Competition problems

1. Let $f:[0,1] \rightarrow(0,1)$ be a Riemann integrable function. Show that

$$
\frac{2 \int_{0}^{1} x f^{2}(x) \mathrm{d} x}{\int_{0}^{1}\left(f^{2}(x)+1\right) \mathrm{d} x}<\frac{\int_{0}^{1} f^{2}(x) \mathrm{d} x}{\int_{0}^{1} f(x) \mathrm{d} x}
$$

2. Let $m, n, p, q \geq 1$ and let the matrices $A \in \mathcal{M}_{m, n}(\mathbb{R}), B \in \mathcal{M}_{n, p}(\mathbb{R}), C \in \mathcal{M}_{p, q}(\mathbb{R}), D \in \mathcal{M}_{q, m}(\mathbb{R})$ be such that

$$
A^{t}=B C D, B^{t}=C D A, C^{t}=D A B, D^{t}=A B C
$$

Prove that $(A B C D)^{2}=A B C D$.
3. Let $A, B \in \mathcal{M}_{2018}(\mathbb{R})$ such that $A B=B A$ and $A^{2018}=B^{2018}=I$, where I is the identity matrix. Prove that if $\operatorname{Tr}(A B)=2018$, then $\operatorname{Tr} A=\operatorname{Tr} B$.
4. (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a polynomial function. Prove that

$$
\int_{0}^{\infty} e^{-x} f(x) \mathrm{d} x=f(0)+f^{\prime}(0)+f^{\prime \prime}(0)+\cdots
$$

(b) Let f be a function which has a Taylor series expansion at 0 with radius of convergence $R=\infty$. Prove that if $\sum_{n=0}^{\infty} f^{(n)}(0)$ converges absolutely then $\int_{0}^{\infty} e^{-x} f(x) \mathrm{d} x$ converges and

$$
\sum_{n=0}^{\infty} f^{(n)}(0)=\int_{0}^{\infty} e^{-x} f(x) \mathrm{d} x
$$

Solutions

1. Use $2 f(x) \leq f^{2}(x)+1$ and $x f^{2}(x)<f^{2}(x)$ and integrate.
2. Denote $M=A B C D$. We have $M=A A^{t}$ so $M \geq 0$ (i.e. positive semi-definite).
$\overline{M^{3}}=A B C D A B C D A B C D=D^{t} C^{t} B^{t} A^{t}=(A B C D)^{t}=A B C D=M$.
So, the minimal polynomial of the matrix M divides $x^{3}-x \Longrightarrow$ the eigenvalues $\subseteq\{-1,0,1\}$. But -1 cannot be an eigenvalue since $M \geq 0$. Hence the minimal polynomial divides $x^{2}-x \Longrightarrow M^{2}-M=0$.
3. $n:=$ 2018. $A B=B A \Longrightarrow A, B$ are diagonalizable in a same basis: $A=P^{-1} D P, B=P^{-1} E P$, where D, E are diagonal matrices containing the eigenvalues $\lambda_{k}, \mu_{k}(k=1 \ldots n)$.
$A^{n}=B^{n}=I \Longrightarrow D^{n}=E^{n}=I \Longrightarrow$ the eigenvalues $\lambda_{k}, \mu_{k}(k=1 \ldots n)$ have modulus 1 .
$n=\operatorname{Tr}(A B)=\sum_{k=1}^{n} \lambda_{k} \mu_{k}$. The triangle inequality implies $\lambda_{k} \mu_{k}=1 \Longrightarrow \lambda_{k}=1 / \mu_{k}=\overline{\mu_{k}} \Longrightarrow \sum_{k=1}^{n} \lambda_{k}=$ $\sum_{k=1}^{n} \overline{\mu_{k}}=\sum_{k=1}^{n} \mu_{k}$ (because the matices are real, so the eigenvalues are in conjugate pairs). $\Longrightarrow \operatorname{Tr}(A)=\operatorname{Tr}(B)$ [the eigenvalues are actually the same].
4. (a) Repeated integration by parts. [Actually it results from (b)].
(b) Denote $a_{n}=f^{(n)}(0) . f(x) e^{-x}=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n} e^{-x}$;
$\sum_{n=0}^{\infty} \int_{0}^{\infty}\left|\frac{a_{n}}{n!} x^{n} e^{-x}\right| \mathrm{d} x=\sum_{n=0}^{\infty}\left|a_{n}\right| \int_{0}^{\infty} \frac{1}{n!} x^{n} e^{-x} \mathrm{~d} x=\sum_{n=0}^{\infty}\left|a_{n}\right|<\infty$.
Using a corollary of the Lebesgue dominated convergence theorem $\Longrightarrow x \mapsto f(x) e^{-x}$ is integrable over $[0, \infty)$ and $\int_{0}^{\infty} f(x) e^{-x} \mathrm{~d} x=\sum_{n=0}^{\infty} a_{n} \int_{0}^{\infty} \frac{1}{n!} x^{n} e^{-x} \mathrm{~d} x=\sum_{n=0}^{\infty} a_{n}$.

Valeriu Anisiu
Department of Mathematics and Computer Science,
Babeş-Bolyai University,
Cluj-Napoca, Romania

