
THE UNIVERSITY OF TORONTO

UNDERGRADUATE MATHEMATICS COMPETITION

Saturday, March 9, 2002

Time: 3 1
2 hours

No aids or calculators permitted.

1. Let A, B, C be three pairwise orthogonal faces of a tetrahedran meeting at one of its vertices and having
respective areas a, b, c. Let the face D opposite this vertex have area d. Prove that

d2 = a2 + b2 + c2 .

2. Angus likes to go to the movies. On Monday, standing in line, he noted that the fraction x of the line
was in front of him, while 1/n of the line was behind him. On Tuesday, the same fraction x of the line
was in front of him, while 1/(n + 1) of the line was behind him. On Wednesday, the same fraction x
of the line was in front of him, while 1/(n + 2) of the line was behind him. Determine a value of n for
which this is possible.

3. In how many ways can the rational 2002/2001 be written as the product of two rationals of the form
(n + 1)/n, where n is a positive integer?

4. Consider the parabola of equation y = x2. The normal is constructed at a variable point P and meets
the parabola again in Q. Determine the location of P for which the arc length along the parabola
between P and Q is minimized.

5. Let n be a positive integer. Suppose that f is a function defined and continuous on [0, 1] that is
differentiable on (0, 1) and satisfies f(0) = 0 and f(1) = 1. Prove that, there exist n [distinct] numbers
xi (1 ≤ i ≤ n) in (0, 1) for which

n∑
i=1

1
f ′(xi)

= n .

6. Let x, y > 0 be such that x3 + y3 ≤ x− y. Prove that x2 + y2 ≤ 1.

7. Prove that no vector space over R is a finite union of proper subspaces.

8. (a) Suppose that P is an n × n nonsingular matrix and that u and v are column vectors with n
components. The matrix vT P−1u is 1×1, and so can be identified with a scalar. Suppose that its value
is not equal to −1. Prove that the matrix P + uvT is nonsingular and that

(P + uvT )−1 = P−1 − 1
α

P−1uvT P−1

where vT denotes the transpose of v and α = 1 + vT P−1u.

(b) Explain the situation when α = 0.

9. A sequence whose entries are 0 and 1 has the property that, if each 0 is replaced by 01 and each 1 by
001, then the sequence remains unchanged. Thus, it starts out as 010010101001 · · ·. What is the 2002th
term of the sequence?

END
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Solutions

1. Solution 1. Let the tetrahedron be bounded by the three coordinate planes in R3 and the plane with
equation x

u + y
v + z

w = 1, where u, v, w are positive. The vertices of the tetrahedron are (0, 0, 0), (u, 0, 0),
(0, v, 0), (0, 0, w). Let d, a, b, c be the areas of the faces opposite these respective vertices. Then the volume
V of the tetrahedron is equal to

1
3
au =

1
3
bv =

1
3
cw =

1
3
dk ,

where k is the distance from the origin to its opposite face. The foot of the perpendicular from the origin
to this face is located at ((um)−1, (vm)−1.(wm)−1), where m = u−2 + v−2 + w−2, and its distance from the
origin is m−1/2. Since a = 3V u−1, b = 3V v−1, c = 3V w−1 and d = 3V m1/2, the result follows.

Solution 2. [J. Chui] Let edges of lengths x, y, z be common to the respective pairs of faces of areas
(b, c), (c, a), (a, b). Then 2a = yz, 2b = zx and 2c = xy. The fourth face is bounded by sides of length
u =

√
y2 + z2, v =

√
z2 + x2 and w =

√
x2 + y2. By Heron’s formula, its area d is given by the relation

16d2 = (u + v + w)(u + v − w)(u− v + w)(−u + v + w)

= [(u + v)2 − w2][(w2 − (u− v)2] = [2uv + (u2 + v2 − w2)][2uv − (u2 + v2 − w2)]

= 2u2v2 + 2v2w2 + 2w2u2 − u4 − v4 − w4

= 2(y2 + z2)(x2 + z2) + 2(x2 + z2)(x2 + y2) + 2(x2 + y2)(x2 + z2)

− (y2 + z2)2 − (x2 + z2)2 − (x2 + y2)2

= 4x2y2 + 4x2z2 + 4y2z2 = 16a2 + 16b2 + 16c2 ,

whence the result follows.

Solution 3. Use the notation of Solution 2. There is a plane through the edge bounding the faces of
areas a and b perpendicular to the edge bounding the faces of areas c and d. Suppose it cuts the latter faces
in altitudes of respective lengths u and v. Then 2c = u

√
x2 + y2, whence u2(x2 + y2) = x2y2. Hence

v2 = z2 + u2 =
x2y2 + x2z2 + y2z2

x2 + y2
=

4(a2 + b2 + c2)
x2 + y2

,

so that
2d = v

√
x2 + y2 =⇒ 4d2 = 4(a2 + b2 + c2) ,

as desired.

