportion, concurrency, arcs and chords of circles, inscribed 
angles, etc, In addition, we wish to draw attention to the importance of 
algebraic and trigonometric techniques for proving results in traditional 
Euclidean plane geometry. 

8.1.1. Find the area of a convex octagon that is inscribed in a circle and 
has four consecutive sides of length 3 units and the remaining four sides of 
length 2 units. Give the answer in the form r + s{t, with r, s, and t positive 
integers. 
280 
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Figure 8.1. 

We will give several solutions to this problem to iilustrate the variety of 
methods that are at ones disposal in this subject. 

Solution 1. Let the vertices be labeled ABCDEFGH as shown in Figure 8.1 
where AB= BC= GH = HA = 3  and CD = DE= EF= FG = 2. Let 0 
denote the center of the circle. 

We first find the area of 6 OA B and 6 ODE. For this, it suffices to find 
the altitudes OK and OJ. 

Notice that OK= fEB; this follows because 0 is the midpoint of EA 
and K is the midpoint of AB. Similarly, OJ= fAD, and therefore, it 
suffices to find DJ, lA, El, and /B, where I is the intersection of AD and 
EB. 

By angle-side-angle, t::..DBC :;;;;; 6 DB/, and therefore DJ = 2 and 
1B = 3. Furthermore, since 6ADE and 6ABE are each inscribed in a 
semicircle, LADE and LABE are right angles. Therefore, 6/BA and 
6EDI are isosceles right triangles, and it follows that lA = 3Jf and 
El �  2j2. 

We can now find the area of the octagon: 

Acea � •[ f x 3( 3 +2
2!2 ) J +4[ f x 2( 2 + ]fi ) J � 13 + 12!2 . 

Solution 2. Perhaps the easiest solution is based on recognizing that the 
area of the octagon is the same as either of those shown in Figure 8.2, 
having alternating sides of lengths 2 and 3. The area can be computed by 
subtracting four triangular regions from a square, or by adding the areas of 
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' ' ' y 3 y 

,- -- ---, 
,I 3 3 I ,  y 

I i)/ � I 
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I 

2 2 3 3 

I 
I I y 'I 3 3 I ' 
L _ _ _  _ _ _J 

' 2 ' 
�� A L_ 

y 

y 3 y 

Figure 8.2. 

a square, four rectangles, and four triangles. Thus, for the diagram on the 
left, we have (x = f,J2) 

octagon area = (2x + 2)2- 4( -tx2) 
= 2x2 + Bx + 4 

' 
� 2(J J2) + 8 X l J2 + 4  

� 13 + 13,12 . 
Or, for working from the inside on the figure on the right (y = fi). 

octagon area = 9 + 4(3y) + 4( t y2) 

= 9 + t2fi + 2 X 2 

� 13 + 12,12 . 

Solution 3. Let R denote the radius of the circle. The area of the o�:tagon is 
equal to four times the area in quadrilateral OABC (see Figure 8.3). Clearly 

AreaOABC = Area 6.0AC + Area D,ABC, 
A 

R 

0 R 
Figure 8.3. 
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By Heron's formula for the area of a triangle, 

Acoa 6ABC -J'(' - 2)(' - 3)(' -fiR )  

where s = 1(2 + 3  + fiR) = � + t fi R. This leads to 

Area OABC 

- JR' + (i + j /2  R)(l + j/2 R )( - j  + j /2  R )(l - JfiR) 

= fR2 + /C¥ - fR2)(- t + fR2) • 

By the law of cosines (using L. B in L'::,.ABC) we get 

2R 2 = 4 + 9 - 2 X 2 X 3 cos 135° 
= 13 + 12 X f fi ,  

and therefore, 

R 2 = Jj + Jfi . 

283 

The final result then follows after substituting this value for R 2 into the 
preceding equation for Area OA BC. 

Solution 4. In Figure 8.4, D and E are the feet of perpendiculars drawn 
from B to OA and OC respectively. Let x = OE andy = OD, and let R be 
the radius of the circle. Then 

area of octagon = 4( area of quadrilateral OA BC) 

= 4(Area L'::,. OAB + Area L'::,. OCB) 

- 4( jRx + jRy J 
- 2R(x + y). 

A 

,<---------�Ec-----'c 
Figure 8.4. 
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Our plan is to express x + y in terms of R, and then use the fact that 
R 2  = lf + 3fi (see the last solution). 

The Pythagorean theorem applied to D,.ABD yields x2 + (R -yi = 4, 
or equivalently, 2R(R -y) = 4 (note: x2 + y2 = R2). Similarly, from 
b,.EBC we have y2 = 9 - (R - x)2, or equivalently, 2R(R - x) = 9. Add­
ing R - y - 4/(2R) and R - x - 9/(2R) yield' 2R - (x + y) - 13j(2R), 
or equivalently x + y = (4R 2 - 13)/(2R). Substituting, we find 

area of octagon = 2R[ 4R�R 13 ] = 4R 2 - !3 

- 4( 1] + 3/2) - 13 - 13 + 12/2 . 

Solution S. The octagaon can be cut like a pie into eight triangular pieces 
with equal sides of length R (equal to the radius of the circumscribed circle) 
and with bases 3 and 2. Let H and h denote the altitudes of these triangles 
as shown in Figure 8.5. Then 

area of octagon .., 4( p · H ) +  4(!2 · h) 
= 6 · H + 4  · h. 

With a and f3 as shown in Figure 8.5, we have the following relation­
ships: a + /3 = '1T/4; sin a = 3/(2R); cosu= H/R; sin /3 = 1/R; cos /3 
= h/ R. From these, we find 

I R - -- - --cc;-;-''---c sin f3 sinO 'IT u) 

It follows that 

I 2 ( I ) 
= "tficosa - � fisina 

= fi cosa sina 
2 ( I ) 2 ( 2R 

) - /2 H / R 3/2R - /2 2H 3 . 

3 

1 - 4 
/2 (2H - 3) ' 

R 

Figure B.S. 
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or equivalently, 

H = i + fi 
· 

Using this, 

h =  R cos {J = R[cos(!w - o:)J = R[ ! ficoso: + ! fisino:J 

- ! fiR[ H + _l_ ] - ! fi (2H + 3] 2 R 2R 4 

- l l2 [2(l + l2) + 3] 

= l + i fi ­
Substituting, 

area of octagon = 6U + fi) + 4(1 + 1 fi ) = 13 + 13fi . 
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8.1.2. If A and B are fixed points on a given circle and XY is a variable 
diameter of the same circle, determine the locus of the points of intersection 
of lines AX and BY. (You may assume that AB is not a diameter.) 

Solution. Consider Figure 8.6, where A and B are fixed points on the 
circumference of a given circle. Let B' be the point on the circle diametri­
cally opposite of B. Let P and P' denote respectively the intersection of AX 
and BY when this interSection lies inside or outside the circle (depending 
upon which side of the line BB' the point X falls; see figure). 

In the first case, LAPB = goo + 1(ArcAB), and this is a constant value 
for all diameters which result in an "inside" intersection point P. This 
implies that P lies on the circle formed by. those points making a constant 
angle (namely, goo + !(Arc A B)) with the constant base AB. 

In the second case, LAP' B = goo - ! (ArcAB), and this is a constant 
value for all diameters which result in an "outside" intersection point P'. 

Figure 8.6. 
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Figure 8.7. 

B 

8. Geometry 

Thus, P' lies on a circle which passes through A and B. Furthermore, 
LAPB and LAP'B are supplementary angles (L APB + LA P 'B = 

90" + !(ArcAB) + 90" - !(AreA B ) =  180"), and therefore APBP' is a 
cyclic quadrilateral; that is to say, P and P' lie on the same circle through 
A and B. 

8.1.3. P is an interior point of the angle whose sides are the rays OA and 
OB. Locate X on OA and Y on OB so that the line segment XY contains P 
and so that the product of distances (PXXPY) is a minimum. 

Solution. This problem was solved in 6.4.2 by using methods of analysis. 
Here we will solve it geometrically. 

Let OC be the line bisecting LAOB, and Jet L denote the line through P 
which is perpendicular to OC. Let X and Y denote the intersections of L 
with OA and OB respectively (see Figure 8.7). 

Now, OX = OY, so there is a circle tangent to OA at X and OB at Y. 
Let X1 Y1 be any other segment containing P with X1 on OA and Y1 on OB. 
Let X2 and Y2 be the intersections of X1 Y1 with the circle. Then (PX)(PY) 
= (PX2)(PY2) < (PX1)(PY1), so (PX)(PY) is the minimum. 

8.1.4. Let p be an interior point of triangle ABC, and let x, y,z denote the 
distances from P to BC, AC, and AB respectively. Where should P be 
located to maximize the product xyz'! 

Solution. Let a,b,c denote the lengths of the sides BC, AC, and AB 
respectively (Figure 8.8). By the arithmetic-mean-geometric-mean inequal­
ity, 

'/( ax)(by)( cz) 
ax + by + cz 

< 3 . 
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c 

Figure 8.8. 

But we know that ax + by + cz = 2A, where A is the area of the triangle. 
Thus, the maximum value of xyz is 8A3 j(27abc), and this occurs if and 
only if ax = by = cz. 

