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5.5 The Horseshoe and Hénon Maps . . . . . . . . . . . . . . . . 268
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Preface

Preface to the Second Edition

The second edition maintains the lucidity of the first edition. Its main feature
is the inclusion of many recent results on global stability, bifurcation, chaos,
and fractals.

The first five chapters of this book include the most comprehensive expo-
sition on discrete dynamical systems at the level of advanced undergraduates
and beginning graduate students. Notable additions in this book are the
L-systems, the trace-determinant stability and bifurcation analysis, the peri-
odic structure of the bulbs in the Mandelbrot set, the detailed analysis of the
center manifold theory, and new results on global stability. Moreover, new
applications to biology, chemistry, and physics were added.

The biggest improvement, however, is in technology. A CD of an adapted
version of PHASER by Jason Glick and Huseyin Kocac is attached to the
back cover of the book. It contains all the material in Chapters 1 and 4. The
material for the remaining chapters may be downloaded from

http://www.math.miami.edu/∼hk/elaydi/.

You can immediately download the CD and start experimenting with PHASER.
You may be able to generate all the graphs in the book and use it to solve
many problems in the exercises. If you are a Maple or Mathematica user, pro-
grams were written by Henrique Oliveira and Rafael Luis and are posted on
the Taylor and Francis website. They may be downloaded from “Electronic
Products” and then “Downloads and Updates” found in the right pane of the
website at http://www.crcpress.com/.

I am greatly indebted to Darnum Huang who reviewed thoroughly the first
edition and made a plethora of insightful comments and suggestions. He
caught numerous typos in the first edition. His contribution to this book is
immeasurable. Sincere appreciation goes to Richard Neidinger whose critique
led to improvements in several parts of this book. I would like to thank Greg
Morrow who read the first edition and made several useful comments and to
his student Dennis Duncan who caught several typos and misprints. I am
grateful to Henrique Oliveira and our joint student Rafael Luis for develop-
ing Maple and Mathematica programs for this book and for proofreading the
first draft. My sincere gratitude goes to Huseyin Kocac for his tremendous
work on adapting PHASER to the contents of this book. I would like to
thank Ronald Mickens for his many contributions to this book, AbiTUMath

ix
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students and its director Andreas Ruffing who made many suggestions that
improved this book, Xinjuan Chen for his comments about period-doubling
bifurcation and to Fozi Dannan for his suggestions that improved this book.
My sincere thanks go to Sunil Nair whose unwavering support and encour-
agement made a difference in the completion of this book. It is my great
pleasure to acknowledge the support of Lord Robert M. May who graciously
accepted and wrote a foreword for this book. Finally, I have to express my
deep appreciation to Denise Wilson who not only typed the manuscript but
also created many of its graphs. Without her help this book would have never
seen the light.

Saber Elaydi
San Antonio, April 2007.

• Technology

1. PHASER: A CD is attached on the inside back cover. You may
download it and start using it immediately. It takes less than half
an hour to learn it and no experience in programming is necessary.
PHASER can generate all the graphs in the book and may be used
in solving problems in the text as well as for research in discrete
dynamical systems and difference equations. The material may be
downloaded from

http://www.math.miami.edu/∼hk/elaydi/.

2. Maple and Mathematica: Alternates to PHASER are the computer
algebra systems Maple and Mathematica. Programs written in
both may be downloaded from the Taylor and Francis website un-
der “Electronic Products” then “Downloads and Updates” found in
the right pane of the website at http://www.crcpress.com/. These
programs may be used to solve problems in the text as well as for
research in discrete dynamical systems and difference equations.
Moreover, it does not take much time to be able to use these pro-
grams and no previous experience is necessary.

Questions regarding technology and the book may be addressed to the
author at selaydi@trinity.edu.

Preface to the First Edition

This book grew out of a course on discrete dynamical systems/difference equa-
tions that I taught at Trinity University since 1992. My students were juniors
and seniors majoring in mathematics, computer science, physics, and engineer-
ing. The students have impacted not only the writing style and presentation
of the material, but also the selection of exercises and material; I am greatly
indebted to each and every one of them.
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The only prerequisites for the course were calculus and linear algebra. The
first three chapters deal with the dynamics of one-dimensional maps. Hence,
a solid background in calculus suffices for understanding the material in these
chapters. Chapters 4, 5, and 6 require a good knowledge of linear algebra (as
provided by a standard course in linear algebra). The last chapter on complex
dynamics requires some rudiments of complex variables.

The last three decades witnessed a surge of research activities in chaos
theory and fractals. These two subjects have captured the imagination of both
scientists and the population at large all over the world. The book Chaos:
Making a New Science by James Gleick, as well as the movie, “Jurassic Park,”
have helped in popularizing chaos theory among millions of people around
the globe.

Numerous books on chaos theory and fractals have appeared. They range
from the very elementary to the most advanced and from the very mathe-
matical to the most application-oriented. So, the question is, why do we need
one more book on this subject when we already have many excellent books?
There are basically four main reasons or justifications for writing this book.
The most important is that I wanted to give a thorough exposition of stability
theory in one and two dimensions including the famous method of Liapunov.
Such an exposition is lacking in many current books on discrete dynamical
systems. Stability theory is an important area of research in its own right,
but it is also important in the context of chaos theory since the route to chaos
is through stability. The second reason is that I wanted to present a readable
and accessible account of fractals and the mathematics behind them. The
third justification is that I wanted to include applications from real-world
phenomena that would be beneficial to a wider readership. The last reason
for writing this book is to show that the division between discrete dynamical
systems and difference equations is an artificial one. In my view, the main
difference for the most part, is the notation used. This book integrates both
notations, which makes it easier for students and researchers alike to read
literature and books with either title.

This book treats the modern theory of difference equations and may be
regarded as a completion of my book, An Introduction to Difference Equations,
which presents the classical aspects of difference equations.

Other important features of the book are as follows:

1. The book contains a very extensive and carefully selected set of exercises
at the end of each section. The exercises form an integral part of the
book; they range from routine problems designed to build basic skills to
more challenging problems that produce deep understanding and build
techniques. The problems denoted by an asterisk are the most challeng-
ing and they may be suitable for term projects or research problems for
independent study courses or solving-problem groups.

2. Great efforts were made to present even the most difficult material in a
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format that makes it accessible to students and scientists with varying
backgrounds and interests.

3. The book encourages readers to make mathematical discoveries through
computer experimentation. All of the graphs in the book were gen-
erated by Maple programs. You may download these programs from
http://www.crcpress.com/. Readers are encouraged to improve these
programs and to develop their own.

In Chapter 1, we present an extensive exposition of the dynamics of one-
dimensional maps. It provides criteria for the stability of hyperbolic and
nonhyperbolic fixed and periodic points. Period-doubling route to chaos is
also introduced. As an application, a genotype selection model is presented
in Section 1.9.

Chapter 2 deals with Sharkovsky’s theorem and includes its proof in an
appendix. Its converse is also provided. Rudiments of bifurcation theory is
presented in Section 2.5. This chapter also includes the Lorenz map. In

In Chapter 3, we give a brief introduction to metric spaces, followed by a
thorough presentation of chaos theory. This is facilitated by the introduction
of symbolic dynamics and conjugacy.

Chapter 4 provides an extensive treatment of stability of two-dimensional
maps. This includes an investigation of linear maps as well as second-order
difference equations. Stability of nonlinear maps is studied by the method of
Liapunov and by linearization. A brief introduction to the Hartman-Grobman
theorem and the stable manifold theorem are included. At the end of the
chapter, we give three applications: the kicked rotator and the Hénon map, a
discrete epidemic model for gonorrhea, and perennial grass.

In Chapter 5, we study chaos of two-dimensional maps. This includes the
study of toral automorphisms, symbolic dynamics, subshifts of finite type, and
the horseshoe of Smale. The chapter concludes with a section on center man-
ifolds and another on bifurcation. Of interest is the Neimark-Sacker (Hopf)
bifurcation—a phenomenon that is not present in one-dimensional settings.

Chapter 6 gives a readable and extensive account on fractals, generated by
affine transformations, and the underlying theory of iterated function system.
A section on image compression is added to arouse the reader’s interest in
this important application of fractals.

Finally, Chapter 7 investigates the dynamics of one-dimensional maps in the
complex plane. This chapter may be considered as an extension of Chapter
1 to the set of complex numbers. The Julia set and its topological properties
are presented in Sections 7.3 and 7.4. In Section 7.5 Newton’s method in the
complex domain and the associated basin of attraction are studied. Then, in
Section 7.6, the famous Mandelbrot set is examined and its connection with
the bifurcation diagram of the real-valued quadratic map explored.
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The following diagram shows the interdependence of the chapters:

Suggestions for a One-Semester Course

There is enough material for a two-semester course. The instructor has a lot
of flexibility in choosing material for a one-semester course.

Here are a few suggestions:

1. A course on chaos theory may consist of only Chapters 1, 2, 3, and 5.

2. A course on one-dimensional chaos and stability theory may consist of
Chapters 1, 2, 3, and 4.

3. A course on chaos and fractals may consist of Chapters 1, 3, 6, and 7;
or Chapters 1, 3, 4, and 7; or Chapters 1, 2, 3, and 7.

Acknowledgment

I am indebted to Ronald Mickens, who read the manuscript thoroughly and
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Foreword by Lord Robert M. May

When I was in graduate school, in the Physics Department at Sydney Uni-
versity roughly half a century ago, the first big computers were just being
built. Given that we already knew the basic equations – the Navier-Stokes
equations – governing atmospheric flow, it seemed only a matter of time be-
fore even more accurate forecasting of local weather would be available. This
was a time when the Newtonian dream, although rarely explicitly articulated,
still prevailed: the world is governed by rules; if the rules are sufficiently sim-
ple, the outcomes are predictable; more complicated situations – the spin of
a ball in a roulette wheel, for instance – may seem unpredictable, but with
sufficiently accurate observation of initial conditions and ever increasing com-
putational power, such apparent randomness would eventually give way to
predictability. Work by Poincare in the late 1800s, and by Cartwright and
Littlewood in the 1930s, had cast a shadow over this dream, but only a handful
of mathematicians were aware of this.

Today that Newtonian dream of an entirely predictable world is dead. We
now realise that there are very simple systems – a forced pendulum, literally
Newtonian clockwork, can provide an example – where we can know the rules
exactly and where there are no random elements whatsoever, yet where the
“chaotic” dynamics are so sensitive to initial conditions that long-term predic-
tion is impossible. This awareness spread rapidly among the various branches
of science in the 1970s. Its origins were two-fold. One was Lorenz’s meteoro-
logical metaphor for thermal convection, in the form of a simple but nonlinear
3-dimensional system of differential equations (that is, with time a continuous
variable). The other came from studies of even simpler 1-dimensional nonlin-
ear difference equations, proposed as metaphors for the dynamics of fish or
insect populations with discrete generations (that is, where time is a discrete
variable). Lorenz’s 3-dimensional system of differential equations, although
relatively simple as things go, is still fairly complicated. The 1-dimensional
difference equations, however, reveal the chaotic nature of things relatively
simply: you know the equations, but an error in the tenth decimal place of
the initial condition soon drives dynamical trajectories widely apart.

Subsequent work, beginning in the late 1980s and early 1990s, has explored
what might be called the flip-side of the chaos coin. Given that we now
know that relatively simple rules might give you dynamical trajectories that
look like random noise, what are we to make of movements on the currency
exchange markets, or in fluctuating fish populations? Are we to treat them
as purely random, or might they be, at least in part, produced by simple –

xix
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but nonlinear – rules, giving rise to low-dimensional chaos? And if the latter,
to what extent might it open new doors to predictability? To give just one
explicit example, the algorithm used to generate random numbers for the first
big computer, called Maniac, which was built at the Institute for Advanced
Study in Princeton by Von Neumann and Ulam in 1948, used a 1-dimensional
difference equation in a regime which we would now call chaotic. If you
look at the numbers thus generated, and test them by conventional statistical
methods (Kolmogorov-Smirnov test, for example) you will be reassured that
you are indeed looking at random numbers. But newly developed methods
enable us to see that we are dealing with a 1-dimensional chaotic system, and
thus enable us to predict the next few “random numbers” in this sequence
with high confidence, although such predictability fades as we move outside
the “Liapunov horizon” and chaos really asserts itself (Sugihara and May,
1990).

The present textbook gives an excellent introduction to this new, and po-
tentially revolutionary, territory. It will take the reader, with clarity and
precision, from simple beginnings with 1-dimensional difference equations
(and their cascades of period doubling en route to chaos), on to 2- and 3-
dimensional systems, and beyond this to fractals and relationships between
geometry and dynamics. The final chapter deals with the Julia and Man-
delbrot sets, where in my opinion mathematical elegance and pure aesthetic
beauty begin to merge.

Throughout, this text is further enhanced by an exceptionally well-selected
set of problems that illustrate the principles and challenge the reader.

I ended my 1976 review article by saying “not only in research, but also
in the everyday world of politics and economics, we would all be better off if
more people realised that simple nonlinear systems do not necessarily possess
simple dynamical properties.” As this text shows, things have come a long
way since then. Users of this text will enjoy the journey.

Robert M May
Zoology Department

Oxford University
Oxford, UK

June 2007
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The Stability of One-Dimensional Maps

First-order difference equations arise in many contexts in the bio-
logical, economic, and social sciences. Such equations, even though
simple and deterministic, can exhibit a surprising array of dynam-
ical behavior, from stable points, to a bifurcation hierarchy of
stable cycles, to apparently random fluctuations.

