
THE UNIVERSITY OF TORONTO
UNDERGRADUATE MATHEMATICS COMPETITION

In Memory of Robert Barrington Leigh

March 7, 2010

Time: 3 1
2 hours

No aids or calculators permitted.

The grading is designed to encourage only the stronger students to attempt more than five problems.
Each solution is graded out of 10. If the sum of the scores for the solutions to the five best problems does
not exceed 30, this sum will be the final grade. If the sum of these scores does exceed 30, then all solutions
will be graded for credit.

1. Let F1 and F2 be the foci of an ellipse and P be a point in the plane of the ellipse. Suppose that
G1 and G2 are points on the ellipse for which PG1 and PG2 are tangents to the ellipse. Prove that
∠F1PG1 = ∠F2PG2.

2. Let u0 = 1, u1 = 2 and un+1 = 2un + un−1 for n ≥ 1. Prove that, for every nonnegative integer n,

un =
∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}
.

3. Let a and b , the latter nonzero, be vectors in R3. Determine the value of λ for which the vector
equation

a− (x× b) = λb

is solvable, and then solve it.

4. The plane is partitioned into n regions by three families of parallel lines. What is the least number of
lines to ensure that n ≥ 2010?

5. Let m be a natural number, and let c, a1, a2, · · · , am be complex numbers for which |ai| = 1 for i =
1, 2, · · · ,m. Suppose also that

lim
n→∞

m∑
i=1

an
i = c .

Prove that c = m and that ai = 1 for i = 1, 2, · · · ,m.

6. Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) for
which

f(x)f(x + 1) = g(h(x)) ,

7. Suppose that f is a continuous real-valued function defined on the closed interval [0, 1] and that( ∫ 1

0

xf(x)dx

)2

=
( ∫ 1

0

f(x)dx

)( ∫ 1

0

x2f(x)dx

)
.

Prove that there is a point c ∈ (0, 1) for which f(c) = 0.

8. Let A be an invertible symmetric n × n matrix with coefficients {ai,j} in Z2. Prove that there is an
n× n matrix with coefficients in Z2 such that A = M tM only if ai,i 6= 0 for some i.

[Z2 refers to the field of integers modulo 2 with two elements 0, 1 for which 1 + 1 = 0. M t refers to the
transpose of the matrix M .]

Please turn over the page for the remaining problems.
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9. Let f be a real-valued functions defined on R with a continuous third derivative, let S0 = {x : f(x) = 0},
and, for k = 1, 2, 3, Sk = {x : f (k)(x) = 0}, where f (k) denotes the kth derivative of f . Suppose also
that R = S0 ∪ S1 ∪ S2 ∪ S3. Must f be a polynomial of degree not exceeding 2?

10. Prove that the set Q of rationals can be written as the union of countably many subsets of Q each of
which is dense in the set R of real numbers.
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Solutions.

1. Let F1 and F2 be the foci of an ellipse and P be a point in the plane of the ellipse. Suppose that
G1 and G2 are points on the ellipse for which PG1 and PG2 are tangents to the ellipse. Prove that
∠F1PG1 = ∠F2PG2.

Solution. Let H1 be the reflection of F1 in the tangent PG1, and H2 be the reflection of F2 in the
tangent PG2. We have that PH1 = PF1 and PF2 = PH2. By the reflection property, ∠PG1F2 =
∠F1G1Q = ∠H1G1Q, where Q is a point on PG1 produced. Therefore, H1F2 intersects the ellipse in G1.
Similarly, H2F1 intersects the ellipse in K2. Therefore

H1F2 = H1G1 + G1F2 = F1G1 + G1F2

= F1G2 + G2F2 = F1G2 + G2H2 = H2F1 .

Therefore, triangle PH1F2 and PF1H2 are congruent (SSS), so that ∠H1PF2 = ∠H2PF1. It follows that

2∠F1PG1 = ∠H1PF1 = ∠H2PF2 = 2∠F2PG2

and the desired result follows.

