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1. Prove that, for any complex numbers z and w,

(|z|+ |w|)
∣∣∣∣ z

|z|
+

w

|w|

∣∣∣∣ ≤ 2|z + w| .

2. Prove that ∫ 1

0

xxdx = 1− 1
22

+
1
33
− 1

44
+

1
55

+ · · · .

3. Suppose that u and v are positive integer divisors of the positive integer n and that uv < n. Is it
necessarily so that the greatest common divisor of n/u and n/v exceeds 1?

4. Let n be a positive integer exceeding 1. How many permutations {a1, a2, · · · , an} of {1, 2, · · · , n} are
there which maximize the value of the sum

|a2 − a1|+ |a3 − a2|+ · · ·+ |ai+1 − ai|+ · · ·+ |an − an−1|
over all permutations? What is the value of this maximum sum?

5. Let A be a n × n matrix with determinant equal to 1. Let B be the matrix obtained by adding 1 to
every entry of A. Prove that the determinant of B is equal to 1+ s, where s is the sum of the n2 entries
of A−1.

6. Determine ( ∫ 1

0

dt√
1− t4

)
÷

( ∫ 1

0

dt√
1 + t4

)
.

7. Let a be a parameter. Define the sequence {fn(x) : n = 0, 1, 2, · · ·} of polynomials by

f0(x) ≡ 1

fn+1(x) = xfn(x) + fn(ax)

for n ≥ 0.

(a) Prove that, for all n, x,
fn(x) = xnfn(1/x) .

(b) Determine a formula for the coefficient of xk (0 ≤ k ≤ n) in fn(x).

8. Let V be a complex n−dimensional inner product space. Prove that

|u|2|v|2 − 1
4
|u− v|2|u + v|2 ≤ |(u, v)|2 ≤ |u|2|v|2 .

9. Let ABCD be a convex quadrilateral for which all sides and diagonals have rational length and AC and
BD intersect at P . Prove that AP , BP , CP , DP all have rational length.

END
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Solutions

1. Prove that, for any complex numbers z and w,

(|z|+ |w|)
∣∣∣∣ z

|z|
+

w

|w|

∣∣∣∣ ≤ 2|z + w| .

Solution 1.

(|z|+ |w|)
∣∣∣∣ z

|z|
+

w

|w|

∣∣∣∣
=

∣∣∣∣z + w +
|z|w
|w|

+
|w|z
|z|

∣∣∣∣
≤ |z + w|+ 1

|z||w|
|z̄zw + w̄zw|

= |z + w|+ |zw|
|z||w|

|z̄ + w̄| = 2|z + w| .

Solution 2. Let z = aeiα and w = beiβ , with a and b real and positive. Then the left side is equal to

|(a + b)(eiα + eiβ)| = |aeiα + aeiβ + beiα + beiβ |
≤ |aeiα + beiβ |+ |aeiβ + beiα| .

Observe that
|z + w|2 = |(aeiα + beiβ)(ae−iα + be−iβ)|

= a2 + b2 + ab[ei(α−β) + ei(β−α)]

= |(aeiβ + beiα)(ae−iβ + be−iα)|

from which we find that the left side does not exceed

|aeiα + beiβ |+ |aeiβ + beiα| = 2|aeiα + beiβ | = 2|z + w| .

Solution 3. Let z = aeiα and w = beiβ , where a and b are positive reals. Then the inequality is equivalent
to ∣∣∣∣12(eiα + eiβ

∣∣∣∣ ≤ |λeiα + (1− λ)eiβ |

where λ = a/(a + b). But this simply says that the midpoint of the segment joining eiα and eiβ on the unit
circle in the Argand diagram is at least as close to the origin as another point on the segment.

Solution 4. [G. Goldstein] Observe that, for each µ ∈ C,∣∣∣∣ µz

|µz|
+

µw

|µw|

∣∣∣∣ =
z

|z|
+

w

|w|
,

|µ|[|z|+ |w|] = |µz + µw| ,

and
|µ||z + w| = |µz + µw| .

So the inequality is equivalent to

(|t|+ 1)
∣∣∣∣ t

|t|
+ 1

∣∣∣∣ ≤ 2|t + 1|
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for t ∈ C. (Take µ = 1/w and t = z/w.)

