
Concursul TRAIAN LALESCU - faza na̧tională
Constaņta, 14 mai 2011

1. Suppose A ∈ Mn(C). Prove that the sequence (ak)k≥0 is nondecreasing, where ak =
rank(Ak+1)− rank(Ak).

2. Let n ≥ 2 be a square-free positive integer, and denote by Dn the set of its divisors.
Consider D ⊆ Dn, a set with the following properties:
a) 1 ∈ D;
b) x ∈ D ⇒ n/x ∈ D;
c) x, y ∈ D ⇒ gcd(x, y) ∈ D.
Show that there exists a positive integer k such that |D| = 2k.

3. Let f : [0,∞)→ [0,∞) be a continuous function such that
∫∞
0
f(x)dx <∞.

a) Prove that if f is uniformly continuous, then f is bounded.
b) Prove that the converse of the previous statement is not true.

4. Denote D = (0,∞)× (0,∞). Let u ∈ C1(D) and ε > 0.
a) Show that x∂u

∂x
(x, y) + y ∂u

∂y
(x, y) = u(x, y) ∀(x, y) ∈ D iff there exists ϕ ∈ C1(0,∞) such

that u(x, y) = xϕ(y/x), ∀(x, y)D.
b) Show that if

∣∣∣x∂u∂x(x, y) + y ∂u
∂y
(x, y)− u(x, y)

∣∣∣ ≤ ε, ∀(x, y) ∈ D, then there exists a unique
function ϕ ∈ C(0,∞) such that |u(x, y)− xϕ(y/x)| ≤ ε, ∀(x, y) ∈ D.
(The original contest problem requested ϕ ∈ C1(0,∞), but this is not true).

To be solved in 3 hours and 30 minutes. All the problems are mandatory.
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Solutions
(these are “unoffi cial”; it seems that the offi cial ones have not been published).

1. We shall use Frobenius’inequality:
for A,B,C ∈Mn(C) =⇒ rank(AB) + rank(BC) ≤ rank(ABC) + rank(B).
For completeness, we give a short proof of this inequality, based on the elementary operations

for block matrices.

rank(ABC) + rank(B) = rank

(
B 0
0 ABC

)
= rank

(
B 0
AB ABC

)
=

rank

(
B −BC
AB 0

)
= rank

(
BC B
0 AB

)
≥ rank(BC) + rank(AB).

Taking in Frobenius’ inequality B = Ak−1, C = A one obtains rank(Ak) + rank(Ak) ≤
rank(Ak+1) + rank(Ak−1) i.e. ak−1 ≤ ak.

2. If n = p1 · · · pm where pi are distinct primes then |Dn| = 2m and is naturaly identified
with Zm2 , via the bijection p

t1
1 · · · ptmm

ϕ→ (t1. · · · tm). If A = ϕ(D), we have: 0 ∈ A, a ∈ A =⇒
1− a ∈ A, a, b ∈ A =⇒ ab ∈ A.
We assert that a, b ∈ A =⇒ a+ b ∈ A. [this would imply the conclusion because (A,+) is

then a subgroup of (Zn2 ,+) and Lagrange’s theorem applies].
In fact, x = a(1− b) = a+ab ∈ A and y = b(1−a) = b+ab ∈ A. xy = ab+ab+ab+ab = 0

and x+y = (1+x)(1+y)+1+xy = (1+x)(1+y)+1 ∈ A. But x+y = a+ b+ab+ab = a+ b,
so a+ b ∈ A. Q.E.D.

3. a) Suppose by contradiction that f is not bounded. Then there exists a sequence (xn)
such that f(xn) > n.
(xn) is not bounded (by Weierstrass’theorem) so we may take xn ↗∞ and xn+1− xn > 1.
f being uniformly continuous there exists δ ∈ (0, 1) such that |f(x)−f(y)| < 1 if |x−y| ≤ δ.

