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Problem 1 (Vasile Pop, Cluj-Napoca). Let P,Q, R € C[X] be nonzero polynomlals and a, b c distinct
nonzero complex numbers.

Proof that if the set Z = {2, = P(n)a" + Q(n)b" + R(n)c" : n € N} is finite, then there exists p €
N\ {0} such that znp = 2y, for every n € N. :
Proof. Since Z is finite, then

Zy ={zp41 — 02, : n € N}

is also finite. Moreover, 2,11 — a2z, = [a (P(n+ 1) — P(n))] - a" + [bQ(n + 1) — a@Q(n)] - 0" + [cR(n + 1) —
aR(n)] - * = Pi(n)a™ + Q1 (n)b™ + Ry(n)c*, where deg P, < deg P, deg Q; = deg @, deg R; = degR. If
P, is nonzero, we may apply the same procedure as for the set Z to the set Z;, obtaining a set Zy =
{Py(n)a™ + Qo(n)b™ + Ry(n)c™ : n € N}, with deg P, < deg Py, deg @y = deg @, deg Ry = deg R. If P2 is
nonzero, we can obtain, in a finite number of steps, a finite set Z’ = Z; with P, = 0, that is

7' = {Q'(n)b" + R'(n)c* : n € N}

where deg Q) = deg @, deg R’ = deg R.
By replacing the finite set Z' = {2/, : n € N} with the set

= {z,,, — b2, : n € N}

which will be also finite, the degree of Q' decreases and we apply this procedure until Q' becomes 0 and
Z' becomes

Z" ={R"(n)c" : n € N}
where deg R" = deg R.
Now, if deg R” > 1, by replacing the finite set Z” = {2/, : n € N} with theset Z{ = {2,, — b2 : n € N},

which will be also finite, the degree of R” decreases with 1 and this procedure i iy apphed until R” is replaced
by a constant. We arrive, in a finite number of steps, to a finite set

lelz{a-c’n:neN}

where o € C\ {0}.

The set Z"is finite if and only if it exists p; such that ¢®* = 1. By analogy (or from the symmetry of
the problem), we obtain similar results for a and b, i.e. there exist ps, p3 such that a? =1 and b = 1.
From here, for p = p1psp3, we obtain e

af = b =P .
~ The set U = {zi, : k € N} is finite, therefore {P(kp) + Q(kp) + R(kp) : k € N} is finite which- meéans
that the polynomial P + @) + R is constant

P(X) + Q(X) + R(X) = a0 1)
Also the sets V = {zkpy1 : k € N} and W = {212 : k € N} a.ré”ﬁnite, which leads to the existence of the

.constants a; and as such that

aP(X) +bQ(X) + cR(X) = a1 (2)

and}
a2P(X) + bZQ(X) + c2R(X) = @y (3)

Since a, b, ¢ are distinct, from (1), (2) and (3) we obtain that P, (), R are constant polynomials, therefore
Zn4p = 2n for every n € N.



Remark: Using mathematical induction, it can be proved that (z,) verifies a linear recurrence of
order N = deg P + deg @ + deg R. Then use that every recurrent sequence with finite number of values is
periodical. ' a

Problem 2 (Vasile Pop, Cluj-Napoca). Consider the sets
| Sn = {(z1,%2,...,Za) : Vi=T,m, z; € {0,1,2}}

A, = {(xl,xz, oy Zn) € Sp i Vi=1,n—2, {zi, Tiy1, Tiya}| # 1}

and!
Bn:{(xlax%-")xn)esn:($i=$i+1:>$i$é0)}. -

Prove that |An41] = 3 |Bal.
Solution 1. Consider the following sets

Ay = {(21,82, .., T) € An : Tps = 2}

A:::An\A;
B = {(z1,%2,...,%n) € By : , = 0}
BZ;'Bn\B;z

and denote a, = |A,|, al, = |A|, al = |A}], bn = |By|, b, = |B,,|, bi = |Bh| .
It is easy to observe the following relations between the a—sequences

an = a,+a;
a/ — aH
n+l n )
" — / 14
anyy = 20, +2a;

which lead to an+1 = 2a, + 2a,-1.
For the b-sequences we have the same relations

bn = b, +8,
,n+1 bZ ’
by = 20, +20]

therefore b,41 = 2b, + 2b,,_;1. =
By computing the first values of (a,) and (b,) we obtain

a1=3, a2=9, az = 4 .
{ b1=3’ b2=8 \/

ag = 3b1

agz = 3b2
Now, reasoning by induction, it is easy to prove that a,.; = 3b, for every n > 1.
Solution 2. Regarding z; to be elements of Z; and working “modulo 3”, we have that

which leads to

(1, %9, Tn) EAn = (1 + L, 32+ 1, .., 2o+ 1) €An, (31+2,22+2,...,2, +2) € A,

which means that 1/3 of the elements of A, start with 0. We establish a bijection between the subset of
all the vectors in An4; which start with 0 and the set B, by

(07m1)$27"'7$n) € An+1 — (yl)yZa"'vyn) € Bn
Y1 =T1Y2 =22 — T, Y3 = T3 —T2,...;Yn = Tpn — Tn-1

1|A| denotes the number of elements of the set A.



(if Y = yry1 = O then zy — Tp—1 = Tr+1 — Tx, = 0 (where zo = 0), which gives Tx_; = T = Z41, Which
is not possible because of the definition of the sets A,; therefore, the definition of the above function is
correct).

The inverse is defined by

(1,92, -, Yn) € Ba— (0,21, %2, ..., Tn) € Ant1
1 =Y, T2=Y1+Y2. .. In=Y+Y2+ -+ Yn

Problem 3 (Vasile Pop, Cluj- Napoca) Let (an)n‘>1 be a sequence of real numbers such that 0 < an <
1, Vn > 1 and lim, ,o(a; + ag + - - - + a,) = 00. -
(1) Prove that for every | € [1 00) U {0}, there exists an increasing funct1on L:N\ {0} - N\ {0}

such that
ar+az+ -+ apmy)

i = [
n—oo a1 +az+ -+ aLm)

(2) Find a function L for the sequence a, = 7=, n > L.

Solution. Denote 'Sy = a; + as + - - - + ax, kK > 1. The intervals [Sk, Sk+1), ¥ > 1 form a partition of the
set [a1,00).

(1)

Case I. If | > 1 then for every n > 1 there is a unique k£ € N\ {0} such that I" € [Sk, Sk+1)- Define
L(n) := k, so I™ € [S(n), SL(n)+1)- Since "1 —1" > 1> ar(n)+1 We obtain that Sp(ny1) > Si(n)+1, therefore
L(n+1) > L(n), for every n > 1.

We have that

Sty 1" < Spmy+1 = Simy + army+1
Sty <" < Spmty

which lead to

n+l __ n+1
l 1 SL(n+1) l Con>1
n SL(n) n-1
Passing to limit with n — oo, we obtain lim,_, S%L':L;) =
Case II. If | = 1, we take L(n) = n and obtain
S - S n + n U3
lim 2204 _ gy 2H0) aL(+1)—1+11m—£(——j'—ll=1=l.
n—00 SL(n) n—00 SL(n) n—0o0 SL(n)

Case III. If | = oo, we chose L(n) such that n™ € [Sp(), SLn)+1), 7 > 1. We obtain:
Spmy o (n+ 1)+t — ;/_> .
SL(n) - nm ‘\
(2)

It is well known that the sequence z,, = 1+ \/—+ \/— +ot L _2./n is convergent.Using this observation,
we have that

Sunt) _ TLetn) +2VL(n+1)
St(n) Trm) + 24/ L(n)

SL(n+1) . Ln+1)
= lim ————= =/ lim —————=
700 SL(n) n—00 L(TL)

" For I =1 we chose L(n) =
For I < 1 we chose L(n) = [ 2"‘] (the integer part of /")
For | = oo we chose L(n) =



Problem 4 (Dorian Popa, Cluj-Napoca). Let I = [0,00) and f € C?(I) such that
|f"(z) + 22 f'(2) + (* + 1) f(z)] < 1
for every z € I. Prove that lim f(z) =

r—00

Proof. Put z(z) = f'(z) + zf(z),z € I. One gets
|2'(z) + z2(z)| < 1, z € I
Let g(z) = 2/(z) + z2(z), z € I. It follows

2

(2(2)e¥) = g(a)e? !

z(z) = — ,ceR
ez
One gets
T 2 z
[lo@®leTdt+lc|  [eTdt+]c]
lz(x)l S < t2 S 0 22 3 xz 2 O.
ez e
z 42
[eZdt+]e|
Since lim °—2—— = 0 (I"Hospital) it follows lim z(z) =0

T—00 r—0o0

By the relation f’ (z) +zf(z) = 2(z), z € I, it follows

f z(t)ezzzdt +c
f(l') = 0 ) y CcE R
ez

and using the boundedness of z one gets lim f(z) = 0.

T—00

Problem 5 (Dorian Popa, Cluj-Napoca). Let f : [0,1] — [0,00) be a differentiable function with
integrable derivative on [0,1]. Prove the inequality:
1 2
SAJ(/'fwMM)
0
where M = sup |f' (z)] .
0<z<1

1 1
[ r@a-ro [ fee
0 0
Proof. For M = oo the inequality is obvious. Suppgtllat M # oo. By the inequality —M < f'(z) < M,
z € [0,1] it follows:

_Mf(z) < f@) f &) < Mf(z), 3 €0,1].
One gets:

M [Fa<rE@-3r0 <M [ fod e
~Mi@) [ FOd <3P @ -5 01@ M@ [ FOd e,

Integrating the last inequality on [0, 1] it follows:

_Mf01f2(1; d$<f01f3 fof(x d$<Mf0f2(IE d(B<=>
o £ (@) do - f2(0 fo dmy<M(f0 f@)d).

Problem 6 (Pop Vasile, Cluj-Napoca). For a matrix A € M, (C) we denote by r (A) the rank of A
and C (A) = {X € M, (C) | AX = XA}. Prove that:



r(A") =1 (A™).

2. If A,B € M, (C), r(A™1) # r(A"), r(B™1) # r(B"™) then there is an invertible matrix P €
GL, (C) such B = P~1. A. P and the linear subspaces C (A) and C (B) are isomorphic.

Proof. 1. We have r(A™*!) = r{A"- A) < r(4A"). If r (A"*!) < r(A") it follows that there is a column
matrix X # 0 such that A" - X # 0 and A" . X = 0. By Cayley- Hamilton theorem one gets:

aol, +a1A+---+ an_lA""l +A"=0 (4)

X +aA- X+ 40,447 X+A"- X =0 (5)
and multiplying by A", A»~1,..., A it follows:

aoA"X = O, alA"X = O, e ,an_lA"X = 0,

hence ap = a; = ... = a,_; = 0 and by (4) it follows A" = 0 = A™*! = (, contradiction.
2. Since r (A“‘l) # 7 (A™) one can choose a column matrix Xp such that A" 1- X #0and A" X = 0
We prove that the §et {Xop, 4 - Xp,..., A" !- X} is a basis in C". Suppose that:

awXo+a1A-Xo+ -+ 0n 1A Xo =0, _ (6)

g, a1, . -.,0n-1 € C. Multiplying (6) by A", A"2,... A one gets ap = a1 = ...,an_1 = 0. Denote
Ei=Xy,E;=A-Xy,...,E, = A""1. X, it follows that:

A-E,=Fy A-Ey=FEs,...,A B, =E,, A-E, =0,
hence A- P = [E», E3, ..., E,,0], P =[Ey, Es, ..., E,] and

00 ... 00

10 ...00
P1l.A.P=]| . . .| =

00 ...10

Therefore every matrix A with r (4"~!) # r (A") is similar with the Jordan cell Jy. Now we prove
that if A, B are similar matrices then C (A) and C (B) are isomorphic subspaces. If B= P~1.A.P
define the map f : C (A) — C(B) by:

F(X)=P'.X.P, X cC(4).
Then the inverse of f is g : C (A) — C (B):
. g(Y)=P.Y.-PLYeC(B).

Wehave X € C(A) o A-X=X-AsP.B-P1.X=X.P.B-PleB.Pl.X.P=P'X.P-B
& B-f(X)=f(X)-B& f(X)eC(B), hence f is an isomorphism.

Problem 7 (Masha Vlasenko, Kyiv). For every matrix g = (Ccl Z) € SL(2,Z) (i.e. with integral
entries and determinant 1) consider a rational linear transformation of real line Fy(z) = “Ezi—g. Prove that

for every real number z = p + g+/7 with p,q € Q there exist a matrix g € SL(2,Z) such that F,(z) ==
Proof. Consider the set .
R={yeRly,zy € Z+ zZ}.