Let t = r(cos θ + i sin θ). Then the inequality becomes

(r + 1)
√

(cos θ + 1)2 + sin2 θ ≤ 2
√

(r cos θ + 1)2 + r2 sin2 θ = 2
√

r2 + 2r cos θ + 1 .

Now,
4(r2 + 2r cos θ + 1)− (r + 1)2(2 + 2 cos θ)

= 2r2(1− cos θ) + 4r(cos θ − 1) + 2(1− cos θ)

= 2(r − 1)2(1− cos θ) ≥ 0 ,

from which the inequality follows.

Solution 5. [R. Mong] Consider complex numbers as vectors in the plane. q = (|z|/|w|)w is a vector of
magnitude z in the direction w and p = (|w|/|z|)z is a vector of magnitude w in the direction z. A reflection
about the angle bisector of vectors z and w interchanges p and w, q and z. Hence |p+q| = |w+z|. Therefore

(|z|+ |w|)
∣∣∣∣ z

|z|
+

w

|w|

∣∣∣∣
= |z + q + p + w| ≤ |z + w|+ |p + q|
= 2|z + w| .

2. Prove that ∫ 1

0

xxdx = 1− 1
22

+
1
33
− 1

44
+

1
55

+ · · · .

Solution. First, let

I(m,n) =
∫ 1

0

xm(log x)ndx

for nonnegative integers m and n. Then I(0, 0) = 1 and I(m, 0) = 1/(m + 1) for every nonnegative integer
m. Taking the parts u = (log x)n, dv = xmdx and noting that limx→0 xm+1(log x)n = 0, we find that
I(m,n) = −(n/(m + 1))I(m,n− 1) whence

I(m,n) =
(−1)nn!

(m + 1)n+1

for each nonnegative integer n. In particular,

I(k, k) =
(−1)kk!

(k + 1)(k+1)

for each nonnegative integer k.

Using the fact that the series is uniformly convergent and term-by-term integration is possible, we find
that ∫ 1

0

xxdx =
∫ 1

0

ex log xdx =
∞∑

k=0

∫ 1

0

(x log x)k

k!
dx

= 1 +
∞∑

k=1

(−1)k

(k + 1)(k+1)
= 1− 1

22
+

1
33
− · · · .

3. Suppose that u and v are positive integer divisors of the positive integer n and that uv < n. Is it
necessarily so that the greatest common divisor of n/u and n/v exceeds 1?
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Solution 1. Let n = ur = vs. Then uv < n ⇒ v < r, u < s, so that n2 = uvrs ⇒ rs > n. Let the greatest
common divisor of r and s be g and the least common multiple of r and s be m. Then m ≤ n < rs = gm,
so that g > 1.

Solution 2. Let g = gcd (u, v), u = gs and v = gt. Then gst ≤ g2st < n so that st < n/g. Now s and
t are a coprime pair of integers, each of which divides n/g. Therefore, n/g = dst for some d > 1. Therefore
n/u = n/(gs) = dt and n/v = n/(gt) = ds, so that n/u and n/v are divisible by d, and so their greatest
common divisor exceeds 1.

Solution 3. uv < n =⇒ nuv < n2 =⇒ n < (n/u)(n/v). Suppose, if possible, that n/u and n/v have
greatest common divisor 1. Then the least common multiple of n/u and n/v must equal (n/u)(n/v). But n
is a common multiple of n/u and n/v, so that (n/u)(n/v) ≤ n, a contradiction. Hence the greatest common
divisor of n/u and n/v exceeds 1.

Solution 4. Let P be the set of prime divisors of n, and for each p ∈ P . let α(p) be the largest integer k
for which pk divides n. Since u and v are divisors of n, the only prime divisors of either u or v must belong
to P . Suppose that β(p) is the largest value of the integer k for which pk divides uv.

If β(p) ≥ α(p) for each p ∈ P , then n would divide uv, contradicting uv < n. (Note that β(p) > α(p)
may occur for some p.) Hence there is a prime q ∈ P for which β(q) < α(q). Then qα(q) is not a divisor
of either u or v, so that q divides both n/u and n/v. Thus, the greatest common divisor of n/u and n/v
exceeds 1.

