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UNDERGRADUATE MATHEMATICS COMPETITION

Sunday, March 18, 2001

Time: 3 hours

No aids or calculators permitted.

It is not necessary to complete the paper. Complete solutions to fewer problems will be worth more
than incomplete solutions to many problems.

1. Let a, b, c > 0, a < bc and 1 + a3 = b3 + c3. Prove that 1 + a < b + c.

2. Let O = (0, 0) and Q = (1, 0). Find the point P on the line with equation y = x+1 for which the angle
OPQ is a maximum.

3. (a) Consider the infinite integer lattice in the plane (i.e., the set of points with integer coordinates) as
a graph, with the edges being the lines of unit length connecting nearby points. What is the minimum
number of colours that can be used to colour all the vertices and edges of this graph, so that

(i) each pair of adjacent vertices gets two distinct colours;

(ii) each pair of edges that meet at a vertex gets two distinct colours; and

(iii) an edge is coloured differently than either of the two vertices at the ends?

(b) Extend this result to lattices in real n−dimensional space.

4. Let V be the vector space of all continuous real-valued functions defined on the open interval (−π/2, π/2),
with the sum of two functions and the product of a function and a real scalar defined in the usual way.

(a) Prove that the set {sinx, cos x, tanx, sec x} is linearly independent.

(b) Let W be the linear space generated by the four trigonometric functions given in (a), and let T be the
linear transformation determined on W into V by T (sinx) = sin2 x, T (cos x) = cos2 x, T (tanx) = tan2 x
and T (sec x) = sec2 x. Determine a basis for the kernel of T .

Notes. A subset {v1, v2, · · · , vk} of a vertor space is linearly independent iff c1v1 + c2v2 + · · ·+ ckvk = 0
for scalars ci implies that c1 = c2 = · · · = ck = 0. The kernel of a linear transformation is the subspace
that T maps to the zero vector. A basis for a vector space is a linearly independent set of vectors for
which every element of the space is some linear combination.

5. Let n be a positive integer and x a real number not equal to a nonnegative integer. Prove that

n

x
+

n(n− 1)
x(x− 1)

+
n(n− 1)(n− 2)
x(x− 1)(x− 2)

+ · · ·+ n(n− 1)(n− 2) · · · 1
x(x− 1)(x− 2) · · · (x− n + 1)

=
n

x− n + 1
.

[This was a problem given by Samuel Beatty on a regular problem assignment to first year honours
mathematics students in the 1930s.]

6. Prove that, for each positive integer n, the series

∞∑
k=1

kn

2k

converges to twice an odd integer not less than (n + 1)!.
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7. Suppose that x ≥ 1 and that x = bxc+ {x}, where bxc is the greatest integer not exceeding x and the
fractional part {x} satisfies 0 ≤ x < 1. Define

f(x) =

√
bxc+

√
{x}√

x
.

(a) Determine the supremum, i.e., the least upper bound, of the values of f(x) for 1 ≤ x.

(b) Let x0 ≥ 1 be given, and for n ≥ 1, define xn = f(xn−1). Prove that limn→∞ xn exists.

8. A regular heptagon (polygon with seven equal sides and seven equal angles) has diagonals of two different
lengths. Let a be the length of a side, b be the length of a shorter diagonal and c be the length of a
longer diagonal of a regular heptagon (so that a < b < c). Prove ONE of the following relationships:

a2

b2
+

b2

c2
+

c2

a2
= 6

or

b2

a2
+

c2

b2
+

a2

c2
= 5 .

END
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Solutions.

1. Solution 1. Since (1 + a)(1− a + a2) = (b + c)(b2 − bc + c2), and since 1− a + a2 and b2 − bc + c2 are
positive, we have that

1 + a < b + c ⇔ 1− a + a2 > b2 − bc + c2 .