2. Let u0 = 1, u1 = 2 and un+1 = 2un + un−1 for n ≥ 1. Prove that, for every nonnegative integer n,

un =
∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}
.

Solution 1. Suppose that we have a supply of white and of blue coaches, each of length 1, and of red
coaches, each of length 2; the coaches of each colour are indistinguishable. Let vn be the number of trains
of total length n that can be made up of red, white and blue coaches of total length n. Then v0 = 1, v1 = 2
and v2 = 5 (R, WW, WB, BW, BB). In general, for n ≥ 1, we can get a train of length n + 1 by appending
either a white or a blue coach to a train of length n or a red coach to a train of length n − 1, so that
vn+1 = 2vn + vn−1. Therefore vn = un for n ≥ 0.

We can count vn in another way. Suppose that the train consists of i white coaches, j blue coaches
and k red coaches, so that i + j + 2k = n. There are (i + j + k)! ways of arranging the coaches in order;
any permutation of the i white coaches among themselves, the j blue coaches among themselves and k red
coaches among themselves does not change the train. Therefore

un =
∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}
.

Solution 2. Let f(t) =
∑∞

n=0 untn. Then

f(t) = u0 + u1t + (2u1 + u0)t2 + (2u2 + u1)t3 + · · ·
= u0 + u1t + 2t(f(t)− u0) + t2f(t) = u0 + (u1 − 2u0)t + (2t + t2)f(t)

= 1 + (2t + t2)f(t) ,

whence
f(t) =

1
1− 2t− t2

=
1

1− t− t− t2

=
∞∑

n=0

(t + t + t2)n =
∞∑

n=0

tn
[∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}]
.
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Solution 3. Let wn be the sum in the problem. It is straightforward to check that u0 = w0 and u1 = w1.
We show that, for n ≥ 1, wn+1 = 2wn + wn−1 from which it follows by induction that un = wn for each n.
By convention, let (−1)! = ∞. Then, for i, j, k ≥ 0 and i + j + 2k = n + 1, we have that

(i + j + k)!
i!j!k!

=
(i + j + k)(i + j + k − 1)!

i!j!k!

=
(i + j + k − 1)!

(i− 1)!j!k!
+

(i + j + k − 1)!
i!(j − 1)!k!

+
(i + j + k − 1)!

i!j!(k − 1)!
,

whence

wn+1 =
∑ {

(i + j + k − 1)!
(i− 1)!j!k!

: i, j, k ≥ 0, (i− 1) + j + 2k = n

}
+

∑ {
(i + j + k − 1)!

i!(j − 1)!k!
: i, j, k ≥ 0, i + (j − 1) + 2k = n

}
+

∑ {
(i + j + k − 1)!

i!j!(k − 1)!
: i, j, k ≥ 0, i + j + 2(k − 1) = n− 1

}
= wn + wn + wn−1 = 2wn + wn−1

as desired.

3. Let a and b, the latter nonzero, be vectors in R3. Determine the value of λ for which the vector equation

a− (x× b) = λb

is solvable, and then solve it.

Solution 1. If there is a solution, we must have a · b = λ|b|2, so that λ = (a · b)/|b|2. On the other
hand, suppose that λ has this value. Then

0 = b× a− b× (x× b)
= b× a− [(b · b)x− (b · x)b]

so that
b× a = |b|2x− (b · x)b .

A particular solution of this equation is

x = u ≡ b× a
|b|2

.

Let x = z be any other solution. Then

|b|2(z− u) = |b|2z− |b|2u
= (b× a + (b · z)b)− (b× a + (b · u)b)
= (b · z)b

so that z− u = µb for some scalar µ.

We check when this works. Let x = u + µb for some scalar µ. Then

a− (x× b) = a− (u× b) = a− (b× a)× b
|b|2

= a +
b× (b× a)

|b|2

= a +
(b · a)b− (b · b)a

|b|2

= a +
(

b · a
|b|2

)
b− a = λb ,
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as desired. Hence, the solutions is

x =
b× a
|b|2

+ µb ,

where µ is an arbitrary scalar.