Solution 5. [D. Shirokoff] If n/u and n/v be coprime, then there are integers x and y for which
(n/u)x + (n/v) = 1, whence n(xv + yu) = uv. Since n and uv are positive, then so is the integer xv + yu.
But uv < n =⇒ 0 < xv + yu < 1, an impossibility. Hence the greatest common divisor of n/u and n/v
exceeds 1.

4. Let n be a positive integer exceeding 1. How many permutations {a1, a2, · · · , an} of {1, 2, · · · , n} are
there which maximize the value of the sum

|a2 − a1|+ |a3 − a2|+ · · ·+ |ai+1 − ai|+ · · ·+ |an − an−1|

over all permutations? What is the value of this maximum sum?

Solution. First, suppose that n is odd. Then

|ai+1 − ai| ≤
∣∣∣∣ai+1 −

n + 1
2

∣∣∣∣ +
∣∣∣∣ai −

n + 1
2

∣∣∣∣
with equality if and only if 1

2 (n + 1) lies between ai+1 and ai.

Hence
n−1∑
i=0

|ai+1 − ai| ≤ 2
( n∑

i=1

∣∣∣∣ai −
n + 1

2

∣∣∣∣)−
(∣∣∣∣a1 −

n + 1
2

∣∣∣∣ +
∣∣∣∣an −

n + 1
2

∣∣∣∣)

=
( n∑

i=1

|2ai − (n + 1)|
)
−

(∣∣∣∣a1 −
n + 1

2

∣∣∣∣ +
∣∣∣∣an −

n + 1
2

∣∣∣∣)
= [(n− 1) + (n− 3) + · · ·+ 2 + 0 + 2 + · · ·+ (n− 1)]−

(∣∣∣∣a1 −
n + 1

2

∣∣∣∣ +
∣∣∣∣an −

n + 1
2

∣∣∣∣)
= 4

(
1 + 2 + · · ·+ n− 1

2

)
−

(∣∣∣∣a1 −
n + 1

2

∣∣∣∣ +
∣∣∣∣an −

n + 1
2

∣∣∣∣)
= 4

[
((n− 1)/2) · ((n + 1)/2)

2

]
−

(∣∣∣∣a1 −
n + 1

2

∣∣∣∣ +
∣∣∣∣an −

n + 1
2

∣∣∣∣)
≤ n2 − 1

2
− 1 =

n2 − 3
2
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since |a1 − ((n + 1)/2)|+ |an − ((n + 1)/2)| ≥ 1. Equality occurs when one of a1 and an is equal to 1
2 (n + 1)

and the other is equal to 1
2 (n + 1)± 1.

We get a permutation giving the maximum value of 1
2 (n2− 3) if and only if the foregoing conditions on

a1 and an are satisfied (in four possible ways) and 1
2 (n+1) lies between ai and ai+1 for each i. For example,

if a1 = 1
2 (n + 1) + 1, then we require that the 1

2 (n − 3) numbers a3, · · · , an−2 exceed 1
2 (n + 1) + 1 and the

1
2 (n− 1) numbers a2, a4, · · · , an−1 are less than 1

2 (n + 1). Thus, there are

4
(

n− 3
2

)
!
(

n− 1
2

)
!

ways of achieving the maximum.

Now suppose that n is even. As before,

|ai+1 − ai| ≤
∣∣∣∣ai+1 −

n + 1
2

∣∣∣∣ +
∣∣∣∣ai −

n + 1
2

∣∣∣∣
with equality if and only if 1

2 (n + 1) lies between ai+1 and ai.

We have that
n∑

i=1

|ai+1 − ai| = 2(1 + 3 + · · ·+ (n− 1))−
[∣∣∣∣ai+1 −

n + 1
2

∣∣∣∣ +
∣∣∣∣an −

n + 2
2

∣∣∣∣]
≤ n2

2
− 1 =

n2 − 2
2

,

with the latter inequality becoming equality if and only if {a1, an} = {n/2, (n + 2)/2}. Suppose, say, that
a1 = n/2 and an = (n + 2)/2. Then, to achieve the maximum, we require that {a1, a3, · · · , an−1} =
{1, 2. · · · , n/2} and {a2, a4, · · · , an} = {(n/2) + 1, · · · , n}. The maximum value of (n2− 2)/2 can be achieved
with 2[(n− 2)/2]!2 permutations.