Suppose, if possible, that 1 + a ≥ b + c. Then

b2 − bc + c2 ≥ 1− a + a2

⇒ (b + c)2 − 3bc ≥ (1 + a)2 − 3a > (1 + a)2 − 3bc

⇒ (b + c)2 > (1 + a)2 ⇒ b + c > 1 + a

which is a contradiction.

Solution 2. [J. Chui] Let u = (1 + a)− (b + c). Then

(1 + a)3 − (b + c)3 = u[(1 + a)2 + (1 + a)(b + c) + (b + c)2]

= u[(1 + a)2 + (1 + a)(b + c) + b2 + 2bc + c2] .

But also
(1 + a)3 − (b + c)3 = (1 + a3)− (b3 + c3) + 3a(1 + a)− 3bc(b + c)

= 0 + 3[a(1 + a)− bc(b + c)] < 3bcu .

It follows from these that

0 > u[(1 + a)2 + (1 + a)(b + c) + b2 − bc + c2] = u[(1 + a)2 + (1 + a)(b + c) +
1
2
(b− c)2 +

1
2
(b2 + c2)] .

Since the quantity in square brackets is positive, we must have that u < 0, as desired.

Solution 3. [A. Momin, N. Martin] Suppose, if possible, that (1 + a) ≥ (b + c). Then

0 ≤ (1 + a)2 − (b + c)2 = (1 + a2)− (b2 + c2)− 2(bc− a) < (1 + a2)− (b2 + c2) .

Hence 1 + a2 > b2 + c2. It follows that

(1− a + a2)− (b2 − bc + b2) = (1 + a2)− (b2 + c2) + (bc− a) > 0

so that
(1− a + a2) > (b2 − bc + c2) .

However
(1 + a)(1− a + a2) = 1 + a3 = b3 + c3 + (b + c)(b2 − bc + c2) ,

from which it follows that 1 + a < b + c, yielding a contradition. Hence, the desired result follows.

Solution 4. [P. Gyrya] Let p(x) = x3 − 3ax. Checking the first derivative yields that p(x) is strictly
increasing for x >

√
a. Now 1 + a ≥ 2

√
a >

√
a and b + c ≥ 2

√
bc > 2

√
a >

√
a, so both 1 + a and b + c lie

in the part of the domain of p(x) where it strictly increases. Now

p(1 + a) = (1 + a)3 − 3a(1 + a) = 1 + a3 = b3 + c3 = (b + c)3 − 3bc(b + c) < (b + c)3 − 3a(b + c) = p(b + c)

from which it follows that 1 + a < b + c.

Solution 5. Consider the function g(x) = x(1 + a3 − x) = x(b3 + c3 − x). Then g(1) = g(a3) = a3 and
g(b3) = g(c3) = (bc)3. Since a3 < (bc)3 and the graph of g(x) is a parabola opening down, it follows that b3

and c3 lie between 1 and a3.
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Now consider the function h(x) = x1/3 + (b3 + c3 − x)1/3 = x1/3 + (1 + a3 − x)1/3 for 0 ≤ x ≤ 1 + a3.
Then h(1) = h(a3) = 1 + a and h(b3) = h(c3) = b + c. The graph of h(x) resembles an inverted parabola, so
since b3 and c3 lie between 1 and a3, it follows that 1 + a < b + c, as desired.

2. Solution 1. For the point P to maximize ∠OPQ, it must be a point of tangency of a circle with
chord OQ and the line of equation y = x + 1. The general circle through O and Q has equation(

x− 1
2

)2

+
(

y − k

)2

=
1
4

+ k2

or
x2 − x + y2 − 2ky = 0 .

Solving this with y = x + 1 yields

2x2 + (1− 2k)x + (1− 2k) = 0 .

The roots of this quadratic equation are coincident if and only if 2k = 1 or 1− 2k = 8. When k = 1
2 , we get

the point of tangency (0, 1). When k = − 7
2 , we get the point of tangency (−2,−1).