Solution 2. [B. Yahagni] Suppose, to begin with, that {a,b} is linearly dependent. Then a = [(a ·
b)/|b|2]b. Since (x×b) ·b = 0 for all x, the equation has no solutions except when λ = (a ·b)/|b|2. In this
case, it becomes x× b = 0 and is satisfied by x = µb, where µ is any scalar.

Otherwise, {a,b,a× b} is linearly independent and constitutes a basis for R3. Let a solution be

x = αa + µb + β(a× b) .

Then
x× b = α(a× b) + β[(a× b)× b] = α(a× b) + β(a · b)b− β(b · b)a

and the equation becomes
(1 + β|b|2)a− β(a · b)b− α(a× b) = λb .

Therefore α = 0, µ is arbitrary, β = −1/|b|2 and λ = −β(a · b) = (a · b)/|b|2.

Therefore, the existence of a solution requires that λ = (a · b)/|b|2 and the solution then is

x = µb− 1
|b|2

(a× b) .

Solution 3. Writing the equation in vector components yields the system

b3x2 − b2x3 = a1 − λb1 ;

−b3x1 + b1x3 = a2 − λb2 ;

b2x1 − b1x2 = a3 − λb3 .

The matrix of coefficients of the left side is of rank 2, so that the corresponding homogeneous system of
equations has a single infinity of solutions. Multiplying the three equations by b1, b2 and b3 respectively and
adding yields

0 = a1b1 + a2b2 + a3b3 − λ(b2
1 + b2

2 + b2
3) .

Thus, for a solution to exist, we require that

λ =
a1b1 + a2b2 + a3b3

b2
1 + b2

2 + b2
3)

.

In addition, we learn that the corresponding homogeneous system is satisfied by

(x1, x2, x3) = µ(b1, b2, b3)

where µ is an arbitrary scalar.

It remains to find a particular solution for the nonhomogeneous system. Multiplying the third equation
by b2 and subtracting the second multiplied by b3, we obtain that

(b2
2 + b2

3)x1 = b1(b2x2 + b3x3) + (a3b2 − a2b3) .

Therefore, setting b2
1 + b2

2 + b2
3 = b2, we have that

b2x1 = b1(b1x1 + b2x2 + b3x3) + (a3b2 − a2b3) .
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Similarly
b2x2 = b2(b1x1 + b2x2 + b3x3) + (a1b3 − a3b1) ,

b2x3 = b3(b1x1 + b2x2 + b3x3) + (a2b1 − a1b2) .

Observing that b1x1 + b2x2 + b3x3 vanishes when

(x1, x2, x3) = (a3b2 − a2b3, a1b3 − a3b1, a2b1 − a1b2) ,

we obtain a particular solution to the system:

(x1, x2, x3) = b−2(a3b2 − a2b3, a1b3 − a3b1, a2b1 − a1b2) .

Adding to this the general solution of the homogeneous system yields the solution of the nonhomogeneous
system.

4. The plane is partitioned into n regions by three families of parallel lines. What is the least number of
lines to ensure that n ≥ 2010?

Solution. Suppose that there are x, y and z lines in the three families. Assume that no point is common
to three distinct lines. The x+ y lines of the first two families partition the plane into (x+1)(y +1) regions.
Let λ be one of the lines of the third family. It is cut into x+y +1 parts by the lines in the first two families,
so the number of regions is increased by x + y + 1. Since this happens z times, the number of regions that
the plane is partitioned into by the three families of

n = (x + 1)(y + 1) + z(x + y + 1) = (x + y + z) + (xy + yz + zx) + 1 .

Let u = x + y + z and v = xy + yz + zx. Then (by the Cauchy-Schwarz Inequality for example),
v ≤ x2 + y2 + z2, so that u2 = x2 + y2 + z2 + 2v ≥ 3v. Therefore, n ≤ u + 1

3u2 + 1. This takes the value
2002 when u = 76. However, when (x, y, z) = (26, 26, 25), then u = 77, v = 1976 and n = 2044. Therefore,
we need at least 77 lines, but a suitably chosen set of 77 lines will suffice.