5. Let A be a n × n matrix with determinant equal to 1. Let B be the matrix obtained by adding 1 to
every entry of A. Prove that the determinant of B is equal to 1+ s, where s is the sum of the n2 entries
of A−1.

Solution 1. First, we make a general observation. Let U = (uij) and V = (vij) be two n× n matrices.
Then det (U +V ) is the sum of the determinants of 2n n×n matrices WS , where S is a subset of {1, 2, · · ·n}
and the (i, j)th element of WS is equal to uij when i ∈ S and vij when i 6∈ S. In the special case that U = A
and V = E, the matrix whose every entry is equal to 1, WS is equal to 0 except when S = {1, 2, · · · , n} or
S = {1, 2, · · · , n}\{k} for some integer k. In the former case, det S = det A = 1, and in the latter case, all
rows of S except the kth agree with the corresponding rows of A and the kth row of S consists solely of 1s,
so that the determinant of S is equal to Ak,1 + Ak,2 + · · ·+ Ak,n. Thus,

det(A + E) = det A +
n∑

k=1

( n∑
l=1

Akl

)
= 1 +

∑
i,j

Aij ,

as desired.

Solution 2. [R. Barrington Leigh] Let A−1 = (cij) and dj =
∑n

i=1 cij , the jth column sum of A−1

for 1 ≤ j ≤ n. Let E be the n × n matrix all of whose entries are 1, so that B = A + E. Observe that
E = (1, 1, · · · , 1)t(1, 1, · · · , 1), where t denotes the transpose. Then

det B = (det B)(det A)−1 = (det B)(det A−1) = det (BA−1)

= det [(A + E)A−1] = det [I + (1, 1, · · · , 1)t(1, 1, · · · , 1)(cij)

= det [I + (1, 1, · · · , 1)t(d1, d2, · · · , dn) .
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Thus, we need to calculate the determinant of the matrix
1 + d1 d2 · · · dn

d1 1 + d2 · · · dn

· · ·
d1 d2 · · · 1 + dn

 .

This is equal to the determinant of the matrix
1 + d1 d2 · · · dn

−1 1 · · · 0
· · ·

−1 0 · · · 1

 ,

which in turn is equal to the determinant of a matrix whose top row is 1 + d1 + d2 + · · ·+ dn 0 0 · · · 0)
and for which the cofactor fo the top lect element is the (n− 1)× (n− 1) identity matrix. The result follows.

Solution 3. [M.-D. Choi] Lemma: If C is a rank 1 n× n matrix, then the determinant of I + C is equal
to 1 + trace C.

Proof. The sum of the eigenvalues of C is equal to the trace of C (sum of the diagonal elements). Since
0 is an eigenvalue of algebraic multiplicity n − 1, the remaining eigenvalue is equal to the trace of C. The
eigenvalues of I + C are 1 with algebraic multiplicity n − 1 and 1 + trace C, so that the determinant of
I + C, which is the product of its eigenvalues, is equal to 1 + trace C. ♠

In the problem, with E defined as in Solution 2,

det(A + E) = det(A) det(I + A−1E) = det(I + A−1E) .

Since E is of rank 1, so is A−1E. The diagonal elements of A−1E are the row sums of A−1 and so the trace
of A−1 is equal to the sum of all the elements of A−1. The desired result follows.

6. Determine ( ∫ 1

0

dt√
1− t4

)
÷

( ∫ 1

0

dt√
1 + t4

)
.

Solution. The substitution t2 = sin θ leads to∫ 1

0

dt√
1− t4

=
∫ π/2

0

cos θdθ

2
√

sin θ cos θ
=

1
2

∫ π/2

0

dθ√
sin θ

.