We will show that ax = by = cz if and only if P is located at the centroid 
of D,ABC. For this, suppose that CP intersects AB at D. Let a, p, y,O be 
the angles as shown in Figure 8.9. It is known that 

b sin fJ
= AD 

asina DB · 
(This relationship is useful in many problems. To see that it is true, apply 
the Jaw of sines to t:,ADC and to t:,CDB to get 

AD b and DB a 
sin /3 = 

siny sina 
=

sinO · 

Using these equations it follows that 

b sin f3 ADsiny = AD 
a'ina 

-
DB,in8 DB ' 

since y and 0 are obviously supplementary.) 
Using the above equation, we have 

AD b 'in p .  by/(CP) 
-

by 
DB = a sin a = axj(CP ) ax 

and it follows that AD = DB if and only if by = ax. Thus, ax = by if and 
only if P is on the median line from C. 

' 
Figure 8.9. 

c 
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Figure 8.10. 

In a similar manner, ax = cz if and only if P is on the median line from 
B. It follows that ax = by = cz if and only if P is the centroid of L::,ABC. 

Problems 

8.1.5. Show that a triangle must be equilateral if any pair of the following 
centers coincide: incenter, circumcenter, centroid, orthocenter. 

8.1.6. An acute triangle is inscribed in a circle. The resulting three minor 
arcs of the circle are reflected about the corresponding sides of the triangle 
(i.e., arc AB is reflected about side AB, etc.; see Figure 8.10). Are the 
reflected arcs concurrent? 

8.1.7. Let C1 and C2 be circles of radius I, tangent to each other and to the 
x�axis, with the center of C1 on they-axis. Now construct a sequence of 
circles en such that en+ I is tanget to c., - I• C., , and the x-ax:is. 

(a) Find the radius rn of Cn. 
(b) Show that the length of the common tangent included between its 

contacts with two consecutive circles cn- l and en is <:D- 1 . 
(c) From part (b) and the geometry of the problem, show that 

8.1.8. If a,b,c are the sides of a triangle ABC, ta,tb,lc are the angle 
bisectors, and Ta, Tb, Tc are the angle bisectors extended until they are 
chords of the circle circumscribing the triangle ABC, prove that 

abc = {Ta TbTctatbtc · 

(Hint: Prove that Tata = be, etc.) 
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Figure 8.11 .  

8.1.9. 

(a) Given a point P inside an arbitrary angle XOY, let AB be a segment 
through P such that AP = PB, and let MN be any other line through P 
which intersects OX and OY at M and N respectively. Prove that the 
area of D,. MON is greater than or equal the area of D,.AOB. 

(b) Let AD and AE be tangent to a circle, and let P be an arbitrary point 
on the minor arc. Let BPC be a tangent to the same circle. Show that 
the perimeter of D,.ABC is constant for all positions of P on the minor 
arc. 

(c) In the setup of part (b), let MN be any other line through P which 
intersects AE and AD in M and N respectively. Prove that the perime­
ter of D,.ABC is smaller than the perimeter of 6,.AMN. 

8.1.10. A quadrilateral ABCD is inscribed in a circle (see Figure 8.11). Let 
x = BD, y = AC, and a,b,c,d be the lengths of the sides as indicated. 
Construct L CDE equal to L.. ABD. (�.)- \.J:.tclts L. AOE) 
(a) Prove that 6. CDE-DADB and hence that EC · x = ac. 
(b) Prove that D,.ADE-D,.BCD and hence AE · x = bd. 
(c) From parts {a) and (b), prove Ptolemy's theorem (an important fact 

about cyclic quadrilaterals): In a cyclic quadrilateral the product of the 
diagonals is equal to the sum of products of the opposite sides. 

8.1.11. 

(a) A line from one vertex of an equilateral triangle ABC meets the 
opposite side BC in a point P and the circumcircle in Q. Prove that I I I 

PQ
- BQ + cQ · 

(b) Using the notation of part (a), prove that AQ4 + BQ4 + CQ4 is con­
sant for all positions of Q on the minor arc BC. (Hint: For a trigo­
nometric approach, let x = AQ, y • BQ, z = CQ, and (J = L BAQ. 
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Figure 8.12. 

Show that x = (2/-/3)sin0, z = (I/J3)[cos B - sin O], y = x + z. Also, 
see 8.4.6.) 

8.1.12. In Figure 8.12 we are given an inscribed triangle ABC. Let R 
denote the circumradius; let ha denote the altitude AD. 

(a) Show that triangles ABD and ALC are similar, and hence that ha = 2R 
= be. 

(b) Show that the area of 6,ABC is abcj4R. 

8.1.13. The radius of the inscribed circle of a triangle is 4, and the 
segments into which one side is divided by the point of contact are 6 and 8. 
Determine the other two sides. 

8.1.14. Triangles ABC and DEF are inscribed in the same circle. Prove 
that 

�A + � B + � C - � D + � E + � F  
if and only if the perimeters of the given triangles are equal. 

8.1.15. In the following figure, CD is a half chord perpendicular to the 
diameter AB of the semicircle with center 0. A circle with center P is 
inscribed as shown in Figure 8.13, touching AB at E and arc BD at F. 

0 c 
Figure 8.13. 

• 
p 

F 

B 
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Prove that 6A ED is isosceles. (Hint: Label the figure and make good use 
of the Pythagorean theorem.) 

8.1.16. Find the length of a side of an equilateral triangle in which the 
distances from its vertices to an interior point are 5, 7, and 8. 

Additional Examples 

1.2.1, 1.3.14, 1.4.2, 1.6.1, 1.6.1 0, 1.8.3, 1.8. 7. 

8.2. Analytic Geometry 

The introduction of a coordinate system makes it possible to attack many 
geometry problems by way of algebra and analysis. 

8.2.1. Let P be a point on an ellipse with foci F1 and F2, and let d be the 
distance from the center of the ellipse to the line tangent to the ellipse at P 
(Figure 8.14). Prove that (PF1XPF2)d2 is constant as P moves on the 
ellipse. 

Solution. Place coordinates on the plane in such a way that the ellipse has 
the equation 

0 < b < a. 

p 

F, 

Figure 8.14. 
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The techni:que is straightforward: compute PF1, PF2, and d (as functions of 
the x-coordinate of P), and check to see if the required product is a 
constant. 

Let the coordinate of P be (o:, /3). The focal points F1 and F1 have 
coordinates ( :I:  c,O), where c2 = a2 - b2• Therefore we have 

PF� =�Pz + (a + c)z . 

PF2 = .J{32 + (a - c)2 • 
To find d2, it is necessary to write the equation of the tangent to the 

ellipse at P(o:, {3). To find the slope of the tangent at P, we compute the 
derivative: 

so that 

It follows that the equation of the tangent at P(a, /3) is 

y - f3 = - ::; (x - a), 

or equivalently, 

a2f3y + bla.x = bzal + alpz. 
But a2/a2 + {11jb1 = I, since P(a, {3) is a point on the ellipse, and 
therefore a2b2 + a1fJ1 = a2b2• Hence the equation of the tangent at P(a, /3) 
" 

ab2x + f3aly - a2b1 = 0. 
Now recall the formula for the distance D from a point Q(c,d) to the 

line Ax + By + C = 0: 

D � lAc + Bd + Cl 
�A2 + Bl 

In our case, the distance d from the origin to the tangent line is 

d � -ro="='b='=o=c 
�a.2b4 + p2a4 

We now need to examine the product d2(PF1)(PF2). We can eliminate f3 
in each of these factors, since 
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We have 

and 

a2b4 + a4b2 - a2azb2 

- �o-"-'a���
·
�c--c� b2 [ alb! - a2a2] + a4b2 

a4b4 

PFI2 = Pz + (a + c)2 

= a2b2 - c?b2 + al + 2ac + cz 
a' 

- a2b2 - a2b2 + a2a2 + 2a2ac + a2c2 
a' 

al( b2 + c2) + a2( al - b2) + 2alc 

a' 
a4 + 2a2ca + c2a2 

a' 

(a2 + ca)2 

a' 
Similarly, 

Thus, 

dl(PFJ)(PFz)= ( a4b2 )( al + ca. )( a2 - ca. ) 
a4 - c2a2 a a 

= a2b2. 
This completes the proof. 
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8,2,2. Suppose that (x1,y1), (x2,Yz), (x3,y3) are three points on the 
parabola y2 = ax which have the property that their normal lines intersect 
in a common point. Prove that y1 + Y2 + y3 = 0. 
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Figure 8.15. 

Solution. The solution falls out as a by-product of the following analysis. 
Let (a, {J) be the coordinates of the intersection of the three normal lines 
(Figure 8.15), and let (x, y) be an arbitrary point on the parabola. The 
slope of the line through (x, y) and (a, {3) is (y - {J)j(x - a). The slope of 
the tangent to the parabola at (x, y) is y' = aj(2y), and therefore, the slope 
of the normal line at (x,y) is -2yja. It follows that (xpy1), (x2, Y2), 
(x3, y3) satisfy the equation 

y - p - ( 2y ) -- - - - . 
x - a a 

Replacing x by y2 j a, this equation is 

Thus y1, Y2· YJ are the three roots of the cubic equation 

2y3 + a(a - 2)y - a2 = 0. 

Now, remembering how the coefficients of a cubic equation are related to 
the roots (see Section 4.3), we see that y1 + y2 + y3 = 0 (the coefficient of y2 
is zero). 

8.2.3. A straight line cuts the asymptotes of a hyperbola in points A and 8 
and the curve in points P and Q. Prove that AP = BQ. 

Solution. We may assume the hyperbola and the straight line have the 
equations 

xy = I  ( I)  
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Q B p 
B 

Q 

A 

Figure 8.16. 

and 

(2) 

respectively. (The hyperbola can be taken to have this form by appropriate 
scaling followed by a rotation, each of which takes straight lines into 
straight lines and preserves ratios of line segments.) 