The first solution corresponds to a circle with chord OQ touching the line of equation y = x + 1 at the
point P (0, 1). This circle has diameter PQ and the angle OPQ is equal to 45◦. This angle certainly exceeds
angle OXQ, where X is any point other than P on the line in the upper half plane. The second solution
corresponds to a circle touching the line of equation y = x + 1 below the x−axis at the point R(−2,−1).
The angle ORQ exceeds angle OY Q, where Y is any point other than R on the line in the lower half-plane.
Now, the line y = x + 1 makes an angle of 45◦ with the line y = −1, and this angle exceeds ∠ORQ. Hence
P is the desired point.

Solution 2. Let (t, t + 1) be a typical point on the line y = x + 1. The slope of OP is (t + 1)/t and of
QP is (t + 1)/(t− 1). Hence

tan∠OPQ =
t + 1

2t2 + t + 1
.

Let f(t) = (t + 1)/(2t2 + t + 1), so that (2t2 + t + 1)f(t) = t + 1. Then (4t + 1)f(t) + (2t2 + t + 1)f ′(t) = 1,
whence

f ′(t) = − 2t(t + 2)
(2t2 + t + 1)2

.

Now f ′(t) < 0 when t > 0 and t < −2 while f ′(t) > 0 when −2 < t < 0. Thus, f(t) assumes its minimum
value of −1/7 when t = −2 and its maximum value of 1 when t = 0. Hence |f(t)| ≤ 1 with equality if and
only if t = 0. Hence the desired point P is (0, 1).

Comment. The workings can be made a little easier y considering cot ∠OPQ = 2t− 1+2(t+1)−1. The
derivative of this is 2[1− (t + 1)2], and this is positive if and only if t > 0 and t < −2.

Solution 3. Let θ = ∠OPQ. From the Law of Cosines, we have that

1 = x2 + (x + 1)2 + (x− 1)2 + (x + 1)2 − 2
√

(2x2 + 2x + 1)(2x2 + 2) cos θ ,

whence

cos θ =
2x2 + x + 1√

(2x2 + 2x + 1)(2x2 + 2)
.

Let

f(x) = sec2 θ =
(2x2 + 2x + 1)(2x2 + 2)

(2x2 + x + 1)2

=
4x4 + 4x3 + 6x2 + 4x + 2
4x2 + 4x3 + 5x2 + 2x + 1

= 1 +
(x + 1)2

(2x2 + x + 1)2
= 1 + g(x)2 ,
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where g(x) = (x+1)/(2x2 +x+1). Since g′(x) = −2x(x+2)
(2x2+x+1)2 , we see that g(x) has its maximum value when

x = 0 and its minimum when x = −2, and vanishes when x = −1. Hence g(x)2 and thus sec θ assumes
relative maxima when x = 0 and x = −2. A quick check reveals that x = 0 gives the overall maximum, and
so that angle is maximized when P is located at (0, 1).

3. Since each vertex and the four edges emanating from it must have different colours, at least five
colours are needed. Here is a colouring that will work: Let the colours be numbered 0, 1, 2, 3, 4. Colour the
point (x, 0) with the colour x (mod 5); colour the point (0, y) with the colour 2y (mod 5); colour the points
along each horizontal line parallel to the x−axis consecutively; colour the vertical edge whose lower vertex
has colour m (mod 5) with the colour m + 1 (mod 5); colour the horizontal edge whose left vertex has the
colour n (mod 5) with the colour n + 3 (mod 5).

This can be generalized to an n−dimensional lattice where 2n + 1 colours are needed by changing
the strategy of colouring. The integer points on the line and the edges between them can be coloured
1−−(3)−−2−−(1)−−3−−(2)−−1 and so on, where the edge colouring is in parenthesis. Form a plane
by stacking these lines unit distance apart, making sure that each vertex has a different coloured vertex
above and below it; use colours 4 and 5 judiciously to colour the vertical edges. Now go to three dimensions;
stack up planar lattices and struts unit distance apart, colouring each with the colours 1, 2, 3, 4, 5, while
making sure that vertically adjacent vertices have separate colours, and use the colours 6 and 7 for vertical
struts. Continue on.