The substitution t2 = tan α followed by the substitution β = 2α leads to∫ 1

0

dt√
1 + t4

=
∫ π/4

0

sec2 αdα

2
√

tanα sec α

=
1
2

∫ π/4

0

dα√
sinα cos α

=
1
2

∫ π/4

0

√
2dα√

sin 2α
=

1
4

∫ π/2

0

√
2dβ√
sinβ

=
1

2
√

2

∫ π/2

0

dβ√
sinβ

.

Thus the answer is
√

2.

6



7. Let a be a parameter. Define the sequence {fn(x) : n = 0, 1, 2, · · ·} of polynomials by

f0(x) ≡ 1

fn+1(x) = xfn(x) + fn(ax)

for n ≥ 0.

(a) Prove that, for all n, x,
fn(x) = xnfn(1/x) .

(b) Determine a formula for the coefficient of xk (0 ≤ k ≤ n) in fn(x).

Solution. The polynomial fn(x) has degree n for each n, and we will write

fn(x) =
n∑

k=0

b(n, k)xk .

Then

xnfn(1/x) =
n∑

k=0

b(n, k)xn−k =
n∑

k=0

b(n, n− k)xk .

Thus, (a) is equivalent to b(n, k) = b(n, n− k) for 0 ≤ k ≤ n.

When a = 1, it can be established by induction that fn(x) = (x + 1)n =
∑n

k=0

(
n
k

)
xn. Also, when

a = 0, fn(x) = xn + xn−1 + · · ·+ x + 1 = (xn+1 − 1)(x− 1)−1. Thus, (a) holds in these cases and b(n, k) is
respectively equal to

(
n
k

)
and 1.

Suppose, henceforth, that a 6= 1. For n ≥ 0,

fn+1(k) =
n∑

k=0

b(n, k)xk+1 +
n∑

k=0

akb(n, k)xk

=
n∑

k=1

b(n, k − 1)xk + b(n, n)xn+1 + b(n, 0) +
n∑

k=1

akb(n, k)xk

= b(n, 0) +
n∑

k=1

[b(n, k − 1) + akb(n, k)]xk + b(n, n)xn+1 ,

whence b(n+1, 0) = b(n, 0) = b(1, 0) and b(n+1, n+1) = b(n, n) = b(1, 1) for all n ≥ 1. Since f1(x) = x+1,
b(n, 0) = b(n, n) = 1 for each n. Also

b(n + 1, k) = b(n, k − 1) + akb(n, k) (1)

for 1 ≤ k ≤ n.

We conjecture what the coefficients b(n, k) are from an examination of the first few terms of the sequence:

f0(x) = 1; f1(x) = 1 + x; f2(x) = 1 + (a + 1)x + x2;

f3(x) = 1 + (a2 + a + 1)x + (a2 + a + 1)x2 + x3;

f4(x) = 1 + (a3 + a2 + a + 1)x + (a4 + a3 + 2a2 + a + 1)x2 + (a3 + a2 + a + 1)x3 + x4;

f5(x) = (1 + x5) + (a4 + a3 + a2 + a + 1)(x + x4) + (a6 + a5 + 2a4 + 2a3 + 2a2 + a + 1)(x2 + x3) .

We make the empirical observation that

b(n + 1, k) = an+1−kb(n, k − 1) + b(n, k) (2)
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which, with (1), yields
(an+1−k − 1)b(n, k − 1) = (ak − 1)b(n, k)

so that

b(n + 1, k) =
[

ak − 1
an+1−k − 1

+ ak

]
b(n, k) =

[
an+1 − 1

an+1−k − 1

]
b(n, k)

for n ≥ k. This leads to the conjecture that

b(n, k) =
(

(an − 1)(an−1 − 1) · · · (ak+1 − 1)
(an−k − 1)(an−k−1 − 1) · · · (a− 1)

)
b(k, k) (3)

where b(k, k) = 1.

We establish this conjecture. Let c(n, k) be the right side of (3) for 1 ≤ k ≤ n−1 and c(n, n) = 1. Then
c(n, 0) = b(n, 0) = c(n, n) = b(n, n) = 1 for each n. In particular, c(n, k) = b(n, k) when n = 1.