One has Z C R, and for y1,y2 € R also y1 + yo,11¥2 € R. For y € R there exist a,b,c,d € Z such that

yr = azx +b, y = cx + d. The matrix g = has integral entries and Fy(z) = z. But it may have

a b
c d
determinant other than 1. Suppose we have z € R analogously represented by matrix A with integral



entries, and 2y € R is represented by matrix f. Then f = hg. So, if y is an invertible element of R
(i.e. y, € R), then matrix g correspondmg to y is invertible. Thus g has determinant either 1 of —1. If
det(g) = —1, then det(g?) = 1 and g is a matrix we are looking for. So, we reduced the problem to finding
an invertible element in R.

For some large N € N we have Nv/7 € R. Indeed, consider L € N such that Lp, Lq, Lq?, Lp? € Z, take

= |Lg|. Then Nv/7 = +(Lz — Lp) and N7z = £(7Lg* + LpgV/7) = £(Lpz — Lp? + TLg?).

So Z + ZN+/7 C R. For z = p1 + q1v/7 with p1,q1 € Q we denote 2 = p; — ¢;/7. Then obviously
Zi+ 22 =3 + % and Ziz3 = 71 + Z. Consider € = 8 + 3v/7. Then & = 8 — 3v/7, and ¢ = 1. We are
going to prove than there exist n such that €” € 14 N(Z 4 +/7Z). Then " € R, obviously e" # 1, and
-517 =¢" € R. So we will get an invertible element of R. /

We have £ = a; +bre with ap = 1,bp = 0 and agy1 = —b, bxr1 = 16b; +ax. Thus the sequence of pairs
(ax, mod N, by, mod N) is periodic. In fact, it has no period because we can invert our formulas: by = —ax41,
ar = bky1 + 16ax41. So, for some n > 0 we will get (an,b,) = (1,0)modN, thus e” € 1+ N(Z + Z\/7).
This finishes the proof.

Problem 8 (Gergely Ro6st, Szeged). Suppose that a sequence z,, and p € R satisfies 2,41 < pz, +
(1 — p)z,— for all n'> 2. For which p does the lim z,, (finite or infinite) exist?

Solution. The sequence z, = (p — 1) satisfies the condition, but for p < 0 the limit does not exist. If
p > 1, then 2,1 > z, for all n € N, or z,41 < z, for all n > k; since the inequality z, > z,; implies
Tnt1 = Tpeo. S0 in this case the sequence is eventually monotone, tending to a finite or infinite limit.
Finally, let 0 < p < 1. Define ! = infz,, L = supz,. Since z, < max{z;,z3}, L < +00. Suppose that
[ < L, that is the limit does not exist. Then there are numbers !’ and L’ such that | < '’ < L < L. For
a large n, z,_1 < L'. We can choose an n such that z, < I, hence 2,41 < pl' + (1 —p)L' =: A. Clearly
ZTn < U < A, and Zpya2 < A, Zpys < A, ... follows, therefore L < A, that is L < pl’ + (1 — p)L'. But this is
not true if we choose I’ and L’ sufficiently close to [ and L, a contradiction. So [ = L and the limit exists.

Problem 9 (José Luis Diaz-Barrero, Barcelona). Let A(z) = 3 ;_, ax2* (ax # 0) be a non-constant
complex polynomial. Show that all its zeros lie in the annulus C = {z € C : r; < |z| < 1y}, where

1/k 1/k
4" —1
and 79 = max { ——
1<k<n | 3k (’;)
Solution by the proposer.

If we assume |z| < r; then from A(z) = > ;_, axz*, we have

n n n
D arz®| = laol = D lallzl* > |aol = ) laxlrk
k=0 k=1 k=1

)

_ k(%) |a Uk
7y = min { —kL o
1<k<n | 4% — 1

Qk

|A(2)] =

n

i £

k=1

ak

= rf) (7)

Qo

. From the expression of r; and taking into account the identity
= n
>3 (k) =4
k=0

immediately follows
ag

3k (T
T‘f S 4:,,, _(_k)l’ — - (8)

o
Substituting (8) into (7), we have

|A(2)] > |aol (

k=



Consequently, A(z) does not have zeros in {2z € C : |2] < r}.

To prove the second inequality we will use the well known fact that all the zeros of A(z) have modu-
lus less than or equal to the unique positive root of the equation

B(z) = |an|2™ — |an_1|z""1 — -+ —la1]z = |ao| = 0.

Therefore, the second part of our statement will be proved if we show that B(ry) > 0. In fact, from the
expression of r immediately follows )

n

r n 3k n
= Ia‘nlrg (1 - 47,,_(_@2]?) =Y

as desired. This completes the proof.

Problem 10 (David Preiss, UCL). Find the largest R € (0, 0c0) with the following property: Whenever
f:R? - R is a continuously differentiable function such that || f/(0)|] = 1 and || f'(w) — f/(v)|| < |Ju — v||
for all u,v € R?, then for each 0 < r < R the maximum of f on the disk {u € R?: ||lu|| < r} is attained at
exactly one point.

Solution Let A : R — R be defined by h(s) = 1for s < 0, h(s) = 1 —sfor 0 < s < 1and h(s) =0
for s > 1. Let 9(t) = f; h(s)ds. Then ¢'(0) = 1 and [¢/(t1) — ¥'(t2)| = |h(t1) — h(t2)] < |t — to| for
all £y, Let g(z,y) = ¥(z) +y°/2. Then ¢'(z,y) = (¥'(z),y), so llg'(z1,91) — ¢' (@2, 2)I* = [¥'(1) —
Y (@) + |y — v < |z — 2o + |y —wel® = ||(z1, 1) — (%2, ¥2)||%. Suppose that g has a unique maximum
on D, = {z € R?: ||z|| < r}. Since g(z,y) = g(z,~y) and = — g(x,0) is non-decreasing, the unique
maximum has to be attained at (r,0). Since ¢(1,0) = g(r,0) for r > 1, we have r < 1. If 1/2 < r < 1, we
have g(z,Vr? — 22) = £ — 22/2 + (r? — 2%) /2 = z — 22 + 72 /2. Since this function has negative derivative
at = r, g does not attain its maximum at (0,7). So R < 1/2.

Suppose now that r < 1/2 and that f attains its maximum &3, at u,v, u # v. Since ||f'(z)— f'(0)|| <
r, || f(2)]l =1 —7 >0 for all z € D,. Hence f may attain its maximum only at the boundary of D,, and

so we must have |[u|| = |lv|| = r and f'(u) = au and f'(v) = bv, where a,b > 0. Since au = f'(u) and
bv = f'(v) belong to the disk D with centre f’(0) and radius r, they do not belong to the interior of D;.
Hence ||f'(u) — f'(v)|| = ||law — bv|| > |lu — v|| and this inequality is strict since D N D, contains no more

than one point. But this contradicts the assumption that || f'(u) — f/(v)|| < |Ju —v||. So R=1/2.

Problem 11 (Vjekoslav Kovag, Zagreb). Let (z,)n>1 and (yn)n,>1 be two decreasing sequences of
positive real numbers such that [[;_; z; > [}, y; for every n > 1. Prove that } 7, x; > Y7, y; for
every n > 1.

Solution.
We first note that for n > 1 and integers a; > a3 > ... > o, > 0 we have

aq .02 Q. (2 319NN ) s
T Ty T 2 YL Y Yn™

This is immediate from the problem hypothesis after rearranging factors:

>y ) (y1 .- yn_l)""f'l_"‘" o A(pye)rree

o1 —og

U



Furthermore, note that
Ao (2) QXg(n)
2

Yoy .. yon > yf“(l)y - Un

for any permutation ¢ of {1,2,...,n}.
For every integer N > 1 by using the multinomial theorem we obtain

' !
N N!
(Ty+Za+ ...+ z,)" = E — 1zt
. Q1:Q9l...0pn!
a1, 09,...,0, > 0 integers
apt+ag+...+a, =N
N!
> E —rs? . 2 -

_ arlas! . .. a,!
o1 > ay> ... 2 a, > 0 integers

aitoay+...+a, =N

E N! yalyQZ yan
a1!a2!...an! 192 "

o 2 ag 2 ... 2 o, 2 0 integers
aptoas+...ta, =N

Y

1
2 g(y1+y2+---+yn)N

since each n-tuple (ay, @2, ..., a,) has at most n! distinct rearrangements.
Thus ﬁi—i‘;’f > ¥/ and by taking N — oo we obtain z; +... + 2, > 91 + ... + Yn.

Problem 12 (David Harutyunyan, Yerevan). Let n > 2 and

Find the maximum value of f on the set {(z1,...,2,):0<z; <1,i=1,...,n}.
Solution Denote

g(n) = max flz, ..., zn).
OS.’BzSI
1=1,...,n

We are going to show that g(2) = 2,9(3) = 5 and g(n) =n—1,n > 4.
First, let’s prove that forn € Nand 0 < z; <1,i=1,...,n the following inequality holds:

T+t <n—1+z1-...- 2, (9)

We prove this by induction: for n = 1 it is obvious. Assuming that the inequality holds for n = k, we’ll
get
1+ 22+ ...+ Ty — 210 -0 Tpt1 = (:rl + g + ... +$k) + $k+1(1 — X1 .. $k) <

<zi1+zo+. 4z +l—z1 ... 2. <1+k—-1=k.

1) Case n =2
I To T 1)
= < <
f(xl,?z) 1+ 25 + 1+ 2, + 2179 < 1+ 2125 + 1+ 2125 + 2129 <
M+xlx2S1+1=2
. 1+ 1129
(by (9)) and f(1,1) =2, 50 g(2) = 2.
2) Casen =3
z T T
Flen,za,28) = ———+ ——— + —2 4 pizms <

1+2923 1+ 2123 142129



T+ To + T3 21z = 1 + T3 + T3 + T1Z9%3 + (T1T2T3)? <
= . 14243 =
14+ z12073 14+ 217913
Ty + Ty + T3 + 2712023

1+ z12023

Let’s show that the last fraction is not greater that -g

Z1 + T2 + T3 + 271 T973 < 9
1+ 212923 -2

N o

1
ST+ T+ T3 — 5 T1%2T3 <

1 1
T1+ T+ 23 — 5T1E2T3 = Ty + x5+ 23(1 — §$1$2) <

1 1 z 5
§x1+x2+1—§x1x2=x1+m2(1—§x1)+1S?1+2§ 5

Note also that f(1,1,1) = 2, so g(3) = 2.
3) Casen >4

1+ ... Ty n—1+z..2,
(X1, X9, ey Ty) K —m——————— + T1..Z, <
f (@122 0 Zn) < 1+z..3, " 14+ z..2,

+ Z1...-Zn
(here we have used (9)).

n—1+1z..2, n—1+2z1..0, + (21..7,)% _n—1+3z;...7,
+ 1.2, = < =
14+ 2.2, 1+zy..2,

14+ zy...2,

(-1 + o11...2,) < (n—1( +z1...z,)
- 1+ 1..2, = 1+ 2.2,
As f(1,1,..,1,0) =n— 1, we get g(n) =n—1 for n > 4.

=n-—1

Problem 13 (David Harutyunyan, Yerevan). Find all f : R — R such that

fl@+f@)+ W) =fly+ f@)+z+ fly) - f(f(v)) (10)

for all z,y € R.
Solution We’ll prove f(z) = z in 3 steps.
Step 1. f is injective.
Let a,b € R and f(a) = f(b) = c. Putting y = a and y = b in (10) we’ll get

fl@+ f(z)+c)=fla+ f(2)) +z+c— f(c)

f@+ f@) +¢) = b+ f(z) + 3+ — flc),
fla+ f(z) = f(b+ f(z)) forallzeR (11)

Putting £ = a and = = b in (10), we'll obtain
flate+fly)) =fly+c)+a+fly) - F(f),
f+c+ ) =Fly+c)+b+ fly) - F(f(v)

SO
Ta—b=flat+c+ f(y) — f(b+c+ f(y)) (12)

Now if we show that there exist yo and zo such that ¢+ f(yo) = f(zo), then from (11) and (12) we’ll
deduce that a = b. If we take = f(f(y)) — f(y) + c in (10), then we’ll obtain such zo and yo.
Step 2. f(f(z)) =z for all z € R.

We take = = f(f(y)) — f(y) in (10), then f(z + f(z) + f(y)) = f(y + f(z)), and since f is injective,
we'll get z+ f(z) + f(y) =y + f(z), so z =y — f(y) = f(f(y)) — f(y). Hence f(f(y)) =y.