Solution 4. [R. Ziman] Let a, b, c, d be vectors orthogonal to the respective faces of areas a, b, c, d
that point inwards from these faces and have respective magnitudes a, b, c, d. If the vertices opposite the
respective faces are x, y, z, O, then the first three are pairwise orthogonal and 2c = x×y, 2b = z× x, 2c
= x×y, and 2d = (z - y)×(z - x) = − (z×x) − (y×z) − (x×y). Hence d = − (a + b + c), so that

d2 = d · d = (a + b + c) · (a + b + c) = a2 + b2 + c2 .

2. Answer. When x = 5/6, he could have 1/7 of a line of 42 behind him, 1/8 of a line of 24 behind him
and 1/9 of a line of 18 behind him. When x = 11/12, he could have 1/14 of a line of 84 behind him, 1/15 of
a line of 60 behind him and 1/16 of a line of 48 behind him. When x = 13/15, he could have 1/8 of a line
of 120 behind him, 1/9 of a line of 45 behind him and 1/10 of a line of 30 behind him.

Solution. The strategy in this solution is to try to narrow down the search by considering a special case.
Suppose that x = (u− 1)/u for some positive integer exceeding 1. Let 1/(u + p) be the fraction of the line
behind Angus. Then Angus himself represents this fraction of the line:

1−
(

u− 1
u

+
1

u + p

)
=

p

u(u + p)
,
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so that there would be u(u+p)/p people in line. To make this an integer, we can arrange that u is a multiple
of p. For n = u + 1, we want to get an integer for p = 1, 2, 3, and so we may take u to be any multiple of 6.
Thus, we can arrange that x is any of 5/6, 11/12, 17/18, 23/24, and so on.

Comment 1. The solution indicates how we can select x for which the amount of the line behind Angus
is represented by any number of consecutive integer reciprocals. For example, in the case of x = 11/12, he
could also have 1/13 of a line of 156 behind him. Another strategy might be to look at x = (u − 2)/u, i.e.
successively at x = 3/5, 5/7, 7/9, · · ·. In this case, we assume that 1/(u − p) is the line is behind him, and
need to ensure that u− 2p is a positive divisor of u(u− p) for three consecutive values of p. If u is odd, we
can achieve this with u any odd multiple of 15, starting with p = 1

2 (u− 1).

Comment 2. With the same fraction in front on two days, suppose that 1/n of a line of u people is
behind the man on the first day, and 1/(n + 1) of a line of v people is behind him on the second day. Then

1
u

+
1
n

=
1
v

+
1

n + 1

so that uv = n(n + 1)(u − v). This yields both (n2 + n − v)u = (n2 + n)v and (n2 + n + u)v = (n2 + n)u,
leading to

u− v =
u2

n2 + n + u
=

v2

n2 + n− v
.

Two immediate possibilities are (n, u, v) = (n, n + 1, n) and (n, u, v) = (n, n(n + 1), 1
2n(n + 1)). To get some

more, taking u− v = k, we get the quadratic equation

u2 − ku− k(n2 + n) = 0

with discriminant
∆ = k2 + 4(n2 + n)k = [k + 2(n2 + n)]2 − 4(n2 + n)2 ,

a pythagorean relationship when ∆ is square and the equation has integer solutions. Select α, β, γ so that
γαβ = n2 + n and let k = γ(α2 + β2 − 2αβ) = γ(α − β)2; this will make the discriminant ∆ equal to a
square.

Taking n = 3, for example, yields the possibilities (u, v) = (132, 11), (60, 10), (36, 9), (24, 8), (12, 6),
(6, 4),(4, 3). In general, we find that (n, u, v) = (n, γα(α− β), γβ(α− β)) when n2 + n = γαβ with α > β.
It turns out that k = u− v = γ(α− β)2.

3. Solution 1. We begin by proving a more general result. Let m be a positive integer, and denote by
d(m) and d(m + 1), the number of positive divisors of m and m + 1 respectively. Suppose that

m + 1
m

=
p + 1

p
· q + 1

q
,

where p and q are positive integers exceeding m. Then (m + 1)pq = m(p + 1)(q + 1), which reduces to
(p−m)(q −m) = m(m + 1). It follows that p = m + u and q = m + v, where uv = m(m + 1). Hence, every
representation of (m + 1)/m corresponds to a factorization of m(m + 1).

