Concursul TRAIAN LALESCU - faza națională Constanța, 14 mai 2011

[1.] Suppose $A \in \mathcal{M}_n(\mathbb{C})$. Prove that the sequence $(a_k)_{k\geq 0}$ is nondecreasing, where $a_k = \operatorname{rank}(A^{k+1}) - \operatorname{rank}(A^k)$.

2. Let $n \ge 2$ be a square-free positive integer, and denote by D_n the set of its divisors. Consider $D \subseteq D_n$, a set with the following properties:

- a) $1 \in D$;
- b) $x \in D \Rightarrow n/x \in D;$
- c) $x, y \in D \Rightarrow \gcd(x, y) \in D$.

Show that there exists a positive integer k such that $|D| = 2^k$.

3. Let $f: [0,\infty) \to [0,\infty)$ be a continuous function such that $\int_0^\infty f(x) dx < \infty$.

a) Prove that if f is uniformly continuous, then f is bounded.

b) Prove that the converse of the previous statement is not true.

4. Denote $D = (0, \infty) \times (0, \infty)$. Let $u \in C^1(D)$ and $\varepsilon > 0$.

a) Show that $x \frac{\partial u}{\partial x}(x, y) + y \frac{\partial u}{\partial y}(x, y) = u(x, y) \quad \forall (x, y) \in D \text{ iff there exists } \varphi \in C^1(0, \infty) \text{ such that } u(x, y) = x\varphi(y/x), \forall (x, y)D.$

b) Show that if $\left|x\frac{\partial u}{\partial x}(x,y) + y\frac{\partial u}{\partial y}(x,y) - u(x,y)\right| \leq \varepsilon, \forall (x,y) \in D$, then there exists a unique function $\varphi \in C(0,\infty)$ such that $|u(x,y) - x\varphi(y/x)| \leq \varepsilon, \forall (x,y) \in D$.

(The original contest problem requested $\varphi \in C^1(0,\infty)$), but this is not true).

To be solved in 3 hours and 30 minutes. All the problems are mandatory.

Solutions

(these are "unofficial"; it seems that the official ones have not been published).

1. We shall use Frobenius' inequality:

for $A, B, C \in \mathcal{M}_n(\mathbb{C}) \implies \operatorname{rank}(AB) + \operatorname{rank}(BC) \le \operatorname{rank}(ABC) + \operatorname{rank}(B)$.

For completeness, we give a short proof of this inequality, based on the elementary operations for block matrices.

$$\operatorname{rank}(ABC) + \operatorname{rank}(B) = \operatorname{rank}\begin{pmatrix} B & 0\\ 0 & ABC \end{pmatrix} = \operatorname{rank}\begin{pmatrix} B & 0\\ AB & ABC \end{pmatrix} = \operatorname{rank}\begin{pmatrix} B & -BC\\ AB & 0 \end{pmatrix} = \operatorname{rank}\begin{pmatrix} BC & B\\ 0 & AB \end{pmatrix} \ge \operatorname{rank}(BC) + \operatorname{rank}(AB).$$

Taking in Frobenius' inequality $B = A^{k-1}$, C = A one obtains $\operatorname{rank}(A^k) + \operatorname{rank}(A^k) \le \operatorname{rank}(A^{k+1}) + \operatorname{rank}(A^{k-1})$ i.e. $a_{k-1} \le a_k$.

 $\lfloor 2. \rfloor$ If $n = p_1 \cdots p_m$ where p_i are distinct primes then $|D_n| = 2^m$ and is naturally identified with \mathbb{Z}_2^m , via the bijection $p_1^{t_1} \cdots p_m^{t_m} \xrightarrow{\varphi} (t_1 \cdots t_m)$. If $A = \varphi(D)$, we have: $0 \in A$, $a \in A \implies 1 - a \in A$, $a, b \in A \implies ab \in A$.

We assert that $a, b \in A \implies a + b \in A$. [this would imply the conclusion because (A, +) is then a subgroup of $(\mathbb{Z}_2^n, +)$ and Lagrange's theorem applies].

In fact, $x = a(1-b) = a + ab \in A$ and $y = b(1-a) = b + ab \in A$. xy = ab + ab + ab + ab = 0and $x + y = (1+x)(1+y) + 1 + xy = (1+x)(1+y) + 1 \in A$. But x + y = a + b + ab + ab = a + b, so $a + b \in A$. Q.E.D.

3. a) Suppose by contradiction that f is not bounded. Then there exists a sequence (x_n) such that $f(x_n) > n$.

 (x_n) is not bounded (by Weierstrass' theorem) so we may take $x_n \nearrow \infty$ and $x_{n+1} - x_n > 1$. f being uniformly continuous there exists $\delta \in (0, 1)$ such that |f(x) - f(y)| < 1 if $|x - y| \le \delta$. For $x \in [x_n, x_n + \delta]$ we have $f(x) \ge f(x_n) - |f(x) - f(x_n)| > n - 1$, so $\int_{x_n}^{x_n + \delta} f(x) dx > (n - 1)\delta$. So, $\int_0^\infty f(x) dx \ge \sum_n (n - 1)\delta = \infty$, contradiction.

b) Define $f(x) = 2^n(x - n + 2^{-n})$ for $x \in [n - 2^{-n}, n]$, $f(x) = 2^n(n + 2^{-n} - x)$ for $x \in [n, n + 2^{-n}]$, $(n \in \mathbb{N})$ and f(x) = 0 elsewhere. Then f is continuous, bounded $(0 \le f \le 1)$ integrable $(\int_0^\infty f = \sum_n 2^{-n} = 1)$ but it is not uniformly continuous because $f(n+2^{-n}) - f(n) = 1 \Rightarrow 0$.

