
THE UNIVERSITY OF TORONTO
UNDERGRADUATE MATHEMATICS COMPETITION

In Memory of Robert Barrington Leigh

March 8, 2009

Time: 3 1
2 hours

No aids or calculators permitted.

It is not necessary to do all the problems. Complete solutions to fewer problems are preferred to partial
solutions to many.

1. Determine the supremum and the infimum of

(x− 1)x−1xx

(x− (1/2))2x−1

for x > 1.

2. Let n and k be integers with n ≥ 0 and k ≥ 1. Let x0, x1, · · ·, xn be n + 1 distinct points in Rk and let
y0, y1, · · ·, yn be n + 1 real numbers (not necessarily distinct). Prove that there exists a polynomial p
of degree at most n in the coordinates of x with respect to the standard basis for which p(xi) = yi for
0 ≤ i ≤ n.

3. For each positive integer n, let p(n) be the product of all positive integral divisors of n. Is it possible to
find two distinct positive integers m and n for which p(m) = p(n)?

4. Let {an} be a real sequence for which
∞∑

n=1

an

n

converges. Prove that

lim
n→∞

a1 + a2 + · · ·+ an

n
= 0 .

5. Find a 3× 3 matrix A with elements in Z2 for which A7 = I and A 6= I. (Here, I is the identity matrix
and Z2 is the field of two elements 0 and 1 where addition and multiplication are defined modulo 2.)

6. Determine all solutions in nonnegative integers (x, y, z, w) to the equation

2x3y − 5z7w = 1 .

7. Let n ≥ 2. Minimize a1 + a2 + · · · + an subject to the constraints 0 ≤ a1 ≤ a2 ≤ · · · ≤ an and
a1a2 + a2a3 + · · ·+ an−1an + ana1 = 1. (When n = 2, the latter condition is a1a2 = 1; when n ≥ 3, the
sum on the left has exactly n terms.)

8. Let a, b, c be members of a real inner-product space (V, 〈, 〉) whose norm is given by ‖x‖2 = 〈x, x〉. (You
may assume that V is Rn if you wish. Prove that

‖a + b‖+ ‖b + c‖+ ‖c + a‖ ≤ ‖a‖+ ‖b‖+ ‖c‖+ ‖a + b + c‖

for a, b, c,∈ V .

Please turn over the page for remaining questions.
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9. Let p be a prime congruent to 1 modulo 4. For each real number x, let {x} = x − bxc denote the
fractional part of x. Determine

∑ {{
k2

p

}
: 1 ≤ k ≤ 1

2
(p− 1)

}
.

10. Suppose that a path on a m × n grid consisting of the lattice points {(x, y) : 1 ≤ x ≤ m, 1 ≤ y ≤ n}
(x and y both integers) consisting of mn − 1 unit segments begins at the point (1, 1), passes through
each point of the grid exactly once, does not intersect itself and finishes at the point (m,n). Show that
the path partitions the rectangle bounded by the lines x = 1, x = m, y = 1, y = n into two subsets of
equal area, the first consisting of regions opening to the left or up, and the second consisting of regions
opening to the right or down.

END
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Solutions

1. Determine the supremum and the infimum of

(x− 1)x−1xx

(x− (1/2))2x−1

for x > 1.

Solution. Let g(x) be the function in question and let

f(x) = log g(x)
= (x− 1) log(x− 1) + x log x− (2x− 1) log((2x− 1)/2)
= (x− 1) log(x− 1) + x log x− (2x− 1) log(2x− 1) + (2x− 1) log 2 .

Then
f ′(x) = log(x− 1) + 1 + log x + 1− 2 log(2x− 1)− 2 + 2 log 2

= log
[
4x(x− 1)
(2x− 1)2

]
= log

[
1− 1

(2x− 1)2

]
< log 1 = 0 .

Therefore, f(x), and hence g(x) is a decreasing function on (0,∞).

It is straightforward to check that limx↓1 f(x) = log 2, so that limx↓1 g(x) = 2.