The asymptotes of the hyperbola are the x andy axes (Figure 8.16); so 
let A be the x-intercept of the line, and let B be they-intercept. Let (x1, y1) 
and (x2, y2) be the coordinates of P and Q. Substituting y = I/ x into (2) 
yields 

x2 - ax + a/ b = 0, 
and since x1 and x2 are roots of this equation, we know that 

X1 + x2 = a. 

Similarly, substituting x = 1 /y into (2) yields 

y2 - by + b/a = 0, 
and this implies that 

It follows that 

AP2 = (x1 - a)2+ yf 

= (a - x2 - a)2 + ( b -y2)2 

= xi + (b -Y2i 

= BQ2, 
and the result follows. 

8.2.4. Determine all the straight lines lying in the surface z = xy. 
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Solution. The parametric equation for the line through (a"a2,a3) with 
direction (dpd2,d3) is given by 

x = a1 + d1t. 

y = a2 + d2t, 
z = a3 + d3t. 

For such a line to lie in the surface z = xy it is necessary and sufficient that 
for all t, 

a3 + d3t = (a1 + d1t)(a2 + d2)t 

= a1a2 + (a2d1 + a1d2)t + d1d2t2. It follows that d1d2 = 0, and d1 and d2 cannot both be zero, since this would 
imply that d1 = d2 = d3 = 0, a contradiction. 

If d2 = 0, then 

oc 

If d1 = 0, then 

oc 
z = aiY· 

Thus, the only straight lines in the surface z = xy are of the form z = ax, 
y = a or of the form z = ay, x = a, where a is an arbitrary constant. 

8.2.5. An equilateral triangle ABC is projected orthogonally from a given 
plane P to another plane P '. Show that the sum of the squares of the sides 
of the resulting triangle A '  B'  C' (Figure 8.17) is independent of the orienta­
tion of the triangle ABC in P. 

Solution. First, some observations about how lengths are transformed under 
this projection. Suppose that AB is a line segment in P of length one, and 
that it makes an angle cp with the line L of intersection of P and P'. Let fJ 
denote the angle between the planes. Locate C so that t-,.ABC is a right 
triangle, and AC is parallel to L (see figure). Triangle ABC will project into 
a right triangle A '  B' C'. Furthermore, A C and A'  C' have the same length, 
and B'C' = BCcosO. Since AC = cos<j.l and BC = sin$, it foliows that 

A '  B'  = J(cos.p)2 + (sin.pcosfJf . 

Now, let ABC denote an arbitrary equilateral triangle in P. We may 
suppose that the length of the side is one. Suppose that AB makes an angle 
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8 A' 

Figure 8.17. 
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p 

P' 

<P with L. Then BC and CA will make angles of <P + f w and <P + j 'IT with L. 
Applying the result obtained above, we find that the sum of the squares of 
the sides of triangle A '  B' C' is 

((cos<P)2 + (sin<Pcos9)2] + [ (cos(<P + tw))2 + (sin(<P + fw)cos8)2] 
+ [ (cos(<P + j w))2 + (sin(<P + j 'ff)cos8 )2] . 

which reduces to 
3 cos2fl + i sin2fl, 

which is independent of f[>. 

Problems 

8.2.6. Let the triangle ABC be inscribed in a circle, let P denote the 
centroid of the triangle, and let 0 denote the circumcenter. Suppose that 
A, B, C have coordinates (0, 0), (a, 0), and (b,c) respectively. 

(a) Express the coordinates of P and 0 in terms of a,b,c. 
(b) Extend line segments AP, BP, and CP to meet the circle in points D, E, 

and F respectively. Show that 
AP + BP + CP = 3 
PD PE PF . 

(Hint: One way to proceed is the following: Let x denote OP, and let R 
denote the radius of the circumcircle. Then 

AP + BP + CP = AP2 + BP2 +  CP2 
PD PE PF R 2 _ x2 
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Now express each of the terms on the right side in terms of a,b,c [using the 
results of part (a)].) 
8.2.7. Find the relation that must hold between the parameters a,b,c so 
that the line xja + y/b = I will be tangent to the circle x2 + y1 = c2• 

8.2.8. Equilateral triangles whose sides are 1 , 3,5, 7, . . .  are placed so that 
the bases lie comer to corner along the straight line. Show that the vertices 
lie on a parabola and are all at integral distances from its focus. 
8.2.9. 

(a) Tangents are drawn from two points (a, b) and (c,d) on the parabola 
y = x2• Find the coordinates of their intersection. 

(b) Two tangent lines, L1 and L2, are drawn from a point T to a parabola; 
let P and Q denote the points of tangency of L1 and L2 respectively. 
Let L be any other tangent to the parabola, and suppose L intersects L1 
and L2 at R and S respectively. Prove that 

TR TS 
TP + TQ = I.  

8.2.10. A parabola with equation y2 = ax is cut in four points by the circle 
(x - hl + (y - ki = r2. Determine the product of the distances of the 
four points of intersection from the axis of the parabola. 
8.2.11. Let b and c be fixed real numbers, and let the ten points (j, y), 
j =  1,2, . . .  , 10, lie on the parabola y ,.. x2 + bx + c. For ) ;=  1,2, . . .  , 9, 
let lj be the point of intersection of the tangents to the given parabola at 
(j, Y;) and (j + I, Yj+ 1). Determine the polynomial function y = g(x) of 
least degree whose graph passes through all nine points IF 

8.2.12. Prove or disprove: there is at least one straight line normal to the 
graph of y = cosh x at a point (a, cosh a) and also normal to the graph of 
y = sinhx at a point (c, sinhc). 
8.2.13. 

(a) Show that the tangent lines to el!ip�e x2 I a2 + y2 I b2 = I have tlie form 

y = ax ±  (a2o:2 + bz)t/2, 
and vary in position with different values of o:. (Because of the great 
utility of this form, particularly in problems of tangency which do not 
involve the consideration of the point of contact, this is called the 
magical equation of the tangent.) 

(b) Find the equation of the tangents to the ellipse 3x2 + y2 = 3 which 
have slope of one. 

(c) Find the area of the triangle formed by a tangent to the ellipse (say of 
slope m) and the two coordinate axes. 
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8.2.14. 
(a) Let D be the disk x2 + y2 < t. Let the point A have coordinates (r, O), 

where 0 < r < I .  Describe the set of points P in D such that the open 
disk whose center is the midpoint of AP and whose radius is AP 12 is a 
subset of D. 

(b) Let D be the disk x2 + y2 < I. Let points A and B be selected at 
random in D. Find the probability that the open disk whose center is 
the midpoint of AB and whose radius is AB12 is a subset of D. 

8.2.15. Given an ellipse x2 I a2 + y2 I b2 = 1 ,  a 'I= b, find the equation of 
the set of all points from which there are two tangents to the ellipse whose 
slopes are reciprocals. 

8.2.16. If two chords of a conic are mutually bisecting, prove that the 
conic cannot be a parabola. 

8.2.17. Prove that the graph of a cubic equation is symmetric about its 
point of inflection. (Note: If the conic equation is j(x) = ax3 + bx2 + ex + 
d, the x-coordinate of the inflection point is - b 13a.) 

Additional Examples 

1.3.11, 1.5.3, 1 .5.8, 1 .6.4, 3.1 .4, 4.3.6, 4.3.7. 

8.3. Vector Geometry 

In this section we will think of vectors as quantities which have both 
magnitude and direction. Examples of vector quantities include force, 
velocity, and acceleration. We shall see that vectors can also be used 
advantageously in geometry problems. 

We will represent vectors by arrows (i.e., directed line segments) in the 
Euclidean plane. The direction of the arrow indicates the direction of the 
vector, and the length of the arrow indicates the magnitude of the vector. 

Two vectors are equal if they have the same length and the same 
direction. It is important to realize that two vectors may be equal without 
being collinear. 
_If P and Q are two points, the �tor from P to Q wil!.....!?.e denoted by 
PQ. The lengt!I, a� magnitude, cj PQ �ill be denoted by IPQI. 

The sum, A + B, of vectors A and B is given by the paralielogram law 
(see Figure 8.18), or �qui':.alenttx, by c�mpleting the triangle as in Figure 
8.19. The difference, A - B, of B from A,  is shown geometrically in Figure 
8.20. 
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2-:7 1. 
Figure 8.18. 

1. 
Figure 8.19. 

jj 
Figure 8.20. 

Place coordinates on the plane and den� the origin by O . .  Each point P 
in the plane determines a unique vector, OP, £Rlled the po�n vector of 
P; we will often denote this vector simply by P (instead of OP). 

Suppose that P and Q are the position vectors of two points P and Q 
(Figure 8.21). Let R be a point on the directed line segment PQ which 
divides PQ in the ratio m :  n. (Figure 8.22). Then the position vector of R is 

Q 

p 

0 
Figu:-e 8.21. 

p R Q 

Figure 8.22. 
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given by 
ii - f + _!!!_ ( i;i -f)  m + n  

(m + n)P+m( Q - P) 
m + n  

- -- P +  -- Q ( n ) - ( m ) -
m + n  m + n  · 
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It is instructive to think of ii in physical terms in the following way. 
Imagine a weightless bar PQ with a mass of n/(m + n) at P and a mass of 
m/(m + n) at Q. The center of mass of the resulting system will be at a 
point X on PQ where "the seesaw balances," that is, at the point X where 

But this is the same as 
( _n_ )Px - { _!!!___ )XQ. m + n  m + n  

PX = m 
XQ n 

Th�, X divides PQ i�to the ratio m :  n; in other words, X =  ii = (nj(m + 
n))P + (mj(m + n))Q. The coefficients nj(m + n) and mj(m + n) can be 
thought of as "weighting factors." Increasing the proportion of "weight" at 
P moves the point R toward P and decreases the ratio m :  n, etc. 