For x ∈ [xn, xn+δ] we have f(x) ≥ f(xn)−|f(x)−f(xn)| > n−1, so
∫ xn+δ
xn

f(x)dx > (n−1)δ.
So,

∫∞
0
f(x)dx ≥

∑
n(n− 1)δ =∞, contradiction.

b) Define f(x) = 2n(x − n + 2−n) for x ∈ [n − 2−n, n] , f(x) = 2n(n + 2−n − x) for
x ∈ [n, n+ 2−n], (n ∈ N) and f(x) = 0 elsewhere. Then f is continuous, bounded (0 ≤ f ≤ 1)
integrable (

∫∞
0
f =

∑
n 2
−n = 1) but it is not uniformly continuous because f(n+2−n)−f(n) =

19 0.

4. a) “⇐=”is standard.
“=⇒ ”For (x, y) ∈ D (fixed), define f(t) = u(tx, ty), t ∈ (0,∞).
f ′(t) = x∂u

∂x
(tx, ty) + y ∂u

∂y
(tx, ty) = 1

t
u(tx, ty) = f(t)/t.

One obtains f(t) = ct, where c is a constant; it will depend of course on x, y. So, there
exists a function F : D → R such that f(t) = tF (x, y). For t = 1 we have F (x, y) = u(x, y), so
u(tx, ty) = tu(x, y).
For t = 1/x we obtain u(x, y) = xu(1, y/x), so we may choose ϕ(t) = u(1, t).
Note that this is Euler’s equation for homogeneous (of order 1) functions.
b) The uniqueness is easy. Let ψ another function verifying the inequality. We obtain
|xϕ(y/x)− xψ(y/x)| ≤ 2ε, ∀(x, y) ∈ D.
Replacing y by tx (for t > 0) we obtain |ϕ(t)− ψ(t)| ≤ 2ε/x. For x→∞ =⇒ ϕ(t) = ψ(t).
It remains to prove the existence of such a ϕ. Using again f(t) = u(tx, ty), (f depends on

x, y considered fixed) we have |tf ′(t)− f(t)| ≤ ε.
Denoting tf ′(t)−f(t) = g(t) and solving as an ODE for f we get f(t) = t

(∫
g(s)/s2ds+ C

)
,

or
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f(t) = t

(
−
∫ ∞
t

g(s)/s2ds+K

)
, (*)

where K = K(x, y) is constant with respect to t.
So, |f(t)−Kt| = t

∣∣− ∫∞
t
g(s)/s2ds

∣∣ ≤ t
∫∞
t
ε/s2ds = tε/t = ε, because |g| ≤ ε.

Hence, |f(t)−Kt| ≤ ε, |u(tx, ty)−Kt| ≤ ε and for t = 1 one gets |u(x, y)−K(x, y)| ≤ ε.
It remains to verify that K(x, y) is homogeneous and continuous.
Using (*) for t = 1 we obtain K ∈ C(D) (because f and g are continuous with respect to x

and y) and for t→∞, K = K(x, y) = limt→∞ f(t)/t = limt→∞
u(tx,ty)

t
.

(the limit exists because limt→∞
∫∞
t
g(s)/s2ds = 0).

Now it’s easy to check that K(x, y) is 1-homogeneous: for a > 0,
K(ax, ay) = limt→∞

u(tax,tay)
t

= limt→∞
u(tax,tay)

ta
· a = lims→∞

u(sx,sy)
s
· a = K(x, y)a.

So, K(x, y) = xK(1, y/x), i.e. ϕ(t) = K(1, t). Q.E.D.

Let us show that ϕ cannot be always chosen in C1. Consider the function p : R→ R defined
by p(x) = x2/2 for |x| ≤ 1 and p(x) = |x| for |x| > 1. The function p is in C1(R).
For the function u ∈ C1(D), u(x, y) = p(x− y), denoting h(x, y) = x∂u

∂x
(x, y) + y ∂u

∂y
(x, y)−

u(x, y) we have
|h(x, y)| = |(x− y)p′(x− y)− p(x− y))| , hence
|h(x, y)| = 0 for |x− y| ≥ 1 and
|h(x, y)| ≤ 1/2 for for |x− y| < 1.
So, u satisfies the hypothesis in b) with ε = 1/2. Taking ϕ(t) = |1− t| we have xϕ(y/x) =

|x− y| and
|u(x, y)− xϕ(y/x)| = |p(x− y)− |x− y|| ≤ 1/2. We know that ϕ is unique, but it is not

differentiable at t = 1.
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