To check behaviour for large values of x, let

h(u) = g(u + (1/2))

=
(u− (1/2))u−(1/2)(u + (1/2))u+(1/2)

u2u

=
(

1− 1
2u

)u(
1 +

1
2u

)u(
1− 1

2u

)−1/2(
1 +

1
2u

)1/2

=
(

1− 1
4u2

)u(
1 + (1/2u)
1− (1/2u)

)1/2

.

When v = 1/(2u), the logarithm of the first factor is

log(1− v2)
2v

,

and an application of l’Hôpital’s Rule yields that its limit is 0 as v → 0. It follows that

lim
u→∞

h(u) = 1 .

Therefore, the desired supremum is 2 and infimum is 1.

2. Let n and k be integers with n ≥ 0 and k ≥ 1. Let x0, x1, · · ·, xn be n + 1 distinct points in Rk and
let y0, y1, · · ·, yn be n + 1 real numbers (not necessarily distinct). Prove that there exists a polynomial
p of degree at most n in the coordinates of x for which p(xi) = yi for 0 ≤ i ≤ n.

Solution. For 0 ≤ i < j ≤ n, be Hij be the hyperplane {z : (xi − xj) · z = 0}. Since there are
finitely many such hyperplanes, their union is not all of Rk. Therefore, there exists a vector u for which
(xi − xj) · u 6= 0 for all distinct i, j. Therefore, the real numbers ti = xi · u are all distinct 0 ≤ i ≤ n. There
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is a real polynomial q of degree at most n for which q(ti) = yi (0 ≤ i ≤ n). The polynomial p(x) = q(x · u)
has the desired property.

3. For each positive integer n, let p(n) be the product of all positive integral divisors of n. Is it possible to
find two distinct positive integers m and n for which p(m) = p(n)?

Solution. No; the function p(n) is one-one. Observe that, since each divisor d can be paired with n/d
(which are distinct except when n is square and d is its square root), p(n) = nτ(n)/2, where τ(n) is the
number of divisors of n.

Suppose that p(m) = p(n) and that q is any prime. Let the highest powers of q dividing m and n be qu

and qv respectively. The exponent of the highest power of q that divides p(m) is (uτ(m))/2 and the highest
power of q that divides p(n) has exponent (vτ(n))/2.

Since p(m) = p(n), it follows that uτ(m) = vτ(n), so that u/v = τ(m)/τ(n). Therefore, for each prime
q, u/v is always less than, always greater than or always equal to 1. But the first two options cannot hold
(consider any prime that divides neither m nor n), so u = v for each prime q. But then this means that
m = n.

4. Let {an} be a real sequence for which
∞∑

n=1

an

n

converges. Prove that

lim
n→∞

a1 + a2 + · · ·+ an

n
= 0 .

Solution. Recall Abel’s Partial Summation Formula:

n∑
k=1

xkyk = (x1 + x2 + · · ·+ xn)yn+1 +
n∑

k=1

(x1 + x2 + · · ·+ xk)(yk − yk+1) .

Applying this to xn = an/n and yn = n. we obtain that

a1 + a2 + · · ·+ an = (x1 + x2 + · · ·+ xn)(n + 1)−
n∑

k=1

(x1 + x2 + · · ·+ xk) ,

whence
a1 + a2 + · · ·+ an

n
=

( n∑
k=1

xk

)(
1 +

1
n

)
− 1

n

n∑
k=1

(x1 + x2 + · · ·+ xk) .

Let

L = lim
n→∞

n∑
k=1

xk = lim
n→∞

n∑
k=1

(
ak

k

)
.

Then

L = lim
n→∞

(
1 +

1
n

)( n∑
k=1

xk

)
= lim

n→∞

1
n

n∑
k=1

(x1 + x2 + · · ·+ xk) .

To see the latter equality, suppose that un = x1 + x2 + · · ·+ xn and vn = (1/n)(u1 + u2 + · · ·+ un), so that

vn − un =
1
n

[(u1 − un) + (u2 − un) + · · · (un − un)] .
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Let ε > 0 be given. First select n1 so that |uk−un| < 1
2ε for n ≥ n1. Since lim un = L, there exists a positive

integer M for which |un| < M for each n. Select n2 > n1 such that, for all n > n2, 2Mn1/n < ε/2. Then,
for all n > n2,

|vn − un| ≤
n1∑

k=1

|vk − uk|+
n∑

k=n1+1

|vk − uk|

≤ 2Mn1

n
+

n− n1

n

(
ε

2

)
<

ε

2
+

ε

2
= ε .