Step 3. f(z) ==.
Take y = 0 in (10). Then

flz+ f(z) + £(0) = f(f(2)) + 2 + £(0) - £(f(0)) = 2z + f(0).
If we take f(z) instead of z in the last equality, we’ll obtain
f(f(2) + f(f(=)) + £(0)) = 2f(z) + £(0),
but using Step 2, we’ll get also
f(f (@) + f(f(2)) + £(0) = f(f(2) + 2+ £(0)) = 2z + f(0), -
so 2z + f(0) = 2f(x) + f(0), hence f(zx) = z for any z.

Problem 14 (Artur Barkhudaryan, Yerevan) Let 21, s, . . ., Z2005 be real numbers, |z,| < 1. Define
the sequence y,, as follows:

y-i=v =0, yp=1z,+ 2cos (ﬁ) Yn—1 — Yn—2 (n =12,..., 2005).

Prove that 1
< —_—
ly2005| 2sin2(§—51(g)
Solution For z = (z1,...,Ta0s) € R¥% let Az denote the sequence (y1,...,Y2005) as defined above. It

can be easily seen that A is linear: A(z +y) = Az + Ay and A(Az) = AAz for A € R. For any sequence
z = (1,...,Z00s) and for n =0,1,...,2004 define

Sn"'v = (01 0> s )Oa Z1,%2y. .- ’x2005—n)-
e’

n

Notice that A commutes with S,: AS,z = S,Az.
Denote by u the sequence (1,0,0,...,0) and denote v = Au. It is easily seen that

sin (-2,—6-‘0—5)

v, = — .
" sin(5ks)

Now, for any z = (1, ..., Z200s5), |
2005 2005
y=Ar=A (Z mnSn_1u> = anASn_lu =
TN n=1 n=1 .

2005 2005

anSn_lAu = Z:EnSn_lv
n=1 B

and hence

2005
Y2005 = Z TnV2006—n-
n=1

Thus, if |z,| < 1 for all n, we have

2005 2005 2005

|y2005] =] anvmos—nl < Z | V2006—n| < Z |vn| =
n=1

2005

Z sin (m) 1 + cos(5mz) — cos(1) — cos(222

v sin(go—log) 2sin® (k=)

1

2sin®(5p5z)



Problem 15 (Artur Barkhudaryan, Yerevan). For any maps f,g:{1,2,...,n} — {1,2,...,n} define

f-g(z) = f(g(z)).

Together with this operation the set M, of maps from {1,2,...,n} to itself is a monoid (i.e a semigroup
with identity). A monoid homomorphism is a map between monoids that preserves the monoid operation

and the identity.
Is there a monoid homomorphism F' : Magos — Mageg such that

1. F(f)(n) = f(n) for any f € Maoos and n € {1,2,...,2005},
2. F(f)(2006) < 2005 whenever f € Magps is not bijective?

Solution Suppose F' : Magos — Mags is @ monoid homomorphism satisfying both 1 and 2. Let g € Magos

be a bijection. Then
997" =979 = Laoos
(where 1, denotes the identity on {1,2,...,n}), and hence
F(9)F(g™") = F(g ") F(g) = F(12005) = 1006,
thus F(g) is also a bijection. According to 1,
F(g)({1,...,2005}) ={1,...,2005},

so F(g)(2006) = 2006.
Now take f, g € Magos,

) =5|%],

n+ 9, n < 2000,
g(n) =
n— 2000, n > 2000.

Clearly g is bijective, f is not and
g-f=r5-g
Then F(9)F(f) = F(f)F(g) and hence

F(g)F(£)(2006) = F(f)F(g)(2006) = F(f)(2006),
but on the other hand, according to 2, n = F(f)(2006) < 2005 and
F(g)(n) = g(n) # n.
This contradiction proves that no such homomorphism exists.

Problem 16 (Artur Barkhudaryan, Yerevan). For any mdps f,g: {1,2,.
f-9(z) = f(g(z)).

.,n} —{1,2,...,n} define

Together with this operation the set M, of maps from {1,2,...,n} to itself is a monoid (i.e a semigroup
with identity). A monoid homomorphism is a map between monoids that preserves the monoid operation

and the identity.

Suppose N > 2005 and suppose F' : Myys — My is a monoid homomorphism such that

1. F(f)(n) = f(n) for any f € Mays and n € {1,2,...,2005},

2. F(f)(n) <2005 for every n € {1,2,..., N} whenever f € Maygos is not bijective.



Prove that NV is a multiple of 2005.
Solution Denote R = {2006, 2007,..., N}. Let g € Magos be a bijection. Then

997" =979 = lao0s
(where 1, denotes the identity on {1,2,...,n}), and hence
F(9)F(g™") = F(g7")F(g) = F(la00s) = 1,
thus F(g) is also a bijection. According to 1,
F(9)({1,...,2005}) = {1,...,2005},

so F(g)(R) = R.
Let p be either 5 or 401. Take f, g € Mygos,

n
ny)=pl—i,
w-s[]
n+p, n < 2005 — p,
g(n) =
n+p— 2005 n > 2005-—p.

Clearly g is bijective, f is not and
g-f=rf-g
Then F(g)F(f) = F(f)F(g) and, more generally,

(F(9)"F(f) = F(f)(F(g))" for any n € Z.

For a,b € Rwrite a ~ b if (F(g))"(a) = b for some n € Z. The relation ~ is easily seen to be an equivalence
on the set R. Let
A={(F(9))"(a);n€Z} C R

be a class of equivalence of ~. Note that, according to 2, ¢ = F(f)(a) < 2005 and thus

F(£)(F(9))*(a) = (F(9))"F(f)(a) = (F(g))*(c) =
9"(c) # c=F(f)(a)

forn=1,2,..., % = ¢, which implies

(F(g))*(a) # a.
On the other hand,
(F(9))1(a) = F(¢g%)(a) = F(la005)(a) = 1n(a) = a.

So the number of elements of A is q. As A was an arbitrary class of equivalence of R, this proves that the
number of elements of R is a multiple of ¢ (which is either 5 or 401).
So, we have N is a multiple of 5 and a multiple of 401, which follows N is a multiple of 2005.

is the rank of A?

Solution. For n = 1 the rank is 1. Now assume n'> 2. Since A = (4)7;; + (j)7=;, matrix A is the sum
of two matrixes of rank 1. Therefore, the rank of A is at most 2. The determinant of the top-left 2 x 2
minor is-—1, so the rank is exactly 2.

The rank of Ais1forn=1 and 2 for n > 2.

Problem 17 (Géza Kés, Budapest). Let A h:>the n x n matrix where the (¢, j)th entry is i + j, What

Problem 18 (Géza Kés, Budapest). Prove that for an arbitrary, three times differentiable R — R
function f, there exists a real number £ € (—1,1) such that

Q) _ f)-£-1) _,
=2 = S E - (o).




Solution I Let

g(z) = —@xz(z —1) = f(0)(z® - 1) + @mz(z +1) - f(0)z(z — 1)(z + 1).
It is easy to check that g(£1) = f(£1), ¢(0) = f(0) and ¢'(0) = f'(0).

Apply Rolle’s theorem for the function h(z) = f(z) — g(z) and its derivatives. Since h(—1) = h(0) =
h(1) = 0, there exist n € (—1,0) and ¥ € (0,1) such that h'(n) = A'(¥) = 0. We also have h'(0) = 0, so
there exist ¢ € (9,0) and o € (0, #) such that h”(p) = h”(¢) = 0. Finally, there exists a £ € (g,0) C (—1,1)
where h"'(¢) = 0. Then

e =" =10 6 00+ L6 - 0)-6

Solution 2. The expression f—(lz—_2——f—(_—1) — f'(0) is the divided difference f[—1,0,0, 1] and there exists a

"n
mumber € € (<1, 1) such that £-1,0,0,1] = )
Stfimy , HR 3!

Problem 19 (Géza Kdés, Budapest). Let f be a polynomial of degree n and suppose there exist real
numbers 1 = zg > x; > ++- > T, > —1 such that f(zx) = (—1)* for all k=0, 1,...,n. Prove that

2 3
f(1+;b—2')>§.

Solution. Let T, be the nth Chebishev polynomial. For an arbitrary £ > 0, consider the polynomial
g:(z) = (1 + €)f(z) — Tn(z). The value of this polynomial is positive at o, and negative at Toxi;.
Therefore, g. has a root in each interval (zg, zx+1). This is already n disjoint roots; so g cannot have any
root in [1,00). Since ge(1) = € > 0, we have g.(x) > 0 for all z > 1 and thus f(z) > zTn(z). By e — 0
we obtain f(z) > T,(z) for all z > 1.

Then 2 2 2
f(1+m)zTn(1+m)=cosh(n-arcosh(1+ﬁ>)=
=cosh|{n-In 1+—2-+ i+i >lexp n-ln l—l—z =
n? n2 nt 2 n
1 2\" 1 2 3

Problem 20 (Yuri Syroid). Find the maximal possible dimension of a subspace V' of the space of real
n X n matrices satisfying the following condition

trace(XY)=0,VX,Y eV

Solution If A is a nonzero symmetric matrix, then trace(4?) > 0. Indeed, eigenvalues of A are real. If
A1, - -+, An are these eigenvalues (counting with multiplicity), then

trace(A?) = Z A2 > 0.

i=1

Therefore V' does not contain a nonzero symmetric matrix. Dimension of the space of symmetric n X n

matrices is equal to n—(';—t—l) Thus dim V < n? — 22 H = n(n2— 2.

The space of strictly upper triangular matrices has dimension 2592—"—9 and satisfies the condition of the
problem.




Problem 21 (Yuri Syroid). Let A, B be complex square matrices of size 6 similar to diagonal matrices
diag(2,2,2,2,1,1), diag(3,3,3,1,1, 1), respectively. Prove that there exists a linear subspace U C C® not
equal to {0} and C® such that AU C U, BU C U.

Solution Let Mg(C) denote the space of all complex square matrices of size 6. Put Z4, = {X €
Ms(C)|AX = XA}, Zp = {X € Ms(C)|BX = XB}. One immediately checks that dimZ, = 42 +2? =
20, dim Zp = 32 + 3% = 18. One obviously has the inequality

dimZysNZg=dimZ,4 +dim Zp ——dim(ZA -I-ZB) > 1842036 =2.

Thus there exists a matrix C € Z4 N Zp,C # zFE for any x € C (here E denotes the identity matrix).
Let ) be an eigenvalue of C. Put U = {v € C|Cv = \}. C # zE implies U # {0}, C®. Since A and B
commute with C, it follows that AU ¢ U, BU C U. This completes the proof.

Problem 22 (Yuri Syroid). Prove that any square complex matrix is similar to a symmetric matrix.
Solution Let A be a square complex matrix. Changing A by its Jordan normal form we reduce to the
case A =aFE + J, where J is a Jordan cell. Clearly, we may assume that a = 0. Let n be the size of J.

For z,y € C™ put (z,y) = > ., Ziyi- Let B be a non-degenerate matrix. Put (z,y)s = (Bz, By).

Let X be a matrix of size n. Now we show that the matrix Y = BXB™! is symmetric iff (Xz,y)p =
(z, Xy)p for any z,y € C". ;

Indeed, (Xz,y)s = (BXz, By) = (Y Bz, By), (z,Xy)s = (Bz,Y By). Since B is non-degenerate, the
following statements are equivalent:

1. (Xz,y) = (z,Xy)p for all z,y.
2. (Yz,y) = (z,Yy) for all z,y.

The last condition is an equivalent definition of a symmetric matrix, so we are done.
Thus it is enough to find a non-degenerate matrix B such that (Jz,y)p = (z, Jy)p for all z,y € C™.
Let g(z,y) be a non-degenerate symmetric bilinear form on C*. It is known that there exists an
orthonormal basis for g(z,y). In other words, there exists a non-degenerate matrix B such that g(z,y) =
(z,y)p. One easily checks that g(Jz,y) = g(z, Jy) for g(z,y) = Y ii TiYn+1-i-

Problem 23 (Tamas Keleti, Budapest). Characterise those differentiable R — R functions that have
periodic derivative.

Answer. These are the functions of the form f(z) = g(z) + ¢ - z, where g is periodic differentiable
function and ¢ € R.
Proof. If f(z) = g(z) + ¢ - z, where g is periodic and ¢ € R then f'(z) = ¢'(z) + ¢ is clearly periodic.
Now suppose that f'(z) is periodic; that is, there exists a p > 0 such that f'(z + p) = f'(z) for every
z € R. Then
(flz+p) - f(@)) = f(z+p)— f(z) =0

for every « € R, which implies that f(z + p) — f(z) = d for a constant d € R. Letting g(x) = f(z) — g:v
we get

o(a+5) - 3(c) = e+ ) = S(e+p) = (£(z) - ga:) = fa+p)~ fl@)—d=0

for any z € R. Therefore choosing ¢ = %, f is.indeed of the form f(z) = g(z) + cz, where g is periodic and
ceR.