4. Solution 1. (a) Suppose that a sinx + b cos x + c tanx + d sec x = 0 identically for all x ∈ (−π
2 , π

2 ).
Then evaluating this equation at 0, π/6, π/4, π/3 leads to a system of four linear equations in a, b, c, d whose
sole solution is given by a = b = c = d = 0.

(b) Since sin2 x + cos2 x = 1 and 1 + tan2 x = sec2 x, it is clear from the linearity of T that T (sinx +
cos x + tanx− sec x) = 0. On the other hand, by evaluating at three of the values of x used in (a), we can
see that {sin2 x, cos2 x, tan2 x} is linearly independent. Thus the nullity of T is at least 1 and the rank of T
is at least 3. Hence the kernel of T has dimension 1 and must be the span of {sinx + cos x + tanx− sec x}.

Solution 2. (a)
a sinx + b cos x + c tanx + d sec x = 0 (∀x)

⇔ a sinx cos x + b cos2 x + c sinx + d = 0 (∀x)

⇔ sinx(a cos x + c) = −(b cos2 x + d) (∀x)

⇒ (1− cos2 x)(a2 cos2 x + 2ac cos x + c2) = b2 cos4 x + 2bd cos2 x + d2 (∀x)

⇔ (b2 + a2) cos4 x + 2ac cos3 x + (c2 − a2 + 2bd) cos2 x− 2ac cos x + (d2 − c2) = 0 (∀x)

⇔ a = b = c = d = 0 ,

from which the linear independence follows. (Note that the left expression is a polynomial in cos x which
vanishes at infinitely many values.)

(b) a sinx + b cos x + c tanx + d sec x belongs to the kernel of T

⇔ a sin2 x + b cos2 x + c tan2 x + d sec2 x = 0 (∀x)

⇔ a + (b− a) cos2 x + (c + d) sec2 x− c = 0 (∀x)

⇔ (a− c) + (b− a) cos2 x + (c + d) sec2 x = 0 (∀x)

⇔ (b− a) cos4 x + (a− c) cos2 x + (c + d) = 0 (∀x)

⇔ b = a = c = −d ,
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which occurs if and only if a sinx + b cos x + c tanx + d sec x is a multiple of sinx + cos x + tanx − sec x.
Hence the nullity of T is 1 and the rank of T is 3.

5. Solution 1. The result holds for n = 1 and x 6= 0. Suppose, as an induction hypothesis, the result
holds for n = k and x equal to any real number that is not a nonnegative integer; note that in this case, the
left side has k terms. When n = k + 1,

k + 1
x

+
(k + 1)k
x(x− 1)

+
(k + 1)k(k − 1)
x(x− 1)(x− 2)

+ · · ·+ (k + 1)k(k − 1) · · · 1
x(x− 1)(x− 2) · · · (x− k)

=
k + 1

x
+

k + 1
x

[
k

x− 1
+

k(k − 1)
(x− 1)(x− 2)

+ · · ·+ k(k − 1) · · · 1
(x− 1) · · · (x− k)

]
=

k + 1
x

+
k + 1

x

[
k

x− 1− k + 1

]
=

k + 1
x

[
1 +

k

x− k

]
=

k + 1
x

[
x

x− k

]
=

k + 1
x− (k + 1) + 1

as desired. The result follows by induction.

Solution 2. [P. Gyrya] Let
(

a
m

)
for real a and positive integer m denote a(a− 1) · · · (a−m + 1)/m! and(

a
0

)
be 1. It is straightforward to establish that, for each positive integer k:(

x

k

)
=

(
x− 1

k

)
+

(
x− 1
k − 1

)
and (

x

k

)
=

k∑
i=0

(
x− i− 1

k − i

)
.