Robert M. May

Robert M. May (1936-)

Lord Robert McCredie May is credited with creating the new field of
“chaotic dynamics in biology.” In 1976, he published his most popular arti-
cle “Simple mathematical models with very complicated dynamics” in the
journal Nature, where he showed that first-order nonlinear difference equa-
tions can exhibit an astonishing array of dynamical behavior, ranging from
stable fixed points to chaotic regions.

May’s current research deals with factors influencing the diversity and abun-
dance of plant and animal species and with the rates, causes and conse-
quences of extinction. In 2000, he teamed up with Martin Nowak to write
a seminal book on Virus dynamics titled The mathematical foundation of
immunology and virology.

Trained as a physicist at Sydney University, where he received his PhD in
1959, he moved to biology for good in 1973, and later he became a professor
of zoology at Princeton University and later at Oxford University.
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2 Discrete Chaos

1.1 Introduction

Difference equations have been increasingly used as mathematical models in
many disciplines including genetics, eipdemiology, ecology, physiology, neu-
ral networks, psychology, engineering, physics, chemistry and social sciences.
Their amenability to computerization and their mathematical simplicity have
attracted researchers from a wide range of disciplines. As we will see in Sec-
tion 1.2, difference equations are generated by maps (functions). Section 1.3
illustrates how discretizing a differential equation would yeild a difference
equation. Discretization algorithms are part of a discipline called numerical
analysis which belong to both mathematics and computer science. As most
differential equations are unsolvable, one needs to resort to computers for
help. However, computers understand only recursions or difference equations;
thus the need to discretize differential equations.

1.2 Maps vs. Difference Equations

Consider a map f : R → R where R is the set of real numbers. Then the
(positive) orbit O(x0) of a point x0 ∈ R is defined to be the set of points

O(x0) = {x0, f(x0), f2(x0), f3(x0), . . .}

where f2 = f◦f, f3 = f◦f◦f , etc.
Since most maps that we deal with are noninvertible, positive orbits will be

called orbits, unless otherwise stated.
If we let x(n) : = fn(x0), then we obtain the first-order difference equation

x(n+ 1) = f(x(n)) (1.1)

with x(0) = x0.
In population biology, x(n) may represent a population size in generation

n. Equation (1.1) models a simple population system with seasonal breeding
whose generations do not overlap (e.g., orchard pests and temperate zone
insects). It simply states that the size x(n+ 1) of a population in generation
n+1 is related to the size x(n) of the population in the preceding generation
n by the function f .

In epidemiology, x(n) represents the fraction of the population infected
at time n. In economics, x(n) may be the price per unit in time n for a
certain commodity. In the social sciences, x(n) may be the number of bits of
information that can be remembered after a period n.
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Example 1.1
(The Logistic Map). Let x(n) be the size of a population of a certain
species at time n. Let µ be the rate of growth of the population from one
generation to another. Then a mathematical model that describes the size of
the population take the form

x(n+ 1) = µx(n), µ > 0. (1.2)

If the initial population x(0) = x0, then by a simple iteration we find that

x(n) = µnx0. (1.3)

is the solution of Equation (1.2).
If µ > 1, then the population x(n) increases without any bound to infinity.

If µ = 1, x(n) = x0 and the population stays constant forever. Finally, for
µ < 1, lim

n→∞x(n) = 0, and the population eventually becomes extinct.
We observe that for most species none of the above scenarios are valid; the

population increases until it reaches a certain maximum value. Then limited
resources would force members of the species to fight and compete for those
limited resources. This competition is proportional to the number of squabbles
among them, given by x2(n). Consequently, a more reasonable model is given
by

x(n+ 1) = µx(n)− bx2(n) (1.4)

where b > 0 is the proportionality constant of interaction among members of
the species.

To simplify Equation (1.4), we let y(n) = b
µx(n). Hence,

y(n+ 1) = µy(n)(1 − y(n)). (1.5)

Equation (1.5) is called the logistic equation and the map f(y) = µy(1−y) is
called the logistic map. It is a reasonably good model for seasonably breeding
populations in which generations do not overlap.

This equation/map will be the focus of our study throughout Chapter 1.
By varying the value of µ, this innocent-looking equation/map exhibits com-
plicated dynamics.

Surprisingly, a closed form solution of Equation (1.5) is not possible, except
for µ = 2, 4.

A map f is called linear if it is of the form f(x) = ax for some constant a.
In this case, Equation (1.1) is called a first-order linear difference equation.
Otherwise, f [or Equation (1.1)] is called nonlinear (or density-dependent
in biology).

One of the main objectives in dynamical systems theory is the study of the
behavior of the orbits of a given map or a class of maps. In the language
of difference equations, we are interested in investigating the behavior of so-
lutions of Equation (1.1). By a solution of Equation (1.1), we mean a
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sequence {ϕ(n)}, n = 0, 1, 2, . . ., with ϕ(n+ 1) = f(ϕ(n)) and ϕ(0) = x0, i.e.,
a sequence that satisfies the equation.

1.3 Maps vs. Differential Equations

1.3.1 Euler’s Method

Consider the differential equation

x′(t) = g(x(t)), x(0) = x0 (1.6)

where x′(t) = dx
dt .

For many differential equations such as Equation (1.6), it may not be
possible to find a “closed form” solution. In this case, we resort to numer-
ical methods to approximate the solution of Equation (1.6). In the Euler
algorithm, for example, we start with a discrete set of points t0, t1, . . . , tn, . . .,
with h = tn+1− tn as the step size. Then, for tn ≤ t < tn+1, we approximate

x(t) by x(tn) and x′(t) by
x(tn+1)− x(tn)

h
. Equation (1.6) now yields the

difference equation
x(tn+1) = x(tn) + hg(x(tn))

which may be written in the simpler form

x(n+ 1) = x(n) + hg(x(n)) (1.7)

where x(n) = x(tn).
Note that Equation (1.7) is of the form of Equation (1.1) with

f(x) = f(x, h) = x+ hg(x).

Now given the initial data x(0) = x0, we may use Equation (1.7) to generate
the values x(1), x(2), x(3), . . . These values approximate the solution of the
differential Equation (1.6) at the “grid” points t1, t2, t3, . . ., provided that h
is sufficiently small.

Example 1.2
Let us now apply Euler’s method to the differential equation:

x′(t) = 0.7x2(t) + 0.7, x(0) = 1, t ∈ [0, 1]. (DE)1

1DE ≡ differential equation.



The Stability of One-Dimensional Maps 5

TABLE 1.1

(∆E) Euler (∆E) Euler
(h = 0.2) (h = 0.1) Exact (DE )

n t x(n) x(n) x(t)
0 0 1 1 1
1 0.1 1.14 1.150
2 0.2 1.28 1.301 1.328
3 0.3 1.489 1.542
4 0.4 1.649 1.715 1.807
5 0.5 1.991 2.150
6 0.6 2.170 2.338 2.614
7 0.7 2.791 3.286
8 0.8 2.969 3.406 4.361
9 0.9 4.288 6.383
10 1 4.343 5.645 11.681

12

11

10

9

8

7

6

5

4

3

2

0.1 0 .15 0 .2 0 .25 0 .3 0 .35 0 .4 0 .45 0 .5 0 .55 0 .6 0 .65 0 .7 0 .75 0 .8 0 .85 0 .9 0 .95 1 .0

Exact

h=0.1

h=0.2

t

x(t)

FIGURE 1.1
Comparison of exact and approximate numerical solutions for Example 1.2.
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Using the separation of variable method, we obtain

1
0.7

∫
dx

x2 + 1
=

∫

dt.

Hence
tan−1(x(t)) = 0.7t+ c.

Letting x(0) = 1, we get c = π
4 . Thus, the exact solution of this equation is

given by x(t) = tan
(
0.7t+ π

4

)
.

The corresponding difference equation using Euler’s method is

x(n+ 1) = x(n) + 0.7h(x2(n) + 1), x(0) = 1. (∆E)2

Table 1.1 shows the Euler approximations for h = 0.2 and 0.1, as well as
the exact values. Figure 1.1 depicts the n−x(n) diagram or the “time series.”
Notice that the smaller the step size we use, the better the approximation we
have.

Note that discretization schemes may be applied to nonlinear and higher
order differential equations.

Example 1.3
(An Insect Population). Let us contemplate a population of aphids.
These are plant lice, soft bodied, pear shaped insects which are commonly
found on nearly all indoor and outdoor plants, as well as vegetables, field
crops, and fruit trees.

Let

a(n) = number of adult females in the nth generation,
p(n) = number of progeny (offspring) in the nth generation,
m = fractional mortality in the young aphids,
q = number of progeny per female aphid,
r = ratio of female aphids to total adult aphids.

Since each female produces q progeny, it follows that

p(n+ 1) = qa(n). (1.8)

Now of these p(n+1) progeny, rp(n+ 1) are female young aphids of which
(1−m)rp(n+ 1) survives to adulthood. Thus

a(n+ 1) = r(1 −m)p(n+ 1). (1.9)

2∆E ≡ difference equation.
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a
0

a
0

a
0

0 1 2 3 4 5 6 7 8

n

0 1 2 3 4 5 6 7 8

n

a(n)

0 1 2 3 4 5 6 7 8

n

a(n)

(iii)

(i) (ii)

(iv)

a(n)

FIGURE 1.2
(i) a(n) goes to extinction.
(ii) a(n) = a0, constant population.
(iii) a(n)→∞ as n→∞, exponential growth.
(iv) Aphids.
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y

x

One−dimensional
Poincare section

Two−dimensional
phase space

x
i

x
i+1

L

FIGURE 1.3
The Poincaré map is defined by P (xi) = xi+1.

Substituting from Equation 1.8 yields

a(n+ 1) = rq(1 −m)a(n). (1.10)

Hence
a(n) = [rq(1 −m)]na(0). (1.11)

There are three cases to consider.

(i) If rq(1−m) < 1, then lim
n→∞ a(n) = 0 and the population of aphids goes

to extinction.

(ii) If rq(1 −m) = 1, then a(n) = a0, and we have a constant population
size.

(iii) If rq(1 −m) > 1, then lim
n→∞ a(n) =∞, and the population grows expo-

nentially to ∞.

1.3.2 Poincaré Map

One of the most interesting ways on which a differential equation leads to a
map, called a Poincaré map, is through the study of periodic solutions of a
system of two differential equations

dx

dt
= f(x, y)

dy

dt
= g(x, y)
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which has a periodic orbit (closed curve) in the plane. Now choose a line L
that intersects this periodic orbit at a right angle. For any x0 on the line
L, x1 = P (x0) is the point of intersection of the orbit starting at x0 after it
returns to the line L for the first time. Consequently, xi is the intersection
point of the orbit starting at x0 after it returns to the line L for the ith
time. This defines the Poincaré map associated with our differential equation
(Figure 1.3). We will return to this method in Section 2.9.

1.4 Linear Maps/Difference Equations

The simplest maps to deal with are the linear maps and the simplest difference
equations to solve are the linear ones. Consider the linear map

f(x) = ax,

then
fn(x) = anx.

In other words, the solution of the difference equation

x(n+ 1) = ax(n), x(0) = x0 (1.12)

is given by
x(n) = anx0. (1.13)

We can make the following conclusions about the limiting behavior of the
orbits of f or the solutions of Equation (1.12):

1. If |a| < 1, then lim
n→∞|f

n(x0)| = 0
(
or lim

n→∞|x(n)| = 0
)
[see Fig. 1.4 (b)

and (c)].

2. If |a| > 1, then lim
n→∞|f

n(x0)| =∞
(
or lim

n→∞|x(n)| =∞
)
if x0 = 0 [see

Fig. 1.4 (a) and (d)].

3. (a) If a = 1, then f is the identity map where every point is a fixed
point of f .

(b) If a = −1, then fn(x0) =

{
x0 if n is even
−x0 if n is odd

and the solution x(n) = (−1)nx0 of Equation (1.12) is said to be
periodic of period 2.
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FIGURE 1.4
Time series [n − x(n)] graphs (a) a = 1.2, (b) a = 0.7, (c) a = −0.7, (d)
a = −1.2. Solutions of Eqs. (1.12) for different values of the parameter a.

Next, let us look at the affine map f(x) = ax+ b. By successive iteration,
we get

f2(x) = a2x+ ab+ b

f3(x) = a3x+ a2b+ ab+ b
...

fn(x) = anx+
n−1∑

j=0

an−j−1b.

In other words, the solution of the difference equation

x(n+ 1) = ax(n) + b, x(0) = x0 (1.14)
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is given by

x(n) = anx0 +
n−1∑

j=0

an−j−1b

= anx0 + b
(
an − 1
a− 1

)

, if a = 1 (1.15)

x(n) =
(

x0 +
b

a− 1

)

an +
b

1− a , if a = 1. (1.16)

Using the formula of Equation (1.16), the following conclusions can be
easily verified:

1. If |a| < 1, then lim
n→∞f

n(x0) =
b

1− a
(

or lim
n→∞x(n) =

b

1− a
)

.

2. If |a| > 1, then lim
n→∞f

n(x0) = ±∞, depending on whether x0 +
b

a− 1
is

positive or negative, respectively.

3. (a) If a = 1, then fn(x0) = x0 + nb, which tends to ∞ or −∞ as
n→∞ (or x(n) = xo + nb).

(b) If a = −1, then fn(x0) = (−1)nx0 +
{
b if n is odd
0 if n is even

(

or x(n) = (−1)nx0 +
{
b if n is odd
0 if n is even

)

.

Notice that the solution of the differential equation

dx

dt
= ax(t), x(0) = x0

is given by

x(t) = eatx0. (1.17)

Comparing (1.14) and (1.17) we see that the exponential eat in the differential
equation corresponds to an, the nth power of a, in the difference equation.
The solution of the nonhomogeneous differential equation

dx

dt
= ax(t) + b, x(0) = x0 (1.18)
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is given by

x(t) = eatx0 +
∫ t

0

ea(t−s)b ds

= eatx0 +
b

a
(eat − 1)

=
(

x0 +
b

a

)

eat − b

a
. (1.19)

In cases 1, 2, 3, the behavior of the difference equation (1.15) depends on
whether a is inside the interval (−1, 1), on its boundary, or outside it. How-
ever for differential equations, the behavior of the solution of Equation (1.18)
depends on whether a < 0, a = 0, or a > 0, respectively. Consequently,

1. a < 0, lim
t→∞x(t) = −

b

a
as eat → 0 as t→∞,

2. a = 0, x(t) = x0 since
dx

dt
= 0,

3. a > 0, lim
t→∞x(t) =∞ since eat →∞ since t→∞.

Example 1.4
A drug is administered every six hours. Let D(n) be the amount of the
drug in the blood system at the nth interval. The body eliminates a certain
fraction p of the drug during each time interval. If the amount administered
is D0, find D(n) and lim

n→∞D(n).

SOLUTION The first step in solving this example is to write down a
difference equation that relates the amount of drug in the patient’s system
D(n + 1) at the time interval (n + 1) with D(n). Now, the amount of drug
D(n+ 1) is equal to the amount D(n) minus the fraction p of D(n) that has
been eliminated from the body plus the new dose D0. This yields

D(n+ 1) = (1− p)D(n) +D0.

From Equations (1.14) and (1.15), we obtain

D(n) = (1 − p)nD0 +D0

(
1− (1− p)n

p

)

=
(

D0 − Do

p

)

(1 − p)n +
Do

p
.

Thus,

lim
n→∞D(n) =

Do

p
.
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Exercises - (1.2–1.4)

1. Find the solution of the difference equation x(n+ 1)− 1
2x(n) = 2,

x(0) = c.

2. Find the solution of the equation x(n+ 1) + 2x(n) = 3, x(0) = 1.

3. (Pielou Logistic Equation). In population biology, the following equa-
tion, commonly called Pielou Logistic equation, is used to model popu-
lations with nonoverlapping generations

x(n+ 1) =
αx(n)

1 + βx(n)

(a) Use the substitution x(n) = 1
z(n) to transform the equation into a

linear equation.

(b) Show that

lim
n→∞ x(n) =






(α− 1)/β if |α| > 1,
0 if α = 1 or |α| < 1,
{x0,−x0/(1 + βx0)} if α = −1.

4. Find the exact solution of the logistic difference equation

x(n+ 1) = 2x(n)(1− x(n)).

(Hint: Let x(n) = 1
2 (1− y(n)), then use iteration)

5. Find the exact solution of the logistic difference equation

x(n+ 1) = 4x(n)(1− x(n)).

(Hint: Let x(n) = sin2 θ(n))

6. The temperature of a body is measured as 100◦F. It is observed that the
temperature change each period of 3 hours is −0.3 times the difference
between the previous period’s temperature and the room temperature,
which is 65◦F.

(a) Write a difference equation that describes the temperature T (n) of
the body at the end of n periods.

(b) Find T (n).

7. Consider the aphids population considered in Example 1.3 with r = 2
3 ,

q = 4, m = 1
4 .
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(a) Find a formula for a(n).

(b) If a(0) = 10, compute a(1), a(2), . . . , a(10).

(c) Draw the time series (n− a(n)) graph.
8. Suppose that in each generation of female aphids, one-third of them is

removed.

(a) Write down the modified difference equation that models the female
aphids.

(b) Draw the time series (n − a(n)) graph for r = 2
3 , q = 4, m = 1

4 ,
a(0) = 10.

9. Suppose that in each generation of female aphids, nine are removed.

(a) Write down the modified difference equation that models the female
aphids.

(b) Draw the time series (n − a(n)) graph for r = 2
3 , q = 4, m = 1

4 ,
a(0) = 10.

In Problems 10–12:

(a) Find the associated difference equation by applying Euler’s algo-
rithm on the given differential equation.

(b) Draw the graph of the solution of the difference equation in
part (a).

(c) Find the exact solution of the given differential equation and draw
its graph on the same plot in part (b).3

10. y′ + 0.5y = 0, y(0) = 0.8, 0 ≤ t ≤ 1, h = 0.2

11. y′ = −y + 1, y(0) = 0, 0 ≤ t ≤ 1, h = 0.25

12. y′ + 2y = 0, y(0) = 0.5, 0 ≤ t ≤ 1, h = 0.1

1.5 Fixed (Equilibrium) Points

In Section 1.4, we were able to obtain closed form solutions of first-order
linear difference equations. In other words, it was possible to write down an
explicit formula for points fn(x0) in the orbit of a point x0 under the linear or

3Optional
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affine map f . However, the situation changes drastically when the map f is
nonlinear. For example, one cannot find a closed form solution for the simple
difference equation (∆E) : x(n + 1) = µx(n)(1 − x(n)), except when µ = 2
or 4. For those of you who are familiar with first-order differential equations,
this may be rather shocking. We may solve the corresponding differential
equation (DE4 : x′(t) = λx(t)(1− x(t))) by simply separating the variables x
and t and then integrating both sides of the equation. The solution of (DE)
may be written in the form

x(t) =
x0e

λt

1 + x0(eλt − 1)
.

Note that the behavior of this solution is very simple: for λ > 0, lim
t→∞ x(t) = 1

and for λ < 0, lim
t→∞x(t) = 0. Unlike those of (DE), the behavior of solu-

tions of (∆E) is extremely complicated and depends very much on the values
of the parameter µ. Since we cannot, in general, solve (∆E), it is impor-
tant to develop qualitative or graphical methods to determine the behavior
of their orbits. Of particular importance is finding orbits that consist of one
point. Such points are called fixed points, or equilibrium points (steady
states).

Let us consider again the difference equation

x(n+ 1) = f(x(n)). (1.20)

DEFINITION 1.1 A point x∗ is said to be a fixed point of the map f
or an equilibrium point of Equation (1.20) if f(x∗) = x∗.

Note that for an equilibrium point x∗, the orbit is a singleton and consists
of only the point x∗. Moreover, to find all equilibrium points of Equation
(1.20), we must solve the equation f(x) = x. Graphically speaking, a fixed
point of a map f is a point where the curve y = f(x) intersects the diagonal
line y = x. For example, the fixed points of the cubic map f(x) = x3 can be
obtained by solving the equation x3 = x or x3−x = 0. Hence, there are three
fixed points -1, 0, 1 for this map (see Fig. 1.5).

Closely related to fixed points are the eventually fixed points. These
are the points that reach a fixed point after finitely many iterations. More
explicitly, a point x is said to be an eventually fixed point of a map f if
there exists a positive integer r and a fixed point x∗ of f such that f r(x) = x∗,
but f r−1(x) = x∗.

We denote the set of all fixed points by Fix(f), the set of all eventually
fixed points by EFix(f), and the set of all eventually fixed points of the fixed
points x∗ by EFixx∗(f).

4From Equation (1.7), this DE leads to y(n+1) = y(n) + hλy(n)(1− y(n)) or y(n+ 1) =
(1 + hλ)y(n)[1 − hλ

1+hλ
y(n)]. Now, setting x(n) = hλ

1+hλ
y(n) leads to the above ∆E.
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y=x3

f(x)

(−1,−1)

(0,0)

y=x

x

(1,1)

FIGURE 1.5
The fixed points of f(x) = x3 are the intersection points with the diagonal
line.

Given a fixed point x∗ of a map f , then one can easily construct eventually
fixed points by computing the ancestor set f−1(x∗) = {x = x∗ : f(x) = x∗},
f−2(x∗) = {x : f2(x) = x∗}, . . . , f−n(x∗) = {x : fn(x) = x∗}, . . . .

Thus one may show that

EFixx∗(f) = {x : fn(x) = x∗, n ∈ Z
+}. (1.21)

Note that the set EFix(f)\{x∗} may be empty, finite, or infinite as demon-
strated by the following example.

Example 1.5

(i) Consider the logistic map f(x) = 2x(1 − x). Then there are two fixed
points x∗ = 0 and y∗ = 1

2 . A simple computation reveals that

f−1(x) =
1
2
[1±√1− 2x].

Thus f−1
(
1
2

)
= 1

2 and EFixy∗(f)\{
1
2

}
= ∅. Moreover, f−1(0) =

{0, 1}, and EFixx∗(f) = {0, 1}. We conclude that we have only one
“genuine” eventually fixed point, namely x = 1.

(ii) Let us now contemplate a more interesting example, f(x) = 4x(1− x).
There are two fixed points, x∗ = 0, and y∗ = 3

4 . Clearly EFixx∗(f) =
{0, 1}. Notice that f−1(x) = 1

2 [1±
√
1− x]. Hence

f−1
(
3
4

)

=
1
2

[

1±
√

1− 3
4

]

=
1
2

[

1± 1
2

]
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which equals either 3
4 or 1

4 . Now f
−1 (

1
4

)
= 1

2

[
1±

√
1− 1

4

]
which equals

either 1
2

[
1 +

√
3
2

]
or 1

2

[
1−

√
3
2

]
. Repeating this process we may gener-

ate an infinitely many eventually fixed point, that is the set EFixy∗(f)
is infinite. The following diagram shows some of the eventually fixed
points.

1→ 0
1
4
→ 3

4(
1
2
−
√
3
4

)

→ 1
4
→ 3

4
(
1
2
+
√
3
4

)

→ 1
4
→ 3

4


1
2
− 1

2

√

1
2
+
√
3
2



→
[
1
2
−
√
3
2

]

→ 1
4
→ 3

4

It is interesting to note that the phenomenon of eventually fixed points does
not have a counterpart in differential equations, since no solution can reach
an equilibrium point in a finite time.

Next we introduce one of the most interesting examples in discrete dynam-
ical systems: the tent map T .

Example 1.6
(The Tent Map). The tent map T is defined as

T (x) =






2x, for 0 ≤ x ≤ 1
2

2(1− x), for 1
2 < x ≤ 1.

This map may be written in the form

T (x) = 1− 2
∣
∣
∣
∣x−

1
2

∣
∣
∣
∣ .

Note that the tent map is a piecewise linear map (see Fig. 1.6). The tent
map possesses a rich dynamics and in Chapter 3 we show it is in fact “chaotic.”

There are two equilibrium points x∗1 = 0 and x∗2 = 2
3 . Moreover, the point 1

4
is an eventual equilibrium point since T (14 ) =

1
2 , T

2(14 ) = T (12 ) = 1, T 3(14 ) =
T (1) = 0. It is left to you to show that if x = k

2n , where k, and n are positive



18 Discrete Chaos

x*
2

x*
1

T(x) y=x

x
1

FIGURE 1.6
The tent map has two fixed points x∗1 = 0 and x∗2 = 2

3 .

integers with 0 < k
2n ≤ 1, then x is an eventually fixed point (Problem 9).

Numbers of this form are called dyadic rationals.

REMARK 1.1 Note that not every map has a fixed point. For example,
the map f(x) = x+1 has no fixed points since the equation x+1 = x has no
solution.

Now, our mathematical curiosity would lead to the following question: un-
der what conditions does a map have a fixed point? Well, for continuous
maps, there are two simple and interesting results that guarantee the pres-
ence of fixed points.

THEOREM 1.1

Let f : I → I be a continuous map, where I = [a, b] is a closed interval in R.
Then, f has a fixed point.

PROOF Define g(x) = f(x) − x. Then, g(x) is also a continuous map.
If f(a) = a or f(b) = b, we are done. So assume that f(a) = a and f(b) = b.
Hence, f(a) > a and f(b) < b. Consequently, g(a) > 0 and g(b) < 0. By
the intermediate value theorem,5 there exists a point c ∈ (a, b) with g(c) = 0.
This implies that f(c) = c and c is thus a fixed point of f .

The above theorem says that for a continuous map f if f(I) ⊂ I, then f
has a fixed point in I. The next theorem gives the same assertion if f(I) ⊃ I.

5The intermediate value theorem: Let f : I → I be a continuous map. Then, for any
real number r between f(a) and f(b), there exists c ∈ I such that f(c) = r.
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THEOREM 1.2
Let f : I = [a, b] → R be a continuous map such that f(I) ⊃ I. Then f has
a fixed point in I.

PROOF The proof is left to the reader as Problem 10.

Even if fixed points of a map do exist, it is sometimes not possible to
compute them algebraically. For example, to find the fixed points of the map
f(x) = 2 sinx, one needs to solve the transcendental equation 2 sinx− x = 0.

Clearly x = 0 is a root of this equation and thus a fixed point of the map f .
However, the other two fixed points may be found by graphical or numerical
methods. They are approximately ±1.944795452.

1.6 Graphical Iteration and Stability

One of the main objectives in the theory of dynamical systems is the study
of the behavior of orbits near fixed points, i.e., the behavior of solutions of a
difference equation near equilibrium points. Such a program of investigation
is called stability theory, which henceforth will be our main focus. We begin
our exposition by introducing the basic notions of stability. Let Z+ denote
the set of nonnegative integers.

DEFINITION 1.2 Let f : I → I be a map and x∗ be a fixed point of f ,
where I is an interval in the set of real numbers R. Then

1. x∗ is said to be stable if for any ε > 0 there exists δ > 0 such that
for all x0 ∈ I with |x0 − x∗| < δ we have |fn(x0) − x∗| < ε for all n ∈
Z+. Otherwise, the fixed point x∗ will be called unstable (see Figs. 1.7
and 1.8).

2. x∗ is said to be attracting if there exists η > 0 such that |x0 − x∗| < η
implies lim

n→∞f
n(x0) = x∗ (see Fig. 1.9).

3. x∗ is asymptotically stable6 if it is both stable and attracting (see
Fig. 1.10). If in (2) η =∞, then x∗ is said to be globally asymptot-
ically stable.

Henceforth, unless otherwise stated, “stable” (asymptotically stable) always
means “locally stable” (asymptotically stable).

6In the literature, x∗ is sometimes called a sink.
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FIGURE 1.7
Stable fixed point x∗.

FIGURE 1.8
Unstable fixed point x∗.

FIGURE 1.9
Unstable nonoscillating fixed point
x∗.

FIGURE 1.10
Asymptotically stable fixed point x∗.
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The Cobweb Diagram:

One of the most effective graphical iteration methods to determine the stabil-
ity of fixed points is the cobweb diagram.7 On the x−y plane, we draw the
curve y = f(x) and the diagonal line y = x on the same plot (see Fig. 1.11).

We start at an initial point x0. Then we move vertically until we hit the
graph of f at the point (x0, f(x0)). We then travel horizontally to meet the
line y = x at the point (f(x0), f(x0)). This determines f(x0) on the x axis.
To find f2(x0), we move again vertically until we strike the graph of f at the
point (f(x0), f2(x0)); and then we move horizontally to meet the line y = x at
the point (f2(x0), f2(x0)). Continuing this process, we can evaluate all of the
points in the orbit of x0, namely, the set {x0, f(x0), f2(x0), . . . , fn(x0), . . .}
(see Fig. 1.11).

Example 1.7

Use the cobweb diagram to find the fixed points for the quadratic map
Qc(x) = x2 + c on the interval [−2, 2], where c ∈ [−2, 0]. Then determine
the stability of all fixed points.

SOLUTION To find the fixed point ofQc, we solve the equation x2+c = x
or x2 − x + c = 0. This yields the two fixed points x∗1 = 1

2 − 1
2

√
1− 4c and

x∗2 = 1
2 + 1

2

√
1− 4c. Since we have not developed enough machinery to treat

the general case for arbitrary c, let us examine few values of c. We begin
with c = −0.5 and an initial point x0 = 1.1. It is clear from Fig. 1.12 that
the fixed point x∗1 = 1

2 −
√
3
2 ≈ −0.366 is asymptotically stable, whereas the

second fixed point x∗2 =
1
2 +

√
3
2 ≈ 1.366 is unstable.

Example 1.8

Consider again the tent map of Example 1.6. Find the fixed points and
determine their stability.

SOLUTION The fixed points are obtained by putting 2x = x and 2(1−
x) = x. From the first equation, we obtain the first fixed point x∗1 = 0; and
from the second equation, we obtain the second fixed point x∗2 = 2

3 . Observe
from the cobweb diagram (Fig. 1.13) that both fixed points are unstable.

REMARK 1.2 If one uses the language of difference equations, then in
the Cobweb diagrams, the x-axis is labeled x(n) and the y-axis is labeled
x(n+ 1).

7It is also called the stair-step diagram.
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FIGURE 1.11
The Cobweb diagram: asymptotically stable fixed point x∗, lim

n→∞f
n(x0) = x∗.

FIGURE 1.12
The Cobweb diagram of Q−0.5: x∗1 is asymptotically stable but x∗2 is unstable.
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FIGURE 1.13
Both equilibrium points x∗1 = 0 and x∗2 =

2
3 are unstable.

Exercises - (1.5 and 1.6)

Use Phaser, Mathematica, or Maple.

1. Find all fixed and eventually fixed points of the map f(x) = |x− 1|.
2. Consider the logistic map Fµ(x) = µx(1 − x).

(a) Draw the cobweb diagram for µ = 2, 2.5, 3.2.

(b) Determine the stability of the equilibrium points for the values of
µ in part (a).

3. (a) Find a function with four fixed points, all of which are unstable.

(b) Find a function with no fixed points.

(c) Find a function with a stable and an unstable fixed point.

4. Find the equilibrium points and determine their stability for the map
f(x) = 5− 6

x .

5. Pielou’s logistic equation. Pielou referred to the following equation
as the discrete logistic equation:

x(n+ 1) =
αx(n)

1 + βx(n)
, α > 1, β > 0.

(a) Find the positive equilibrium point.

(b) Demonstrate, using the cobweb diagram, that the positive equilib-
rium point is asymptotically stable for α = 2 and β = 1.
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6. Newton’s method for computing the square root of a positive
number. The equation x2 = b can be written in the form x = 1

2 (x+
b
x).

This form leads to Newton’s method:

x(n+ 1) =
1
2

(

x(n) +
b

x(n)

)

.

(a) Show that this difference equation has two equilibrium points, −√b
and

√
b.

(b) Sketch cobweb diagrams for b = 3; x0 = 1, x0 = −1.
(c) What can you conclude from part (b)?

(d) Investigate the case when b = −3 and try to form an explanation
of your results.

7. Consider the difference equation x(n+ 1) = f(x(n)), where f(0) = 0.

(a) Prove that x(n) ≡ 0 is a solution of the equation.

(b) Show that the function depicted in Fig. 1.14 cannot possibly be a
solution of the equation.

FIGURE 1.14
Problem 7(b)

8. Consider the family of quadratic maps Qc(x) = x2 + c, where c is a
parameter.

(a) Draw the cobweb diagram for c > 1
4 , c =

1
4 , or c <

1
4 .

(b) Determine the stability of the fixed points for the values of c in
part (a).

9. Show that if x = k
2n , where k and n are positive integers with 0 < k

2n ≤
1, then x is an eventually fixed point of the tent map (see Example 1.6).
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10. Prove Theorem 1.2.

In Problems 11–14, determine the stability of the fixed points of the maps
using the Cobweb-diagram.

11. f(x) = 0.5 sin(πx)

12. f(x) = x+ 1
π sin(2πx)

13. f(x) = 2xe−x

14. A population of birds is modeled by the difference equation

x(n+ 1) =

{
3.2x(n) for 0 ≤ x(n) ≤ 1,
0.5x(n) + 2.7 for x(n) > 1.

where x(n) is the number of birds in year n. Find the equilibrium points
and then determine their stability.

1.7 Criteria for Stability

In this section, we will establish some simple but powerful criteria for local
stability of fixed points. Fixed (equilibrium) points may be divided into two
types: hyperbolic and nonhyperbolic. A fixed point x∗ of a map f is said
to be hyperbolic if |f ′(x∗)| = 1. Otherwise, it is nonhyperbolic. We will
treat the stability of each type separately.

1.7.1 Hyperbolic Fixed Points

The following result is the main tool in detecting local stability.

THEOREM 1.3

Let x∗ be a hyperbolic fixed point of a map f , where f is continuously differ-
entiable at x∗. The following statements then hold true:

1. If |f ′(x∗)| < 1, then x∗ is asymptotically stable.

2. If |f ′(x∗)| > 1, then x∗ is unstable.

PROOF 1. Suppose that |f ′(x∗)| < M < 1 for some M > 0. Then,
there is an open interval I = (x∗ − ε, x∗ + ε) such that |f ′(x)| ≤ M < 1 for
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all x ∈ I (Why? Problem 10). By the mean value theorem,8 for any x0 ∈ I,
there exists c between x0 and x∗ such that

|f(x0)− x∗| = |f(x0)− f(x∗)| = |f ′(c)||x0 − x∗| ≤M |x0 − x∗|. (1.22)

Since M < 1, inequality (1.22) shows that f(x0) is closer to x∗ than x0.
Consequently, f(x0) ∈ I. Repeating the above argument on f(x0) instead of
x0, we can show that

|f2(x0)− x∗| ≤M |f(x0)− x∗| ≤M2|x0 − x∗|. (1.23)

By mathematical induction, we can show that for all n ∈ Z+,

|fn(x0)− x∗| ≤Mn|x0 − x∗|. (1.24)

To prove the stability of x∗, for any ε > 0, we let δ = min(ε, ε̃). Then,
|x0 − x∗| < δ implies that |fn(x0)− x∗| ≤Mn|x0− x∗| < ε, which establishes
stability. Furthermore, from Inequality (1.24) lim

n→∞ |f
n(x0)−x∗| = 0 and thus

lim
n→∞ f

n(x0) = x∗, which yields asymptotic stability. The proof of part 2 is

left to you as Problem 14.

The following examples illustrate the applicability of the above theorem.

Example 1.9
Consider the map Gλ(x) = 1 − λx2 defined on the interval [−1, 1], where
λ ∈ (0, 2]. Find the fixed points of Gλ(x) and determine their stability.

SOLUTION To find the fixed points of Gλ(x) we solve the equation
1− λx2 = x or λx2 + x− 1 = 0. There are two fixed points:

x∗1 =
−1−√1 + 4λ

2λ
and x∗2 =

−1 +√1 + 4λ
2λ

.

Observe that G′
λ(x) = −2λx. Thus, |G′

λ(x
∗
1)| = 1 +

√
1 + 4λ > 1, and hence,

x∗1 is unstable for all λ ∈ (0, 2]. Furthermore, |G′
λ(x

∗
2)| =

√
1 + 4λ − 1 < 1 if

and only if
√
1 + 4λ < 2. Solving the latter inequality for λ, we obtain λ < 3

4 .
This implies by Theorem 1.3 that the fixed point x∗2 is asymptotically stable if
0 < λ < 3

4 and unstable if λ > 3
4 (see Fig. 1.15). When λ = 3

4 , G
′
λ(x

∗
2) = −1.

This case will be treated in Section 1.7.2.

8The mean value theorem. If f is continuous on the closed interval [a, b] and is
differentiable on the open interval (a, b), then there is a number c in (a, b) such that

f ′(c) = f(b)−f(a)
b−a . This implies that |f(b) − f(a)| = |f ′(c)||b− a|.
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FIGURE 1.15
(a) λ = 1

2 , x
∗
2 is asymptotically stable while (b) λ = 3

2 , x
∗
2 is unstable.

Example 1.10

(Raphson-Newton’s Method). Raphson-Newton’s method is one of the
simplest and oldest numerical methods for finding the roots of the equation
g(x) = 0. The Newton algorithm for finding a zero r of g(x) is given by the
difference equation

x(n+ 1) = x(n) − g(x(n))
g′(x(n))

. (1.25)

where x(0) = x0 is our initial guess of the root r. Equation (1.25) is of the
form of Equation (1.20) with

fN (x) = x− g(x)
g′(x)

(1.26)

where fN is called Newton’s function.

THEOREM 1.4 (Taylor’s Theorem)

Let f be differentiable of all orders at x0. Then

f(x) = f(x0) + (x− x0)f ′(x0) + (x− x0)2
2!

f ′′(x0) + . . .

for all x in a small open interval containing x0.

Formula (1.25) may be justified using Taylor’s Theorem. A linear approxi-
mation of f(x) is given by the equation of the tangent line to f(x) at x0:

f(x) = f(x0) + (x− x0)f ′(x0).
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The intersection of this tangent line with the x-axis produces the next point
x1 in Newton’s algorithm (Fig. 1.16). Letting f(x) = 0 and x = x1 yields

x1 = x0 − f(x0)
f ′x0)

.

By repeating the process, replacing x0 by x1, x1 by x2, . . . , we obtain formula
(1.25).

We observe first that if r is a root of g(x), i.e., g(r) = 0, then from Equation
(1.26) we have fN(r) = r and thus r is a fixed point of fN (assuming that
g′(r) = 0). On the other hand, if x∗ is a fixed point of fN , then from Equation
(1.26) again we get g(x∗)

g′(x) = 0. This implies that g(x∗) = 0, i.e., x∗ is a zero
of g(x). Now, starting with a point x0 close to a root r of g(x) = 0, then
Algorithm (1.25) gives the next approximation x(1) of the root r. By applying
the algorithm repeatedly, we obtain the sequence of approximations

x0 = x(0), x(1), x(2), . . . , x(n), . . .

(see Fig. 1.16). The question is whether or not this sequence converges to the
root r. In other words, we need to check the asymptotic stability of the fixed
point x∗ = r of fN . To do so, we evaluate f ′N(r) and then use Theorem 1.3,

|f ′N (r)| =
∣
∣
∣
∣1−

[g′(r)]2 − g(r)g′′(r)
[g′(r)]2

∣
∣
∣
∣ = 0, since g(r) = 0.

Hence, by Theorem 1.3, lim
n→∞x(n) = r, provided that x0 is sufficiently close

to r.
For g(x) = x2−1, we have two zero’s −1, 1. In this case, Newton’s function

is given by fN (x) = x− x2−1
2x = x2+1

2x . The cobweb diagram of fN shows that
Newton’s algorithm converges quickly to both roots (see Fig. 1.17).

1.7.2 Nonhyperbolic Fixed Points

The stability criteria for nonhyperbolic fixed points are more involved. They
will be summarized in the next two results, the first of which treats the case
when f ′(x∗) = 1 and the second for f ′(x∗) = −1.

THEOREM 1.5
Let x∗ be a fixed point of a map f such that f ′(x∗) = 1. If f ′(x), f ′′(x), and
f ′′′(x) are continuous at x∗, then the following statements hold:

1. If f ′′(x∗) = 0, then x∗ is unstable (semistable).9

9See the definition in Problem 17. The assumption that f ′′′(x) is continuous at x∗ is not
needed in part 1.
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FIGURE 1.16
Newton’s method for g(x) = x2 − 1.

FIGURE 1.17
Cobweb diagram for Newton’s function fN when g(x) = x2 − 1.
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2. If f ′′(x∗) = 0 and f ′′′(x∗) > 0, then x∗ is unstable.

3. If f ′′(x∗) = 0 and f ′′′(x∗) < 0, then x∗ is asymptotically stable.

PROOF 1. Assume that f ′(x∗) = 1 and f ′′(x∗) = 0. Then, the curve y =
f(x) is either concave upward (f ′′(x∗) > 0) or concave downward (f ′′(x∗) <
0), as shown in Fig. 1.18(a) and (b). Now, if f ′′(x∗) > 0, then f ′(x) is
increasing in a small interval containing x∗. Hence, f ′(x) > 1 for all x ∈
(x∗, x∗ + δ), for some small δ > 0 [see Fig. 1.18(a)]. Using the same proof
as in Theorem 1.3, we conclude that x∗ is unstable. Similarly, if f ′′(x∗) < 0
then f ′(x) is decreasing in a small neighborhood of x∗. Therefore, f ′(x) > 1
for all x ∈ (x∗ − δ, x∗), for some small δ > 0, and again we conclude that
x∗ is unstable [see Fig. 1.18(b)]. Proofs of parts 2 and 3 are left to you as
Problem 15.

Example 1.11

Let f(x) = −x3 + x. Then x∗ = 0 is the only fixed point of f . Note that
f ′(0) = 1, f ′′(0) = 0, f ′′′(0) < 0. Hence by Theorem 1.5, 0 is asymptotically
stable.

The preceding theorem may be used to establish stability criteria for the
case when f ′(x∗) = −1. But before doing so, we need to introduce the notion
of the Schwarzian derivative.

DEFINITION 1.3 The Schwarzian derivative, Sf , of a function f is
defined by

Sf(x) =
f ′′′(x)
f ′(x)

− 3
2

[
f ′′(x)
f ′(x)

]2
. (1.27)

And if f ′(x∗) = −1, then

Sf(x∗) = −f ′′′(x∗)− 3
2
[f ′′(x∗)]2. (1.28)

THEOREM 1.6

Let x∗ be a fixed point of a map f such that f ′(x∗) = −1. If f ′(x), f ′′(x),
and f ′′′(x) are continuous at x∗, then the following statements hold:

1. If Sf(x∗) < 0, then x∗ is asymptotically stable.

2. If Sf(x∗) > 0, then x∗ is unstable.
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FIGURE 1.18
(a) f ′(x∗) = 1, f ′′(x∗) > 0, unstable fixed point, semi-stable from the left.
(b) f ′(x∗) = 1, f ′′(x∗) < 0, unstable fixed point, semi-stable from the right.
(c) f ′(x∗) = 1, f ′′(x∗) = 0, f ′′′(x∗) > 0, unstable fixed point.
(d) f ′(x∗) = 1, f ′′(x∗) = 0, f ′′′(x∗) < 0, asymptotically stable fixed point.
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FIGURE 1.19
An asymptotically stable nonhyperbolic fixed point x∗2.

PROOF The main idea of the proof is to create an associated function
g with the property that g′(x∗) = 1, so that we can use Theorem 1.5. This
function is indeed g = f ◦ f = f2. Two important facts need to be observed
here. First, if x∗ is a fixed point of f , then it is also a fixed point of g.
Second, if x∗ is asymptotically stable (unstable) with respect to g, then it is
also asymptotically stable (unstable) with respect to f (Why? Problem 16).
By the chain rule:

g′(x) =
d

dx
f(f(x)) = f ′(f(x))f ′(x). (1.29)

Hence,
g′(x∗) = [f ′(x∗)]2 = 1

and Theorem 1.5 now applies. For this reason we compute g′′(x∗). From
Equation (1.29), we have

g′′(x) = f ′(f(x))f ′′(x) + f ′′(f(x))[f ′(x)]2 (1.30)
g′′(x∗) = f ′(x∗)f ′′(x∗) + f ′′(x∗)[f ′(x∗)]2

= 0 (since f ′(x∗) = −1). (1.31)

Computing g′′′(x) from Equation 1.31, we get

g′′′(x∗) = −2f ′′′(x∗)− 3[f ′′(x∗)]2. (1.32)

It follows from Equation (1.29)

g′′′(x∗) = 2Sf(x∗) (1.33)
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Statements 1 and 2 now follow immediately from Theorem 1.5.

REMARK 1.3 Note that if f ′(x∗) = −1 and g = f ◦ f , then from (1.31)
we have

Sf(x∗) =
1
2
g′′′(x∗). (1.34)

Furthermore,

g′′(x∗) = 0. (1.35)

We are now ready to give an example of a nonhyperbolic fixed point.

unstable
stable

asymptotically

stablesemistable
unstable unstable

nonoscillator oscillator
nonhyperbolicnonhyperbolic

unstableasymptotically
stable

unstable
semistable

stable
unstable

unstable
stable

asymptotically

unstable

asymptotically

asymptotically

asymptotically
stable

f(x∗) = x∗

|f′(x∗)| < 1 |f′(x∗)| > 1

f′(x∗)

f′(x∗) = 1

f′′(x∗)

f′′(x∗) �= 0

f′′(x∗) = 0

f′′′(x∗) < 0 f′′′(x∗) > 0

f′′′(x∗)

f′′′(x∗) = 0

f(4)(x∗)

f(4)(x∗) �= 0

f(4)(x∗) = 0

f(5)(x∗)

f(5)(x∗) < 0 f(5)(x∗) > 0

f(5)(x∗) = 0

f(x∗) = −1

S1f(x∗)

S1f(x∗) < 0 S1f(x∗) > 0

S1f(x∗) = 0

S2f(x∗)

S2f(x∗) < 0 S2f(x∗) > 0

S2f(x∗) = 0

S3f(x∗)

S3f(x∗) < 0 S3f(x∗) > 0

S3f(x∗) = 0

FIGURE 1.20
Classification of fixed points.
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Example 1.12
Consider the map f(x) = x2+3x on the interval [-3, 3]. Find the equilibrium
points and then determine their stability.

SOLUTION The fixed points of f are obtained by solving the equation
x2 + 3x = x. Thus, there are two fixed points: x∗1 = 0 and x∗2 = −2. So
for x∗1, f

′(0) = 3, which implies by Theorem 1.3 that x∗1 is unstable. For x∗2,
we have f ′(−2) = −1, which requires the employment of Theorem 1.6. We
observe that

Sf(−2) = −f ′′′(−2)− 3
2
[f ′′(−2)]2 = −6 < 0.

Hence, x∗2 is asymptotically stable (see Fig. 1.19).

Diagram 1.20 provides a complete classification of fixed points which goes
beyond the material in this section. Detailed analysis of the contents in the
diagram may be found in [22].

In [22] the cases when Sf(x∗) = 0 and f ′′′(x∗) = 0 were investigated. In
the diagram, we have S1f(x) = Sf(x), S2f(x) = 1

2g
(5)(x), where g = f2, and

more generally Skf(x) = 1
2g(2k + 1)(x).

Exercises - (1.7)

In Problems 1–8, find the fixed points and determine their stability.

1. f(x) = x2

2. f(x) = 1
2x

3 + 1
2x

3. f(x) = 3x(1− x)
4. f(x) = tan−1(x)

5. f(x) = xe1.5(1 − x)

6. f(x) =






0.8x; if x ≤ 1
2

0.8(1− x); if x > 1
2

7. f(x) = −x3 − x

8. f(x) =






2x; if 0 ≤ x ≤ 1
2

2x− 1; if 1
2 < x ≤ 1
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9. Find the equilibrium points of the equation

x(n+ 1) =
αx(n)

1 + βx(n)
, α > 1, β > 0.

Then determine the values of the parameters α and β for which a given
equilibrium point is asymptotically stable or unstable.

10. Assume that f is continuously differentiable at x∗. Show that if |f ′(x∗)| <
1, for a fixed point x∗ of f , then there exists an interval I = (x∗−ε, x∗+ε)
such that |f ′(x)| ≤M < 1 for all x ∈ I and for some constant M .

11. Let f(x) = ax2 + bx+ c, a = 0, and x∗ be a fixed point of f . Prove the
following statements:

(a) If f ′(x∗) = 1, then x∗ is unstable.

(b) If f ′(x∗) = −1, then x∗ is asymptotically stable.

12. Suppose that for a root x∗ of a function g, we have g(x∗) = g′(x∗) = 0
where g′′(x∗) = 0 and g′′(x) is continuous at x∗. Show that its Newton
function fN , defined by Equation (1.26), is defined on x∗. (Hint: Use
L’Hopital’s rule.)

13. Find the equilibrium points of the equation

x(n+ 1) = αx(n)
(
1 + α
α

− x(n)
)

.

Then determine the values of the parameter α for which a given equi-
librium point is asymptotically stable or unstable.

14. Prove Theorem 1.3, part 2.

15. Prove Theorem 1.5, parts 2 and 3.

16. Let x∗ be a fixed point of a continuous map f . Show that if x∗ is asymp-
totically stable with respect to the map g = f2, then it is asymptotically
stable with respect to the map f .

17. Semistability definition: A fixed point x∗ of a map f is semistable
(from the right) if for any ε > 0 there exists δ > 0 such that if 0 <
x0 − x∗ < δ then |fn(x0) − x∗| < ε for all n ∈ Z+. If, in addition,
lim

n→∞ f
n(x0) = x∗ whenever 0 < x0 − x∗ < η for some η > 0, then x∗

is said to be semiasymptotically stable (from the right). Semistability
(semiasymptotic stability) from the left is defined analogously. Suppose
that f ′(x∗) = 1 and f ′′(x∗) = 0. Prove that x∗ is

(a) Semiasymptotically stable from the right if f ′′(x∗) < 0.
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(b) Semiasymptotically stable from the left if f ′′(x∗) > 0.

In Problems 18 and 19, determine whether or not the fixed point x∗ = 0
is semiasymptotically stable from the left or from the right.

18. f(x) = x3 + x2 + x

19. f(x) = x3 − x2 + x

1.8 Periodic Points and their Stability

The notion of periodicity is one of the most important notion in the field of
dynamical systems. Its importance stems from the fact that many physical
phenomena have certain patterns that repeat themselves. These patterns
produce cycles (or periodic cycles), where a cycle is understood to be the
orbit of a periodic point. In this section, we address the questions of existence
and stability of periodic points.

DEFINITION 1.4 Let x be in the domain of a map f . Then,

1. x is said to be a periodic point of f with period k if fk(x) = x for
some positive integer k. In this case x may be called k-periodic. If in
addition f r(x) = x for 0 < r < k, then k is called the minimal period
of x. Note that x is k-periodic if it is a fixed point of the map fk.

2. x is said to be an eventually periodic point of a period k and delay
m if fk+m(x) = fm(x) for some positive integer k and m ∈ Z+ (see
Fig. 1.21). Notice that if k = 1, then f(fm(x)) = fm(x) and x is then
an eventually fixed point, and if m = 0, then x is k-periodic. In other
words, x is eventually periodic if fk(x) is periodic, for some positive
integer k.

The orbit of a k-periodic point is the set

O(x) = {x, f(x), f2(x), . . . , fk−1(x)}
and is often called a k-periodic cycle. Graphically, a k-periodic point is the
x coordinate of a point at which the graph of the map fk meets the diagonal
line y = x.

Next we turn our attention to the question of stability of periodic points.

DEFINITION 1.5 Let x be a periodic point of f with minimal period k.
Then,
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FIGURE 1.21
An eventually periodic point x : The orbit of x goes into a 2-periodic cycle
{x1, x2}.

1. x is stable if it is a stable fixed point of fk.

2. x is asymptotically stable if it is an asymptotically stable fixed point
of fk.

3. x is unstable if it is an unstable fixed point of fk.

Thus, the study of the stability of k-periodic solutions of the difference
equation

x(n+ 1) = f(x(n)) (1.36)

reduces to studying the stability of the equilibrium points of the associated
difference equation

y(n+ 1) = g(y(n)) (1.37)

where g = fk.
The next theorem gives a practical criteria for the stability of periodic points

based on Theorem 1.3 in the preceding section.

THEOREM 1.7
Let O(x) = {x, f(x), . . . , fk−1(x)} be the orbit of the k-periodic point x, where
f is a continuously differentiable function at x. Then the following statements
hold true:
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1. x is asymptotically stable if

|f ′(x1)f ′(f(x2)) . . . f ′(fk−1(xk))| < 1. (1.38)

2. x is unstable if

|f ′(x)f ′(f(x)) . . . f ′(fk−1(x))| > 1. (1.39)

PROOF By using the chain rule, we can show that

d

dx
fk(x) = f ′(x)f ′(f(x)) . . . f ′(fk−1(x)).

Conditions (1.38) and (1.39) now follow immediately by application of Theo-
rem 1.3 to the composite map g = fk.

Example 1.13
Consider the difference equation x(n+ 1) = f(x(n)) where f(x) = 1 − x2 is
defined on the interval [-1, 1]. Find all the 2-periodic cycles, 3-periodic cycles,
and 4-periodic cycles of the difference equation and determine their stability.

SOLUTION First, let us calculate the fixed points of f out of the way.
Solving the equation x2 + x − 1 = 0, we find that the fixed points of f are
x∗1 = − 1

2 −
√
5
2 and x∗2 = − 1

2 +
√
5
2 . Only x∗2 is in the domain of f . The fixed

point x∗2 is unstable. To find the two cycles, we find f2 and put f2(x) = x.
Now, f2(x) = 1− (1− x2)2 = 2x2 − x4 and f2(x) = x yields the equation

x(x3 − 2x+ 1) = x(x − 1)(x2 + x− 1) = 0.

Hence, we have the 2-periodic cycle {0, 1}; the other two roots are the fixed
points of f . To check the stability of this cycle, we compute |f ′(0)f ′(1)| =
0 < 1. Hence, by Theorem 1.7, the cycle is asymptotically stable (Fig. 1.22).

Next we search for the 3-periodic cycles. This involves solving algebraically
a sixth-degree equation, which is not possible in most cases. So, we resort
to graphical (or numerical) analysis. Figure 1.23 shows that there are no 3-
periodic cycles. Moreover, Fig. 1.24 shows that there are no 4-periodic cycles.
Later, in Chapter 2, we will prove that this map has no periodic points other
than the above 2-periodic cycle.

Since f−1(x) =
√
1− x, it follows that the point f−1(x∗2) =

√
3−√

5
2 is an

eventually fixed point. Let g = f2. Then g−1(x) =
√
1 +

√
1− x. Now

g−1(0) =
√
2 which is outside the domain of f . Hence f has no eventually

periodic points.
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FIGURE 1.22
(a) A 2-periodic cycle {x1, x2}; (b) Periodic points of f : x1, and x2 are fixed
points of f2; (c) Periodic points of f : x1, and x2 are asymptotically stable
fixed points of f2.

FIGURE 1.23
f3 has no “genuine” fixed points, it has a fixed point x∗ which is a fixed point
of f , f has no points of period 3.
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FIGURE 1.24
f4 has no “genuine” fixed points, it has three fixed points, a fixed point x∗ of
f and two fixed points x1, x2 of f2, f has no 4-periodic cycles.

Example 1.14
(The Tent Map Revisited). The tent map T is defined as

T (x) =






2x; 0 ≤ x ≤ 1
2

2(1− x); 1
2 < x ≤ 1.

It may be written in the compact form

T (x) = 1− 2
∣
∣
∣
∣x−

1
2

∣
∣
∣
∣ .

Find all the 2-periodic cycles and the 3-periodic cycles of T and determine
their stability.

SOLUTION First, we observe that the fixed points of T are x∗1 = 0 and
x∗2 = 2

3 ; they are unstable since |T ′| = 2. To find the 2-periodic cycles, we
compute T 2. After some computation, we obtain

T 2(x) =






4x; 0 ≤ x < 1
4

2(1− 2x); 1
4 ≤ x < 1

2

4(x− 1
2 );

1
2 ≤ x < 3

4

4(1− x); 3
4 ≤ x ≤ 1.
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There are four fixed points of T 2 : 0, 25 ,
2
3 ,

4
5 , two of which (0, 23 ), are fixed

points of T . Thus, { 25 , 45} is the only 2-periodic cycle [see Fig. 1.25(b)]. Since
|T ′(25 )T

′(45 )| = 4 > 1, this 2-periodic cycle is unstable (Theorem 1.7). From
Fig. 1.25(c), we observe that T 3 has eight fixed points, two of which are fixed
points of T . Thus, there are two periodic cycles of period 3. It is easy to
check that these cycles are C1 =

{
2
7 ,

4
7 ,

6
7

}
and C2 =

{
2
9 ,

4
9 ,

8
9

}
, both of which

are unstable.
Note that the point 3

5 is an eventually 2-periodic point as 3
5 → 2

5 → 4
5 .

Moreover, the point 3
7 is an eventually 3-periodic point since 3

7 → 6
7 → 2

7 → 4
7 .

A general result characterizing periodic and eventually periodic points of the
tent map will be given in Section 3.2.

FIGURE 1.25
(a) The tent map T has two fixed points; (b) T 2 has 4 fixed points, 2 periodic
points x1, x2, and 2 fixed points x∗1, x

∗
2 of T ; (c) T 3 has 8 fixed points, two

cycles of period 3 and two fixed maps of T .

Exercises - (1.8)

In Problems 1–6, find the 2-periodic points and determine their stability.

1. Q(x) = x2 − 0.85

2. p(x) = 1
2x

2 − x+ 1
2

3. f(x) = xe2(1−x)

4. g(x) = 5− 6
x

5. h(x) = 1−x
3x+1
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6. f(x) = |x− 1|
7. Let Q(x) = ax2 + bx+ c, where a, b, c ∈ R and a = 0.

(a) If {x0, x1} is a 2-periodic cycle such that Q′(x0)Q′(x1) = −1, prove
that the 2-periodic cycle is asymptotically stable.

(b) If {x0, x1} is a 2-periodic cycle such that Q′(x0)Q′(x1) = 1, deter-
mine whether the cycle is stable or unstable.

8. Let g(x) = ax3 − bx+ 1, where a, b ∈ R. Find the values of a and b for
which the cycle {0, 1} is asymptotically stable.

Problems 9 and 10 deal with Baker’s map on the interval [0, 1], which is
defined as follows:

B(x) =






2x; 0 ≤ x ≤ 1
2

2x− 1; 1
2 < x ≤ 1.

9. (a) Find the 2-periodic cycles of B and determine their stability.

(b) Find the number of k-periodic points of B including those points
that are not of prime period k.

10. Show that if m is an odd positive integer, then x = k
m is periodic for

k = 1, 2, . . . ,m− 1.

In Problems 11–14, use Carvalho’s lemma.

Carvalho’s Lemma [19].
If k is a positive integer and x(n) is a periodic sequence of period k, then

the following hold true:

(i) If k > 1 is odd and m = k−1
2 , then

x(n) = c0 +
m∑

j=1

[

cj cos
(
2jnπ
k

)

+ dj sin
(
2jnπ
k

)]

,

for all n ≥ 1.

(ii) If k is even and k = 2m, then

x(n) = c0 + (−1)ncm +
m−1∑

j=1

[

cj cos
(
2jnπ
k

)

+ dj sin
(
2jnπ
k

)]

,

for all n ≥ 1. For example, a 2-periodic cycle is of the form x(n) =
c0+(−1)nc1; a 3-periodic cycle is of the form x(n) = c0+ c1 cos

(
2nπ
3

)
+

d1 sin
(
2nπ
3

)
.
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11. Consider the logistic map Fµ(x) = µx(1− x). Use Carvalho’s lemma to
find the values of µ where the map has a 2-periodic cycle, 0 < µ ≤ 4.
Then find these 2-periodic cycles.

12.* (Term project). Find the values of µ where the equation in Problem 11
has a 3-periodic cycle.

13. Find the values of α and β for which the difference equation x(n+1) =
αx(n)/(1 + βx(n)), where α, β ∈ R has a 2-periodic cycle.

14. The population of a certain species is modeled by the difference equation
x(n + 1) = µx(n)e−x(n), x(n) ≥ 0, µ > 0. For what values of µ does
the equation have a 2-periodic cycle?

1.9 The Period-Doubling Route to Chaos

We end this chapter by studying in detail the logistic map:

Fµ(x) = µx(1− x), (1.40)

which gives rise to the logistic difference equation

x(n+ 1) = µx(n)(1 − x(n)), (1.41)

where x ∈ [0, 1] and µ ∈ (0, 4].

1.9.1 Fixed Points

Let us begin our exposition by examining the equilibrium points of Equation
(1.41). There are two fixed points of Fµ: x∗1 = 0 and x∗2 = µ−1

µ . We now
examine the stability of each fixed point separately.

1. The fixed point x∗1 = 0: observe that F
′
µ(0) = µ. Therefore, from

Theorem 1.3, we conclude

(a) x∗1 is asymptotically stable if 0 < µ < 1 [see Fig. 1.26(a)].

(b) x∗1 is unstable if µ > 1 [see Fig. 1.26(c)].

The case where µ = 1 needs special attention, for we have F
′
1(0) = 1 and

F
′′
1 (0) = −2 = 0. By applying Theorem 1.5, we may conclude that 0 is

unstable. This is certainly true if we consider negative as well as positive
initial points in the neighborhood of 0. Since negative initial points are
not in the domain of Fµ, we may discard them and consider only initial
points in neighborhoods of 0 of the form (0, δ). Now, Problem 17a in
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FIGURE 1.26
(a) 0 < µ < 1: 0 is asymptotically stable; (b) µ = 1: 0 is asymptotically
stable; (c) µ > 1: 0 is unstable.

Exercises 1.7 tells us that the fixed point is semiasymptotically stable
from the right. In other words, x∗1 = 0 is asymptotically stable in the
domain [0, 1] [see Fig. 1.26(b)].

2. The fixed point x∗2 = µ−1
µ : Clearly x∗2 will be in the interval (0, 1]

if µ > 1. Moreover, F
′
µ(

µ−1
µ ) = µ − 2µ(µ−1

µ ) = 2 − µ. Thus, by
Theorem 1.3, x∗2 is asymptotically stable if |2 − µ| < 1. Solving this
inequality for µ, we obtain 1 < µ < 3 as the values of µ where x∗2 is
asymptotically stable [see Fig. 1.27(a)]. When µ = 3, we have F

′
3(x

∗
2) =

F
′
3(

2
3 ) = −1, and x∗2 is therefore nonhyperbolic. In this case, we need

to compute the Schwarzian derivative: SF
′
3(x

∗
2) = − 3

2 (36) < 0. Hence,
by Theorem 1.6, the equilibrium point x∗2 = 2

3 is asymptotically stable
under F3 [see Fig. 1.27(a)]. Furthermore, by Theorem 1.3, the fixed
point x∗2 is unstable for µ > 3. We now summarize our findings.

(a) x∗2 is asymptotically stable for 1 < µ ≤ 3.10

(b) x∗2 is unstable for µ > 3 [see Fig. 1.27(b)].

Looking at Fig. 1.27(b), we observe that the orbit of x0 flips around x∗2 and
then settles bouncing between two points, which indicates the appearance of
a 2-periodic cycle.

1.9.2 2-Periodic Cycles

To find the 2-periodic cycles we solve the equation F 2
µ(x) = x, or

µ2x(1− x)[1 − µx(1 − x)]− x = 0. (1.42)

10In Section 2.4, we will show that in fact all points in (0, 1) are attracted to x∗2, that is x
∗
2

is globally asymptotically stable.
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FIGURE 1.27
(a) 1 < µ ≤ 3, x∗2 is asymptotically stable, and (b) µ > 3 x∗2 is unstable.

Discarding the equilibrium points 0 and µ−1
µ by dividing the left side of

Equation (1.42) by x(x− µ−1
µ ), we obtain

µ2x2 − µ(µ+ 1)x+ (µ+ 1) = 0.

Solving this equation,

x1 =
(1 + µ)−√

(µ− 3)(µ+ 1)
2µ

and

x2 =
(1 + µ) +

√
(µ− 3)(µ+ 1)
2µ

. (1.43)

Clearly x1 and x2 are defined only if µ > 3. Next, we investigate the
stability of this 2-periodic cycle. By Theorem 1.7, this 2-periodic cycle is
asymptotically stable if

|F ′
µ(x1) F

′
µ(x2)| < 1

or

−1 < µ2(1− 2x1)(1 − 2x2) < 1

−1 < µ2
(

1− (1+µ)−
√
(µ2−2µ−3)
µ

) (

1− (1+µ)+
√
(µ2−2µ−3)
µ

)

< 1

−1 < −µ2 + 2µ+ 4 < 1.

Solving the last two inequalities yields the range: 3 < µ < 1+
√
6 for asymp-

totic stability. Now, for µ = 1 +
√
6,

F
′
µ(x1) F

′
µ(x2) = −1.

In this case, we need to apply Theorem 1.6 on F 2
µ to determine the stability

of the periodic points x1 and x2 of Fµ. After some computation, we conclude
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that SF 2
µ(x1) < 0 and SF 2

µ(x2) < 0, which implies that the cycle {x1, x2} is
asymptotically stable (Problem 1). Moreover, the periodic cycle {x1, x2} is
unstable for µ > 1 +

√
6.

In summary:

1. 3 < µ ≤ 1 +
√
6: The 2-periodic cycle {x1, x2} is asymptotically stable.

2. µ > 1 +
√
6: The 2-periodic cycle {x1, x2} is unstable.

Thus, the positive equilibrium point is asymptotically stable for 1 < µ ≤ 3,
where it loses its stability after µ1 = 3. For µ > µ1, an asymptotically
stable 2-periodic cycle appears where it loses its stability after a second magic
number µ2 = 1 +

√
6 ≈ 3.44949 . . ., etc.

1.9.3 22-Periodic Cycles

The search for 4-periodic cycles can be successful if one is able to solve the
equation F 4

µ(x) = x. This involves solving a twelfth-degree equation, which is
not possible in general. So we turn to graphical or numerical analysis to help
us find the 4-periodic cycles (see Fig. 1.28). It turns out that there is one 22

FIGURE 1.28
The appearance of a 4-periodic cycle. An exchange of stability occurs at µ = 1
between x∗1 = 0 and x∗2 = (µ− 1)/µ.

cycle when µ > 1+
√
6 which is asymptotically stable for 1+

√
6 < µ ≤ 3.54409.

This 22 cycle loses its stability when µ > 3.54409. Again, the story repeats
itself, when µ > µ3, the 22 cycle bifurcates into an asymptotically stable 23
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cycle. This process of double bifurcation continues indefinitely and produces
a sequence {µn}∞n=1. Table 1.2 sheds some light on some remarkable patterns:

TABLE 1.2

n µn µn − µn−1
µn−µn−1
µn+1−µn

1 3 – –
2 3.449489 . . . 0.449489 . . . -
3 3.544090 . . . 0.094601 . . . 4.751419 . . .
4 3.564407 . . . 0.020317 . . . 4.656248 . . .
5 3.568759 . . . 0.0043521 . . . 4.668321 . . .
6 3.569692 . . . 0.00093219 . . . 4.668683 . . .
7 3.569891 . . . 0.00019964 . . . 4.669354 . . .

From Table 1.2, we make the following observations (which can be proved,
at least numerically):

1. The sequence {µn} seems to tend to a specific number, µ∞ ≈ 3.570.

2. The window size (µn−µn−1) between successive µi values gets narrower
and narrower, eventually approaching zero.

3. The ratio
µn − µn−1
µn+1 − µn

approaches a constant called Feigenbaum num-

ber δ named after its discoverer, Mitchell Feigenbaum [39]. In fact,

δ = lim
n→∞

µn − µn−1
µn+1 − µn

≈ 4.669201609 . . . (1.44)

Feigenbaum discovered that the number δ is universal and does not
depend on the family of maps under discussion; it is the same for a
large class of maps, called unimodal maps.11

Formula (1.44) may be used to generate the sequence {µn} with good ac-

curacy. We let δ =
µn − µn−1
µn+1 − µn

and solve for µn+1. Then, we obtain

µn+1 = µn +
µn − µn−1

δ
. (1.45)

For example, given µ1 = 3 and µ2 = 1 +
√
6 (in Table 1.2), then from

Formula (1.45) we get µ3 = (1 +
√
6) + (1+

√
6)−3

4.6692 ≈ 3.54575671, which is a
good approximation of the actual µ3 in Table 1.2.

11A map f on the interval [0, 1] is said to be unimodal if f(0) = f(1) = 0 and f has a
unique critical point between 0 and 1.
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Mitchell J. Feigenbaum (1944- )

Mitchell J. Feigenbaum is famed for his discovery in 1975 of the period-
doubling route to chaos, commonly called the Feigenbaum scenario, and the
universality of the Feigenbaum number δ in nonlinear systems. Everything
from purely mechanical systems, fluid dynamics and the weather to the
patterns of biological growth in nature and the dynamics of heart, hormone
and brain rhythms have been found to exhibit aspects of the Feigenbaum
scenario.

Mitchell Feigenbaum received his PhD in Physics in 1970 from the Mas-
sachusetts Institute of Technology. While working at the Los Alamos Na-
tional Laboratory in New Mexico, he was inspired by a lecture given by the
mathematician Steven Smale on nonlinear dynamics. Using a hand-held
calculator, Feigenbaum studied the logistic map and other one-hump maps.
Observing the changes in the behavior of the orbits caused by changing the
values of the parameter led him to the discovery of the universality prop-
erty. Dr. Mitchell Feigenbaum is currently the Chairman of the Physics
Department and the Center for the Study of Physics and Biology at The
Rockefeller University in New York.

The best way to illustrate the above discussion is to draw the so-called
bifurcation diagram.

Bifurcation Diagram

We let the horizontal axis represent the parameter µ and the vertical axis
representing higher iterates Fn

µ (x0) of a specific initial point x0, so the diagram
will show the limiting behavior of the orbit of x0. The computer-generated
bifurcation diagram (see Fig. 1.30) is obtained by the following procedure:

1. Choose an initial value x012 from the interval [0, 1] and iterate, say,
500 times to find

x0, Fµ(x0), F 2
µ(x0), . . . , F

400
µ (x0), F 401

µ (x0), . . . , F 500
µ (x0).

12We select the critical value x0 = 0.5 since by Singer’s Theorem (Chapter 2), the orbit of
the critical point must approach the attracting fixed point.



The Stability of One-Dimensional Maps 49

FIGURE 1.29
Montage of time series at different iterates of the logistic map.

2. Drop the first 400 iterations x0, Fµ(x0), . . . , F 400
µ (x0) and plot the rest

of the iterations F 401
µ (x0), . . . , F 500

µ (x0) in the bifurcation diagram.

3. The procedure is done repeatedly for values of µ between 0 and 4 taking
increments of 1

100 .

4. (a) Note that for 0 < µ ≤ 1, only the value x = 0 shows up in the
diagram. This is because the orbit of x0 = 0.5 converges to the
fixed point x∗1 = 0. Thus, high iterates beyond the 50th iterates
will not be distinguishable from 0. Once x∗1 = 0 loses its stability
beyond µ = 1, it will disappear from the graph.

(b) For 1 < µ ≤ 3, the orbit of x0 = 0.5 converges to the positive fixed
point x∗2 = µ−1

µ . For example, for µ = 3
2 , the point (32 ,

1
3 ) appears

in the diagram; for µ = 2, there corresponds the point (2, 12 ) and
at µ1 = 3 we can see the point (3, 23 ). Beyond µ1 = 3, x∗2 loses its
stability and makes a disappearing act.

(c) For µ1 < µ ≤ µ2, the orbit of 0.5 converges to a 2-periodic cycle.
Hence, to each µ in this range there corresponds two points in the
diagram. Beyond µ2, the 2-periodic cycle loses its stability, disap-
pears from the diagram, and then gives birth to a 4-periodic cycle.
This double bifurcation continues until µ = µ∞ (see Fig. 1.30).
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FIGURE 1.30
Bifurcation diagram 3.4 < µ ≤ µ∞.

1.9.4 Beyond µ∞
Let us now turn our attention to the parameter values µ > µ∞. The situation
here is much more complicated than the period-doubling region 1 < µ ≤ µ∞
(where only stable cycles appear in the bifurcation diagram). The best way
to explain the dynamics of the orbit of x0 is to start from µ = 4 and march
backward to µ∞. At µ = 4, we see only one band covering the whole interval
[0, 1] (see Fig. 1.31). This band slowly narrows as µ decreases but then
bifurcates into two parts at µ = λ1. Then, it bifurcates again into four parts
at µ = λ2. The splitting continues indefinitely, where at λk we will have 2k

bands. This decreasing sequence {λn} converges to λ∞ = µ∞. Furthermore,

the quotient
λn − λn−1
λn+1 − λn

tends to the Feigenbaum’s number δ ≈ 4.6692.

Periodic Windows

The biggest window in the bifurcation diagram occurs for values of µ between
3.828 and 3.857. This is called period 3-window. An asymptotically stable
3-periodic cycle appears first at µ = 1 +

√
8 ≈ 3.828, after which the period-

doubling phenomenon takes over. This 3-periodic cycle then loses its stability
and gives birth to an asymptotically stable 6-periodic cycle. The period dou-
bling continues until µ ≈ 3.8415 . . . (corresponds to µ∞ in the first part of the
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FIGURE 1.31
Appearance of the sequence λ1, λ2, . . . from right to left.

FIGURE 1.32
The appearance of odd periods.
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diagram) after which we get into a complicated dynamics region. Windows of
all odd periods appear to the left of the period 3-window (see Fig. 1.32). We
will present more details about this in the next chapter.

Period Doubling Near the Feigenbaum Limit

Fourteen lines accomodate
The points I’ve picked to illustrate.

In some systems you will find

Orbits moving toward a station,
Then show themselves to have a mind

To move no more on iteration.

But tweak an additive parameter
And where before you was the stall,
Now they, surprisingly, begin
A two-step foxtrot on the floor,

Like iams in a strict tetrameter,
Or like an active ping pong ball.
More tweaks, and doubling comes again;
Yet more, redoubling as before.

—J.D. Memory
North Carolina State University

Raleigh, NC 27695-8021

Exercises - (1.9)

In problems 1 and 2, we consider the logistic map Fµ(x) = µx(1 − x).
1. Show that for µ = 1 +

√
6, the 2-periodic cycle {x1, x2} defined by

Equation (1.43) is asymptotically stable under Fµ.

2. Find the number of k-periodic cycles (of prime period k) of Fµ for k =
2, 3, 4, 5, 6 if they exist. Do you detect any pattern here?

In Problems 3–7:

(a) Find the fixed points and determine their stability.

(b) Find the 2-periodic cycles and determine their stability.

(c) Find the sequence µ1, µ2, µ3, µ4, where µi is the first value of µ at which
the 2i−cycle appears (use Formula (1.45)).
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(d) Draw the bifurcation diagram using Phaser, Maple, or Mathematica.

3. Qc(x) = x2 + c, where c ∈ [−2, 0] and x ∈ [−2, 2].
4. Pµ(x) = 1− µx2 on the interval [−1, 1] and µ ∈ (0, 2].

5. Gµ(x) = µ sinπx, 0 < µ ≤ 1 and −1 ≤ x ≤ 1.

6. Hµ(x) = µ arctanx for all x with µ > 0.

7.

Tµ(x) =






µx, for x ≤ 1
2

µ(1 − x), for x ≥ 1
2

on the interval [0, 1] for µ ∈ (0, 2].

8.* Use Carvalho’s lemma (see Exercises 1.8, Problem 11) to find the values
of µ for which Fµ has a 3-periodic cycle. Find the 3-periodic cycle and
determine its stability.

9.* Use Carvalho’s lemma (see Exercises 1.8, Problem 11) to find 4-periodic
cycles of Fµ.

10.* Use Carvalho’s lemma to find the values of c for which the quadratic
map

Qc(x) = x2 + c, c ∈ [−2, 0]
has a 3-periodic cycle and then determine its stability.

Superattracting Fixed Points and Periodic Points

Let x be a k-periodic point of the logistic map Fµ(x) = µx(1 − x), k =
1, 2, 3, . . . Then, x is said to be superattracting if (F k

µ )
′(x) = 0. In other

words, x is superattracting if it coincides with a critical point of F k
µ .

11. (Term Project).

(a) Find µ at which the fixed point x∗ = µ−1
µ is superattractive and

call this µ “s1.”
(b) Explain why the fixed point in part (a) is called superattractive.
(c) Find µ at which the 2-periodic cycle of Fµ is superattractive. Put

this µ = s2.
(d) Use Newton’s method to find S2n , n = 2, 3, 4, . . .

(e) If we let α = lim
n→∞

S2n − S2n−1

S2n+1 − S2n

, what do you think the relationship

is between α and the Feigenbaum number δ?

12. Repeat Problem 13 for the family of quadratic maps Qc = x2 + c, c ∈
[−2, 0], x ∈ [−2, 2].
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q-Curves

In Problems 13 and 14, define the kth polynomial qk(µ) = F k
µ

(
1
2

)
as the kth

iterate of Fµ starting at the critical value 1 where (F k
µ )′

(
1
2

)
= 0. For exam-

ple, q1(µ) = Fµ

(
1
2

)
= 1

4µ, q2(µ) =
1
4µ

2
(
1− 1

4µ
)
, . . . , qk+1(µ) = µqk(µ)(1 −

qk(µ)). Hence, each qk(µ) is a 2k−1 degree polynomial. The graph of any qk
as a function of µ is called a q curve [71].

13. (a) Use any graphing device to draw the graphs of q1, q2, q3, q4, q5, q6.

(b) Draw the curve qi, 1 ≤ i ≤ 6 and the bifurcation diagram of Fµ on
the same plot.

(c) Show graphically that the curve qi crosses the line x = 0.5 in the
window of period i in the bifurcation diagram.

14.* Superattracting root theorem [71]. For any k ∈ Z+ prove that
qk(µ) = 0 and qj(µ) = 0 for 0 < j < k if and only if Fµ has a superat-
tracting k-periodic point.

1.10 Applications

1.10.1 Fish Population Modeling

The growth of most biological populations is limited by factors including
environmental variation, changes in rates of survival or reproduction, dis-
ease, competitive interactions, and predator-prey relationships. Those fac-
tors that can influence populations in relation to its size are referred to as
“density dependent” factors. We have density dependent whenever our un-
derlying difference equation is nonlinear. The population size to which a
population will tend to return to in response to density dependent factors
is known as the “equilibrium” population or the carrying capacity, normally
denoted by K. In the sequel, we will examine two population models that are
widely used in biology.

(I) Beverton-Holt Model (Beverton and Holt, 1957)

The Beverton-Holt model depicts density dependent recruitment of a popu-
lation with limited resources in which resources are not shared equally. It
assumes that the per capita number of offspring is inversely proportional to a
linearly increasing function of the number of adults.

Let p(n) be the size of a population in generation n, and p(n+1) be the size
of their offspring (generation n+ 1). Suppose that µ is the net reproductive
rate, that is the number of offspring that each individual leaves before dying
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if there are no limitation in resources. Then the Beverton-Holt model is given
by

p(n+ 1)
p(n)

=
µ

1 + [(µ− 1)/K]p(n)
, µ > 0, K > 0,

or

p(n+ 1) =
µKp(n)

K + (µ− 1)p(n)
. (1.46)

This equation represent the map (Figure 1.33)

G(p) =
µKp

K + (µ− 1)p
, p ∈ [0,∞). (1.47)

FIGURE 1.33
The Beverton-Holt map with µ = 1.5, K = 4.

The reader may now compare Figure 1.33 with Figure 1.35 obtained from
real data. The horizontal axis represents the “spawning stock biomass (SSB)”
which is the total weight in metric tons (MT) of all sexually mature winter
flounder in the gulf of Main for 1982–2001 year classes. The vertical axis
represents the number in millions of age-1 year fish (Santa Ana watershed ad-
visory). We now present two methods to study the dynamics of the Beverton-
Holt map.

Method 1. Let x(n) = 1
p(n) . Then we obtain the linear difference equation

x(n+ 1) =
1
µ
x(n) +

(µ− 1)
µK

. (1.48)
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Using formula (1.20) we have for x(0) = x0,

x(n) =
(

x0 − 1
K

)

µ−n +
1
K
.

Hence

lim
n→∞x(n) =






∞ if µ < 1,
1
K if µ > 1,
x0 if µ = 1.

Since p(n) = 1
x(n) , it follows that

lim
n→∞ p(n) =






0 if µ < 1 (Extinction),
K if µ > 1 (Stability),
p(0) if µ = 1 (Constant).

Method 2. Notice that p∗1 = 0 and p∗2 = K are the only fixed points of our
map. Now

G′(p) =
µK2

[K + (µ− 1)x]2
.

Since G′(0) = µ, it follows by Theorem 1.5 that the fixed point p∗1 = 0 is
asymptotically stable if µ < 1, and unstable if µ > 1. However, G′(K) = 1

µ
implies that x∗2 = K is unstable if µ < 1 and asymptotically stable if µ > 1.
The case µ = 1 can be studied by inspecting the map and noticing that every
point is a fixed point. Moreover, it may be shown using the monotonicity of
the map that for every µ < 1, p∗1 = 0 is in fact globally asymptotically stable,
and if µ > 1, p∗2 = K is globally asymptotically stable on (0,∞). We now
provide the main ingredients to prove the latter statement. The three main
facts that are needed are

(i) if 0 < x < K, then f(x) > x,

(ii) if K < x <∞, then f(x) < x,

(iii) x < y if and only if then G(x) < G(y).