5. Let m be a natural number, and let c, a1, a2, · · · , am be complex numbers for which |ai| = 1 for i =
1, 2, · · · ,m. Suppose also that

lim
n→∞

m∑
i=1

an
i = c .

Prove that c = m and that ai = 1 for i = 1, 2, · · · ,m.

Solution. If ai = eiαi , then either the sequence {an
i } is periodic and assumes the value 1 infinitely often

(when αi is a rational multiple of π) or has a subsequence whose limit is 1 (when αi is not a rational multiple
of π). [In the latter case, we can find an increasing subsequence {nk} of natural numbers for which ank

i

converges, so that a
nk+1−nk

i converges to 1.]

We prove that there is a subsequence {nk} of natural numbers for which limk ank
i = 1 for each 1 ≤ i ≤ m.

Proceed by induction on m. When m = 1, the limit of any subsequence of {an
1} is equal to the limit of the

whole sequence, so that c = 1 in this case. In fact, we can go further: a1 = lim an+1
1 = lim an

1 = 1.

Suppose the induction hypothesis holds for m− 1. Then there is a subsequence S1 of natural numbers
such that {an

i } has limit 1 along this subsequence for 1 ≤ i ≤ m − 1. We can find a subsequence S2 along
which the sequence {an

m} converges to some limit b on the unit circle. Let S3 be the sequence of quotients
of consecutive terms in the sequence S2. Then, for 1 ≤ i ≤ m, the sequence {an

i } converges to 1 along S3.

It follows from this that c = m. Also, along S3, we have that

m∑
i=1

ai = lim
m∑

i=1

an+1
i = m .
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Therefore
∑m

i=1 Re ai = m. But the real part of each ai does not exceed 1, with equality if and only if
ai = 1, if follows that ai = 1 for each i.

This problem was contributed by Bamdad R. Yahaghi.

6. Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) for
which

f(x)f(x + 1) = g(h(x)) ,

Solution 1. [A. Remorov] Let f(x) = a(x− r)(x− s). Then

f(x)f(x + 1) = a2(x− r)(x− s + 1)(x− r + 1)(x− s)

= a2(x2 + x− rx− sx + rs− r)(x2 + x− rx− sx + rs− s)

= a2[(x2 − (r + s− 1)x + rs)− r][(x2 − (r + s− 1)x + rs)− s]
= g(h(x)) ,

where g(x) = a2(x− r)(x− s) = af(x) and h(x) = x2 − (r + s− 1)x + rs.

Solution 2. Let f(x) = ax2 + bx + c, g(x) = px2 + qx + r and h(x) = ux2 + vx + w. Then

f(x)f(x + 1) = a2x4 + 2a(a + b)x3 + (a2 + b2 + 3ab + 2ac)x2 + (b + 2c)(a + b)x + c(a + b− c)

g(h(x)) = p(ux2 + vx + w)2 + q(ux + vx + w) + r

= pu2x4 + 2puvx3 + (2puw + pv2 + qu)x2 + (2pvw + qv)x + (pw2 + qw + r) .

Equating coefficients, we find that pu2 = a2, puv = a(a + b), 2puw + pv2 + qu = a2 + b2 + 3ab + 2ac,
(b + 2c)(a + b) = (2pw + q)v and c(a + b + c) = pw2 + qw + r. We need to find just one solution of this
system. Let p = 1 and u = a. Then v = a + b and b + 2c = 2pw + q from the second and fourth equations.
This yields the third equation automatically. Let q = b and w = c. Then from the fifth equation, we find
that r = ac.

Thus, when f(x) = ax2 + bx + c, we can take g(x) = x2 + bx + ac and h(x) = ax2 + (a + b)x + c.