The left side of the required equality is equal to

n!
x · · · (x− n + 1)

[
x− 1
n− 1

+
x− 2
n− 2

+ · · ·+ x− n

n− n

]
=

n!
x · · · (x− n + 1)

(
x

n− 1

)
=

n

x− n + 1

as desired.

6. Solution 1. Convergence of the series results from either the ratio or the root test. For nonnegative
integers n, let

Sn =
∞∑

k=1

kn

2k
.

Then S0 = 1 and

Sn −
1
2
Sn =

∞∑
k=1

kn

2k
−

∞∑
k=1

kn

2k+1

=
∞∑

k=1

kn

2k
−

∞∑
k=1

(k − 1)n

2k

=
∞∑

k=1

kn − (k − 1)n

2k

=
∞∑

k=1

[(
n

1

)
kn−1

2k
−

(
n

2

)
kn−2

2k
+

(
n

3

)
kn−3

2k
− · · ·+ (−1)n−1 1

2k

]
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whence

Sn = 2
[(

n

1

)
Sn−1 −

(
n

2

)
Sn−2 +

(
n

3

)
Sn−3 − · · ·+ (−1)n−1

]
.

An induction argument establishes that Sn is twice an odd integer.

Observe that S0 = 1, S1 = 2, S2 = 6 and S3 = 26. We prove by induction that, for each n ≥ 0,

Sn+1 ≥ (n + 2)Sn

from which the desired result will follow. Suppose that we have established this for n = m− 1. Now

Sm+1 = 2
[(

m + 1
1

)
Sm −

(
m + 1

2

)
Sm−1 +

(
m + 1

3

)
Sm−2 −

(
m + 1

4

)
Sm−3 + · · ·

]
.

For each positive integer r,(
m + 1
2r − 1

)
Sm−2r+2 −

(
m + 1

2r

)
Sm−2r+1

≥
[(

m + 1
2r − 1

)
(m− 2r + 3)−

(
m + 1

2r

)]
Sm−2r+1

=
(

m + 1
2r − 1

)
[(m− 2r + 3)−

(
m− 2r + 2

2r

)]
Sm−2r+1 ≥ 0 .

When r = 1, we get inside the square brackets the quantity

(m + 1)− m

2
=

m + 2
2

while when r > 1, we get

(m− 2r + 3)−
(

m− 2r + 2
2r

)
> (m− 2r + 3)− (m− 2r + 2) = 1 .

Hence

Sm+1 ≥ 2
[(

m + 1
1

)
Sm −

(
m + 1

2

)
Sm−1

]
≥ 2

[
(m + 1)Sm − m(m + 1)

2
· 1
m + 1

Sm

]
= 2

[
m + 1− m

2

]
sm = (m + 2)Sm .

Solution 2. Define Sn as in the foregoing solution. Then, for n ≥ 1,

Sn =
1
2

+
∞∑

k=2

kn

2k

=
1
2

+
1
2

∞∑
k=1

(k + 1)n

2k

=
1
2

+
1
2

∞∑
k=1

kn +
(
n
1

)
kn−1 + · · ·+

(
n

n−1

)
k + 1

2k

=
1
2

+
1
2

[
Sn +

(
n

1

)
Sn−1 + · · ·+

(
n

n− 1

)
S1 + 1

]
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whence

Sn =
(

n

1

)
Sn−1 +

(
n

2

)
Sn−2 + · · ·+

(
n

n− 1

)
S1 + 2 .

It is easily checked that Sk ≡ 2 (mod 4) for k = 0, 1. As an induction hypothesis, suppose this holds for
1 ≤ k ≤ n− 1. Then, modulo 4, the right side is congruent to

2[
n∑

k=0

(
n

k

)
− 2] + 2 = 2(2n − 2) + 2 = 2n+1 − 2 ,

and the desired result follows.