It follows that lim vn = L, and the desired result obtains.

5. Find a 3× 3 matrix A with elements in Z2 for which A7 = I and A 6= I. (Here, I is the identity matrix
and Z2 is the field of two elements 0 and 1 where addition and multiplication are defined modulo 2.)

Solution. The minimum polynomial of A has degree at most 3 and divides the polynomial

t7 − 1 = (t− 1)(t6 + t5 + t4 + t3 + t2 + t + 1) .

Since A is not the identity matrix, its minimum polynomial divides the latter factor. This minimum poly-
nomial cannot be any of the irreducibles t, t + 1 (by the Factor Theorem) and t2 + t + 1, so it must be one
of the irreducibles t3 + t2 + 1, t2 + t + 1. Indeed

t6 + t5 + t4 + t3 + t2 + t + 1 = (t3 + t + 1)(t3 + t2 + 1) ,

over Z2.

We let A be the companion matrix of the first factor on the right, namely

A =

 0 1 0
0 0 1
1 1 0

 .

Indeed, it can be checked that A3 = I + A, whence A6 = I + A2 and A7 = A + A3 = A + I + A = I, as
desired.

6. Determine all solutions in nonnegative integers (x, y, z, w) to the equation

2x3y − 5z7w = 1 .

Solution. By parity considerations, we must have that x ≥ 1. Suppose, first of all, that y ≥ 1, z ≥ 1
and w ≥ 1. Since 2x3y ≡ 1 (mod 5), it follows that x ≡ y (mod 4), so that x and y have the same parity.
Since 2x3y ≡ 1 (mod 7), it follows that (x, y) ≡ (0, 0), (1, 4), (2, 2), (3, 0), (4, 4), (5, 2) (mod 6). Therefore, x
and y are both even. Let x = 2u and y = 2v. Then

5z7w = 22u32v − 1 = (2u3v − 1)(2u3v + 1) .

The two factors on the right must be coprime (being consecutive odd numbers), so that one of them is a
power of 5 and the other is a power of 7. Thus 2u3v ± 1 = 5z and 2u3v ∓ 1 = 7w, whence

7w − 5z = ∓2 .

Observe that 7w is congruent, modulo 25, to one of 1, 7, −1, −7, so that 7w ∓ 2 is never divisible by
25. Therefore, z = 1 and so w = 1 and we obtain the solution (x, y, z, w) = (2, 2, 1, 1).

Now we consider the cases where at least one of y, z, w vanishes.
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Suppose that y = 0. Then 2x − 1 = 5z7w. If x is even, then the left side is divisible by 3. Therefore
x is odd. But if x is odd, then the left side is not divisible by 5. Therefore z = 0 and 2x − 7w = 1. This
implies either that w = 0 or that x is divisible by 3. There are two immediate possibilities: (x,w) = (1, 0)
and (x,w) = (3, 1). Suppose that x = 3r where r ≥ 2. Then

7w = (2r)3 − 1 = (2r − 1)(22r + 2r + 1) ,

so that both factors on the right are nontrivial powers of 7. But it is not possible for both factors of the
right side to be divisible by 7, and we obtain no further solutions.

Therefore, when y = 0, we have only the solutions (x, y, z, w) = (1, 0, 0, 0), (3, 0, 0, 1).

It is not possible for x and y to both exceed 0, while z = 0 since 1+7w ≡ 2 (mod 3), for each integer w.

Finally, let x and y both exceed 0 and let w = 0. Since 5z + 1 ≡ 2 (mod 4), we must have that x = 1.
Observe that 5z + 1 ≡ 0 (mod 9) only when z ≡ 3 (mod 6). However, when z ≡ 3 (mod 6), 5z + 1 ≡ 2 (mod
7). Therefore, either 5z + 1 is not divisible by 9, or it is divisible by 7. In either case, it cannot be of the
form 2x3y when y ≥ 2. Therefore, y = 1. This leads to the sole solution (x, y, z, w) = (1, 1, 1, 0).