Remark. It would be natural to use integral in the proof. However, arguments using the integral of
f' are complete (most likely) only for reasonably nice functions (for example for C! functions) since in
general a derivative is not always Riemann integrable and Newton-Leibniz is not true in general even if we
take Lebesgue integral.

Problem 24 (Tamds Keleti, Budapest). Let A be a real n x n matrix, I be the n x n identity matrix
and let f(t) = det(I + tA) for every t € R. Determine f'(0).



Answer: f'(0) =tr(A).
Proof. Let A = (a,-,j), B(t) =1+ tA = (bi,j(t)); that iS, bi,j(t) = ta,i,]- if ¢ 75 ] and bi,j(t) =1+ tai,j if
i = j. By definition, ‘

ft)=detB®) = Y e braw(®) .. bagm(?),

w€Perm(l,...,n)

where Perm(1, ..., n) denotes the set of permutations of {1,...,n}, and e(r) is 1 if 7 is an even permutation
and —1 if it is odd. This shows that f(t) is a polynomial, and so f'(0) is the coefficient of the linear term.
If 7 is not the identity then for at least two i-s ¢ # (i), so in €(7) - byx1)(t) - . . bn,x(n)(t) at least two ta;
type factors appear, so we get no linear term. Therefore it is enough to find the linear term in .

bl,l(t) f et bn,n(t) = (1 + ta111) LR (1 + ta,n,n),
which is clearly (a1,1 +... + aGnp)t, thus indeed f'(0) = a11 + ... + anpn = tr(A).

Problem 25 (Tatr}és Keleti, Budapest). Let f be an R — R function such that f” is a polynomial
for every n = 2,3,.... Does this imply that f itself is a polynomial?

Answer: Yes, it is even enough to assume that f2 and f® are polynomials.
First Proof. Let p = f? and g = f3. Write these polynomials in the form of
p=a-pt*-... D, q=b-q'1’1-...-qf’,

where a,b € R, a4,...,ak, b1, ... b are positive integers and py, ..., Pk, q1,- - . , ¢ are irreducible polynomials
with leading coefficients 1. Then using that p* = ¢? and that the factorisation of p® = ¢? is unique we
get that a3 = b2, k = [ and for some (iy, ..., %) permutation of (1,...,k) we have p; = qi;,..., Pk = @,
and 3a; = 2b;,,...,30; = 2b,-k.'Hence bi,...,b are divisible by 3 and so r = /3 . qll"/3 ceals qf‘/s is a
polynomial. Since r® = ¢ = f3 we have f = r and the proof is complete.

Second Proof (with less explanations) Let s be the simplest form of the rational function }i Then

2
the simplest form of its square is ‘;’—z On the other hand s; = (;;) = f2 is a polynomial therefore ¢ must
be a constant and so f = -}; = 5 is a polynomial.

Problem 26 (Alexander Fomin).

1. Do there exist continuous functions f : R — R and g : R — R satisfying the followixig conditions:
fg(z)) = 23, g(f(z)) = =® for every = € R?

2. The same question for differentiable functions.
Solution.

1. Yes, there are. An arbitrary continuous increasing function f : [e,e®] — [e, €3], where f(e) = e,
f(e®) = €® and e is the natural logarithm base (also known as Euler’s number), can be extended to
a continuous increasing function f : R — R, satisfy@gay‘:z condition (f(x))® = f(z°) for all z € R.
The functions f(z) and g(z) = f~*(z3) satisfy the condition of the problem.

2. No, there are not. The differentiability fails at the points = =1, —1.

Problem 27 (Colombia). Find all functions f : R® — R? such that
fluxv)=f(u) x f(v)
for all vectors u,v in R3.

Solution. Clearly f = 0 satisfies the condition. Let us assume that f # 0



1. If v # 0, then f(0) = f(0 x v) = f(0) X f(v) which implies that f(0) L f(0), concluding that
f(0)=0.
2. Given u € R3, there exist v, w € R® such that u = v x w (choose appropriate v, w in < u >*). Then

f(=w) = f(w x v) = f(w) x f(v)
= —f(v) x f(w) = —f(v x w)
= —f(u)

concluding that f(—u) = —f(u) for all u # 0.

3. Let’s suppose that f(u) = 0 for some u # 0. B

Let v be an arbitrary vector such that v-u = 0. We can find a vector w such that v = u x w. This
implies f(v) = f(u x w) = f(u) x f(w) = 0. Now, if z € R3, taking w = u x z, we get f(w) = 0 (from the
previous reasoning), but also z - w = 0 so f(z) = 0. As z was chosen arbitrarily, we conclude that f =0,
contradicting our initial assumption.

Therefore f(u) # 0 for all u # 0.

4. First let us note the following observation: If u,v,w € R3 and u x w = v X w then v = v + yw for
some v € R.

Let u,v be two linearly independent vectors or equivalently two vectors such that u x v # 0. From the
previous observation and the equalities

flu+v)x f(u) =f((u+v)xu) = flvxu)= [f(v)x f(u)
flut+v) x f(v) =f((utv) xv)=fluxv)= f(uv)x f(v)

we conclude that f(u+v) = f(v) + v f(u) and f(u+v) = f(u) + y2f (v) for some v, 7. € R.
Subtracting both equations we have (1 — ) f(v) + (m1 — 1) f(u) = 0 and

(1 =) f(@) + (m - 1)f(w) x f(uw)
=1 =) flvxu)+n-1)f(uxv)
(1 =) f(vxu)

In view of the above conclusion, last equation implies vy, = 1, so f(u +v) = f(u) + f(v).

If u and v are linearly dependent (v = ~yu), let r, s be vectors such that r, s, u are linearly independent.
If v £ —1, we guarantee the vectors 7 + v — s and s + u — r are linearly independent. Because of the
previous analysis, we have

0

flu+v)=f((s+u—-r)+(r+v—23))
=f(s+u—r)+ f(r+v—s) :
= f(8) + f(u) + f(=7) + f(r) + f(v) + f(=3)

=f(U)+f(Q/

The case v = —1 is trivial, because f(u —u) = f(0) = 0 = f(u) — f(u) = f(u) + f(—wu). Therefore for all
u,v € R we have that f(u + v) = f(u) + f(v).

5. From the previous item, is easily deduced that f(tu) = tf(u)for all £ € Q but in general we have
this for all ¢ € R. To see this note that f(tv) x f(v) = f(tv x v) = f(0) = 0 for all v € R®. This implies
f(tv) = 8¢, f(v) for some s;, € R which may depend on ¢ and v.

If f(tv1) = S0, f(v1) and f(tve) = $p4,f(v2)

St f (V1 X V2) = 810, f(01) X f(v2) = f(84,0,01) X f(v2)
= f(t’l)l) X f(?)g) = f(tvl X ’U2)
= f(v1 X tvg) = f(v1) X f(tva)

= f(v1) X Sty f (V2) = Stupf (V1 X v2)



SO Stu; = Stu, When v X vg # 0. If we would have v; X v = 0 (v2 = yv;), there would exist u;, ug, such
that u; X up = v; and w; x v; # 0 (taking appropriately u;, up in < v; >*) and then

Stanf (v2) = f(tv) = f(tyvr) = ftyur x up) = f(tyur) % f(ug)
= Stan (Y1) X f(U2) = St, f (Y1 X u2) = 51,0, f(v2)

also having s;,, = S;4,- Consequently, s;, only depends on t.

Moreover, if t > 0, we have s,f(v) = f(tv) = f(VIViv) = szf(Viv) = (s\/;)2f('v), having that
S = (s\/;)2 > 0. In particular for ¢; > ¢, it is satisfied that

s, f(v) = f(t1v) = ftav + (81 — t2) v) = ft2v) + f((t1 — t2) V)
= Stzf('v) + stl—tzf('v) = (stz + 3t1—t2) f(’U)

and 8y, = 8, + St;-t, > St,, thus s; is increasing respect to t. As s; =t for all £ € Q we conclude that
s¢ =t for all ¢ € R; equivalently, f(tu) = tf(u) for all t eR

6. From the last two steps, we infer that f is a linear map with trivial kernel. If {e;, es, €3} constitutes
the ordered canonical basis of R?, the following equalities hold:

fler) = flea) x fes) 5 flex) = fles) x fler) 5 fles) = fler) x fle2)
Therefore {f(e1), f(ez2), f(es)} is a orthogonal basis of R®. Furthermore, from the equalities

If(e)ll = [lF(e)llllf (el 5 Wf(e)ll = F(ea)lllFe)ll 5 Nf(es)ll = I F ()l (e2)ll

it is obtained that f(e;), f(e2), f(es) are unitary vectors, hence the associate matrix @ of f is orthogonal.
As det Q = f(e1) - (f(e2) x f(es)) = f(e1) - f(e1) = 1, we also conclude that f(v) = Qv where (@ is an
orthogonalmatrix of determinant 1.

7. Conversely, let @ an arbitrary 3 x 3 orthogonal matrix. Define f : R? — R3 as f(u) = Qu.

If u, v are arbitrary vectors in R?, then Q(uxv)-Qu = (uxv)-u=0and Q(uxv)-Qu= (uxv)-v=0
(recall that an orthogonal transformation preserves scalar product, norms and angles). Then, f(u X v) =
Q(u x v) is parallel to Qu x Qu = f(u) x f(v).

Let {e1, e, e3} be the canonical basis of R® as before. As f(e;) = f(ez X e3) is a unitary vector parallel
to f(e2) x f(es) and f(e1) - (f(e2) X fles)) = det@ = 1, we get f(ez) x fles) = f(er) = flea ¥ e3).
Similarly, f(es3) X f(e1) = f(es X e;) and f(e1) X f(e2) = f(e1 X e). The distributivity of cross product
with respect to vector addition and the linearity of f, allows us to conclude from the previous equalities
that f(u x v) = f(u) x f(v) for all u,v € R3.

8. From the last two steps, we finally conclude that a function f : R3 — R3 satisfies the equality
fluxv) = f(u) x f(v) for all vectors u,v in R3 if and only f(u) = 0 for all u € R3? or there exists an
orthogonal matrix @ of determinant 1 such that f(u) = Qu for all u € R.

Problem 28 (Colombia). Let p > 2 be an even number and let g : R — R defined as g(z) =
z(l — z)? + 2P(1 — ). p
Show that g attains its absolute maxima in e@ two values on the interval [0, 1]

Solution. Let f : R — R defined as f(z) = ¢’ (:c + 1). From the binomial theorem applied to the
function g, it follows that

p—1 p—k
@)=y ow(3) (13

=)ty (i) 7)) -0

. Note that if &k is an even number, C(k) = 0. If £k = 2t — 1 is an odd number, then

otr-ap(20) -o(32) ()] -*[(2)- ()

where




Therefore equation (13) can be simplified to get the following identity:

0-£10)- (7

t=1
Given a positive integer n > 1, the sequence of binomial coefficients ((7), (}),... (")), (¥)) is unimodal.

. . p D - D
Thus, there exists an integer T' > 0 such that ( 2t) (2t B 1) >0 forallt < T and ( 2t) ( 95 _ 1) <0

for all t > T. Consequently, f(z) is a polynomial such that its sequence of coefficients has exactly one
variation of sign; moreover, as f does not have monomials of even degree, the sequence of coefficients of
f(—z) has exactly one variation of sign. By Descartes’s rule of signs, this implies that f has at most one
positive root and at most one negative root. As f(0) = 0, it follows that f has exactly three real roots.

Separating the linear monomial of f, we get f(z) = z {2,,_ (p ) ) +$2h(:1:)] where h(z) is a

polynomial. If S(z) = [5,;-_—5 (ﬂ’—2 —p) +x2h(:c)] note that S(0) = z= (Ll —p) > 0 (because
p > 4). Therefore there exists an open nelghbourhood V of 0 in which S is positive. On the other hand,
f(z) = zf(z) so there exist a € (—3,0) and b € (0,3) such that f(a) < 0 and f(b) > 0. As f(-1) =1
and f ( ) —1, by the intermediate value theorem we guarantee the existence of one root in the interval
( é, O) and one root in the interval ( ) Consequently, f has exactly three real roots or equivalently, g

has exactly three critical points: one in the open interval (0, 2) T=3 1 and one in the open interval ( 1).