For n ≥ 1,
Sn+1

Sn
=

(
n+1

1

)
Sn +

(
n+1

2

)
Sn−1 + · · ·+

(
n+1

n

)
S1 + 2

Sn

= (n + 1) +

(
n+1

2

)
Sn−1 +

(
n+1

3

)
Sn−2 + · · ·+ (n + 1)S1 + 2(

n
1

)
Sn−1 +

(
n
2

)
Sn−2 + · · ·+ nS1 + 2

≥ (n + 1) + 1 = n + 2 ,

since each term in the numerator of the latter fraction exceeds each corresponding term in the denominator.

Solution 3. [of the first part using an idea of P. Gyrya] Let f(x) be a differentiable function and let D
be the differentiation operator. Define the operator L by

L(f)(x) = x ·D(f)(x) .

Suppose that f(x) = (1−x)−1 =
∑∞

k=0 xk. Then, it is standard that Ln(f)(x) has a power series expansion
obtained by term-by-term differentiation that converges absolutely for |x| < 1. By induction, it can be shown
that the series given in the problem is, for each nonnegative integer n, Ln(f)(1/2).

It is straightforward to verify that

L((1− x)−1) = x(1− x)−2

L2((1− x)−1) = x(1 + x)(1− x)−3

L3((1− x)−1) = x(1 + 4x + x2)(1− x)−4

L4((1− x)−1) = x(1 + 11x + 11x2 + x3)(1− x)−5 .

In general, a straightforward induction argument yields that for each positive integer n,

Ln(f)(x) = x(1 + an,1x + · · ·+ an,n−2x
n−2 + xn−1)(1− x)−(n+1)

for some integers an,1, · · · , an,n−2. Hence

Ln(f)(1/2) = 2(2n−1 + an,12n−2 + · · ·+ an,n−22 + 1) ,

yielding the desired result.

7. (a) Let x = y + z, where y = bxc and z = {x}. Then

f(x)2 = 1 +
2
√

yz

y + z
,
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which is less than 2 because
√

yz ≤ 1
2 (y + z) by the arithmetic-geometric means inequality. Hence 0 ≤

f(x) ≤
√

2 for each value of x. Taking y = 1, we find that

lim
x↑2

f(x)2 = lim
z↑1

(
1 +

2
√

z

1 + z

)
= 2 ,

whence sup{f(x) : x ≥ 1} =
√

2.

(b) In determining the fate of {xn}, note that after the first entry, the sequence lies in the interval [1, 2).
So, without loss of generality, we may assume that 1 ≤ x0 < 2. If x0n = 1, then each xn = 1 and the limit is
1. For the rest, note that f(x) simplifies to (1+

√
x− 1)/

√
x on (1, 2). The key point now is to observe that

there is exactly one value v between 1 and 2 for which f(v) = v, f(x) > x when 1 < x < v and f(x) < x
when v < x < 2. Assume these facts for a moment. A derivative check reveals that f(x) is strictly increasing
on (1, 2), so that for 1 < x < v, x < f(x) < f(v) = v, so that the iterates {xn} constitute a bounded,
increasing sequence when 1 < x0 < v which must have a limit. (In fact, this limit must be a fixed point of
f and so must be v.) A similar argument shows that, if v < x0 < 2, then the sequence of iterates constitute
a decreasing convergent sequence (with limit v).

It remains to show that a unique fixed point v exists. Let x = 1+u with u > 0. Then it can be checked
that f(x) = x if and only if 1 + 2

√
u + u = 1 + 3u + 3u2 + u3 or u5 + 6u4 + 13u3 + 12u2 + 4u− 4 = 0. Since

the left side is strictly increasing in u, takes the value −4 when u = 0 and the value 32 when u = 1, the
equation is satified for exactly one value of u in (0, 1); now let v = 1 + u. The value of v turns out to be
approximately 1.375.