In all, there are four integral solutions to the equation, namely

(x, y, z, w) = (2, 2, 1, 1), (1, 1, 1, 0), (3, 0, 0, 1), (1, 0, 0, 0) .

7. Let n ≥ 2. Minimize a1 + a2 + · · · + an subject to the constraints 0 ≤ a1 ≤ a2 ≤ · · · ≤ an and
a1a2 + a2a3 + · · ·+ an−1an + ana1 = 1. (When n = 2, the latter condition is a1a2 = 1.)

Solution. If n ≥ 3 and ai = 1/
√

n for each i, then a1 + a2 + · · ·+ an =
√

n. If a1 = a2 = · · · = an−2 = 0
and an−1 = an = 1, a1 + a2 + · · ·+ an = 2. Therefore,when n ≥ 3, the minimum does not exceed the lesser
of
√

n and 2.

Let n = 2. By the arithmetic-geometric means inequality, we have that

a1 + a2 ≥ 2
√

a1a2

so that the minimum is 2.

Let n = 3. Then

(a1 + a2 + a3)2 = a2
1 + a2

2 + a2
3 + 2(a1a2 + a2a3 + a3a1)

=
1
2
(a2

1 + a2
2) +

1
2
(a2

2 + a2
3) +

1
2
(a2

3 + a2
1) + 2

≥ a1a2 + a2a3 + a3a1 + 2 = 3 ,

so that the minimum is
√

3.

Let n = 4. Then

(a1 + a2 + a3 + a4)2 = a2
1 + a2

2 + a2
3 + a2

4 + 2 + 2a1a3 + 2a2a4

= (a1 + a3)2 + (a2 + a4)2 + 2
≥ 2[(a1 + a3)(a2 + a4)] + 2 = 4 .

Therefore the minimum value of a1 + a2 + a3 + a4 is 2.

When n ≥ 5, we have that

a1a3 + a2a4 + · · ·+ an−1a1 + ana2 ≥ a1a2 + a2a3 + · · ·+ an−1[(a1 − an) + an] + ana1

= a1a2 + a2a3 + · · ·+ an−1an + ana1 + an−1(a1 − an) .
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Hence

(a1 + a2 + · · ·+ an)2 = a2
1 + a2

2 + · · ·+ a2
n−1 + a2

n + 2(a1a2 + a2a3 + · · ·+ an−1an + ana1)

+ 2(a1a3 + a2a4 + · · ·+ an−1a1 + ana2) +
∑

{aiaj : i− j 6≡ ±1,±2 (mod n)}

≥ a2
1 + a2

2 + · · ·+ a2
n−1 + a2

n + 4(a1a2 + a2a3 + · · ·+ an−1an + ana1)
+ 2an−1(a1 − an)

= a2
1 + a2

2 + · · ·+ a2
n−1 + a2

n + 4 + [an−1 + (a1 − an)]2 − a2
n−1 − (a1 − an)2

= a2
2 + · · ·+ a2

n−2 + 4 + (an−1 + a1 − an)2 + 2a1an ≥ 4 .

Therefore the minimum value of a1 + a2 + · · ·+ an is equal to 2.

8. Let a, b, c be members of a real inner-product space (V, 〈, 〉) whose norm is given by ‖x‖2 = 〈x, x〉. (You
may assume that V is Rn if you wish.) Prove that

‖a + b‖+ ‖b + c‖+ ‖c + a‖ ≤ ‖a‖+ ‖b‖+ ‖c‖+ ‖a + b + c‖

for a, b, c ∈ V .

Solution. Squaring both sides of the desired inequality, we see that it suffices to prove the following

‖p + r‖‖q + r‖ ≤ ‖p‖‖q‖+ ‖r‖‖p + q + r‖ (1)

for p, q, r ∈ V and apply this to permutations of a, b, c.

Making the substitution x = p + r, y = q + r, z = p + q + r, so that p = z − y, q = z − x, r = x + y− z,
we see that (1) is equivalent to

‖x‖‖y‖ ≤ ‖z − x‖‖z − y‖+ ‖z‖‖x + y − z‖ (2)

for x, y, z,∈ V .