8.3.1. In a triangle ABC the points D,E,F trisect the sides so that 
BC = 3BD, CA = 3CE, and AB = 3AF (Figure 8.23). Show that triangles 
ABC and DEF have the same centroid. · 

Solution. We will first show that the position vector of the centroid of an 
arbitrary triangle PQR is given by t P + t Q + t ii. To see this, remember 
that the centroid of triangle PQR iS located at a point j of the way from P 
to the midpoint of QR. From the discussion preceding the problem, we 
know that the position vector for the midpoint of QR is f Q + !  ii, and 

c 

A L---��----�B 
F 

Figure 8.23. 
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therefore, the position vector of the centroid of PQR is j P + j(f  Q + 1 Ji.), 
and this is equal to t P + 3 Q + 3 R, as claimed. 

Because of the way D, E, and F are defined, we have 

and therefore 

-> � • 

D = i B + tC, 
� � -· 

E = f C + jA,  

- - -

centroid of D,. Dl;iF = j D  + jE + j F  
� ' [ 'ii + ' C] + ' [ ' C + 'A] + ' [ 'i + 'B] J J  3 3 3  3 3 3  3 

- - . = fA +  !B + j C  = centroid of ,6.ABC. 

8.3.2. Prove that it is possible to construct a triangle with sides equal and 
parallel to the medians of a given triangle. 

Solution. Consider a triangle ABC, and let D, E, F be the midpoints of sides 
BC, AC, and AB respectively (see Figure 8.24). Then 

AD = Ali + -f BC, 
Bif � BC + JCA, 
CF= CA + tAB. 

Adding these, we find that A D +  BE + CD = (AB + Bf; + CA) + -f(BC + 
CA + 'AB) = 0 + ( t )  · 0 = 0. This implies that the vectors AD, iii, and Ci' 
form a triangle. But AD, ii£, and CF are equal in magnitude and direction 
to the medians of triangle ABC. 

Before considering the next examples we will develop the following basic 
principle. Suppose that P, Q, and R are points which are not collinear 

c 

E 

A '-----��-----' 8 
F 

Figure 8.24. 
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Q 

.L----· 
Figure 8.25. 

(Figure 8.25). If aPQ + bPR = cPQ + dPR, then a =  c and b = d. For if 
the condition holds and if a =fo c, then 

PQ � ( d - b )PR, a - ,  
and this implies that P, Q, R are collinear (vectors PQ and fiR have the 
point P in common), which is a contradiction. Therefore a = c. In a similar 
manner b = d. 

8.3.3. Prove that the line joining one vertex of a parallelogram to the 
midpoint of an opposite side trisects a diagonal of the parallelogram. 

Solution. Label the parallelogram by A,  B, C, D as shown in Figure 8.26, Jet 
F be  �mi�int of 12£ an.sUet E be the intersection of AF and BD. Note 
that AB = DC and AD = BC, because as vectors they have the same 
magnitude and the same direction. 

' 

The point E is at the intersection of two lines. We can express this 
algebraically by saying that there exist constants a and b such that 

Therefore, 

AE = aAF, 
� � 

A E = A B + bBD. 

liB +  biii5 = aAF. 
The ideaJ!.to express each of the vectors in this last equation in terms of 
AB and AD, and then we will make use of the principle discussed prior to 

D F C 

�I A B 
Figure 8.26, 
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c 

E 

F 
H 

A L-------�------� B 
G 

Figure 8.27. 

the statement of the problem. Thus we have 

It follows that 

A8 + b(AD -Aii) � a(Aii + jAii), 

(1 - h)AB +hAD = ±aAB + aAD. 

1 - b = ±a, 
b = a. 

These equations imply that a =  b = f, and the result follows. 

8. Geometry 

8.3.4. In triangle ABC (Figure 8.27), let D and E be the trisection points of 
sides BC with D between B and E, let F be the midpoint of side A C, and 
let G be the midpoint of side A B. Let H be the intersection of segments EG 
and DF. Find the ratio EH : HG. 

Solution. The plan is exactly as m the preceding problem. There are 
constants a and b such that 

AG +aGE = AF + bFD. 
Now express each of the vectors in terms of Aii and AC: 

AG = fAB, 
GE = Gii + BE =  tAB + !BC 

= !AB + !(AC -Ali) = - tAB + tAC. 
AF= tAC, 
FD = FA +AB + iiD =  - tAC + A B + tBC 

= - (4C + AB + l(AC -AB ) =  - iA C + 1AB 2 3 6 3 • 

Substituting these into the previous equation, we have 

1/iB + a[ � .1AB + 1AC] = 1AC + b[ - 1AC + 1AB] 2 6 3 2 6 3 '  
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It foliows that 

or equivalently, 

c 

C' 
Figure 8.28. 

I - -};a =  tb, 

ta = 1 - -bb, 

a +  4b = 3, 
4a + b = 3. 
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The solution to this system is a =  b = �. and it follows that EH: HG 
� 2 ' 5. 

8.3.5. Given a triangle ABC, construct similar isosceles triangles ABC' and 
ACB' outwards on the respective bases AB and AC, and BCA' inwards on 
the base BC (Figure 8.28). Show thai AB' A 'C' is a parallelogram. 

�ution. In vector language, our problem is to show that AB' + AC' = 
AA'. 

Let D, E, F be the midpoints of sides AB, BC, AC respectively. Then 

AB' = AF+ FB' = fAC + FB' 

AC' = AD + DC ' =  fAB + !X:' 
AA· = Ali + BE + EA' 

= AB + t(A C - A B )  + EA' = fAB + tAC + EA'. 
To put Fii', DC·, and il' into terms of AB and AC, we introduce the 

following notation (useful in other problems as well). Given points P and 
Q, let /PQ denote the vector obtained by rotating PQ, with unchanged 
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v.Q 
p 

Figure 8.29. 

magnitude, through a right angle in the positive direction, as in Figure 8.29. 
Now, suppose the isosceles triangles erected on the sides of ABC have 
height-to-base ratio equal to k; that is, FB'/A C = DC'fAB = EA'/BC 
= k. Then, 

Ali' = tAC + FB' = !AC +k iAC, 
AC· = -}Ali +  DC· = }Ali - k jAB, 
AA' = fAB + tA C + £A  

= tAB + tR + k iBC 
= tAB+ -!AC + k i(AC - AB )  
= -!AB + tAC + k iAC - k iAB. 

(Note that j(P + Q) = I P + I Q, and jaP = a I P for an arbitrary constant a.) 
These expressions for AB, AC·, and AA· show that JiB +AC' = iA', and 
thus the solution is complete. 

Given vectors PQ and RS, the dot product PQ · iiS is defined by the 
formula 

PQ · RS - I PQ I IRSiw•B, 
where 9 is the angle between the vectors, 0 < 9 < 180°. 

It can be shown that for arbitrary vectors A, B, C, 

and 
A ·B = B ·A 

- - -

A · (B + C ) - A  · B +A · C. 
Notice that if i and jj are perpendicular, then X·  jj = 0. Conversely, if 
A · jj = 0, th�n �ither� A = 0 or B = 0, or A and jj are perpendicular. Also, 
notice that A ·A = IAI2• 

8.3.6. In triangle A.BC (Figure 8.30), AB = AC, D is the midpoint of BC, 
E is the foot of the perpendicular drawn D to A C, and F is the midpoint of 
DE. Prove that AF is perpendicular to BE. 
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A 

Figure 8.30. 

Soludon. This is the same problem as 1.5.3, but here we will give a proof 
using vector notation. We have 

Af · BE � (AE + EF) · (BD + DE )  

= Ai .  iii) + EF .  jjjj + EF. DE 
= (Ali +  i>£) · BD + ff . jjjj + EF · DE 

1 - - - �- - -j� DE · BD + EF · BD + EF · DE 

= Di · DC - D£ . DC - D£ . D£  2 2 

= D£ . fiC - iJE . i.i£  
2 2 

� D£ ( oc2m) 
� D£ . £C 

2 
� o. 

The concept of vector makes sense in Euclidean 3-space just as it does in 
the Euclidean plane. Just as in the case of the plane, vectors have length 
and direction and are represented as arrows or directed line segments (but 
now in 3-space). They are added by the parallelogram law, and can be 
manipulated to prove results in solid geometry. 

8.3.7. If two altitudes of a tetrahedron are coplanar, the edge joining the 
two vertices from which these altitudes issue is orthogonal to the opposite 
edge of the tetrahedron. 

Soludon. Suppose that AP and BZ are altitudes from A and B respectively, 
and suppose they intersect in a point H (Figure 8.31). 
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A 

D 

B 

Figure 8.31. 

_}f!JJ �agonal to each of iiC, C� and iiD, and BH �orthogonal to 
CD, AD, AC. We wish to show that AB is orthogonal to CD. For this, we 
compute the dot product: 

A8 · CD - ciiii - iiA) . CD - iiiJ · CD - iiA  · CD - o - o - o. 
This completes the proof. 

8.3.8. Prove that if the opposite sides of a skew (nonplanar) quadrilateral 
have the same lengths, then the line joining the midpoints of the two 
diagonals is perpendicular to these diagonals. 