8. Solution 1. Let A,B, C, D, E be consecutive vertices of the regular heptagon. Let AB, AC and AD
have respective lengths a, b, c, and let ∠BAC = θ. Then θ = π/7, the length of BC, of CD and of DE
is a, the length of AE is c, ∠CAD = ∠DAE = θ, since the angles are subtended by equal chords of the
circumcircle of the heptagon, ∠ADC = 2θ, ∠ADE = ∠AED = 3θ and ∠ACD = 4θ. Triangles ABC and
ACD can be glued together along BC and DC (with C on C) to form a triangle similar to ∆ABC, whence

a + c

b
=

b

a
. (1)

Triangles ACD and ADE can be glued together along CD and ED (with D on D) to form a triangle similar
to ∆ABC, whence

b + c

c
=

b

a
. (2)

Equation (2) can be rewritten as 1
b = 1

a −
1
c . whence

b =
ac

c− a
.

Substituting this into (1) yields
(c + a)(c− a)

ac
=

c

c− a

which simplifies to
a3 − a2c− 2ac2 + c3 = 0 . (3)

Note also from (1) that b2 = a2 + ac.

a2

b2
+

b2

c2
+

c2

a2
− 6 =

a4c2 + b4a2 + c4b2 − 6a2b2c2

a2b2c2

=
a4c2 + (a4 + 2a3c + a2c2)a2 + c4(a2 + ac)− 6a2c2(a2 + ac)

a2b2c2

=
a6 + 2a5c− 4a4c2 − 6a3c3 + a2c4 + ac5

a2b2c2

=
a(a2 + 3ac + c2)(a3 − a2c− 2ac2 + c3)

a2b2c2
= 0 ‘.
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b2

a2
+

c2

b2
+

a2

c2
− 5 =

(a4 + 2a3c + a2c2)c2 + a2c4 + a4(a2 + ac)− 5a2c2(a2 + ac)
a2b2c2

=
a6 + a5c− 4a4c2 − 3a3c3 + 2a2c4

a2b2c2

=
a2(a + 2c)(a3 − a2c− 2ac2 + c3)

a2b2c2
= 0 .

Solution 2. [of the first result by J. Chui] Let the heptagon be ABCDEFG and θ = π/7. Using the
Law of Cosines in the indicated triangles ACD and ABC, we obtain the following:

cos 2θ =
a2 + c2 − b2

2ac
=

1
2

(
a

c
+

c

a
− b2

ac

)

cos 5θ =
2a2 − b2

2a2
= 1− 1

2

(
b

a

)2

from which, since cos 2θ = − cos 5θ,

−1 +
1
2

(
b

a

)2

=
1
2

(
a

c
+

c

a
− b2

ac

)
or

b2

a2
= 2 +

a

c
+

c

a
− b2

ac
. (1)

Examining triangles ABC and ADE, we find that cos θ = b/2a and cos θ = (2c2 − a2)/(2c2) = 1 −
(a2/2c2), so that

a2

c2
= 2− b

a
. (2)

Examining triangles ADE and ACF , we find that cos 3θ = a/2c and cos 3θ = (2b2 − c2)/(2b2), so that

c2

b2
= 2− a

c
. (3)

Adding equations (1), (2), (3) yields

b2

a2
+

c2

b2
+

a2

c2
= 6 +

c2 − bc− b2

ac
.

By Ptolemy’s Theorem, the sum of the products of pairs of opposite sides of a concylic quadrilaterial is equal
to the product of the diagonals. Applying this to the quadrilaterals ABDE and ABCD, respectively, yields
c2 = a2 + bc and b2 = ac + a2, whence c2 − bc− b2 = a2 + bc− bc− ac− a2 = −ac and we find that

b2

a2
+

c2

b2
+

a2

c2
= 6− 1 = 5 .

Solution 3. There is no loss of generality in assuming that the vertices of the heptagon are placed at
the seventh roots of unity on the unit circle in the complex plane. Then ζ = cos(2π/7) + i sin(2π/7) be the
fundamental seventh root of unity. Then ζ7 = 1, 1 + ζ + ζ2 + · · ·+ ζ6 = 0 and (ζ, ζ6), (ζ2, ζ5), (ζ3, ζ4) are
pairs of complex conjugates. We have that

a = |ζ − 1| = |ζ6 − 1|

b = |ζ2 − 1| = |ζ9 − 1|
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c = |ζ3 − 1| = |ζ4 − 1| .