Solution 3. [S. Wang] Suppose that

f(x) = a(x + h)2 + k = a(t− (1/2))2 + k ,

where t = x + h + 1
2 . Then f(x + 1) = a(x + 1 + h)2 + k = a(t + (1/2))2 + k, so that

f(x)f(x + 1) = a2(t2 − (1/4))2 + 2ak(t2 + (1/4)) + k2

= a2t4 +
(
− a2

2
+ 2ak

)
t2 +

(
a2

16
+

ak

2
+ k2

)
.

Thus, we can achieve the desired representation with h(x) = t2 = x2 + (2h + 1)x + 1
4 and g(x) = a2x2 +

(−a2

2 + 2ak)x + (a2

16 + ak
2 + k2).

Solution 4. [V. Krakovna] Let f(x) = ax2 + bx + c = au(x) where u(x) = x2 + dx + e, where b = ad
and c = ae. If we can find functions v(x) and w(x) for which u(x)u(x + 1) = v(w(x)), then f(x)f(x + 1) =
a2v(w(x)), and we can take h(x) = w(x) and g(x) = a2v(x).

Define p(t) = u(x + t), so that p(t) is a monic quadratic in t. Then, noting that p′′(t) = u′′(x + t) = 2,
we have that

p(t) = u(x + t) = u(x) + u′(x)t +
u′′(x)

2
t2 = t2 + u′(x)t + u(x) ,
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from which we find that

u(x)u(x + 1) = p(0)p(1) = u(x)[u(x) + u′(x) + 1]

= u(x)2 + u′(x)u(x) + u(x) = p(u(x)) = u(x + u(x)) .

Thus, u(x)u(x + 1) = v(w(x)) where w(x) = x + u(x) and v(x) = u(x). Therefore, we get the desired
representation with

h(x) = x + u(x) = x2 +
(

1 +
b

a

)
x +

c

a

and
g(x) = a2v(x) = a2u(x) = af(x) = a2x2 + abx + ac .

Comment. The second solution can also be obtained by looking at special cases, such as when a = 1 or
b = 0, getting the answer and then making a conjecture.

7. Suppose that f is a continuous real-valued function defined on the closed interval [0, 1] and that( ∫ 1

0

xf(x)dx

)2

=
( ∫ 1

0

f(x)dx

)( ∫ 1

0

x2f(x)dx

)
.

Prove that there is a point c ∈ (0, 1) for which f(c) = 0.

Solution 1. Suppose, if possible, that f never vanishes on the interval, then it must be everywhere
positive or negative. By replacing f by −f is necessary, wolog we can assume that f(x) > 0 on [0, 1]. Let
f(x) = [g(x)]2 for some positive function g. Then the equation becomes( ∫ 1

0

xg2(x)dx

)2

=
( ∫ 1

0

g2(x)dx

)( ∫ 1

0

(xg(x))2dx

)
.

This is the equality situation in the Cauchy-Schwarz Inequality, whence xg(x) must be a constant multiple
of g(x). But this is not the case. Therefore, by a contradiction argument, the result follows.

Solution 2. The condition and conclusion is satisfied by the zero function. Suppose, henceforth, that f

is not identically zero and let
∫ 1

0
f(x)dx = u,

∫ 1

0
xf(x)dx = uv. If u = 0, then f must assume both positive

and negative values in (0, 1), and so, by the Intermediate Value Theorem, must vanish. Assume u 6= 0. Then
the condition implies that

∫ 1

0
x2f(x)dx = uv2. Then∫ 1

0

(x− v)2f(x)dx =
∫ 1

0

x2f(x)dx− 2v

∫ 1

0

xf(x)dx + v2

∫ 1

0

f(x)dx

= uv2 − 2uv2 + uv2 = 0 ,

whence (x − v)2f(x), and also f(x) must assume both positive and negative values on (0, 1). The result
follows.

8. Let A be an invertible symmetric n × n matrix with coefficients {ai,j} in Z2. Prove that there is an
n× n matrix with coefficients in Z2 such that A = M tM only if ai,i 6= 0 for some i.

[Z2 refers to the field of integers modulo 2 with two elements 0, 1 for which 1 + 1 = 0. M t refers to the
transpose of the matrix M .]