1\ _pp-3)
Asg ( 2) 552
are closed and bounded intervals, so g attains an absolute maximum in each of them. The graph of g
in the coordinate plane is symmetric with respect to the vertical line z = %, so the maximum value of f
in the closed intervals [2,1] and [0, 2] must be the same. This absolute maxima must be attained in a
interior point of each interval, hence in a critical point (because g(0) = g(1) =0 < g (3). Consequently, g
restricted to the interval [0, 1] attains its maximum value in exactly two points p, ¢ (the two critical points
of g different from z = %) As g only takes negative values outside the closed interval [0, 1], we conclude
that f(p) = f(q) is the global maximum of g. This completes the solution.

> 0, the function g attains a local minimum in z = 1. Besides [1,1] and.[0, §]

Problem 29 (Colombia). Let f(z) = z* + a;2° + aaz® + a3z + a4 be a polynomial with real coefficients
which have local maximum M and absolute minimum m.
Prove that /
\\3/1 s 2\’ 1, 2 \?
<M-m<3

Zal - §a2 Zal - §a2

Solution. Let f(a) = my, f(b) = ma,a < b, be points of the local minima and f(c) = M,a < ¢ < b,
the point of the local maximum. - First we want to find the maximum and the minimum of the difference
M — m by a fixed d = b — a. Since a parallel translation does not change the difference M — m, we may
assume that a = m; = 0 and b = d without loss of generality. By our assumption the derivative and the
polynomial are of the form

flz) = 4z(z—c)(z—d)
flz) = 2+ g—(c + )7 + 20ds?.

Then f(c) = —ic* + 2c%d is the local maximum and f(d) = —1d* + 2d%c and f(0) = 0 are two local
minima. -

The standard investigation shows that A; = f(c) — f(0) increases and As = f(c) — f(d) decreases by
increasing ¢ from 0 to d. Thus A; = f(c) — f(0) reaches its maximum when ¢ = d and A, = f(c) — f(d)
reaches its maximum when ¢ = 0. In both cases it is equal to 1d* If ¢ = id then f(c) = Ld* and
f(d) = f(0) = 0,A; = Ay = 5zd*. This is the minimum for the d1fference M —m, because otherw1se either
A; or A, is greater than —d4 Thus it is proved that



1 4 14

Now we need to estimate d. It is the distance between the extreme roots of the polynomial f'(z) =
423 + 30122 + 209z + a3 if this ‘polynomial has three distinct roots. Let D be the distance between
the points of extremum of this polynomial. It is equal to the distance between roots of the polynomial
f"(z) = 1222 + 6a,z + 2a,. Hence

1 2

D= Za% - 50,2. (16)
Note that 1 108 — —0,2 > 0, otherwise the polynomial f(z) cannot have a local maximum. The graph
of the polynomlal g(:c) = 4z° — 3D%z can be obtained by a parallel translation from the graph of the
polynomial f'(z) = 4z + 3a;7? + 2a;7 + a3 because g(z) has the same distance D between extremes and
the same leading coefficient 4. The distance between the extreme roots of the equation g(z) = ¢ decreases
by increasing the absolute value of ¢ until the equation has three distinct roots. Its maximum is v/3D,
where ¢ = 0, its minimum is 3 5D, where c = +D3. This means that if f'(z) = 42 + 3a,22 + 2a9z + a3 has

three distinct real roots then the distance between the extreme roots satisfies the following inequalities

§D<dg\/§D.

Taking in account (1) and (2) we obtain finally
3 /1, 2 \* 81 /1, 2 \° 1, 2\
I (Zal - 3a2> < 556 (4a1 - 3a2) <M-m<3 7%~ 3%

Problem 30. Let A be an n X n matrix with real coefficients. Define exp(A) = I+ A+ £ A%+ LA%+

I stands here for the unit n X n matrix. It is known that the series is convergent for every matrix A. We
identify in a natural way n X n matrix with a point of R, so exp maps R™ into itself. Prove or disprove
the following statements.

(a) The set exp(R™) is an open subset of R,

(b) The set exp(R™) is a closed subset of R™.

(c) The map exp: R* — R™ is differentiable at egc_li point A € R™, i.e. there exists a linear map
Dexp(A): R** — R™ such that

1
A mll exp(A + H) — exp(A) — Dexp(A)(H)|| =

and for each matrix A the map D exp(A) is a linear isomorphism of R™ onto itself.

Solution. Tt is easy to see that if A% = )& then exp(A)¥ = e*¥, more generally if (A — \I)*% = 0, then
(exp(A) — ) *# = 0. Thus all eigenvalues of exp(A) are of this form (there are precisely n of them if
counted with multiplicities). Therefore no matrix with an eigenvalue 0 is of the form exp(A). Obviously
eI = exp(—nlI) and lim,_,.ce™I =0 € R™*. This way we proved that the image of exp is not a closed
set. We shall prove that for n > 1 it is not open either. By straightforward calculation one proves that

0 -8 __fcosB —sinf
exp ( (ﬂ 0) ) o (sinﬂ cos ,3)
| 0 — -1 0 o
soexp| { = =\ o —1) %0 for n = 2 the matrix —I is of the form exp(A). Let € > 0 and

B = (—(1) B 1) Suppose B = exp(A) for some real matrix A. If X is an eigenvalue of A, then e* is an



eigenvalue of exp(A), so —1 = ¢*. Therefore A = i + 2m for some integer m. Since A ¢ R the number A
is also an eigenvalue of the real matrix A. So A is diagonalisable. This implies that B is diagonalisable,
too. This is a contradiction, so B cannot be written in the form exp(A), so exp(R*) is not open. Obviously
this argument works for each n > 2, it is enough to notice that R™ = R? x R"~2,

Clearly the map exp is differentiable and

D(exp)(A)(H) =H+ AH + HA+ A’H + AHA+ HA® + A’H + A°’HA+ AHA* + HA® +

note that sometimes AH # HA. If the differential of the map F: R™ — R™ is an isomorphism at every
point and depends continuously on the point then the image of F is an open subset of R™ (Implicit Function
Theorem or Inverse Map Theorem). We know that in the case of exp it is not the case. Therefore there
are matrices A such that D(exp)(A) is NOT an isomorphism. We may give an example although we do
~ not have to.

Let A, = (g —g), ((1) _(1)), so A = aC. Clearly C? = —I. Therefore A2 = —a?I, A> = —a®C,

A% = a*I, ... Using these formulas together with standard Taylor expansions of sine and cosine we get
' 1
D(exp)(A)(H) = 3 [(sina + cosa)H +sinaCH + sinaHC + (sina — cos a)CHC] .

Thus Dexp(A,)(H) = ~H+ CHC = C*H+ CHC = C(CH + HC). 1t is easy to see that CH+ HC =0
iff H is a symmetric matrix whose trace is 0. This means that the dimension of the kernel of D(exp)(Ax)
is 2.

Remark. The problem is relatively easy. One of my colleagues told me that some time ago A.T.Fomenko
wrote something about the exponential defined on real matrices. I did not have a chance to look into the
paper. I looked into few books on ODE’s in which Floquet theory is described. In no such book the
authors say anything about exp defined on real matrices although it is an obvious place to say something
about it; Coddington, Levinson for example avoid it by looking at B? instead of B. The result is rather
unexpected: the differential of exp does not have to be an isomorphism.

One can restate the problem e.g.

For what real matrices B there exists a real matrix A such that B = exp(A)? — it is somewhat harder
that the problem above. The answer is: B is invertible and the Jordan blocks corresponding to real
negative eigenvalues have even size and each such block is repeated an even number of times (this means
in fact that negative reals are considered as non-real numbers so they come in pairs: a number together
with its conjugate, of course this is true also for the Jordan blocks). The interior of the image of exp
consists of all matrices WH@J@H real eigenvalues are positive. Each matrix B of the form exp(A) may be
approximated by a matrices without negative real eigenvalues, it is enough to change B so that negative
real eigenvalues will be replaced with non-real ones.

Instead of 1.3 one could ask: Fmd the rank of the linear map D(exp) (A) for any real matrix A (maybe
only for n = 2).

Problem 31. Let S = {z € C: |z| = 1} be the unit circle. A map F: S — S is called a C" map,
r=0,1,2,..., of degree k € Z iff there exists a C” function f : R — R such that f(z + 1) = f(z) + k for
all z € R and F(e¥™*) = e2™f() for all t € R. Prove that there exits a sequence (F},) of C* maps of degree
1 such that for each nonnegative integer = the sequence ( f,(f)) is uniformly convergent to the identity and
for no n there exists a continuous map G : S* — S! such that F,, =GoG.

Solution. We shall show that it is possible to define F, so that F,, will have precisely one periodic
orbit of prime period 2(2n + 1). Suppose that F,, = G o G. If a point p € S! is m—periodic for G, i.e.
GoGo---0G(p) = p, then it m—periodic for F, if m is odd and it is Z-periodic for F, if m is even. In

both ca".'tses the number of periodic points for G and for F, is the same while the number of periodic orbits
of G may be smaller then those of F,,. Since F;, has one periodic orbit, G must also have one periodic orbit
consisting of 2(2n + 1) points, so the prime period is 2(2n + 1). But in such a situation F,, has 2 periodic
orbits, the prime period of each of them is 2n + 1, a contradiction. To complete the proof it suffices to



' define f,:

1 1 2n .
M@ =et i T <2(2n + 1)) sin’2(2n + 1)z

Clearly fn(z+1) = f(z) +1, so F, is well defined C*° map of degree 1. One can see that 1 = ¢?" is a,
periodic point of prime period 2(2n +1). The function f,, maps the segment [0, '2(2711_+1)] onto the segment
[2(2n 1y 2(2n - "f ], this one onto [ gn Dy 2(23 +1)] etc.

Remark. The problem is rather easy, known to people interested in generalisations of the Imphclt
Function Theorem to infinitely dimensional spaces.

One can show that all arbitrarily close to the identity C* diffeomorphisms of the real line are ,,squa.res
if multiplication is replaced with composition.

Problem 32 (Roman Karasev). Let f(z) be a polynomial with real coefficients of degree n having n
distinct real roots z, o, ..., Z,. Prove that for any non-negative integer k < n — 2

B
: ; Pl

k :
Solution. Consider the rational function r(z) = 2 of complex variable z. Note that by the degree

f(2)

C
@sons r(z) < W for some constant C and large enough |z|. So for the integral over the circumference

Sgr of radius R and centre at the origin we have

%S'R r(z)dz

for large enough R. On the over hand, for large enough R we have the equality

n n k

"
rzdz=2m'§ Res,, r(z =27rz'§ ——.
fiﬂ ) i=1 ) =1 f(z:)

Thus for large enough R we have

_ C
R

— ?

; fi(z:)

and going to the limit R — 400 we obtain that the sum considered equals 0.

Problem 33 (J. Rodrigo). Let A, , be a symmetrical matrix with distinct eigenvalues, let V be the
set of matrices B,_, such that they commute with A, BA = AB. Show that the matrices of V are also
symmetrical. Is the result true if A has multiple eigenvalues?

Solution. The matrices I, A, A® commute with A. We see that V has dimension 3: The dimen-
a 00

sion of V is the dimension of the matrices that commute with J = |0 b 0|, where J is the canon-
0 0 ¢

ical Jordan matrix of A (it’s just a change of basis). The matrices commuting with J are the matrices

j k1 j k1 a 00 a 00 j k1 000
m n o] suchthat [m n o 0b0}]—-100b 0 m n ol =[]0 0 0]. This is equiv-
0 0 c 0 0 ¢ p q T 00O

p qr p qr
) ¢
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0 O 0 0 0 O 0 0 0 J 0

(0 a-b 0 0 0 O 0 0 O\ (k\ (O\
0 0 a-c O 0 O 0 0 0 l 0
0 0 0 b—a 0 O 0 0 O||m 0

alent to fO 0 0 0 0 0 0 0 0 n | = | 0. Since the three eigenvalues

0 o0 0 0 0b-—c O 0 0 0 0
0 0O 0 0 0 0 ¢c—a 0 O D 0
0 O 0 0 0 O 0 c¢-b 0 q 0

o o 0o o 0o 0o o o o \r) \o

are different, the rank of the coefficient matrix is 6, so the dimension of V is 3. Then, V = L (I, A, A?).
Since I, A, A? are symmetrical, all the matrices of V are symmetrical. (This can be generalised to any
dimension n).

The result is not true if A has multiple eigenvalues. As an example, B =

O b
O =N

0
0 | commutes with
1

, and B is not symmetrical.

o O =
o = O
N OO

Problem 34 (Dierk Schleicher, Bonn; modified by G. Kés). Let «: (0,1) — R? be an injective
continuous curve. We say that «y satisfies the triangle condition if for every ¢ € [0,1] and every three
disjoint sequences tn,t,,tr € [0,1] of parameters converging to ¢, the largest angle of triangle A,, with
vertices Y(tn), Y(t,), Y(th) converges to 180°.

a) Does all continously differentiable curves satisfy the triangle condition?

b) Are all curves satisfying the triangle condition differentiable?

c) Assume that «y is differentiable and |§| = 1 everywhere. Prove that v satisfies the triangle condition
if and only if 7 is continuous.