It follows from this that

b

a
= |ζ + 1| c

b
= |ζ2 + 1| a

c
= |ζ3 + 1| ,

whence
b2

a2
+

c2

b2
+

a2

c2
= (ζ + 1)(ζ6 + 1) + (ζ2 + 1)(ζ5 + 1) + (ζ3 + 1)(ζ4 + 1)

= 2 + ζ + ζ6 + 2 + ζ2 + ζ5 + 2 + ζ3 + ζ4

= 6 + (ζ + ζ2 + ζ3 + ζ4 + ζ5 + ζ6) = 6− 1 = 5 .

Also
a

b
= |ζ4 + ζ2 + 1| b

c
= |ζ6 + ζ3 + 1| c

a
= |ζ2 + ζ + 1| ,

whence

a2

b2
+

b2

c2
+

c2

a2
= (ζ4 + ζ2 + 1)(ζ3 + ζ5 + 1) + (ζ6 + ζ3 + 1)(ζ + ζ4 + 1) + (ζ2 + ζ + 1)(ζ5 + ζ6 + 1)

= (3 + 2ζ2 + ζ3 + ζ4 + 2ζ5) + (3 + ζ + 2ζ3 + 2ζ4 + ζ6) + (3 + 2ζ + ζ2 + ζ5 + 2ζ6)

= 9 + 3(ζ + ζ2 + ζ3 + ζ4 + ζ5 + ζ6) = 9− 3 = 6 .

Solution 4. Suppose that the circumradius of the heptagon is 1. By considering isosceles triangles with
base equal to the sides or diagonals of the heptagon and apex at the centre of the circumcircle, we see that

a = 2 sin θ = 2 sin 6θ = −2 sin 8θ

b = 2 sin 2θ = −2 sin 9θ

c = 2 sin 3θ = 2 sin 4θ

where θ = π/7 is half the angle subtended at the circumcentre by each side of the heptagon. Observe that

cos 2θ =
1
2
(ζ + ζ6) cos 4θ =

1
2
(ζ2 + ζ5) cos 6θ =

1
2
(ζ3 + ζ4)

where ζ is the fundamental primitive root of unity. We have that

b

a
= 2 cos θ = 2 cos 6θ

c

b
= 2 cos 2θ

a

c
= −2 cos 4θ

whence
b2

a2
+

c2

b2
+

a2

c2
= 4 cos2 6θ + 4 cos2 2θ + 4 cos2 4θ

= (ζ3 + ζ4)2 + (ζ + ζ6)2 + (ζ2 + ζ5)2

= ζ6 + 2 + ζ + ζ2 + 2 + ζ5 + ζ4 + 2 + ζ = 6− 1 = 5 .

Also
a

b
=

sin 6θ

sin 2θ
= 4 cos2 2θ − 1 = (ζ + ζ6)2 − 1 = 1 + ζ2 + ζ5

−b

c
=

sin 9θ

sin 3θ
= 4 cos2 3θ − 1 = 4 cos2 4θ − 1 = (ζ2 + ζ5)2 − 1 = 1 + ζ4 + ζ3

c

a
=

sin 3θ

sin θ
= 4 cos2 6θ − 1 = (ζ3 + ζ4)2 − 1 = 1 + ζ6 + ζ ,

whence

a2

b2
+

b2

c2
+

c2

a2
= (3 + 2ζ2 + ζ3 + ζ4 + 2ζ5) + (3 + ζ + 2ζ3 + 2ζ4 + ζ6) + (3 + 2ζ + ζ2 + ζ5 + 2ζ6)

= 9 + 3(ζ + ζ2 + ζ3 + ζ4 + ζ5 + ζ6) = 9− 3 = 6 .

11