Solution. Let A,B,C,D denote the vertices of the quadrilateral, and let P 
and Q be the midpoints of A C and BD respectively (Figure 8.32). We are 
given that jAl5j = 1BC1 and lAB' I =  jCDj. Squaring, and translating into 
dot-product language, we have 

AD -AD = iiC - BC ' 

Aii -Aii = CD . CD, 

or equivalently, 
� --- - - - - - -

(D -A) · (D - A ) - (C - B ) ·  ( C - B  ), 

cii -A) .  cii -A) - cl.i � C ) .  cii - c). ( I)  

c 

Figure 8.32. 
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We wish to prove that PQ is perpendicular to AC and iiD; in vector 
language we wish to show that 

or equivalently, 

PQ · A C  � 0, 

PQ · BD � o, 

( Q - P)  · (C -AJ � o. 
( Q - i) - (D - B ) = O. 

Substituting P = Hi +  C) and Q = HB + i)), these equations yield 

ui + D -A - C ) · (C-A) � o. 
(li + D -A - C ) · (D - B ) � O. 

(2) 

Our problem then is equivalent to showing that the equations (I) imply 
the equations (2). 

Expanding (I), we have 

D .  D - 2A . D +A . A =  C .  C - 28 . C + i .  B. 
B ·B  - 2A · B + A  .; = D . D - 2C · D  + i · C. 

Adding these, we get 

- 2A · D - 2A · B + 2A ·A = 2 C · C - 2B · C - 2 C · D  
-(8 + C ) ·  A +A · A - c · c - C ·  ( B  + D ), 

(B + D ) .  (C -A) - (c · c -A ·A) � o, 
(B + D ) ·  (C -A) - (C +A) . (C - AJ � o, 

·· - - - - -

(B + D - C  - A ) · ( C - A )  � 0. 

' 

This is the first of the two equati�ns in (2). To get the second of the 
equations in (2), take the difference of the equations (I). The details are just 
as in the previous computation. 

In a similar way, adding and subtracting the equations in (2) yield the 
equations in (1), which means that the converse theorem is also true: 
namely, if the line joining the midpoints of the two diagonals of a skew 
quadrilateral is perpendicular to these diagonals, then the opposite sides of 
the quadrilateral are of equal length. 

Problems 

8.3.9. In a triangle ABC the points D, E, and F trisect the sides so that 
BC = 3BD, CA = 3CE, and AB = 3AF. Similarly, the points G, H, and I 
trisect the sides of triangle DEF so that EF = 3EG, FD = 3FH, and 
DE= 3D/. Prove that the sides of 1::::. GHI are parallel to the sides of 
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A 

Figure 8.33. 

D,.ABC and that each side of the smaller triangle is 1 as long as its parallel 
side in the larger triangle. 

83.10. The sides of AD,AB,CB,CD of the quadrilateral ABCD are di­
vided by the points E,F,G,H so that AE : ED = AF : FB = CG : GB 
= CH : H D. Prove that EFGH is a parallelogram. 

8.3.11. 

(a) In triangle ABC (Figure 8.33), points D and E divide sides BC and AC 
in such a way that BD/ DC = 3 and AE/ EC = f. Let P denote the 
intersection of AD and BE. Find the ratio BP : PE. 

(b) In triangle AB (Figure 8.34), points E and F divide sides AC and AB 
respectively so that AE/ EC = 4 and AF / FB = I .  Suppose D is a point 
on side BC, let G be the intersection of EF and AD, and suppose D is 
situated so that AG j GD = f. Find the ratio BD j DC. 

8.3.12. On the sides of an arbitrary parallelogram ABCD, squares are 
constructed lying exterior to it. Prove that their centers M1, M2, M3, M4 are 
themselves the vertices of a square. 

8.3.13. On the sides of an arbitrary convex quadrilateral ABCD, equilat­
eral triangles ABM1, BCM2, CDM3, and DAM4 are constn1cted so that the 
first and third of them are exterior to the quadrilateral, while the second 
and fourth are on the same side of sides BC and DA as in the quadrilateral 
itself. Prove that the quadrilateral M1M2M3M4 is a parallelogram. 

8.3.14. On the sides of an arbitrary convex quadrilateral ABCD, squares 
are constructed, all lying external to the quadrilateral, with centers M 1, M2, 

A 

Figure 8.34. 
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M3,M4• Show that M1M3 = M2M4 and that M1M3 is perpendicular to 
M2M4. 
83.15. Isosceles triangles BCX, CA Y, and ABZ are constructed externally 
on the sides of a triangle ABC. Show that the centroids of t:;:,.ABC and 
LJ.XYZ coincide. ' 

83.16. The altitudes of a triangle ABC are extended externally to points 
A', B' and C' respectively, where AA' = k/ha, BB' = k/hb, and CC' 
= k/hc· Here, k is a constant and ha denotes the length of the altitude of 
ABC from vertex A,  etc. Prove that the centroid of the triangle A'B'C' 
coincides with the centroid of ABC. 

83.17. Let ABC be an acute angled triangle. Construct squares externally 
on the three sides. Extend the altitudes from the three vertices until they 
meet the far sides of the squares on the opposite sides. Then the squares are 
cut into two rectangles. Prove that "adjacent rectangles" from different 
squares are equal in area. That is, prove that area i = area i' for i = I, 2, 3 
(see Figure 8.35). (Use the dot product to give a one·line proof.) What 
happens as ABC becomes a right triangle? 
83.18. Jn a tetrahedron, two pairs of opposite edges are orthogonal. Prove 
that the third pair of opposite edges must also be orthogonal. 
83.19. Let 0 be a given point, let P�o P2, • • . , Pn be vertices of a regular 
n-gon, n > 7, and let Q1, Q2, • • •  , Qn be given by 

i = l,2, .· . . . n 
(Pn+ l  = P�o Pn+l = P2). Prove that Q1, Q2, • • .  , Qn are vertices of a regu­
lar n-gon. 

2 

Figure 8.3.5. 
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8.4. Complex Numbers in Geometry 

ln this section we will build on the geometry of complex numbers intro­
duced in Section 3.5. 

8.4.1. A 1,A2, • . •  , A,., is a regular polygon inscribed in a circle of radius r 
and center 0. P is a point on OA 1 extended beyond A 1• Show that 

" 
II PA, � OP" - '"· , _ ' 

Solution. Consider Figure 8.36 as representing the complex plane with the 
center of the circle at the origin, and with the vertices A; at the n roots of 
z"' - r"' = 0. Specifically, we set the affix of Ak to be zk = re2"'(k - lli/n. (The 
affix of a point Q in the plane is the complex number which corresponds to 
Q.) With these coordinates, P corresponds to a real number, which we 
will denote by z. Then 

" " 
II PA,� II lz- z,l 

boo \ k - !  

� � IT (z - z,) l , _ , 
= iz"' - r"' l  

( z and r are real) 

= opn - r"'. 

8A.2. Given a point P on the circumference of a unit circle and the 
vertices A 1, A2, • • •  , An of an inscribed regular polygon of n sides, prove 
that PA f + PA� + · · · + PA; is a constant. 

p 

Figure 8.36. 
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Solution. Again, let A 1,A2, • • •  , An correspond to the n roots of unity; 
specifically, let the affix of Ak be zk = e2"k<fn, k = 1 ,2, . . . , n. Let the affix 
of P be z. Then 

" " 
� PA}=_ � lz- zkl2 
k= I k- 1 

" 
� � (z - z,)(' - z,) 

, _ ,  
" 

= � (zZ -zkZ - zZk + zkik) 
, _ ,  

� i; zz- ( i; z,)z - z ( i; :,) + i; z,z, . 
k= l k - 1 k- 1  k - 1 

But 2:�- lzk = 0, since the zk's are the roots of zn - I =  0 and the coeffi­
cient of zn- t is zero. Therefore, 

" " " 
� PA}= � zZ+ � zkik k- 1  k - !  k= l 

" " 
� � lzl'+ � lz, l' 

k - 1  k - !  
= n + n  
= 2n. 

(lzl � I and lz,l � I) 

8.4.3. Prove that if the points in the complex plane corresponding to two 
distinct complex numbers z1 and z2 are two vertices of an equilateral 
triangle, then the third vertex corresponds to -wz 1 - w2z2, where w is an 
imaginary cube root of unity. 

Solution. Points z1,z2, z3 fonn an equilateral triangle if and only if z3 - z1 
= (z2 - z1)e:t-"i/J. Thus, given z1 and z2, z3 must have the form 

z3 = ( I - e:t"i/3)zl + e±"i!Jz2 
= - [ - I +  eHif3 ]z1 - [ -e-"'13]z2 • 

We can see from the geometrical interpretation of these quantities (Figure 
8.37) that - I +  e±"'i/J and - e±wifJ are the imaginary cube roots of unity. 
Alternatively, we can verify this algebraically: 

- 1 + e:!:.,i/3 = - l + cos( ± fw) + i sin( ± -!-'IT) 

= - I + t ± tJJ 

= - f ± f J3i, 
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-1 + e�i/3 

and 

e�iJ3 

Figure 8.37. 

_ e � "'i/3 = - [cos( ± t w) + i sin( ::!:: tw) J 
= - t + -f J3i. 

8. Geomelry 

Conversely, suppose z3 = -wz 1 - w2z2, where w is an imaginary cube 
root of unity. Then 

oc 

w = - 1  + e "'i/J and w2 = - e""/3 

w = - I + e - .,.;jJ and w2 = - e -"''13, 
and the previous arguments show that z1,z2, z3 form an equilateral triangle. 

8.4.4. Equilateral triangles are erected externally on the sides of an arbi­
trary triangle ABC. Prove that the centers (centroids) of these three equilat­
eral triangles form an equilateral triangle. 

Solution. Let a, b, c be the affixes of A ,  B, C respectively (in the complex 
plane), with x, y, z the affixes of the centers of the equilateral triangles as 
shown in Figure 8.38. Let w = e2"'i/J. Then w2 + w + I = 0 (w is a cube 
roots of unity, so 0 = w3 - I = (w - 1Xw2 + w + I)). Also, note that e"'i/3 
= -w2 and e-"'i/3 = -w. 