On the other hand, observe that, if uv = m(m + 1), then

m + u + 1
m + u

· m + v + 1
m + v

=
m2 + m(u + v + 2) + uv + (u + v) + 1

m2 + m(u + v) + uv

=
m2 + (m + 1)(u + v) + m(m + 1) + 2m + 1

m2 + m(u + v) + m(m + 1)

=
(m + 1)2 + (m + 1)(u + v) + m(m + 1)

m2 + m(u + v) + m(m + 1)

=
(m + 1)[(m + 1) + (u + v) + m]

m[m + (u + v) + m + 1]
=

m + 1
m

.
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Hence, there is a one-one correspondence between representations and pairs (u, v) of complementary factors
of m(m + 1). Since m and m + 1 are coprime, the number of factors of m(m + 1) is equal to d(m)d(m + 1),
and so the number of representations is equal to 1

2d(m)d(m + 1).

Now consider the case that m = 2001. Since 2001 = 3×23×29, d(2001) = 8; since 2002 = 2×7×11×13,
d(2002) = 16. Hence, the desired number of representations is 64.

Solution 2. [R. Ziman] Let m be an arbitrary positive integer. Then, since (m+1)/m is in lowest terms,
pq must be a multiple of m. Let m+1 = uv for some positive integers u and v and m = rs for some positive
integers r and s, where r is the greatest common divisor of m and p; suppose that p = br and q = as, with
s being the greatest common divisor of m and q. Then, the representation must have the form

m + 1
m

=
au

br
· bv

as
,

where au = br + 1 and bv = as + 1. Hence

bv =
br + 1

u
s + 1 =

brs + s + u

u
,

so that b = b(uv − rs) = s + u and

a =
sr + ur + 1

u
=

m + 1− ur

u
= v + r .

Thus, a and b are uniquely determined. Note that we can get a representation for any pair (u, v) of comple-
mentary factors or m + 1 and (r, s) of complementary factors of m, and there are d(m + 1)d(m) of selecting
these. However, the selections {(u, v), (r, s)} and {(v, u), (s, r)} yield the same representation, so that number
of representations is 1

2d(m + 1)d(m). The desired answer can now be found.

4. Solution. Wolog, we may assume that u > 0, as the arc length for u and −u is the same. The tangent
to the parabola at (u, u2) has slope 2u, and so the normal has slope −1/2u. The equation of the normal is

y − u2 = − 1
2u

(x− u)

and this intersects the parabola at the point(
− u− 1

2u
, u2 + 1 +

1
4u2

)
.

The arc length is given by

f(u) =
∫ u

−u−(1/2u)

√
1 + 4x2dx = F (u)− F (−u− (1/2u)) ,

where F is a function for which F ′(x) = (1 + 4x2)1/2. Then

f ′(u) = F ′(u)− F ′(−u− (1/2u))
(
− 1 +

1
2u2

)
= (1 + 4u2)1/2 − (1 + 4u2 + 4 + u−2)1/2

(
− 1 +

1
2u2

)
= (1 + 4u2)1/2 − (4u4 + 5u2 + 1)1/2

(
−1
u

+
1

2u3

)
= (1 + 4u2)1/2

[
1 +

(u2 + 1)1/2(2u2 − 1)
2u3

]
.
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f ′(u) is negative when u is close to 0, and positive when u is very large. It vanishes if and only if 2u3 =
−(u2 +1)1/2(2u2− 1). Thus 4u6 = (u2 +1)(4u4− 4u2 +1) ⇔ 0 = −3u2 +1, and we have that f ′(1/

√
3) = 0.

Hence f(u) decreases on the interval (0, 1/
√

3) and increases on the interval (1/
√

3,∞). Hence, the arc
length is minimized when P is the one of the points(

1√
3
,
1
3

)
,

(
− 1√

3
,
1
3

)
.

5. Solution. Since f(x) is continuous on [0, 1], it assumes every value between 0 and 1 inclusive. Select
points 0 = u0 < u1 < u2 < · · · < un−1 < un = 1 in [0, 1] for which f(ui) = i/n for 0 ≤ i ≤ n. Then, by the
Mean Value Theorem, for each i = 1, 2, · · · , n, there exists xi ∈ (ui−1, ui) for which

1
n(ui − ui−1)

=
f(ui)− f(ui−1)

ui − ui−1
= f ′(xi) .

Therefore,
n∑

i=1

1
f ′(xi)

= n
n∑

i=1

(ui − ui−1) = n .

6. Solution 1. Let y = tx. Since x > y > 0, we have that 0 < t < 1. Then x3(1 + t3) ≤ x(1 − t) ⇒
x2(1 + t3) ≤ (1− t). Therefore,

x2 + y2 = x2(1 + t2) ≤
(

1− t

1 + t3

)
(1 + t2)

=
1− t + t2 − t3

1 + t3
= 1− t(1− t + 2t2)

1 + t3
.

Since 1− t + 2t2, having negative discriminant, is always positive, the desired result follows.