We show that
c(n + 1, k) = c(n, k − 1) + akc(n, k)

for 1 ≤ k ≤ n, which will, through an induction argument, imply that b(n, k) = c(n, k) for 0 ≤ k ≤ n. The
right side is equal to(

an − 1
an−k − 1

)
· · ·

(
ak+1 − 1

a− 1

)[
ak − 1

an−k+1 − 1
+ ak

]
=

(an+1 − 1)(an − 1) · · · (ak+1 − 1)
(an+1−k − 1)(an−k − 1) · · · (a− 1)

= c(n + 1, k)

as desired. Thus, we now have a formula for b(n, k) as required in (b).

Finally, (a) can be established in a straightforward way, either from the formula (3) or using the pair of
recursions (1) and (2).

8. Let V be a complex n−dimensional inner product space. Prove that

|u|2|v|2 − 1
4
|u− v|2|u + v|2 ≤ |(u, v)|2 ≤ |u|2|v|2 .

Solution. The right inequality is the Cauchy-Schwarz Inequality. We have that

4|(u, v)|2 − 4|u|2|v|2 + |u− v|2|u + v|2

= 4(u, v)(v, u)− 4(u, u)(v, v) + (u− v, u− v)(u + v, u + v)

= 4(u, v)(v, u)− 4(u, u)(v, v) + [(u, u) + (v, v)− (u, v) + (v, u)][(u, u) + (v, v) + (u, v) + (v, u)]

= 4(u, v)(v, u)− 4(u, u)(v, v) + (u, u)2 + (v, v)2 + 2(u, u)(v, v)− [(u, v)2 + 2(u, v)(v, u) + (v, u)2]

= [(u, u)− (v, v)]2 − [(u, v)− (v, u)]2

= [|u|2 − |v|2]2 − [2i Im (u, v)]2

= [|u|2 − |v|2]2 + 4[Im (u, v)]2 ≥ 0 .

9. Let ABCD be a convex quadrilateral for which all sides and diagonals have rational length and AC and
BD intersect at P . Prove that AP , BP , CP , DP all have rational length.

Solution 1. Because of the symmetry, it is enough to show that the length of AP is rational. The
rationality of the lengths of the remaining segments can be shown similarly. Coordinatize the situation by
taking A ∼ (0, 0), B ∼ (p, q), C ∼ (c, 0), D ∼ (r, s) and P ∼ (u, 0). Then, equating slopes, we find that

s

r − u
=

s− q

r − p
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so that
sr − ps

s− q
= r − u

whence u = r − sr−ps
s−q = ps−qr

s−q .

Note that |AB|2 = p2 + q2, |AC|2 = c2, |BC|2 = (p2 − 2pc + c2) + q2, |CD|2 = (c2 − 2cr + r2) + s2 and
|AD|2 = r2 + s2, we have that

2rc = AC2 + AD2 − CD2

so that, since c is rational, r is rational. Hence s2 is rational.
Similarly

2pc = AC2 + AB2 −BC2 .

Thus. p is rational, so that q2 is rational.

2qs = q2 + s2 − (q − s)2 = q2 + s2 − [(p− r)2 + (q − s)2] + p2 − 2pr + r2

is rational, so that both qs and q/s = (qs)/s2 are rational. Hence

u =
p− r(q/s)
1− (q/s)

is rational.

Solution 2. By the cosine law, the cosines of all of the angles of the triangle ACD, BCD, ABC and
ABD are rational. Now

AP

AB
=

sin∠ABP

sin∠BPC

and
CP

BC
=

sin∠PBC

sin∠BPC
.

Since ∠APC + ∠BPC = 180◦, therefore sin∠APC = sin∠BPC and

AP

CP
=

AB sin∠ABP

BC sin∠PBC
=

AB sin∠ABP sin∠PBC

BC sin2 ∠PBC

=
AB(cos ∠ABP cos ∠PBC − cos(∠ABP + ∠PBC))

BC(1− cos2 ∠PBC)

=
AB(cos ∠ABD cos ∠DBC − cos ∠ABC)

BC(1− cos2 ∠DBC)

is rational. Also AP +CP is rational, so that (AP/CP )(AP +CP ) = ((AP/CP )+1)AP is rational. Hence
AP is rational.
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