The centroid of 6ABC has affix f<a + b + c). In a similar way, x, y, 
and z are given by 

x = t [  a + c + [ a - w2( c - a)]] = ! [  (2 + w2)a + (I  - w2)c ]. 

y - J [  a +  b + [ a - w(b - a)] ]  - l [(2 + w)a + (I - w)b], 

z - J [  b + c + [ b - w(c - b)] ]  - 1 [(2 + w)b + ( I - w)c ]. 

To show that x,y,z forms an equilateral triangle, it suffices to show that 

z - x = -w2(y - x), 
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Figure 8.38. 

We have 

3(z - x) = -(2 + w1)a + (2 + w)b + ( -w + w2)c 

-3w2(y - x) = 3w1(x -y) = (w4 - w3)a - (w2 - w3)b + (w2 - w4)c. 
But 

w4 - w3 = w - I = ( - I - w2) - 1 = -(2 + w1), 

-(w2 - w3) = -w2 + I =  (I + w) + I = � +  w, 

w2 - w4 = wl - w, 
and therefore, the coefficients of a, b, c in the above expressions for z - x 

and -w2(y - x) are equal. It follows that x, y, z forms an equilateral 
triangle. 

Problems 

8.4.5. Let A0,A 1,A2,A3,A4 divide a unit circle (circle of radius I )  into five 
equal parts. Prove that the chords A0A 1 ,  A0A1 satisfy 

(A0A 1 • A0A2)2= 5. 

8.4.6. Given a point P on the circumference of a unit circle and the 
vertices A 1,A 2, . • •  , An of an inscribed regular polygon of n sides, prove 
that PA1 + PAj + · · · + PA: is a constant (i.e., independent of the posi­
tion of P on the circumference). 

8.4.7. Let G denote the centroid of triangle ABC. Prove that 

3(GA2+ GB2 +  GC2) + AB2+ BC2 + CA2. 
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8.4.8. Let ABCDEF be a hexagon in a circle of radius r. Show that if 
AB = CD =  EF = r, then the midpoints of BC, DE, and FA are the 
vertices of an equilateral triangle. 

8.4.9. If z1, z2, z3 are such that ltd = 1=21 = lz31 = 1 and z1 + z2 + z3 = 0, 
show that z" z2, ZJ are the vertices of an equilateral triangle inscribed in a 
unit circle. 

8.4.10. Show that zh z2, z3 form an equilateral triangle if and only if 
' ' ' z1 + z2 + z3 = z1z2 + z2z3 + z3z1• 

8.4.11. The three pOints in the complex plane which correspond to the 
roots of the equation 

z3 - 3pz
2 + 3qz - r = 0 

are the vertices of a triangle. 

(a) Prove that the centroid of the triangle is the point corresponding top. 
(b) Prove that ABC is an equilateral triangle if and only if p2 = q. 



Glossary of Symbols and Definitions 

Centroid (of a 
triangle) 

Circumcenter (of 
a triangle) 

Convex hull 

Convex set 

Fibonacci sequence 

Function 
even 

odd 

convex 

The point where the medians of a triangle inter­
sect. (A median of a triangle is a line joining a 
vertex to the midpoint of the opposite side.) 

The center of the circumscribed circle (the circle 
passing through the three vertices of the trian­
gle). The point where the perpendicular bisec­
tors of the sides of the tilangle intersect. 

The smallest convex set which contains all the 
points of the set. 

A set that contains the line segment joining any 
two of its points. 

The sequence of numbers defined as F1 • I, 
F2 = 1, and F� - F,_ 1 + F,_2 for n > 2. The 
sequence begins 1 ,  I, 2, 3, 5, 8, 13, 21, 34, 
55, . . . . 

A function f with the property that f(- x) ,.. j(x) 
for all x. 

A function f with the property that /(- x)­
- j(x) for all x. 

A real-valued function defined in the interval 
(a, b) such that for each x,y,z with o < x < y  < z < b, j(x) .;; L(x), where L(x) is the linear 
function coinciding withf(x) at x and z. 
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concave 

I I  

Incenter (of a 
triangle) 

Lattice point 

Orthocenter (of 
a triangle) 

Pascal's triangle 

Pythagorean triple 

Set 
S-T 

k-subset 

Triangular numbers 

Glossary of Symbols and Definirions 

A function which is the negative of a convex 
function. 

The greatest integer function; for each real num­
ber x, [x) is the largest integer less than or 
equal to x. 

The center of the incircle of a triangle. The in­
circle, or inscribed circle, is the circle tangent to 
the sides of the triangle. The incenter is the 
point where the bisectors of the angles of the 
triangle intersect. 

A point in the Euclidean plane (or R") whose 
coordinates are integers. 

The point of intersection of the three altitudes of a 
triangle. 

A triangular array of numbers whose nth row 
(n = 0, 1,2, . . .  ) is composed of the coefficients 
of the expansion of (a + b)". 

A set of three integers which satisfy the equation 
xl + y2 = zl. 

The subset consisting of those elements in the set 
S that are not in the set T. 

A subset of k elements. 

The numbers in the sequence I ,  3, 6, !0, . . . 
whose nth term is n(n + 1)/2. 
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2.2.7. 
2.2.8. 

2.3.1. 

2.3.2. 

2.4.2. 

Leo Moser, American Mathematical Monthly, Vol. 69, No. 8, 
October 1962, p. 809 
C. S. Venkataroman, American Mathematical Monthly, Vol. 59, 
No. 6, June 1952, p. 410 
1962 Putnam Exam 
Leonard Cohen, American Mathematical Monthly, Vol. 68, No. I, 
January 1961, p. 62 

1978 Putnam Exam 
Murray Klamkin, Crux Mathematicorum, Vol. 5, No. I, January 
1979. p. 13 
See 2.6.1 
S. W. Golomb and A. W. Hales, American Mathematical Monthly, 
Vol. 69, No. 8, October 1962, p. 809 

Solution due to A. Liu, Crux Mathematicorum, Vol. 14, No. 9, 
November 1978, pp. 272-274 
J. L. Brown, American Mathematical Monthly, Vol. 68, No. 10, 
December 1961, p. 1005 

Douglas Hensley, American Mathematical Monthly, Vol. 87, No. 7, 
September 1980, p. 577 
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2.4.4. 
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2.4.6. 

2.5.3. 

2.5.4. 
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2.5.6d. 

2.5.9. 
2.5.13. 

2.6.1. 
2.6.2. 
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2.6.4. 
2.6.6. 
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Sources 

1967 Putnam Exam 
Murray Klamkin, American Mathematical Monthly, Vol. 61, No. 6, 
June 1954, p. 423 
George Polya, Induction and Analogy in Mathematics, Princeton 
University Press, Princeton, N.J., 1954, pp. 1 1 8-119 

David Wheeler, Crux Mathematicorum, Vol, 4, No. 3, March 1978, 
p. 74. Solution given by Bob Prielipp. 
1954 Putnam Exam 
1969 Putnam Exam 
E. M. Scheller, American Mathematical Monthly, Vol. 66, No. 9, 
November 1959, p. 813 
1980 Canadian Olympiad 
1982 Canadian Olympiad 

1958 Putnam Exam 
1954 Putnam Exam 
1976 U.S.A. Olympiad 
1980 Putnam Exam 
1978 Putnam Exam 
Michael Brozinsky, School Science and Mathematics, Vol. 81,  No. 
6, October 1981, p. 532 

2.6.9. 1975 Canadian Olympiad 
2.6.10. 1928 Hungarian Olympiad 
2.6.1la. C. W. Bostwick, Ameriean Mathematical Monthly, Vol. 65, No. 6, 

June-July 1958, p. 446 
2.6.12. Leo Moser, American Mathematical Monthly, Vol. 60, No. 10, 

December 1953, p. 713 

3.1.1. Steve Galovich, American Mathematical Monthly, Vol. 84, No. 6, 
June-July 1977, p. 487 

3.1.5. 1959 International Olympiad 
3.1.6. 1981 U.S.A. Olympiad 
3.1.10b. 1956 Putnam Exam 
3.1.14. William J. LeVeque, Elementary Theory of Numbers, Addison­

Wesley, Reading, Mass., 1962, p. 34 

3.2.1. 
3.2.5. 

3.2.6. 

3.2.7. 
3.2.9. 
3.2.10. 

See 3.2. 1 1  
Andy Vince, American Mathematical Monthly, Vol. 72, No. 3, 
March 1965, p. 316 
R. S. Luthar, American Mathematical Monthly, Vol. 83, No. 7, 
August-September 1976, p. 566 
1894 Hungarian Olympiad 
1955 Putnam Exam 
Albert A. Mullin, American Mathematical Monthly, Vol. 84, No. 5, 
May 1977, p. 3&6 
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3.2.11. The Mathematics Student, Vol. 26, No. 3, December 1978 
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3.2.12. Larry Lass, American Mathematical Monthly, Vol. 71, No. 3, 
March 1964, p. 317 

3.2.13b. Hugh L. Montgomery, American Mathematical Monthly, Vol. 82, 
No. 9, November 1975, p. 936 

3.2.14e. 1899 Hungirian Olympiad 
3.2.151. 1976 U.S.A. Olympiad 
3.2.17. Michael Brozinsky, School Science and Mathematics, Vol. 81, No. 