Let w be the orthogonal projection of z onto the span of x and y. Then z = w +v where v is orthogonal
to x, y and w, so that

‖z − x‖2 = ‖(w − x) + v‖2 = ‖w − x‖2 + ‖v‖2 ≥ ‖w − x‖2

and ‖z − x‖ ≥ ‖w − x‖. Similarly, ‖z − y‖ ≥ ‖w − y‖ , ‖z‖ ≥ ‖w‖ and ‖x + y − z‖ ≥ ‖x + y − w‖. Thus, it
is enough to prove that

‖x‖‖y‖ ≤ ‖w − x‖‖w − y‖+ ‖w‖‖x + y − w‖ (2)

where x, y, w belong to a two-dimensional real inner product space.

But such a space is isometric to C with the usual absolute value, so we may suppose that x, y, w ∈ C
and can be multiplied. Since

xy = (w − x)(w − y) + w(x + y − w) ,

an application of the triangle inequality yields the result.

Comment. Geometrically, equation (2) can be formulated as: suppose that OABC is a parallelogram
and that P is a point in space; then |OA||OC| ≤ |PO||PB|+ |PA||PC|.

9. Let p be a prime congruent to 1 modulo 4. For each real number x, let {x} = x − bxc denote the
fractional part of x. Determine

∑ {{
k2

p

}
: 1 ≤ k ≤ 1

2
(p− 1)

}
.
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Solution. When x is not divisible by p, then x 6≡ −x (mod p), since p is odd. Therefore, the mapping
x → x2 is a two-one mapping on Z∗p (the integers modulo p that are coprime with p); thus, precisely 1

2 (p−1)
elements of Z∗p are squares. We first show that m is a square modulo p if and only of p − m is a square
modulo p.

If s is a square in Z∗p with r2 = s, then s−1 = (r−1)2 is also a square, so we can split the squares into
disjoint sets of inverses. These disjoint sets contain precisely two elements when the square is not 1 nor −1,
if applicable. Since there are an even number 1

2 (p− 1) of squares and 1 is a square, there must be another
singleton set of inverse squares, and this can consist only of −1. Hence −1 is a square in Z∗p. Therefore, if
m is a square in Z∗p, so also is −m = (−1)m. In other words, m is a square modulo p if and only if p−m is
a square modulo p.

The set {k2 : 1 ≤ k ≤ 1
2 (p − 1)} contains each nonzero square exactly once, and so contains 1

4 (p − 1)
pairs of the form {m, p − m} where 1 ≤ m ≤ 1

2 (p − 1). Since x/p is not an integer for 1 ≤ x ≤ p − 1,
{x/p}+ {(p− x)/p} = 1. Therefore

1
2 (p−1)∑

k=1

{k2/p} =
∑ {

{m/p}+ {(p−m)/p} : 1 ≤ m ≤ 1
2
(p− 1),m a square mod p

}
=

p− 1
4

.

10. Suppose that a path on a m × n grid consisting of the lattice points {(x, y)} : 1 ≤ x ≤ m, 1 ≤ y ≤ n}
(x and y both integers) consisting of mn − 1 unit segments begins at the point (1, 1), passes through
each point of the grid exactly once, does not intersect itself and finishes at the point (m,n). Show that
the path partitions the rectangle bounded by the lines x = 1, x = m, y = 1, y = n into two subsets of
equal area, the first consisting of regions opening to the left or up, and the second consisting of regions
opening to the right or down.

Solution. Embed the grid into a rectangle composed of mn unit square cells, each with a grid point as
centre. Extend the path horizontally to the left and right end of this rectangle from the respective points
(1, 1) and (m,n). It is equivalent to show that this rectangle is decomposed by this extended path into two
subsets of equal area. As the path proceeds, at any grid point, it either turns left through a right angle, or
turns right through a right angle or proceeds straight ahead. Since it ends up going in the same direction as
it started, it makes an equal number of left and right turns. The path keeps the region opening left or up on
its left and the region opening right or down on its right. At each left turn, the path splits the area of the
cell it is in into two subsets of areas 1/4 on the left and 3/4 on the right; at each right turn, its splits the
cell in the opposite way. If the path goes straight ahead, it splits the cell area in half. It follows from this
that the area on the left side of the path equals the area on the right side of the path, and the result holds.
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