Sketch of solution. a) No. A V-shaped polyline can be parametrised such that it is continuously differen-
tiable. For example, y(t) = ((2t — 1) |2t — 1|*) is continuously differentiable, but it does not satisfy the
triangle property.

b) No. Take an increasing function g : [0,1] — R which is not everywhere differentiable and set
~(t) = (g(t),0). The shape of the curve is a single line segment, so the triangle condition is obvious, but
the curve is not differentiable.

c) First, assume- that 4 is continuous. If (,), (t,) are disjoint sequences converging to a certain ¢, then
Cauchy’s theorem shows that the direction of the line between v(t,) and v(t,) converges to 4(t). This
implies the triangle condition.

Next, assume that  is not continuous at a point t. The set of accumulation points of 4 at ¢ is connected,
so it is an arc of the unit circle or. it is the complete circle. So there exist (disjoint) sequences (¢,) and (2.)
such that lim 4(¢,) and lim 4(¢,) exist and their angle is in (0, 7). Now take two sequences, (u,) and (u},)
such than the directions (y(t,),v(u.) and (y(t,),y(u,) converge to lim~(t,) and lim4(¢,), respectively.
Then the sequences t, and t;,, together with either u, or u;,, fail the triangle condition.

Problem 35 (Dierk Schleicher, Bonn). Let v: [0,00) — R? be a continuously differentiable curve with
v(t) = (¢,0) for t > 1 and t = 0. Suppose that + is injective and disjoint from all of its (0, n)-translates
for n € Z. Is there an upper bound on the algebraic winding number of -y around the point (0,1)?

Note: the algebraic winding number of 1 is defined as the integral 5= [* darg(y(t) — (0,1) (this is the
(fractional) number of times the curve 7 turns around (0, 1) before landing at (0, 0)).

Sketch of solution. Start with the curve y(¢t) = (¢ + 2,0) and apply a sequence of homotopies to the
entire plane. These homotopies wil} keep disjoint curves disjoint.

The first homotopy is the identity for all (z,y) with < lorz > 3, and maps (z,y) — (z,y+1.5s|z—1|)
for s € [0,1] (it raises a neighbourhood of the points with z = 1).

The second homotopy is similar, but shifts all points with y-coordinate near 0.5 by 2 units to the left,
and does the same for points with y-coordinate near 1.5,2.5,--- — 0.5, —1.5,....



The third homotopy is similar to the first: (z,y) — (z,y—1.5s|z+1|) (it lowers points with x-coordinate
near —1).

The fourth homotopy is the inverse of the second.

Composing these four homotopies in order, and repeating this process any finite number of times,
applied to the initial curve  yields a curve with the desired properties.

Problem 36 (Comenius University, Bratislava). Let z,y, z € R such that zy2z = 1. Find the maximal

and minimal value of the term '
1 1 1

+ + :

l+z+zy 14+y+yz 142422

Solution.
1 1 1

1+x+xy+1+y+yz+ 1+z+za:=
_ z - zz 1 _
N ; _z(1+x+:cy)+a:z(1+y+yz)+1+z+za:—
_ z Tz 1 _
T itwmil T eirilvz 1vetam
so the minimum and maximum is equal to 1.

b

Problem 37 (Comenius University, Bratislava). Let A, B, C be angles of triangle. Find the infimum
and supremum (maximal and minimal value if they exist) of the term

cos A 4+ cos B +cosC.

Solution. We know that A+ B + C = 7. Then we obtain
cos A+ cos B+ cosC = cos A+ cos B+ cos(m — (A+ B)) =

=2cosA+B A—B+(2CO2A+B )

5 COS )

= 2sin g (cos

= A-B A+B)+1=

2 2
A B :
= 4sin—C2—sinEsin—2— + 1.
Because A, B, C are angles of triangle we know that 0 < A, B, C < 7. Then we obtain that
sin — si Asiné >0
in = sin 5 5

and it is easy to prove that the term cos A 4+ cos B + cos C has infimum 1 and no minimum. On the other

hand we have
A—-B

2

C C c 1\? 1
< 9¢in — [ 1 — sin — =91 —{gin= — = ot
_23m2 (1 sm2)+1 2[ _(sz 2) +4

The equality holds true for A, B, C such that cos A;2B =1 and sin —(2’1 = % It means that A=B=C = 3.
Then supremum and maximum of t‘he term cos A + cos B + cos C is %

cosA+cosB+cosC=2sin—§—<cos —sin%)+1§

3
1< -,
+ 2

Problem 38 (Baidilda Tureshbayev). Let f(z) = a;cosz + - - - + a5 cos 5z, where ay,...,as are real
numbers, such that ¥z € R |f(z)| < 1. Prove inequality

£ (2)| < 3.5 vzeR.



Solution. We consider Fourier series of the function f(z):

_ % / " Ds(t — z)f(2)dt

where

5
1
t) = -2-+;coskt

is Dirichet’s kernel.
Then we have

1
@< [ P8O |15 <
5
<2max Y k' cosk(t—z)| <
te[m;m] =1

5
< 221&0 < 3.5
k=1

Problem 39 (Baidilda Tureshbayev).
Let f(z) = az? + bz +c, a#0,b,c— real numbers. Denote
M={zeR: |f(z)| < 1}.

Prove following inequality

Solution.

We may assume that a > 0. We denote quantity |M| by .

Case 1: Equation f(z) = —1 has a root. Then there are z;, T3, 3, T4 such that

fl@) = flza) =1, f(@) = flzs) = —

T < Ty £ T3 < T4.

Therefor M = [z1; 23] U [z3; 74] and |22 — 21| = |24 — x3| = §. We consider only z,, 2, x4, then

1 Ty 1

az? 4+ br; +c= 1, i 22 _11 o

ari+bry+ec=-1, =a= 2 5T = =

2+b:1: te=1 1 r1 I (.’132—171)(1173—:61)

a3 §Te= 1 zo 22

1 z3 23
2 8 2v2
= la| £ TE=3

= = u<
| 55w vV |a|
Case 2: Equation f(z) = —1 has no roots but equation f(z) =1 has roots z;, Zs.
Let x3 = 21322 then (|f(z3)| < 1)

1 T 1
2 b = 1‘ ! 2 !
azri + 0Ty +c= 1 z3 f(x3) flzs) -1
azj+bzy+c=1 =a= - -
2 1 z; z? (w3 — ) (23 — 21)
az} + bas + ¢ = f(z3) 1 z; ) |

2
1 :E3 .’133



2 8 2/2

< - = —_—.
|zs — o] - |za — 21| #s Vla|

= |a| <

Problem 40 (Baidilda Tureshbayev).
Let £ > 1 be a real number. Prove that there are exist natural numbers

m,n, k € [z;z + 8y/1]

such that
Inm,Inn,Ink

are Q-linear dependent.
Solution: n%,n(n+1),(n+1)%.

Problem 41 (Baidilda Tureshbayev). Let

00
4 E a, COSNx
n=1

be a convergence series on the interval [a; 3]. Prove that a, — 0 as n — oo.

Problem 42 (Javier ...). Let f be a function with derivatives of any order in (0, co) and such that there
exists hm f™(z) for every n. Show that, if f has an horizontal asymptotic line in 0o, then hm f™(z)=0

for every natural number n. Is it the counterpart of this statement true?
Solution. Since f has an horizontal asymptotic line in oo, zlifgo f(z) =1 € R. Then, }Lr{.‘o ( flz+1) -
f(z) = 15101o flz+1)— zlg& f(z) =1 —1=0. On the other hand, applying the mean value theorem of
Lagrangef flz+1) - f(z) = f'(a) with @ € (z,z+ 1), so zlgilo (flz+1) - f(z)) = lim f'(z), and then
Jrg, f'@) =

Assume that lim f ("=1)(z) = 0. Hence f*~1 has an horizontal asymptotic line in 0o, and then applying
the previous paragraph we have that lim f ™)(z) = Jlim (f*V(2)) = 0.

The counterpart of this statement is not true: the function f(z) = \/Esin £/ has derivatives of
any order in (0,00) and satisfies that f'(z) = —sm:c1/3 1—é_—cosac — 0 as £ — oo, and then
lim f™(z) = 0 for every n € N, but has not an horlzontal asymptotic line in oo, since hm f(z) doesn’t

T—00

exist.
Problem 43 (Javier ...). With the same conditions than in the problem 42, show that if f has a no
horizontal asymptotic line in oo, then lim f/(z) =m # 0, lim f™(z) =0, for every n € N, n > 2.
T—00 00
Is the reciprocal true?
Solution. As f has a no horizontal asymptotic line in oo, lim (f(z) — (mz + n)) = 0 for some m # 0,

n € R. Consequently, g(z) = f(z) — (mz + n) has an horizontal asymptotic line in oo, and then by
problem 42 we have that lim ¢'(z) = 1in°1o (f'(z)—m) =0,s0 lirglo f'(z) = m # 0. Moreover f'(z) has an

horizontal asymptotic line in co, so we can apply again the problem 42 and we obtain that lim (f'(z)) ™
T—00

lim f®+)(z) =0 for every n > 1, so lim f™(z) = 0 for every n > 2.

r—0Q : r—00

The reciprocal also is false in this case: the function f(z) = +/Tsinz!/? + z verifies that f'(z) =
(Vzsinz'/?) 41— 1#0 as as z 5 00, f™(z) = (\/Esinxl/3)(") — 0 as z — oo for n > 2, but f hasn’t

rsinz!/? +
VT =1, but n = lim, .o (v/Zsinz!/® +

a no horizontal asymptotic line in oo, since m = lim
T—00 T

T — 1) = lim, 0o v/Tsinz'/3, and this last limit doesn’t exist.



Problem 44 (Alexander Fomin). Let f(z) = z* + az® + bz? + cz + d be a polynomial with real
coefficients. Prove that its graph has an axis of symmetry if and only if f'(—a/4) =

Proof. It is easy to see that an axis of symmetry can be only vertical (z = p). It takes place if and only
if the function g(z) = f(z + p) is even. Using the formula f(z) = f(p) + f'(p)(z — p) + j&( p)?*+
f”/(”) L28(z — p)3 + (z — p)* we obtain g(z) = f(p) + f'(p)z + ——Qix + & (”)m + z*. The function g is even if
and only if f”(0) = f'(0) =0, i.e. p= —a/4 and f'(—a/4) = 0.

Problem 45 (Alexander Fomin). Let f(z) = z° + az* + bz® + cz® + dz + € be a polynomial with real
coefficients. Prove that its graph has a centre of symmetry if and only if 15ab = 4a® + 25¢.
Proof. A point (p;q) is a centre of symmetry if and only if the function g(:c) = f(z +p) — ¢ is odd.

Using the formula f(z) = f(p) + f'(p)(z — p)+f (p)(IB P) +—‘@($ P)3+ (33 p*+(z—p’w

obtain f(z) = (f(p) —q) + f'(p)z + —i’—’zx + -——mx + Lm + z°. The function g(m) is odd if and only 1f
f)—qg=f"(p)=fY(p)=0. Ltis pos51ble if and only if p= —a/5 q = f(—a/5) and 15ab = 4a® + 25¢.

Problem 46 (Valeriu Anisiu, Cluj-Napoca). Define the function f : [1,00) — [1,00) by f(z) =
1+ logz and denotg by fn. the n-th iterate of the function f for n > 1 and fo(z) = z.

1
Show that the series Y a, is convergent, where a, = .
2 Fom) () -+ foa ()
Solution

Observe first that a, = f.(n).
It is easy to see that:
(1) f(z) & —In(b)+bz for0<b<l,z>1
(2) fo(z) < —log(b)(1 —b")/(1 —b) + bz [by iterating (1)]
(3) far(@) L fulz)forz>1,neN
(4) fn(z) is an increasing function of =
(5) fi(z) is a decreasing function of z
The mean value theorem implies

fa(n) = faln = 1) = fo(n = 8) > fr(n)

where 6 = 6, € (0,1). One obtains:

(6) an < fu(n) — fuln — 1) = (fu(n) = fa-r(n — 1)) + (fa-1(n — 1) = fa(n = 1)).
The sequence f,(n) is bounded (cf. (2) for b = 1/2), so the partial sums

N

S (falm) = fualn— 1)

n=2

are also bounded (N € N).
Using (6), in order to show that the series Zan is convergent it is sufficient to show that

n

S (fucaln=1) = fuln = 1) < 00

n>1

We shall estimate e, = fn(n) — fos1(n). Because 0 < z — f(z) < %(x —1)2, we obtain:

OSen_2(fn( m) =17

Using now (2) with b= 1 — n~%/3 we get:
- .

en < iy = % (— log(B)(1 — b")/(1 — b) + nb" — 1)°

It is not difficult to see that the series Zun is convergent because u,, is equivalent to én“‘/ 3,

n



Problem 47 (Valeriu Anisiu, Cluj-Napoca). Let U, be the set of all n x n matrices with entries in
the set {0,1} and V, the set of the matrices in U, having an odd determinant.