Solution 2. [J. Chui] Suppose, if possible, that x2 +y2 = r2 > 1. We can write x = r sin θ and y = r cos θ
for 0 ≤ θ ≤ π/2. Then

x3 + y3 − (x− y) = r3 sin3 θ + r3 cos3 θ − r sin θ + r cos θ

> r sin θ(sin2 θ − 1) + r cos3 θ + r cos θ

= −r sin θ cos2 θ + r cos3 θ + r cos θ

= r cos2 θ

(
cos θ +

1
cos θ

− sin θ

)
> r cos2 θ(2− sin θ) > 0 ,

contrary to hypothesis. The result follows by contradiction.

7. Solution. Let r be the minimum number of proper subspaces whose union is the whole of V . Suppose
that S1, S2, · · · , Sr are subspaces for which V = ∪r

i=1Sr. Note that r ≥ 2. Since r is minimal, no subspace
is contained in a union of the others. Select v ∈ S1\ ∪r

i=2 Si and w ∈ S2\S1. For each real λ, λv + w 6∈ S1.
By the pigeonhole principle, there is an index j and two distinct reals µ and ν for which µv + w and νv + w
both belong to Sj . Hence, (µ− ν)v ∈ Sj , so that v ∈ Sj . But this contradicts the choice of v.

8. Solution 1. Observe that uvT is an n× n matrix and that for each column vector w, vT w is a 1× 1
matrix or scalar. Thus, (uvT )w = u(vT w) = (vT w)u, and so uvT is a rank 1 matrix, whose range is spanned
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by the vector u. It follows that the matrix uvT P−1 is also rank 1 whose range is the span of u. Note that,
for every real scalar λ,

(uvT P−1)λu = λu(vT P−1u) = λ(vT P−1u)u

since vT P−1u, being a 1 × 1 matrix is essentially a scalar. Thus, on the span of u, (uvT P−1) behaves like
(vT P−1u)I, a multiple of the identity. It follow that

(vT P−1uI − uvT P−1)(uvT P−1) = O .

Now we are ready to establish the result.

(P + uvT )(P−1 − 1
α

P−1uvT P−1)

= I + uvT P−1 − 1
α

uvT P−1 − 1
α

uvT P−1uvT P−1

= I +
1
α

[(α− 1)uvT P−1 − uvT P−1uvT P−1]

= I +
1
α

[(vT P−1u)uvT P−1 − uvT P−1uvT P−1]

= I +
1
α

[(vT P−1uI − uvT P−1)(uvT P−1)] = I ,

as desired.

Suppose that vT P−1u = −1. Then vT P−1uvT = −vT = −vT P−1P , so that vT P−1(uvT + P ) = O.
Since vT P−1 6= O, we cannot have an inverse for uvT + P .

Comment. This is known as the Sherman-Morrison Formula (see G.H.Golub, C.F.Van Loon, Matrix
computation, 1989).

Solution 2. This is similar to Solution 1, with the inverse checked on the right instead of the left. Let
z = P−1u. Since uvT is a rank 1 matrix whose range is spanned by u (see Solution 1), P−1uvT is a rank 1
matrix whose range is spanned by z. We have that

(P−1uvT )λz = λ(P−1uvT P−1)u = λ(P−1u)(vT P−1u)

= λ(vT P−1u)(P−1u) = λ(vT P−1u)z

so that, on the span of z, P−1uvT behaves like (vT P−1u)I. Thus

(vT P−1uI − P−1uvT )(P−1uvT ) = 0 .

Note that

(P−1 − 1
α

P−1uvT P−1)(P + uvT )

= I + P−1uvT − 1
α

P−1uvT − 1
α

P−1uvT P−1uvT

= I +
1
α

[(α− 1)P−1uvT − P−1uvT P−1uvT ]

= I +
1
α

[(vT P−1u)P−1uvT − P−1uvT P−1uvT ]

= I +
1
α

[(vT P−1uI − P−1uvT )P−1uvT ]

from which the result follows.
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9. Solution. Let us define finite sequences as follows. Suppose that S1 = 0. Then, for each k ≥ 2, Sk is
obtained by replacing each 0 in Sk−1 by 01 and each 1 in Sk−1 by 001. Thus,

S1 = 0; S2 = 01; S3 = 01001; S4 = 010010101001; S5 = 01001010100101001010010101001; · · ·

Each Sk−1 is a prefix of Sk; in fact, it can be shown that, for each k ≥ 3,

Sk = Sk−1 ∗ Sk−2 ∗ Sk−1 ,

where ∗ indicates juxtaposition. The respective number of symbols in Sk for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
is equal to 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378.

The 2002th entry in the given infinite sequence is equal to the 2002th entry in S10, which is equal to
the (2002 − 985 − 408)th = (609)th entry in S9. This in turn is equal to the (609 − 408 − 169)th = (32)th
entry in S8, which is equal to the (32)th entry of S6, or the third entry of S3. Hence, the desired entry is 0.

7