Solution 1. [A. Kim] Let the entries of M be mi,j . Then

ai,i =
∑

j

mi,jmj,i =
∑

j

m2
i,j =

∑
j

mi,j .
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Suppose that ai,i = 0 for each i. Then each column must have evenly many entries equal to 1. But then the
sum of the row vectors of M must be the zero vector, and so the rows are linearly dependent. Hence the
rank of M is less than n, and so M is not invertible.

Solution 2. Let x = (x1, x2, · · · , zn)t be a column vector over Z2 and observe that

xAxt =
n∑

i=1

ai,ix
2
i = (

n∑
i=1

xi)2 .

Define N = {x : xAxt = 0}. Then N = {x :
∑n

i=1 ai,ixi = 0}.

Suppose that A = M tM . Then M is invertible and so x → Mx is a surjection (onto). Therefore the
equation

0 = xAxt = xM tMxt = (Mxt)t(Mxt)

is not satisfied for each x, so that N is a proper subspace of (Z2)n. Therefore, there must exist i for which
ai,i 6= 0.

This problem was contributed by Franklin Vera Pachebo.

9. Let f be a real-valued functions defined on R with a continuous third derivative, let S0 = {x : f(x) = 0},
and, for k = 1, 2, 3, Sk = {x : f (k)(x) = 0}, where f (k) denotes the kth derivative of f . Suppose also
that R = S0 ∪ S1 ∪ S2 ∪ S3. Must f be a polynomial of degree not exceeding 2?

Solution. Observe that, because f and its derivatives are continuous, each set Sk is closed. Note also
that, if U is an open subset upon which f or any of its derivatives vanish, then all derivatives of higher order
(in particular, f (3) must also vanish on U).

First, we show that S3 is dense in R. Otherwise, there is an open interval J upon which f (3) never
vanishes, so that J ⊆ S0 ∪ S1 ∪ S2. The set J \ S2 must be a nonvoid open set, and so contain an open
interval J1 upon which f ′′ never vanishes. Similarly, there is a nonvoid open interval J2 ⊆ J1 open which f ′

never vanishes and a nonvoid open interval J3 ⊆ J2 upon which f never vanishes. But then, none of f , f ′.
f ′′, f (3) would vanish on J3 contrary to hypothesis.

Let I be an open real interval and let T0 = I \ S0. If T0 = ∅, then f , and so f (3), must vanish on I.
Otherwise, T0 is a nonvoid open set and there is an open interval I1 ⊆ T0 ∩ I. Let T1 = I1 \ S1. Then, as
before, either f ′, and so f (3), vanishes on I1 or else there is a nonvoid open interval I2 ⊆ T1 ∩ I1 ⊆ I. Let
T2 = I2 \ S2. Either f ′′, and so f (3), vanishes on I2 or there is an nonvoid open subset I3 ⊆ T2 ∩ I2 ⊆ I.
Then either f (3) vanishes on I3 or there is a nonvoid open interval I4 ⊆ T3 ∩ I3, where T3 is the open set
I3 \ S3. But this would contradict the density of S3 in R.

Therefore, f (3) is identically 0 on R, and so therefore, by the mean value theorem, f” must be constant,
f ′ linear and f quadratic.

10. Prove that the set Q of rationals can be written as the union of countably many subsets of Q each of
which is dense in the set R of real numbers.

Solution. Let {r1, r2, · · · , ri, · · ·} be the increasing sequence of all positive integers that are not the mth
power of any integer for any integer exponent exceeding 1. Let Xk be the set of all rationals of the form
a/rc

k where a is an integer coprime with rk and c is a positive integer. We include also in X1 all integers.
Then it can be seen that every rational lies in one of the Xk and that the Xk are disjoint. Since each closed
interval of length 1/rc

k contains a number in Xk of the form

ac+1r
c+1
k + acr

c
k + · · ·+ a1rk + 1
rc+1
k

, it can be seen that Xk is dense in R.
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