Show that for n > 2, 2 < card(V,)/card(U,) < &

Solution

We shall identify U,, with M,,(Z,), the set of n x n matrices over the field Z,.

Obviously card(U,) = 2.

A matrix A € My(Z,) belongs to U, if and only if it is invertible in M,,(Z;) and this is equlvalent
with the fact that its columns are linearly independent (over Zs).

In order to compute the number of invertible elements of the ring M,,(Z,), observe that for first column
of such a matrix there are 2" — 1 possibilities (only a null column has to be excluded); the second column
must not be a multiple of the first, so there are 2" — 2 possibilities. The third column must not be a linear
combination of the first two columns, so there are 2" — 22 possibilities, and so on.

One obtains that the number of the invertible elements of the ring M,,(Z,) is card(V,) = (2" —1)(2" —
21)(27 — 22) ... (27 — 2n 1),

Hence, card(V,,)/card(U4,) = (1 - 1/2)(1— 1/4)(1 - 1/8)--- (1 — 1/2").

For n > 2, one has card(V,)/card(U,) < (1 —1/2)(1 — 1/4) = 3/8.

On the other hand, card(V,)/card(Uy,) > [Toe,(1 — 27™).

Using the inequality [[,,(1 + z,) > 1+ )_ 2, which is valid for —1 < z,, < 0, we obtain:

120227 = A1/ - /90 - 9T -27) >

-0l =%3>1%

Problem 48 (Artur Michalak, Poznan). Let K be the set of all nonempty subsets of {1,2,...,n}
equipped with the Hausdorff metric dy given by

d(A, B) = max{max min |a — b|, maxmin |a — b[}

for every A, B € K. Find the smallest number of elements of a (1 + ¢)-net in K, for 0 < e < 1. (A é-net
in K is a family F of elements of K such that for every A € KC there exists B € F with dy(A, B) < 4.)

Solution. Forn =3k andn=3k—1weput T ={2+3s:5=0,1,...,k— 1}. For n = 3k — 2 we put
T={1+3s:s8=0,1,...,k— 1}. It is clear that for every a € {1,...,n} there exists a unique element
@(a) in T such that |a — p(a)] < 1. First, we show that dy(A,(A)) < 1 for every A € K. Fora € A
we have mingeg 4y |a — b < |a — ¢(a)| < 1. For b € ¢(A) there exists a € A such that b = ¢(a). Then
mingc4 |c — b| < |a — ¢(a)| < 1. Consequently, dy(A,p(A)) < 1. Let F be the family of all nonempty
subset of T'. It is clear that F has 2F — 1 elements. Moreover, it is a (1 + £)-net in K.

Let H be any (1 +¢)-net in K. Let P = {p(A) : A € H}. It is clear that P C F. Let A € F. Then
there exists B € H such that dy(A4,B) < 1. Hence, {a — 1,a,a+ 1} N B # { for every a € A. But
¢({a—1,a,a+1}) = a for every a € T. Consequently, ¢(B) = A. This shows that P = F. Consequently,
H has at least 2% — 1 elements.

Problem 49 (Artur Michalak, Poznan). Find minimum and maximum of the function

f(xla"'>xn)= Z 211?,‘.’1,'_7'

1<i<jisn
on the unit sphere z2 + --- +z2 =1 in R".

Solution. f is a quadratic form. From standard facts from the linear algebra it follows that there exists
an othonormal base gi,...,g» in R® such that

FQ o mig) =D Nal,
i=1 i=1

.



where ); are eigenvalues of the matrix

11 .- 0

and S = {(z1,...,2a) 123 +---+22 =1} = {3} vigi : ¥} + - + 2 = 1}. Consequently, min f(5) =
min; ¢;<n, A and max f(S) = maxigign A Then it is enough to find A;. We have '

-z 1 - 1 -z+n-1 1 ..o 1
1 -z - 1 —z+n—1 -z - 1 -
det | . . . . | =det :
1 1 - -z —z+n—1 1 - -z
1 0 .- 0
1 —z-1 ... 0 )
=(—z+n—1)det | . : . , =(—z+n-1)(-z-1)"""
1 0 - —z-1

Consequently, min f(S) = —1 and max f(S) =n — 1.

Problem 50 (Djordje Milicevic, Princeton). Let U C C be the set of complex roots of unity
(U={2€C: 2" =1for somen € N). Prove or disprove: For every positive integer N > 0, there is an
M = M(N), with the property that whenever f and g are two polynomials with rational coefficients of
degree at most /N such that

#U) N g W) > M,

we must have f" = g° for some r,s € N.

Alternative formulation: Let f and g be two polynomials with rational coefficients of degree at most
N such that

#F1U)Ng H(U)| > N*<.

Prove that f™ = ¢° for some r,s € N.
Solution. The answer is yes. Pick a z € f~}(U) Ng~}(U); then

f(z)=¢ and g(2)=(] 1)

for a certain nt" primitive root of unity ¢, = /", 0 < o, < n and (o, 3,n) = 1. Note that, as
#|f71(U)N g~ ({U)| > M, n may eventually be assumed as large as needed by taking a large M (as there
are only (k) primitive k** roots of unity, and 3, w(k) < n?, it suffices to take M > NnZ, ). In fact,
we really need only one z, but with large n.

This means that the rational polynomial

A=ff—g®

has a complex (algebraic!) root z. Now, for any 0 < j < n, (j,n) = 1, we can act on (1) by the Galois
automorphism o; € Gal(Q/Q) extending the automorphism ¢, — ¢ of the cyclotomic extension Q(¢,)/Q.
As f and g are rational polynomials, this will yield

flo5(2)) =G and  g(o;(2)) = ¢F;
ie. ¢(n) oj(z)’s (which are clearly %ll different) are all roots of A. If we had
¢(n) > N max(a, §),

the problem would thus be solved.



However, given that we have no control over n, it is conceivable that (c, ) € [0,7)? might both be
very large compared to ¢(n). Note, however, that on the other hand from (1) we also have

fr(z) = and g™(z) =

for an arbitrary 0 < m < n. By dividing [0,n)? into < n squares of size < /n and an application
of the Pigeonhole Principle, we can ensure that f™(z) = (& and g™(z) = ¢ with (0,0) # (o, ﬂ')
(ma modn, mB modn) K 1/n, so that, instead of A, we can consider the polynomial

A =fﬁ’ _ga/

of degree < N/n.

Now, from @(n)/n = [[,j,(1 = 1/p) > [1,1, 1/p° > 1/n%, we have the standard lower bound p(n) >
n~¢. So, for large enough n (explicitly, for n > N?*¢), the polynomial A will have more zeroes than its
degree. This means that A = 0, which completes the proof.

Problem 51 (Djordje Milicevic, Princeton). Can the additive group R be written as a union of four
proper sub-semigroups?

Solution. Yes. Indeed it is clear how one would devise such a partition of the additive group R%: we
can simply divide it into four semi-open quadrants (which are certainly sub-semigroups), one open half-axis
in each, and origin added to one of them at will.

Yet, R and R? are isomorphic as Q-vector spaces (both have countable Hamel bases), and hence as
additive groups. This completes the proof.

Problem 52 (Djordje Milicevic, Princeton). For a noncommutative group G, and an automorphism

¢: G — G, write
Glol={9€G:¢(g) =g7"}.

How large can |G[4]|/|G| be?

Solution. |G[¢]|/|G| can be as large as 3/4, as shown by the automorphism of Dg = {ric?: 0< i<
2,0<j <4} (r2 =0 =¢, 70 = 0%7) given by ¢(7) =7, ¢(0) = 7°.

Now suppose that |G[¢]| > (3/4)|G|, and take zo € G[¢]. Pick an arbitrary y € E = G[¢|NzoG[¢]; here
note that |E| > |G]/2. From ¢(y) = v}, é(z0) = x5 and ¢(z5'y) = y~'xo, we obtain that zoy = yzo.
This means that F is contained in the normalizer N(zo), but as |E| > |G|/2, we must have N(zo) = G,
i.e. Zo must be in the center Z(G). We have just proved that G’[d)] C Z(G), so that |Z(G)| > (3/4)|G|;
this is possible only if G is commutative.

Problem 53 (Djordje Milicevic, Princeton).

Given a group G, let G(m) denote the subgroup generated by m'™ powers of elements of G. If G(m)
and G(n) are commutative, prove that then so is G(ged(m, n)).

Solution. Write d = ged(m,n). It is easy to see that (G(m),G(n)) = G(d); hence, it will suffice
to check commutativity for any two elements in G(m) U G(n), and so for any two generators a™ and b".
Consider their commutator z = a~™b""a™b"; then the relations

z=(a""ba™)""" = a ™ (b "ab™)™

show that z € G(m) N G(n). But then z is in the center of G(d). Now, from the relation a™b™ = b"a™z, it
easily follows by induction that

aml bnl — bnl aml zlz‘
Plugging in | = m/d and | = n/d yields 2(™®* = z("/9* = ¢ but this implies that z = e as well.
Problem 54 (Moubinool Omadtjee, Paris). Let A, B € M;(Z) such that

2k k(2k+1)
2k ,quadk € N.

1
AB=1{0 1
0 0 1



Prove that there exists C € m3(Z) such that BA = C*.
Solution.
1 2% k(2k+1)
0 1 2k =
00 1

Problem 55 (Moubinool Omarjee, Paris). For a, P(z) real polynomial of degree n — 1, consider the
matrix A = (P(i +j — 1))1<ij <,- Compute det(A).

Solution. f € L(R,_1[X])linear map of E = R,_;[X] given by f(Q) = Q(z + 1)
Consider the basis Lagrange interpolation (L;)1<i<n of E

o =1 (555)

i —
i J

P() =" P(i)Li(z)

i=1

By induction fi~1(P) = "7 P(i + j — 1)L; where fi~! iterate of f j — 1 times, we have det(4) =

.....

Let (S1,...,8Sy) basis of E = R,_1[X] given by S; = 1, S = (x—l)(’("ﬁ‘l';gm_k“), we have g(S5;) = 0,
9(Sk+1) = Sk
Decompose P in the basis (Si,...,S5,), P =Y ., wiS; we get

W, We Wy,
Wo 0
det(A) = |... 0 (LdetL )(Sl,...,S,,)
cee Wy B
Wy ... ... 0 0

The matrix (S;(¢)) is triangular inferior with S;(7) =1
det(4) = (-1)*F = (-1 ((n — lenr)”
where a,, — 1 is coefficient of " ! in P '
Problem 56 (Moubinool Omarjee, Paris). Let A € M,(R) \ {0}, u € R", ||u|| = 1. Prove that

n-1

Solution. f morphism associate to A eith an orthonormal basis f* adjoint of f
g = f*o f is self-adjoint there exist an orthonormal basis of eigenvector ¢ = (¢y,...,¢,) of g

|1 4ul® = (f(u), f(u)) = (u, g(u)) = Zai(ci,u)2 > ay|ull® =

a; < -+- < a, eigenvalues correspondiﬁg (C1y.-yCn)
If a; = 0 it is finish '
Ifay =||f(c)|]? > 0 use AM-GM

tr(g)_a1+---+an> 1

= A=
n—1 n—1 > (a1 an)



n—l < a...a, 2
= < ||A
det(g) (t (g)) < as...an a1 = ” UH

7
Problem 57 (Moubinool Omarjee, Paris). A, B € M,(R) with rank@) = 1. Prove that

det((A — B)(A + B)) < (det A)%.

(])" 0 0 ... 8 an+1 ap ... ai,
Solution. If B=J = | . . | then det(A+ B) = det 5 | expand
0 ... 00 a1 P G

according to the first row det(A + B) = (a1 + 1)Ay + Z;’=2(—1)j+1a1jA1j = det(A) + A
Similarly det(A — B) = det(A4) — An

det((A — B)(A + B)) < (det A)? — A2, < (det A)?

If rank(B) = 1 then B is equivalent to J, B = RJS where R, S invertiblle matrix let A = R1AS~! then
det((A — B)(A + B)) = (det R)*(det 5)? det((A + J)(A — J)) < (det R)*(det S)2(det A)? = (det A)?

