Seemous 2017, February 28 – March 5, 2017, Ohrid, Republic of Macedonia

Problems (time for work: 5 hours).

1. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ such that $a^2 + b^2 + c^2 + d^2 < \frac{1}{5}$. Show that I + A is invertible.

2. Let $A, B \in \mathcal{M}_n(\mathbb{R})$.

a) Show that there exists a > 0 such that for every $\varepsilon \in (-a, a), \ \varepsilon \neq 0$, the matrix equation

$$AX + \varepsilon X = B, \ X \in \mathcal{M}_n(\mathbb{R})$$

has a unique solution $X(\varepsilon) \in \mathcal{M}_n(\mathbb{R})$. **b)** Prove that if $B^2 = I_n$, and A is diagonalizable then

$$\lim_{\varepsilon \to 0} \operatorname{Tr}(BX(\varepsilon)) = n - \operatorname{rank}(A).$$

3. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Prove that

$$\int_0^4 f(x(x-3)^2) \, \mathrm{d}x = 2 \int_1^3 f(x(x-3)^2) \, \mathrm{d}x$$

4. a) Let $n \ge 0$ be an integer. Calculate $\int_0^1 (1-t)^n e^t dt$. **b)** Let $k \ge 0$ be a fixed integer and let $(x_n)_{n\ge k}$ be a sequence defined by

$$x_n = \sum_{i=k}^n \binom{i}{k} \left(e - 1 - \frac{1}{1!} - \frac{1}{2!} - \dots - \frac{1}{i!} \right).$$

Prove that the sequence converges and find its limit.

Solutions

1. Obvious. $||A|| < 1 \implies (I \pm A)$ are invertible. Or, prove directly: $\det(A + I) > 0$. *Note:* $(I - A)^{-1} = \sum_{k=0}^{\infty} A^k$.

2. a) The equation is $(A + \varepsilon I)X = B$. Take $a = \min\{|\lambda| : \lambda \in \sigma_p(A) \setminus \{0\}\}$. Then $\exists (A + \varepsilon I)^{-1}$ for $0 < |\varepsilon| < a$.

b) $X(\varepsilon) = (A + \varepsilon I)^{-1}B \implies BX(\varepsilon) = B(A + \varepsilon I)^{-1}B = B^{-1}(A + \varepsilon I)^{-1}B \implies$

 $\begin{aligned} &\text{Tr}(BX(\varepsilon)) = \text{Tr}\left((A + \varepsilon I)^{-1}\right) = \sum_{k=1}^{n} \frac{1}{\lambda_k + \varepsilon}, \text{ where } \lambda_k \text{ are the eigenvalues (with multiplicities).} \\ &\lim_{\varepsilon \to 0} \varepsilon \operatorname{Tr}(BX(\varepsilon)) = \lim_{\varepsilon \to 0} \sum_{k=1}^{n} \frac{\varepsilon}{\lambda_k + \varepsilon} = \operatorname{card}\{k \in \{1, \dots, n\} : \lambda_k = 0\}. \end{aligned}$

If A is diagonalizable this is exactly $n - \operatorname{rank}(A)$.

It is enough for A to satisfy the condition that the algebraic and geometric multiplicity for 0 be the same]

3. Denote $p: [0,4] \to [0,4], p(x) = x(x-3)^2$ and the intervals $J_1 = [0,1], J_2 = [1,3]$ and $J_3 = [3, 4].$

Let p_k be the restriction of p to J_k . p_k is bijective, and denote by $q_k : [0, 4] \to J_k$ its inverse. Notice that $p'_1 > 0, p'_2 < 0, p'_3 > 0$ in \mathring{J}_k , so $q'_1 > 0, q'_2 < 0, q'_3 > 0$ in the open interval (0, 4). Changing the variables $p_k(x) = y$ we obtain:

$$\int_{J_k} f(p(x)) \, \mathrm{d}x = \int_0^4 f(y) \, \left| q'_k(y) \right| \, \mathrm{d}y, \ k = 1 \dots 3.$$
(*)

Now, $q_k(y)$ are the roots of the equation p(x) = y, i.e. $x^3 - 6x^2 + 9x - y = 0$. It follows that $q_1 + q_2 + q_3 = 6$, hence $q'_1 + q'_2 + q'_3 = 0$ in (0, 4)Since only q'_2 is negative: $|q'_k| - |q'_k| + |q'_k| = 0$ in (0, 4)Using (*) it results: $\int_{J_1} f(p(x)) dx - \int_{J_2} f(p(x)) dx + \int_{J_3} f(p(x)) dx = 0$ which is exactly the desired conclusion.

Note. The integrals in the right hand side of (*) are improper. If we want to avoid this, then we may apply the change of variables only for smaller intervals e.g. $J_k(\varepsilon) = p_k^{-1}([\varepsilon, 4 - \varepsilon])$ and take $\varepsilon \to 0_+$ at the end.

(4.) a) Denote by I_k the integral. $I_0 = e - 1$. An integration by parts gives $I_n = -1 + nI_{n-1}, n \ge 1$. $I_n/n! = -1/n! + I_{n-1}/(n-1)!$ After a telescoping summation we obtain $I_n/n! - I_0 = -\sum_{k=1}^n 1/k!$

$$I_n = n! \left(e - \sum_{k=0}^n \frac{1}{k!} \right)$$

b) $x_n = \sum_{i=k}^n {i \choose k} I_i / i! = \sum_{i=k}^n \frac{I_i}{k!(i-k)!}$. The sequence is increasing, so its limit exists and $\lim_{n\to\infty} x_n = \sum_{i=k}^{\infty} \frac{I_i}{k!(i-k)!} = \frac{1}{k!} \sum_{i=0}^{\infty} \frac{I_{k+i}}{i!} = \frac{1}{k!} \sum_{i=0}^{\infty} \frac{I_{k+i}}{i!} = \frac{1}{k!} \sum_{i=0}^{\infty} \frac{I_{k+i}}{i!} = \frac{1}{k!} \sum_{i=0}^{\infty} \frac{1}{i!} \int_0^1 (1-t)^{k+i} e^t dt = [\text{by the theorem of monotone convergence}] = \frac{1}{k!} \int_0^1 \sum_{i=0}^{\infty} \frac{(1-t)^{k+i}}{i!} e^t dt = \frac{1}{k!} \int_0^1 (1-t)^k \sum_{i=0}^{\infty} \frac{(1-t)^i}{i!} e^t dt = \frac{1}{k!} \int_0^1 (1-t)^k e^{1-t} e^t dt = \frac{e}{(k+1)!}.$

Valeriu Anisiu Department of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania