Concursul TRATAN LALESCU - faza nationala
Constanta, 14 mai 2011

Suppose A € M,,(C). Prove that the sequence (ay)r>o is nondecreasing, where a; =
rank (A1) — rank(A*).

Let n > 2 be a square-free positive integer, and denote by D, the set of its divisors.
Consider D C D,,, a set with the following properties:

a) 1l e D;

b)x € D= n/x € D,

c) z,y € D= ged(x,y) € D.

Show that there exists a positive integer k such that |D| = 2*.

Let f:[0,00) — [0,00) be a continuous function such that [;° f(z)dz < co.
a) Prove that if f is uniformly continuous, then f is bounded.
b) Prove that the converse of the previous statement is not true.

Denote D = (0,00) x (0,00). Let uw € C'(D) and & > 0.

a) Show that z3%(z,y) + yg—Z(a:,y) = u(x,y) Y(z,y) € D iff there exists ¢ € C'*(0,00) such
that u(z,y) = zp(y/x), V(z,y)D.

b) Show that if ‘x%(x, y) + yg—;‘(w, y) — u(x, y)’ <eg,V(x,y) € D, then there exists a unique
function ¢ € C(0,00) such that |u(z,y) — zp(y/x)| < e, ¥(x,y) € D.

(The original contest problem requested ¢ € C'(0,00), but this is not true).

To be solved in 3 hours and 30 minutes. All the problems are mandatory.



Solutions
(these are “unofficial”; it seems that the official ones have not been published).

We shall use Frobenius’ inequality:

for A, B,C € M,,(C) = rank(AB) + rank(BC) < rank(ABC) + rank(B).
For completeness, we give a short proof of this inequality, based on the elementary operations
for block matrices.

rank(ABC) + rank(B) — rank < B 0 ) — rank ( B 0 ) _

0 ABC AB ABC
rank ( ABB —ﬁC’ ) = rank( BOC ABB > > rank(BC') 4 rank(AB).

Taking in Frobenius’ inequality B = A*!, C = A one obtains rank(AF) + rank(A*) <
rank( A1) + rank (A1) ie. ap_y < ag.

If n = p1---pn where p; are distinct primes then |D,,| = 2" and is naturaly identified
with ZJ', via the bijection pi' ---ptm 5 (ty.---t,). If A= (D), we have: 0 € A, a € A —>
l—a€A a,be A = abe A

We assert that a,b0 € A = a + b € A. [this would imply the conclusion because (A, +) is
then a subgroup of (Z%,+) and Lagrange’s theorem applies].

Infact,z =a(l—b)=a+abe Aand y=b(1—a) =b+ab€ A. xzy =ab+ab+ab+ab=0
andz+y=(14+z)1+y)+1+zy=(1+2)1+y)+1€c A Butz+y=a+b+ab+ab=a+b,
soa+be A QE.D.

a) Suppose by contradiction that f is not bounded. Then there exists a sequence (x,)
such that f(z,) > n.

(x,,) is not bounded (by Weierstrass’ theorem) so we may take z,, /" 0o and x,, 1 — z, > 1.

f being uniformly continuous there exists 6 € (0,1) such that |f(z)— f(y)| < 1if |[z—y| < 4.

For x € [x,,x,+6] we have f(x) > f(x,)—|f(z)—f(z,)] > n—1,s0 f;:” f(z)dz > (n—1)d.

So, [5° f(z)dz > (n—1)§ = oo, contradiction.

b) Define f(z) = 2"(z —n+27") for x € [n —2",n|, f(z) = 2"(n + 27" — x) for
x € n,n+27"], (n € N) and f(x) = 0 elsewhere. Then f is continuous, bounded (0 < f < 1)
integrable (f;° f = >, 27" = 1) but it is not uniformly continuous because f(n+2"")— f(n) =
1-»0.

a) “«=" is standard.

“="7 For (z,y) € D (fixed), define f(t) = u(tz,ty), t € (0, 00).

f1(t) = aGe(te, ty) + ygh(te, ty) = julte,ty) = f(t)/t.

One obtains f(t) = ct, where ¢ is a constant; it will depend of course on x,y. So, there
exists a function F': D — R such that f(t) = tF(x,y). For t = 1 we have F(z,y) = u(x,y), so
u(te, ty) = tu(x, y).

For t = 1/x we obtain u(x,y) = zu(1,y/z), so we may choose ¢(t) = u(1,t).

Note that this is Euler’s equation for homogeneous (of order 1) functions.

b) The uniqueness is easy. Let ¢ another function verifying the inequality. We obtain

[wo(y/x) — ap(y/x)| < 26, V(z,y) € D.

Replacing y by tz (for ¢t > 0) we obtain |¢(t) — ¥(t)| < 2¢/x. For & — 0o = ¢(t) = ¥ (t).

It remains to prove the existence of such a . Using again f(t) = u(tx,ty), (f depends on
x,y considered fixed) we have |tf'(t) — f(t)| < e.

Denoting ¢ f'(t)— f(t) = g(t) and solving as an ODE for f we get f(t) =t ([ g(s)/s*ds + C) ,
or



ro=t(- [ osas i), *)

where K = K (x,y) is constant with respect to t.

So, |f(t) — Kt| =t|— [ g(s)/s*ds| < t [T e/s’ds = te/t = ¢, because |g| < e.

Hence, |f(t) — Kt| < ¢, |u(tx,ty) — Kt| < e and for t = 1 one gets |u(z,y) — K(z,y)| < e.
It remains to verify that K (z,y) is homogeneous and continuous.

Using (*) for t = 1 we obtain K € C(D) (because f and g are continuous with respect to z
and y) and for t — oo, K = K(z,y) = limy . f(t)/t = lim;_, "(ti’ty).

(the limit exists because lim;_.o [, g(s)/s*ds = 0).

Now it’s easy to check that K(x,y) is 1-homogeneous: for a > 0,

u(taz,tay) u(taz,tay) u(sx,sy)
s

K(az,ay) = lim;_ = lim; ” a = limg_, ca = K(z,y)a.
So, K(z,y) = 2K (1,y/z), i.e. o(t) = K(1,t). Q.E.D.
Let us show that ¢ cannot be always chosen in C'. Consider the function p : R — R defined

by p(z) = 2?/2 for |z| < 1 and p(z) = |z| for |x| > 1. The function p is in C*(R).

For the function u € C'(D), u(z,y) = p(x — y), denoting h(z,y) = z3%(z,y) + yg—Z(x, y) —

u(z,y) we have
|h(z,y)| = [(z — y)p'(z — y) — p(z — y))|, hence
|h(z,y)| =0 for |x —y| > 1 and
|h(z,y)| < 1/2 for for |x —y| < 1.

So, u satisfies the hypothesis in b) with ¢ = 1/2. Taking ¢(t) = |1 — t| we have xp(y/x) =
|z — y| and

lu(z,y) — zp(y/z)| = |p(xr —y) — |z —y|| < 1/2. We know that ¢ is unique, but it is not
differentiable at ¢t = 1.
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