Problem 58 (Moubinool Omarjee, Paris). A € My(R), det A = 1 but A # +I,. For X € R? we
denote W(X) = {A"X, n € N}.

Prove that there exists X € R%suchthatW(X) is not bounded if and only if |tr(A)| > 2.

Solution. Characteristic polynomial of A is p(z) =*z® — (trA)z + 1, discriminant A = (trA)? —

If [trA| > 2, p(z) has two eigenvalues one b > 1. X is eigenvector W(X) = {b"X, m € N} bounded

If [trA| = 2, p(z) has a root b = +1 multiplicity 2. A = bl; + N where N nilpotent since A # Is.
Choose X such that NX # 0. W(X) = {b"X + nb""'NX} not bounded

If |trA| < 2, Sp(A) = {e*9,e7}, A is similar to (eoq e(")iq> and W(X) is bounded
Problem 59 (Milos Milosavljevié, Nis). Let n € N. Find all the polynomials P(z) = a,z" +
12" 1 + ... + a17 + ay, of degree n, satisfying the following two conditions:

i) {ag,a1,...,a,} ={0,1,...,n}

iz) all the zeros of P(z) are rational numbers.

Solution: Note that P(z) does not have any positive zeros because P(z) > 0 for every z > 0. Thus, we
can represent them in the form —a;, i = 1,n, where o; > 0. If ap # 0 then thereisa k€ N,1 <k <n-1,
with a; = 0, so using Viete’s formulae we get
e o
Q1Q3...0n_k—10n—k + Q1Q9...0n g 10n—k41 F o + O 1Qppp.-Qn_10p = — = 0,
n
which is impossible because the left side of the equality is positive. Therefore ap = 0 and one of the zeros
of the polynomial, say a,, must be equal to zero. Consider the polynomial Q(z) = a,z" ! + an_12" 2 +
... +ay. It has zeros —o4, i = 1,n — 1. Again, Viete’s formulae, for n > 3, yield:

010y..Qp1 = 2L (1)
A109...0,_9 + 0109...0Qp_30n_1 + ... + Q203...0p_1 = ff: (2)
o t+a+t...+a, = 9—2—;1. (3)
Dividing (2) by (1) we get '
ata et =2 ' (4)

Using the inequality between the arithmetic and the harmonic mean, as well as (3) and (4) we have

that:
On-1 gt agt..t o, n—1 (n—1)a;

(n—Dan, n—1 "ail+ai2+...+;:1_—1— as

)



ie 2222=L> (n 1)2. Hence "2 > 2zl > (n - 1), and finally n = 3. So, the only polynomials possibly

satisfying (7) and (1) a.re those of degree at most three. These polynomials can easily be found and they
are P(z) =z, P(z) = 2%+ 2z, P(z) =22+, P(z) =23+ 32? + 2z and P(z) =223 + 322 +z. O

Remark:

Let us observe that this solution does not really need the fact that all the zeros of the polynomial are
rational but only that they are real. The reason why this ”rational” version of the formulation of this
problem is suggested is because mentioning rational numbers may direct one to use certain facts about
polynomials valid generally only for rational parameters involved, facts which, in my opinion, can hardly
be the way to the solution, thus facts completely misleading and making this problem even more difficult
to solve. -

Problem 60 (Milos Milosavljevié, Nis).
Let A = [aij]nxn be a matrix with nonnegative elements the sum of which being equal to n.
(a) Prove |detA| < 1;
(b) If |detA] = 1 and X € C arbitrary eigen-value of A, show that |A| = 1.

r

Solution: (a) By H’adamar’s theorem:

|detA| < ﬁia?j. (17)

=1 j=1

As the numbers a;; are nonnegative we have that fori=1,n

Z% < <Z a;;)*. (18)

Using the inequality between the arithmetic and the geometric mean:

. 22 %
I et < =E—=1 (19)

i=1 j=1

The required inequality follows directly from (1), (2) and (3).
(b) If |detA| = 1 the inequalities (1), (2) and (3) actually become equalities. In (3) equality holds iff

the sum of elements of each row is equal 1, whereas in (2) equality holds iff in each row at most one of -

it’s elements is distinct from zero. Hence, for |detA| = 1 to hold it is necessary that each row contains
exactly one element equal to 1 and n — 1 elements equal to zero. Since in (1) equality is reached iff all
the vectors a; = [a;; aip ... a,-n]T, i = 1,n, are orthogonal to one another, in view of the above mentioned
necessary condition, we have that |detA| = 1 iff each row and each column of A contains exactly one
element equal to 1 and n — 1 elements equal to zero. Therefore there are {k1, k2, ..., kn} = {1,2,...,n} such
that aix, = @k, = ... = @k, = 1. Let X arbitrary eigen-value of A and z = [z; 25 ... :IIn]T the corresponding
eigen-vector. We have
IA{z, ) = A\(z, ) = (), )\:c) = (Az, Aa:) =

= [k, Thy - Tk, )T, [Ty Thy - Ti, )T sz = Zz (z,x)

i=1
whence [A\|=1. O

Problem 61 (Milos Milosavljdvié, Ni§). Let k be a fixed positive integer. In an infinite row distinct
positions S,, n =0,1,2,... are marked. A ball jumps from one position to another following the next two
rules:

1) it starts at Sp;



2) if it gets at S, an ¢ € {1,2, ..., k} is randomly chosen (the probability of a fixed element of {1,2, ..., k}
being chose being %), and the ball jumps to the position S,;.
Denote by p, the probability of the ball getting at S, any time during its movement. Find lim p,.
n—o0

Solution: _

Lemmal. The polynomial Q(z) = kz* — (z*~1+2*~2+...+z+1) has k distinct zeros, all of the zeros, ex-
cept T = 1, being with complex modulus smaller
than 1.

Proof: Suppose there is a zero of ©(z) with multiplicity greater than 1 and denote it by.a. We have
Qa) =Q'(a) =0. As
(z—1)Q(z) = kz**! — (k+ 1)zF +1 -

we get (z — 1)Q'(z) + Q(z) = k(k + 1)z*~*(z — 1). Since Q(a) = Q'(a) = 0 the relation above yields
(a—1)Q(a) + Q(a) = k(k +1)aFHa —1) -

sod*a—1)=0,ie. a=0o0ra= 1. z = 0 is clearly not a solution to Q(z) = 0, and Q'(1) =
k2 — ﬂ%—_—l—)— # 0, so £ = 1 cannot be a multiple zero of Q(z). Thus Q(z) does not have any multiple zeros.
Let us now prove the second part of this lemma. Let 2 be any complex number with |z| = R > 1. Since

|5 4 25 2+ ST Y 4 2] +1=R U4 RF2 L+ RA1L

< R*+ RF + ... + R* = kR* = |k2F|,
k

we conclude
1Q(2)| = |k2* — (" 1+ 252 2+ 1) > kX = |2 24241 > 0.

The last two inequalities imply that Q(z) = 0 iff the complex arguments of all the numbers 251, 2¥=2, ... 2.1

H

are equal and R = 1. The last condition can be satisfied only if 2 = 1. Therefore the only zero of Q(z)
with modulus greater or equal than 1 is 2 = 1 which proves the second part of the lemma. e

Lemma2. Let %,l be positive integers with | < i. The set
Ay = {(z1, %2, ..., 1) € N | 71 + 22 Toem= i}

has a;1 = (;:1)

Proof:

We will prove the assertion by mathematical induction on I. For [ = 1 we have a;; = 1 = (;:;)
Suppose the assertion holds for a [ € N and prove a;;+; = (i—ll). If the sum of [ + 1 positive integers is
equal 7, then sum of the first [ of them equals one of the numbers I,/ + 1, ...,7 — 1. Hence

Qi+l =01+ a1+ .+ Q-1

Using the inductive hypothesis:

(77) o= (1) - (
)



(where we have used several times the well known relation () + (,%,) (5,

for a > b), which proves a;;4; = (i‘ll). .

We now take up solving the problem itself. Consider the position S, x, n € N. The positions from
which the ball can directly to this position in one move are Sp4x—1, Sntk—2, ---, On. Therefore

Ptk = %Pn+k—1 + %pn+k—2 + ..+ %Pm n € N. (1)

This represents a recurrence equation. As is well known, to solve it we need to consider the polynomial

Qz) =kzF — (¥ 1 +2F 2+ .+ +1)

the zeros of which are 2;, j = 0,k — 1. By Lemmal. these zeros are distinct and all but 2o = 1 are with
complex modulus smaller than 1. Hence the general solution of the recurrence equation (1) is given by:

Pn = 02" + a121™ + ... + Qp_12k-1", O, Q1,...,0%-1 € C. (2)
As |zo| =1 > |z1|, |22, -, |2k=1], (2) implies
lim p, = ag.
n—od

Thus the problefn reduces to finding ap. Let us now find the probabilities pi, pa, ..., pr that we will need
later to calculate ayp.

Let 1 <i<kandl<!<i ByLemma2., the number ¢ can be represented as the sum of | positive
integers in a;; = (Z:i) different ways. Each of them is with probability (%)l Therefore we have that

i

o S E(7) £ ()i

The numbers ag, a1, ..., ¥,—1 can now be find from the following system of linear equations (with the
unknowns g, a1, ..., Qk—1):

1 1

E(1+E)O=pl = a-l+o-z+..+og_y- 2
1 1

—15(1+E)1=P2 = ao-P4ar 2’ + ..+ ogo1 - 25

1, 1 ' -
S0+ = = a0 Pt at ozt

The determinant. of the system’s matrix is

1 21 Zk—1 1 1 1
D 1 z%2 212 _ ’ﬁZi 1 21 Zk_1 _
) * i=1 :
1 z* 21" 1 z* PR L
k-1 k—1 k-1
= Hzi W, 21,y 26-1) = Hzi : H(zz -1)- H (z: — 2;) #0.
i=1 i= i=1 O<j<i<k
Also we have
[ ]
1+ &m . oz 1 1 1
k(l + k) 21 Zk—1 1 + & 21 Zk—1
Dao - = 'l; . H Z; =




= 1 k-1 k-
- [ Wt panso) = I H(z, a+)- I -2

0<j<i<k

The last two equalities yield:

k-1
1
S| CRITRIN | ((FR
o i=1 i=0
o = Do = k1 T TR

[[@-1 [0 -2) 3

i=1 i=1
Since Q(z) = k(z — 20)(z — 21)...(x — 2x-1) we have

(1+3)yc—1
’ﬁ((1+1) )_Q(1+%)_k(1+%)k'ﬁ&%?_1
LTy %%~ k -
' k-1 k—1
Let us note that Q'(z) = k& Z H(a: 2;), having in mind 2o = 1, yields @Q'(1) = & H 1—2;). Therefore
i=0 j#i i=1

k-1
Q) _K-(k=1+..+1) k+1
H(I—Zi)_ ko A =

Finally, we find that

H(1+ |
1.—0 . 1 2
Qo = =k+1=k+1'

H(1 L
i=1

Thus lim p, = %1-

Problem 62 (Milos Milosavljevié, Ni§). If 21, 25, ..., 2, are complex numbers then there is a subset S

of {1,2,...,n} for which
Izzkl > = lekl

keS

Solution: Write z; = |z]e***. For —m < 6 < 7, let S(f) be the set of all k for which cos(ay, — ) > 0.

Then
|sz|—|Ze zk|>ReZe zk—2|zk|cos (o — 6).

keS(6) k€S(6) kES(6)

Choose 6y so as to maximize the last sum, and put S = S(6p). This maximum is at least as large as the
average of the sum over [—, 7], and this average is £ >"7_, |zk[, because
4 1
- cost(a — 0)df = =
2m J_, m
for every a. O - 8

Problem 63 (Robert Strich, Goettingen). For which positive integers n is the following statement
true: If P € R[X;,...,X,] is a polynomial in n variables such that P(z) > 0 for all z € R™ then there
exists an € > 0 such that P(z) > ¢ for all z € R™.



Solution: The statement is true for n = 1: Since P must have even degree in this case we have
lim, 10 P(z) = 0o and thus we can find M > 0 such that f(z) > 1 for |z| > M. Furthermore p attains
its minimum value § > 0 on the compact set [—M, M] and thus we can take € = min(1, ).

The statement is false for all n > 2. A counterexample is for instance the polynomial P = X?+(X;X,—1)2.
Clearly P(z) > 0 for all z € R™ since not both summands in P can be zero. But for z; # 0, 73 = 1/zy
and arbitrary zs, ..., z, we have P(zy,...,z,) = z? which can obviously be arbitrarily small.