 $|4.|a\rangle$ " \Leftarrow " is standard.

" \Longrightarrow " For $(x, y) \in D$ (fixed), define $f(t) = u(tx, ty), t \in (0, \infty)$. $f'(t) = x \frac{\partial u}{\partial x}(tx, ty) + y \frac{\partial u}{\partial y}(tx, ty) = \frac{1}{t}u(tx, ty) = f(t)/t.$

One obtains f(t) = ct, where c is a constant; it will depend of course on x, y. So, there exists a function $F: D \to \mathbb{R}$ such that f(t) = tF(x, y). For t = 1 we have F(x, y) = u(x, y), so u(tx, ty) = tu(x, y).

For t = 1/x we obtain u(x, y) = xu(1, y/x), so we may choose $\varphi(t) = u(1, t)$.

Note that this is Euler's equation for homogeneous (of order 1) functions.

b) The uniqueness is easy. Let ψ another function verifying the inequality. We obtain

 $|x\varphi(y/x) - x\psi(y/x)| \le 2\varepsilon, \,\forall (x,y) \in D.$

Replacing y by tx (for t > 0) we obtain $|\varphi(t) - \psi(t)| \le 2\varepsilon/x$. For $x \to \infty \implies \varphi(t) = \psi(t)$. It remains to prove the existence of such a φ . Using again f(t) = u(tx, ty), (f depends on x, y considered fixed) we have $|tf'(t) - f(t)| \le \varepsilon$.

Denoting tf'(t) - f(t) = g(t) and solving as an ODE for f we get $f(t) = t \left(\int g(s)/s^2 ds + C \right)$, or

$$f(t) = t\left(-\int_t^\infty g(s)/s^2 \mathrm{d}s + K\right),\tag{*}$$

where K = K(x, y) is constant with respect to t.

So, $|f(t) - Kt| = t \left| -\int_t^\infty g(s)/s^2 ds \right| \le t \int_t^\infty \varepsilon/s^2 ds = t\varepsilon/t = \varepsilon$, because $|g| \le \varepsilon$.

Hence, $|f(t) - Kt| \leq \varepsilon$, $|u(tx, ty) - Kt| \leq \varepsilon$ and for t = 1 one gets $|u(x, y) - K(x, y)| \leq \varepsilon$. It remains to verify that K(x, y) is homogeneous and continuous.

Using (*) for t = 1 we obtain $K \in C(D)$ (because f and g are continuous with respect to x and y) and for $t \to \infty$, $K = K(x, y) = \lim_{t\to\infty} f(t)/t = \lim_{t\to\infty} \frac{u(tx, ty)}{t}$. (the limit exists because $\lim_{t\to\infty} \int_t^\infty g(s)/s^2 ds = 0$).

Now it's easy to check that
$$K(x, y)$$
 is 1-homogeneous: for $a > 0$,
 $U(tax,tay) = U(tax,tay) =$

 $K(ax, ay) = \lim_{t \to \infty} \frac{u(tax, tay)}{t} = \lim_{t \to \infty} \frac{u(tax, tay)}{ta} \cdot a = \lim_{s \to \infty} \frac{u(sx, sy)}{s} \cdot a = K(x, y)a.$ So, K(x, y) = xK(1, y/x), i.e. $\varphi(t) = K(1, t)$. Q.E.D.

Let us show that φ cannot be always chosen in C^1 . Consider the function $p : \mathbb{R} \to \mathbb{R}$ defined by $p(x) = x^2/2$ for $|x| \leq 1$ and p(x) = |x| for |x| > 1. The function p is in $C^1(\mathbb{R})$.

For the function $u \in C^1(D)$, u(x,y) = p(x-y), denoting $h(x,y) = x \frac{\partial u}{\partial x}(x,y) + y \frac{\partial u}{\partial y}(x,y) - u(x,y)$ we have

|h(x,y)| = |(x-y)p'(x-y) - p(x-y)|, hence

|h(x,y)| = 0 for $|x-y| \ge 1$ and

 $|h(x,y)| \le 1/2$ for for |x-y| < 1.

So, u satisfies the hypothesis in b) with $\varepsilon = 1/2$. Taking $\varphi(t) = |1 - t|$ we have $x\varphi(y/x) = |x - y|$ and

 $|u(x,y) - x\varphi(y/x)| = |p(x-y) - |x-y|| \le 1/2$. We know that φ is unique, but it is not differentiable at t = 1.

Valeriu Anisiu Department of Mathematics and Computer Science "Babeş-Bolyai" University, Cluj-Napoca