Concursul TRAIAN LALESCU - faza naţională

1. Suppose $A \in \mathcal{M}_{n}(\mathbb{C})$. Prove that the sequence $\left(a_{k}\right)_{k \geq 0}$ is nondecreasing, where $a_{k}=$ $\operatorname{rank}\left(A^{k+1}\right)-\operatorname{rank}\left(A^{k}\right)$.
2. Let $n \geq 2$ be a square-free positive integer, and denote by D_{n} the set of its divisors. Consider $D \subseteq D_{n}$, a set with the following properties:
a) $1 \in D$;
b) $x \in D \Rightarrow n / x \in D$;
c) $x, y \in D \Rightarrow \operatorname{gcd}(x, y) \in D$.

Show that there exists a positive integer k such that $|D|=2^{k}$.
3. Let $f:[0, \infty) \rightarrow[0, \infty)$ be a continuous function such that $\int_{0}^{\infty} f(x) d x<\infty$.
a) Prove that if f is uniformly continuous, then f is bounded.
b) Prove that the converse of the previous statement is not true.
4. Denote $D=(0, \infty) \times(0, \infty)$. Let $u \in C^{1}(D)$ and $\varepsilon>0$.
a) Show that $x \frac{\partial u}{\partial x}(x, y)+y \frac{\partial u}{\partial y}(x, y)=u(x, y) \forall(x, y) \in D$ iff there exists $\varphi \in C^{1}(0, \infty)$ such that $u(x, y)=x \varphi(y / x), \forall(x, y) D$.
b) Show that if $\left|x \frac{\partial u}{\partial x}(x, y)+y \frac{\partial u}{\partial y}(x, y)-u(x, y)\right| \leq \varepsilon, \forall(x, y) \in D$, then there exists a unique function $\varphi \in C(0, \infty)$ such that $|u(x, y)-x \varphi(y / x)| \leq \varepsilon, \forall(x, y) \in D$.
(The original contest problem requested $\varphi \in C^{1}(0, \infty)$, but this is not true).

To be solved in 3 hours and 30 minutes. All the problems are mandatory.

Solutions

(these are "unofficial"; it seems that the official ones have not been published).

1. We shall use Frobenius' inequality:
for $A, B, C \in \mathcal{M}_{n}(\mathbb{C}) \Longrightarrow \operatorname{rank}(A B)+\operatorname{rank}(B C) \leq \operatorname{rank}(A B C)+\operatorname{rank}(B)$.
For completeness, we give a short proof of this inequality, based on the elementary operations for block matrices.
$\operatorname{rank}(A B C)+\operatorname{rank}(B)=\operatorname{rank}\left(\begin{array}{cc}B & 0 \\ 0 & A B C\end{array}\right)=\operatorname{rank}\left(\begin{array}{cc}B & 0 \\ A B & A B C\end{array}\right)=$
$\operatorname{rank}\left(\begin{array}{cc}B & -B C \\ A B & 0\end{array}\right)=\operatorname{rank}\left(\begin{array}{cc}B C & B \\ 0 & A B\end{array}\right) \geq \operatorname{rank}(B C)+\operatorname{rank}(A B)$.
Taking in Frobenius' inequality $B=A^{k-1}, C=A$ one obtains $\operatorname{rank}\left(A^{k}\right)+\operatorname{rank}\left(A^{k}\right) \leq$ $\operatorname{rank}\left(A^{k+1}\right)+\operatorname{rank}\left(A^{k-1}\right)$ i.e. $a_{k-1} \leq a_{k}$.
2. If $n=p_{1} \cdots p_{m}$ where p_{i} are distinct primes then $\left|D_{n}\right|=2^{m}$ and is naturaly identified with \mathbb{Z}_{2}^{m}, via the bijection $p_{1}^{t_{1}} \cdots p_{m}^{t_{m}} \xrightarrow{\varphi}\left(t_{1} \cdots t_{m}\right)$. If $A=\varphi(D)$, we have: $0 \in A, a \in A \Longrightarrow$ $1-a \in A, a, b \in A \Longrightarrow a b \in A$.

We assert that $a, b \in A \Longrightarrow a+b \in A$. [this would imply the conclusion because $(A,+)$ is then a subgroup of $\left(\mathbb{Z}_{2}^{n},+\right)$ and Lagrange's theorem applies].

In fact, $x=a(1-b)=a+a b \in A$ and $y=b(1-a)=b+a b \in A . x y=a b+a b+a b+a b=0$ and $x+y=(1+x)(1+y)+1+x y=(1+x)(1+y)+1 \in A$. But $x+y=a+b+a b+a b=a+b$, so $a+b \in A$. Q.E.D.
3. a) Suppose by contradiction that f is not bounded. Then there exists a sequence (x_{n}) such that $f\left(x_{n}\right)>n$.
$\left(x_{n}\right)$ is not bounded (by Weierstrass' theorem) so we may take $x_{n} \nearrow \infty$ and $x_{n+1}-x_{n}>1$.
f being uniformly continuous there exists $\delta \in(0,1)$ such that $|f(x)-f(y)|<1$ if $|x-y| \leq \delta$.
For $x \in\left[x_{n}, x_{n}+\delta\right]$ we have $f(x) \geq f\left(x_{n}\right)-\left|f(x)-f\left(x_{n}\right)\right|>n-1$, so $\int_{x_{n}}^{x_{n}+\delta} f(x) \mathrm{d} x>(n-1) \delta$.
So, $\int_{0}^{\infty} f(x) d x \geq \sum_{n}(n-1) \delta=\infty$, contradiction.
b) Define $f(x)=2^{n}\left(x-n+2^{-n}\right)$ for $x \in\left[n-2^{-n}, n\right], f(x)=2^{n}\left(n+2^{-n}-x\right)$ for $x \in\left[n, n+2^{-n}\right],(n \in \mathbb{N})$ and $f(x)=0$ elsewhere. Then f is continuous, bounded $(0 \leq f \leq 1)$ integrable $\left(\int_{0}^{\infty} f=\sum_{n} 2^{-n}=1\right)$ but it is not uniformly continuous because $f\left(n+2^{-n}\right)-f(n)=$ $1 \nrightarrow 0$.
4. a) " \Longleftarrow " is standard.
" \Longrightarrow For $(x, y) \in D$ (fixed), define $f(t)=u(t x, t y), t \in(0, \infty)$.
$f^{\prime}(t)=x \frac{\partial u}{\partial x}(t x, t y)+y \frac{\partial u}{\partial y}(t x, t y)=\frac{1}{t} u(t x, t y)=f(t) / t$.
One obtains $f(t)=c t$, where c is a constant; it will depend of course on x, y. So, there exists a function $F: D \rightarrow \mathbb{R}$ such that $f(t)=t F(x, y)$. For $t=1$ we have $F(x, y)=u(x, y)$, so $u(t x, t y)=t u(x, y)$.