4, p. 352 
3.2.18. 1954 Putnam Exam 
3.2.22. 1900 Hungarian Olympiad 
3.2.24. Hal Forsey, Mathematics Magazine, Vol. 53, No. 4, September 

1980, p. 244 
3.2.25. N. S. Mendelsohn, American Mathematical Monthly, Vol. 66, No. 

10, December 1959, p. 915 

3.3.5. 

3.3.6. 
3.3.7. 
3.3.8. 
3.3.9. 
3.3.13. 

W. C. Rufus, American Mathematical Monthly, Vol. 51, No. 6, 
June-July 1944, p. 348 
1981 Hungarian Olympiad 
1960 Putnam Exam 
1980 Putnam Exam 
1972 U.S.A. Olympiad 
Murray Klamkin, Mathematics Magazine, Vol. 27, No. I, January 
1953, p. 56 

3.3.14. 1947 Putnam Exam 
3.3.17. The Mathematics Student, Vol. 27, No. I ,  October 1979 
3.3.18. 1967 Putnam Exam 
3.3.19c. 1956 Putnam P,am 
3.3.22d. Harvey Berry, American Mathematical Monthly, Vol. 59, No. 3, 

March 1952, p. 180 
3.3.24. H. J. Godwin, Mathematical Spectrum, Vol. I I , No. I, 1978-1979, 

p. 28 
3.3.25. Norman Schaumberger, Two- Year College Mathematics Journal, 

Vol. 12, No. I, January 1981, p. 185 

3.4.1. 
3.4.2. 
3.4.3. 
3.4.4. 
3.4.7. 
3.4.8. 
3.4.9a. 
3.4.9d. 

3.4.11. 
3.4.12. 

Mathematical Spectrum, Vol. I ,  No. 2, 1968-1969, p. 59 
1981 Canadian Olympiad 
1975 International Olympiad 
1977 Putnam Exam 
USSR Olympiad 
1962 Olympiad 
H. G. Dworschak, Eueka, Vol. I, No. 9, November 1975, p. 86 
Leo Moser, American Mathematical Monthly, Vol. 58, No. 10, 
December 1951, p. 700 
USSR Olympiad 
C. H. Braunholtz, American Mathematical Monthly, Vol. 70, No. 6, 
June-July 1963, p. 675 
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3.5.1. 
3.5.2. 

3.5.5. 

4.1.1. 

4.1.2. 
4.1.3. 
4.1.4. 
4.1.6. 
4.1.7. 
4.1.10. 

4.2.2. 
4.2.3. 
4.2.4. 
4.2.5. 

Sources 

H. G. Dworschak, Eueka, Vol. 2, No. 3, March 1976, p. 50 
L. Mirsky, Mathematical Spectrum, Vol. 13, No. 2, 1980-1981, 
p. 58 
1980 U.S.A. Olympiad 

F. G. B. Maskell, Crux Mathematicorum, Vol. 4, No. 6, June-July 
1978, p. 164. Solution by Bob Prielipp 
1977 Putnam Exam 
1976 Putnam Exam 
1979 British Olympiad 
1969 International Olympiad 
1975 Putnam Exam 
Murray Klamkin, Crux Mathematicorum, Vol. 5, No. 4, April 
1979, p. 105 

USSR Olympiad 
1970 Canadian Olympiad 
1940 Putnam Exam 
Azriel Rosenfeld, American Mathematical Monthly, Vol. 69, No. 8, 
October 1962, p. 809. Solution by Murray Klamkin 

4.2.10. Murray Klamkin, Crux Mathematicorum, Vol. 5, No. 10, 1979, 
p. 290 

4.2.16a. 1952 Putnam Exam 
4.2.16b. 1963 Putnam Exam 
4.2.18. 1977 U.S.A. Olympiad 
4.2.21. The Mathematics Student, Vol. 28, No. 5, February 1981 

4.3.1. 
4.3.5. 
4.3.6. 
4.3.7. 

4.3.8. 
4.3.9. 

1971 Putnam Exam 
1956 Putnam Exam 
1977 Putnam Exam 
Solution by G. P. Henderson, Crux Mathernaticorum, Vol. 5, No. 
6, June-July 1979, p. 171 
1899 Hungarian Olympiad 
Hayo Ahlberg, Cntx Mathematicorum, Vol. 7, No. 5, May 1981, 
p. 639 

4.3.10. Murray Klamkin, Crux Mathematicorum, Vol. 5, No.9, November 
1979. p. 259 

4.3.12a. Mathematical Spectrum, Vol. 3, No. I ,  1970-1971, p. 28 
4.3.12b. Mathematical Spectrum, Vol. 9, No. I ,  1976-1977, p. 32 
4.3.15. 1962 Putnam Exam 
4.3.17c. 1977 Putnam Exam 
4.3.17d. J. M. Gandhi, American Mathernatical Monthly, Vol. 66, No. 1 ,  

January 1959, p. 61 
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4.4.3. 
4.4.4. 

4.4.6. 

4.4.7. 
4.4.8. 

4.4.9. 

4.4.10. 

4.4.12. 

4.4.13. 
4.4.14. 
4.4.20. 
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1972 Putnam Exam 
I. N. Herstein, Topics in A lgebra, Xerox College Publishing, 1964, 
p. 41  
Guy Torchinelli, American Mathematical Monthly, Vol. 71, No. 3, 
March 1964, p. 317. Solution by Francis P. Callahan 
1972 Putnilm Exam 
R. L. Graham and F. D. Parker, American Mathematical Monthly, 
Vol. 70, No. 2, February 1963, p. 210. Solution by J. A. Schatz 
Solomon W. Golomb, American Mathematical Monthly, Vol. 85, 
No. 7, August-September 1978, p. 593 
F. S. Carter, Mathematics Magazine, Vol. 49, No. 4, September 
1976, p. 211 
F. M. Sioson, American Mathematical Monthly, Vol. 70, No. 8, 
October 1963, p. 891 
1968 Putnam Exam 
1977 Putnam Exam 
Leo Moser, American Mathematical Monthly, Vol. 67, No. 3, 
March 1960, p. 290 

4.4.21. T. J. Keams, American Mathematical Monthly, Vol. 69, No. I, 
January 1962, p. 57 

4.4.22. Murray Klamkin, Crux Mathematicorum, Vol. 6, No. 3, March 
1980, p. 73 

4.4.23. J. Linkovskii-Condc!, American Mathematical Monthly, Vol. 87, 
No. 2, February 1980, p. 137 

4.4.24. 1982 U.S.A. Olympiad 
4.4.25. Seth Warner, Classical Modern A lgebra, Prentice-Hall, Englewood 

Clilh, N.J., 1971, p. 134 
4.4.28. See 4.4.25 
4.4.29. 1968 Putnam Exam 
4.4.30c. 1957 Putnam Exam 
4.4.31. 1979 Putnam Exam 

5.1.5. Peter Orno, Mathematics Magazine, Vol. 54, No. 4, September 
1981, p. 213. Solution by Harry Sedinger 

5.1.7a. W. C. Waterhouse, American Mathematical Monthly, Vol. 70, No. 
10, December 1963, p. 1099 

5.1.7b. :Roger B. Eggleton, American Mathematical Monthly, Vol. 71, No. 
8, October 1964, p. 913 

5.1.10a. Murray K1amkin, Crux Mathematicorum, Vol. 5, No. 5, May 1979, 
p. 129 

5.1.14. Andy Liu, Cru:x Mathematicorum, Vol. 4, No. 7, August-Sep­
tember 1978, p. 192 

5.1.15. Donald Knuth, Take-home problem, Stanford University, Fall 
1974. Also, see C. F. Pinska, American Mathematical Monthly, Vol. 
65, No. 4, April 1958, p. 284 
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5.2.2. 
5.2.5. 

5.2.6. 

5.2.8. 

5.2.9. 
5.2.13. 
5.2.16. 

5.3.3. 
5.3.4. 

5.3.7b. 
5.3.8. 
5.3.10. 

Soun:es 
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A. D. Sands, American Mathematical Monthly, Vol. 87, No. 1, 
January 1980, p. 60 
W. L. Nicholson, American Mathematical Monthly, Vol. 70, No. 8, 
October 1963, p. 893 
L. L. Garner, American Mathematical Monthly, Vol. 67, No. 8, 
O<:tober 1960. p. 807 
1981 Putnam Exam 
1982 Canadian Olympiad 
1977 Putnam Exam 

1978 Putnam Exam 
Gabriel Klambauer, American Mathematical Monthly, Vol. 87, No. 
2, February 1980, pp. 128-130 
1977 Putnam Exam 
British Scholarship Problem 
Gabriel Klambauer, American Mathematical Monthly, Vol. 87, No. 
2, February 1980, pp. 128-130 

5.3.11<:. 1981 Putham Exam 
5.3.12. Leo Moser, American Mathematical Monthly, Vol. 55, No. 7, 

September 1948, p. 427 
5.3.13. Michael Aissen, American Mathematical Monthly, Vol. 76, No. 9, 

November 1969, p. 1063 

5.4.2. 
5.4.5. 
5.4.6. 

5A.7, 
5.4.12. 

5.4.15. 
5.4.20. 
5.4.21. 
5.4.23. 

5.4.27. 

6.1.2. 

6.1.4. 
6.1.6. 

1972 Putnam Exam 
1951 PUtnam Exam 
V. N. Murty, Two� Year College Mathematics Journal, Vol. 1 1 ,  No. 
4, September 1980, p. 276 
1939 Putnam Exam 
A. J. Douglas, Mathematical Spectrum, Vol. 5, No. 2, 1972-1977, 
p. 67 
1975 Putnam Exam 
1981 Putnam Exam 
1980 Putnam Exam 
V. N. Murty, Two� Year College Mathematics Journal, Vol. 1 1 ,  No. 
4, Sep�ber 1980, p. 276 
1970 Putnam Exam 

Ko�Wei�Lih, American Mathematical Monthly, Vol. 88, No. 6, 
June-July 1981, p. 444 
1947 Putnam Exam 
Albert Wilansky, American Mathematical Monthly, Vol. 65, No. 9, 
November 1958, p. 708 
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6.2.3. 
6.2.7. 

6.2.8. 
6.2.11. 
6.2.13. 

6.3.2. 

6.4.2. 
6.4.6. 
6.4.7. 

6.5.4. 
6.5.5b. 
6.5.9. 

6.6.1. 
6.6.4, 

6.6.5. 
6.6.6. 

6.6.9. 

6.7.1. 
6.7.2. 
6.7.4e. 
6.7.5. 
6.7.6. 

6.8.1. 
6.8.2. 
6.8.6. 

6.8.9. 
6.8.10. 
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1979 Putnam Exam 
Joseph Silverman, Mathematics Magazine, Vol. 51,  No. 2, March 
1978, p. 127 
1979 Putnam Exam 
1970 Putnam Exam 
1959 PutnAm Exam 

1967 Putnam Exam 

1976 Putnam Exam 
1981 U.S.A. Olympiad 
1981 Canadian Olympiad 

1981 Putnam Exam 
1958 Putnam Exam 
1973 Putnam Exam 

1946 Putnam Exam 
Sidney Penner, Mathematics Magazine, Vol. 49, No. 3, May 1976, 
p. !50 
1976 Putnam Exam 
Peter Omo, Mathematics Magazine, Vol. 51, No. 4, September 
1978, p. 245 
G. Z. Chang, Mathematics Magazine, Vol. 54, No. 3, May 1981, 
p. 140 

1956 Putnam Exam 
1955 Putnam Exam 
1946 Putnam Exam 
1979 Putnam Exam 
Bernard Vanbrugghe 

1976 Putnam Exam 
1970 Putnam Exam 
Victor Linis, Crux Mathematicorum, Vol. 2, No. 9, November 
1976, p. 203 
1964 Putnam Exam 
1977 Putnam Exam 

6.9.2. H. G. Dworschak, Eueka, Vol. 1 ,  No. 8, October 1975, p. 77 
6.9.3. 1946 Putnam Exam 
6.9.4. Marius Solomon, American Mathematical Monthly, Vol. 77, No. 6, 

June-July 1977, p. 487 
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6.9.5. 
6.9.11. 

7.1.3. 
7.1.4. 
7.1.15. 
7.l.2. 
7.2.3. 
7.l.9a. 

7.3.1. 
7.3.2. 
7.3.3. 
7.3.4. 
7.3.8. 
7.3.9. 
7.3.10. 
7.4.1. 
7.4.2. 
7A.4. 
7.4.6. 
7.4.8. 
7A!I. 
7.4.1l. 
7.4.13. 7.4.19. 
7 .5.1. 7.5.4. 
7.5.7. 7.5.8. 

1938 Putnam- Exam 
D. H. Browne, American Mathematical Monthly, Vol. 53, No. I, 
January 1946, p. 36 

1980 U.S.A. Olympiad 
Solution by Angus Rodgers, Mathematical Spectrum, Vol. 5, No. I, 
\972-!973, p, 3 \  
Victor Linis, Eueka, Vol. 2, No. 2, February 1976, p. 29 

1975 Putnam Exam 
Murray Klamkin, Crux Mathemoticorum, Vol, 5, No. 2, February 
\979, p. 45 
Freddy Storey, American Mathematical Monthly, Vol. 68, No. 10, 
December 1961, p. 1009 

J. L. Brenner, Two- Year College Mathematics Journal, Vol. 12, No. 
I ,  January 1981, p. 64 

Mark Kleiman, Mathematics Magazine, Vol. 50, No. 1, January 
\977, p. 49 
1978 U.S.A. Olympiad 
1977 Putnam Exam 
Mickael Ecker, Crwr: Mathematicorum, Vol. 7, No. 7, August­
September 1981, p. 208 
Don Sokolowsky, Crux Mathematicorum, Vol. 6, No. 8, October 
\980, p. 259 
1981 International Olympiad 

T. B. Cruddis, Mathematical Spectrum, Vol. 10, No. I, 1977-1978, 
p. 3\ 
T. S. Bolis, American Mathematical Monthly, Vol. 82, No. 7, 
August-September 1975, p. 756 
1973 Putnam Exam 
Gideon Schwarz, American Mathematical Momhly, Vol. 88, No. 2, 
February 1981, p. 148 
USSR Olympiad 
1978 Putnam Exam 
H. G. Dworschak, Eueka, Vol. 2, No. 5, May 1976, p. 98 
See 7.4.12 
See 7.3.1 

1980 Putnam Exam 
Murray Klamkin, Crux Mathematicorum, Vol. 6, No. to, Decem­
ber \980, p. 3\2 
See 7.4.12 
Ralph Boas, American Mathematical Monthly, Vol. 85, No. 6, 
June-July 1978, p. 495 
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Marius Solomon, Mathematics Magazine, Vol. 49, No. 2, March 
1976, p. 95. Solution by Jordan Levy 
1954 Putnam Exam 
1961 Putnam Exam 
1947 Putnam Exam 
1947 Putnam Exam 
1957 Putnam Exam 
1978 Putnam Exam 

1978 Putnam Exam 
1976 U.S.A. Olympiad 
1976 Putnam Exam 
Leon Bankoff, Crux Mathematicorum, Vol. 6, No. 3, March 1980, 
p. 80 
Jack Garfunkel, Mathematics Magazine, Vol. 50, No. 3, May 1977, 
p. 164 
John A. Tierney, Eueka, Vol. 2, No. 5, May 1976, p. 103 
Zelda Katz, Pi Mu Epsilon Journal, Vol. 7, No. 4, Spring 1981, 
p. 265 
Norman Schaum berger, Two- Year College Mathematics Journal, 
Vol. 12, No. 2, March 1981, p. !55 

1976 Putnam Exam 
1938 Putnam Exam 
Murray Klamkin, Mathematics Magazine, Vol. 49, No. 4, Septem­
ber 1976, p. 2 1 1  

8.2.6. K. R. S. Sastry, Mathematics Magazine, Vol. 54, No. 2, March 
1981, p. 84 

8.2.8. Norman Anning, American Mathematical Monthly, Vol. 27, No. 
10, December 1920, p. 482 

8.2.1-l. 1980 Putnam Exam 
8.2.12. 1979 Putnam Exam 
8.2.14a. Roger L. Creech, Mathematics Magazine, Vol. 53, No. I ,  January 

1980, p. 49 
8.2.14b. Roger L. Creech, Mathematics Magazine, Vol. 54, No. I ,  January 

1981, p. 35 8.2.16. Murray Klamkin, Crux Mathematicorum, Vol. 7, No. 2, February 
1981, p. 65 

8.3.1. 
8.3.5. 

8.3.6. 
8.3.8. 
8.3.18. 

1978 U.S.A. Olympiad 
M. Slater, American Mathematical Monthly, Vol. 88, No. I, Janu­
ary 1981, pp. 66-67. Solution by Jordi Dou. 
See 1.5.3 
1977 U.S.A. Olympiad 
H. G. Dworschak, Eueka, Vol. 2, No. 3, March 1976, p. 46 
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8.4.3. 1959 Putnam Exam 
8,4.5. 1899 Hungarian Olympiad 
8.4.8. 1967 Putnam Exam 
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Abel's limit theorem 5.4:5 -

ArithmetiC· mean-geometric� mean 
· inequality; proofs 2.5.7, 7.2.5, 

7.4.20 

Bertrand's postulate 2.3.2 
Binomial theorem; proofs 2,l.l, 

2.1.11, 4.3.3 

Cantor set 3.4.6 
Center of mass 8.3.1  -
Chinese remainder theorem 3.2.8 

DeMoivre's- theorem 3.5.2 + 
Difference sequences 4.3.24 
Division algorithm 3.1.2 -. 

4.2. 1 -
Dot product 8.3.5 + 

. 

Euclidean algorithm 3.1.2 
Euler's theorem (graph theory) 

2.!.3 
Euler's theorem (q:...function) 

4.4.6 -

Factor theorem 4.2.3 -
Fermat's little theorem 4.4.6 -

Fermat's two-square theorem 
1.1.10 

Field 4.4. 10 + 

Gauss' lemma 4.2. 1 6  
Generating function 5.4.9 
Group 4.4. 1 -

Handshake probterU 1 .2.4 
Hatcheck problem 2.5.14 
Heron's formula 8.1.1(3) 
Hillclimbing 1 .7.2 

Identity theorem 4.3.1 -
Integral domain 4.4. 1 1 -

Josephus problem 2.5.10 

Lagrange's interpolation theorem 
4.3.22 

Lagrange's theorem 4.4.3 + 

Magical equation of the tangent 
8.2.13 

Parametric differentiation 1 . 1 2.3, 
1.12.6 
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Partial fractions 4.3.23 
Perfect numbers 5.2.'7 
Pick's theorem \.7.3, 2.3.1 
Primes, infinitude of 3.3.11, 3.3.18, 

4.1.9, 4.4.6, 5.2.14, 5.2.17 
Principle of nonsufficient reason 

1.6.2 
Pythagorean triples 3 .3 .26 

Rational root theorem 4.2.16 

Repeated bisection method 
6.1.2 + 

Ring 4.4.9 + 

Snowplow problem 1.5.1 

Tower of Hanoi problem 2.5 

Wilson's theorem 4.4.30 
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