For $t=1 / x$ we obtain $u(x, y)=x u(1, y / x)$, so we may choose $\varphi(t)=u(1, t)$.
Note that this is Euler's equation for homogeneous (of order 1) functions.
b) The uniqueness is easy. Let ψ another function verifying the inequality. We obtain $|x \varphi(y / x)-x \psi(y / x)| \leq 2 \varepsilon, \forall(x, y) \in D$.
Replacing y by $t x$ (for $t>0$) we obtain $|\varphi(t)-\psi(t)| \leq 2 \varepsilon / x$. For $x \rightarrow \infty \Longrightarrow \varphi(t)=\psi(t)$.
It remains to prove the existence of such a φ. Using again $f(t)=u(t x, t y),(f$ depends on x, y considered fixed) we have $\left|t f^{\prime}(t)-f(t)\right| \leq \varepsilon$.

Denoting $t f^{\prime}(t)-f(t)=g(t)$ and solving as an ODE for f we get $f(t)=t\left(\int g(s) / s^{2} \mathrm{~d} s+C\right)$, or

$$
\begin{equation*}
f(t)=t\left(-\int_{t}^{\infty} g(s) / s^{2} \mathrm{~d} s+K\right) \tag{*}
\end{equation*}
$$

where $K=K(x, y)$ is constant with respect to t.
So, $|f(t)-K t|=t\left|-\int_{t}^{\infty} g(s) / s^{2} \mathrm{~d} s\right| \leq t \int_{t}^{\infty} \varepsilon / s^{2} \mathrm{~d} s=t \varepsilon / t=\varepsilon$, because $|g| \leq \varepsilon$.
Hence, $|f(t)-K t| \leq \varepsilon,|u(t x, t y)-K t| \leq \varepsilon$ and for $t=1$ one gets $|u(x, y)-K(x, y)| \leq \varepsilon$. It remains to verify that $K(x, y)$ is homogeneous and continuous.

Using $\left(^{*}\right)$ for $t=1$ we obtain $K \in C(D)$ (because f and g are continuous with respect to x and y) and for $t \rightarrow \infty, K=K(x, y)=\lim _{t \rightarrow \infty} f(t) / t=\lim _{t \rightarrow \infty} \frac{u(t x, t y)}{t}$.
(the limit exists because $\lim _{t \rightarrow \infty} \int_{t}^{\infty} g(s) / s^{2} \mathrm{~d} s=0$).
Now it's easy to check that $K(x, y)$ is 1-homogeneous: for $a>0$,
$K(a x, a y)=\lim _{t \rightarrow \infty} \frac{u(t a x, t a y)}{t}=\lim _{t \rightarrow \infty} \frac{u(t a x, t a y)}{t a} \cdot a=\lim _{s \rightarrow \infty} \frac{u(s x, s y)}{s} \cdot a=K(x, y) a$.
So, $K(x, y)=x K(1, y / x)$, i.e. $\varphi(t)=K(1, t)$. Q.E.D.
Let us show that φ cannot be always chosen in C^{1}. Consider the function $p: \mathbb{R} \rightarrow \mathbb{R}$ defined by $p(x)=x^{2} / 2$ for $|x| \leq 1$ and $p(x)=|x|$ for $|x|>1$. The function p is in $C^{1}(\mathbb{R})$.

For the function $u \in C^{1}(D), u(x, y)=p(x-y)$, denoting $h(x, y)=x \frac{\partial u}{\partial x}(x, y)+y \frac{\partial u}{\partial y}(x, y)-$ $u(x, y)$ we have
$\left.|h(x, y)|=\mid(x-y) p^{\prime}(x-y)-p(x-y)\right) \mid$, hence
$|h(x, y)|=0$ for $|x-y| \geq 1$ and
$|h(x, y)| \leq 1 / 2$ for for $|x-y|<1$.
So, u satisfies the hypothesis in b) with $\varepsilon=1 / 2$. Taking $\varphi(t)=|1-t|$ we have $x \varphi(y / x)=$ $|x-y|$ and
$|u(x, y)-x \varphi(y / x)|=|p(x-y)-|x-y|| \leq 1 / 2$. We know that φ is unique, but it is not differentiable at $t=1$.

Valeriu Anisiu
Department of Mathematics and Computer Science
"Babeş-Bolyai" University, Cluj-Napoca