(II) Ricker Model (Ricker, 1975)

In contrast to the Beverton-Holt model, the Ricker model predicts declining
recruitment (offspring) p(n + 1) at high stock levels (adults) p(n) according
to the equation

p(n+ 1) = p(n)er[1−(p(n)/K)].

Letting u(n) = r
K p(n) yields

u(n+ 1) = u(n)er−u(n) (1.49)
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FIGURE 1.34
Ricker map with r = 1.5.

which represents the map (see Figure 1.34).

H(u) = uer−u, r > 0. (1.50)

This map has two fixed points u∗1 = 0, u∗2 = r.
Now H ′(0) = er > 1 for r > 0 implies that p∗1 = 0 is unstable. Moreover,

H ′(r) = 1 − r. Hence p∗2 = r is asymptotically stable if 0 < r < 2. It will be
left as a term project to show that in fact p∗2 is globally asymptotically stable
on (0,∞) if 0 < r < 2. For r > 2, the map goes through period-doubling in
its route to chaos.

The question that now arises: which one of these two models would fit
actual data. Figure 1.35 for the Coho Salmon and Anchoveta shows uncer-
tainty and inconclusiveness in the answer. For example, although there is a
reasonably good fit of the Beverton-Holt and Ricker curves to data for Coho
Salmon, population data for Anchoveta show considerable variation about the
hypothetical stock-recruitment curves.

Fisheries Management

Notice that in either model the derivative of the map at 0 indicates how
steep the curve is. In the Holt-Beverton map, G′(0) = µ and for the Ricker
map, H ′(0) = er. Hence the greater µ or r, the greater the expected “com-
pensatory” response of the population to density changes and the larger the
harvestable portion of the stock.

Figure 1.36 depcits the graph of four populations. Population A has the
strongest “compensatory” response, while population D has the weakest and
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FIGURE 1.35
The Ricker curve (solid line) and Beverton-Holt curve (dotted line) fitted to
data for (a) Coho Salmon and (b) Anchoveta.

p(n+1)

p(n)

population D

population C

population B

population A

y=x

FIGURE 1.36
Hypothetical curves for four populations A, B, C, D.
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indicates the tendency of the population to go extinct. Population D requires
immediate interference to prevent extinction of the given fish.

Exercises - (1.10)

Term Project 1. Consider the Beverton-Holt model. Show that

(a) For 0 < µ < 1, the fixed point p∗1 = 0 is globally asmpotitically stable.

(b) For µ > 1, the fixed point p∗2 = K is globally asymptotically stable on
(0,∞).

Term Project 2. Consider the Ricker model. Show that

(a) For 0 < r < 2, show that u∗ = r is globally asmpotitically stable.

(b) For r > 2, develop the bifurcation diagram and analyze the dynamics
of the map.
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Attraction and Bifurcation

Period three implies chaos.

Li and Yorke

James A. Yorke (1941 - )

James Yorke teamed up with T. Y. Li to write in 1975 the best known
paper to the general public “Period three implies Chaos.” In this paper the
word “Chaos” was coined and henceforth became one of the most celebrated
subjects in mathematics and a wide range of disciplines. Yorke was awarded
the 2003 Japan Prize in recognition of his contributions as a founder and
leader of Chaos Theory. (He shared the prize with Benoit Mandelbrot). His
recent research interests range from chaos theory and weather prediction to
genome research to the population dynamics of the HIV/AIDS epidemics.
Yorke received his PhD. in Mathematics from the University of Maryland
in 1966. He is a distinguished professor of mathematics and Physics at the
University of Maryland and serves as a consulting editor of the Journal of
Difference Equations and Applications.

2.1 Introduction

In Chapter 1 we have encountered asymptotically stable fixed points and
periodic cycles. The former and the latter sets are commonly called stable
attractors (or just attractors). Here we broaden and deepen our analysis
firstly by considering attractors with infinitely many points, and secondly by
investigating the nature of the “basin of attraction,” that is, the maximal set

61
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that is attracted to our attractor. Then Singer’s Theorem is invoked to find
the maximum number of stable attractors.

We will delve deeply into stable attractors and global stable attractors and
include the latest results including Elaydi-Yakubu Theorem. The rest of the
Chapter will continue the study of bifurcation that started in Chapter 1.

2.2 Basin of Attraction of Fixed Points

It is customary to call an asymptotically stable fixed point or a cycle an
attractor. This name makes sense since in this case all nearby points tend to
the attractor. The maximal set that is attracted to an attractor M is called
the basin of attraction of M . Our analysis applies to cycles of any period.

We start our exposition with fixed points.

DEFINITION 2.1 Let x∗ be a fixed point of map f . Then the basin of
attraction (or the stable set) W s(x∗) of x∗ is defined as

W s(x∗) = {x : lim
n→∞ f

n(x) = x∗}.

In other words, W s(x∗) consists of all points that are forward asymptotic
to x∗.

Observe that if x∗ is an asymptotically stable fixed point, W s(x∗) contains
an open interval around x∗. The maximal interval in W s(x∗) that contains
x∗ is called the immediate basin of attraction and is denoted by B(x∗).

Example 2.1
The map f(x) = x2 has one attracting fixed point x∗ = 0. Its basin of
attraction W s(0) = (−1, 1). Note that 1 is an unstable fixed point and –1 is
an eventually fixed point that goes to 1 after one iteration.

Example 2.2
Let us now modify the map f . Consider the map g : [−2, 4]→ [−2, 4] defined
as

g(x) =

{
x2 if −2 ≤ x ≤ 1,
3
√
x− 2 if 1 < x ≤ 4.

The map g has three fixed points x∗1 = 0, x∗2 = 1, x∗3 = 4. The basin of
attraction of x∗1 = 0, W s(0) = (−1, 1), while the basin of attraction of x∗3 = 4,
W s(4) = [−2,−1) ∪ (1, 4]. Moreover, the immediate basin of attractions of
x∗1 = 0 is B(0) =W s(0) = (−1, 1), while B(4) = (1, 4].
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FIGURE 2.1
The basin of attraction W s(0) = (−1, 1) and W s(4) = [−2,−1) ∪ (1, 4]. The
immediate basin of attraction B(4) = (1, 4].

REMARK 2.1 Observe that in the preceding example, the basins of
attraction of the two fixed points x∗1 = 0 and x∗3 = 4 are disjoint. This is no
accident and is, in fact, generally true. This is due to the uniqueness of the
limit of a sequence. In other words, if lim

n→∞ f
n(x) = L1 and lim

n→∞ f
n(x) = L2,

then certainly L1 = L2.

It is worth noting here that finding the basin of attraction of a fixed point
is in general a difficult task. The most efficient method to determining the
basin of attraction is the method of Liapunov functions, which will be
developed later in Chapter 4. In this section, we will develop some of the
basic topological properties of the basin of attraction. Henceforth, all our
maps are assumed to be continuous. We begin our exposition by defining the
important notion of invariance.

DEFINITION 2.2 A set M is positively invariant under a map f if
f(M) ⊆ M . In other words, for every x ∈ M , the orbit O(x) ⊆ M . Since
we are only considering forward iterations of f , the prefix “positively” will,
henceforth, be dropped.

Clearly an orbit of a point is invariant.
Next we show that the basin of attraction of an attracting fixed point is

invariant and open.
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THEOREM 2.1

Let f : I → R be a continuous map from an interval I to R and let x∗ be an
asymptotically stable fixed point of f . Then W s(x∗) is a nonempty open and
(positively) invariant set.

PROOF Since B(x∗) ⊂ W s(x∗), it follows that W s(x∗) = ∅. To prove
invariance, let y ∈ W s(x∗). Then lim

n→∞ f
n(y) = x∗. Since f is continuous,

f
(
lim

n→∞ f
n(y)

)
= lim

n→∞ f
n+1(y) = lim

n→∞ f
n(f(y)) = f(x∗) = x∗.

Hence f(y) ∈ W s(x∗) which proves the invariance of W s(x∗). It remains
to show that W s(x∗) is open. This means that W s(x∗) is the union of open
intervals of the form (c, d), and if our domain I has an end point, I = [a,∞) or
[a, b], then [a, c) and (c, b] are also allowed. Assume that W s(x∗) is not open.
Then there exists a ∈W s(x∗) such that a is not an end point of I and a is not
an interior point of W s(x∗). This means that any open interval containing a
must contain points not in W s(x∗). Hence there exists a sequence of points
{xn} such that xn ∈ W s(x∗) for all n ≥ 1 and lim

n→∞xn = a. Now since a ∈
W s(x∗), lim

n→∞ f
n(a) = x∗ ∈ B(x∗). Hence for some positive integer fm(a) ∈

B(x∗). Moreover, there exists a small interval J = (fm(a) − δ, fm(a) + δ)
containing fm(a) such that J ⊂ B(x∗). Now xn → a implies by the continuity
of f that fm(xn) → fm(a). Hence for some positive integer N , fm(xN ) ∈
J ⊂ B(x∗). Hence xN ∈ W s(x∗), a contradiction. This completes the proof
of the theorem.

REMARK 2.2 Theorem 2.1 showed that the basin of attraction of an
asymptotically stable fixed point is the union (finite or infinite) of intervals
of the form [a, c), (c, d), (d, b] if a and b are end points. Moreover, this allows
intervals of the form (−∞, d), and (c,∞).

There are several (popular) maps such as the logistic map and Ricker map
in which the basin of attraction, for the attracting fixed point, is the entire
space with the exception of one or two points (fixed or eventually fixed). For
the logistic map Fµ(x) = µx(1 − x) and 1 < µ < 3, the basin of attraction
W s(x∗) = (0, 1) for the fixed point x∗ = µ−1

µ . And for the Ricker map
Rp(x) = xep−x, 0 < p < 2, the basin of attraction W s(x∗) = (0,∞), for
x∗ = p. Here we will consider only the logistic map and leave it to the reader
to prove the statement concerning the Ricker map.

Notice that |F ′
µ(x)| = |µ− 2µx| < 1 if and only if −1 < µ− 2µx < 1. This

implies that µ−1
2µ < x < µ+1

2µ . Hence |F ′
µ(x)| < 1 for all x ∈

(
µ−1
2µ ,

µ+1
2µ

)
.

Observe that x∗ = µ−1
µ ∈

(
µ−1
2µ ,

µ+1
2µ

)
if and only if 1 < µ < 3. Now
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Fµ

(
µ+1
2µ

)
= Fµ

(
µ−1
2µ

)
= 1

2

[
(µ−1)(µ+1)

2µ

]
. Since 1 < µ < 3, it follows that

µ−1
2µ < 1

2 · (µ−1)(µ+1)2µ < µ+1
2µ . Hence

[
µ−1
2µ ,

µ+1
2µ

]
⊂W s(x∗).

If z ∈
(
0, µ−1

2µ

)
, then F ′

µ(z) > 1. By the Mean Value Theorem, Fµ(z)−Fµ(0)
z−0 =

F ′
µ(γ), for some γ with 0 < γ < z. Thus Fµ(z) = F ′

µ(γ)z. This implies that
Fµ(z) ≥ βz, for some β > 1. Then for some r ∈ Z+, F r

µ(z) ≥ βrz > µ−1
2µ

and F r−1
µ (z) < µ−1

2µ . Moreover, since F is increasing on
[
0, µ−1

2µ

]
, F r

µ(z) <

Fµ

(
µ−1
2µ

)
= µ

(
µ−1
2µ

)(
1− µ−1

2µ

)
= µ−1

µ

(
µ+1
4

) ≤ x∗. Thus z ∈ W s(x∗). On

the other hand, Fµ

(
µ+1
2µ , 1

)
⊂ (0, x∗) and hence

(
µ+1
2µ , 1

)
⊂ W s(x∗). This

shows that W s(x∗) = (0, 1).
In Summary:

LEMMA 2.1
For the logistic map Fµ(x) = µx(1 − x), 1 < µ < 3, W s(x∗) = (0, 1) for
x∗ = µ−1

µ .

REMARK 2.3 Not all locally asymptotically stable fixed points are glob-
ally asymptotically stable as it may be illustrated by the following example.

Example 2.3
Consider the map

f(x) = x exp[−1.9(x− 1) + (7.6− 8 ln 3)(x− 1)3]

defined on [0,∞). Notice that the fixed point x∗ = 1 is locally asymptotically
stable since f ′(1) = −0.9. However, the map has a 2-periodic cycle

{
1
2 ,

3
2

}
.

The immediate basin of attraction of x∗ = 1 is
(
1
2 ,

3
2

)
(see Fig. 2.2). Thus

x∗ = 1 is locally but not globally asymptotically stable which is due to the
presence of a periodic 2-cycle in the interior of the domain of f .

The above example leads to an important and difficult question: under what
conditions do local asymptotic stability imply global asymptotic stability?
Delving deeply into this subject is beyond the scope of this book. But the
interested reader may consult with references [21], [85]. Nevertheless, we are
going to state without a proof one of the fundamental results addressing this
question. We now define a class of maps, called population models which are
amenable to the promised theorem.

DEFINITION 2.3 A continuous map f : [0,∞)→ [0,∞) is said to be a
population model if
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FIGURE 2.2
Locally but not globally asymptotical stable fixed point.

(i) f(0) = 0 and f has a unique positive fixed point x∗.

(ii) f(x) > x if 0 < x < x∗ and f(x) < x if x > x∗.

(iii) If f ′(xm) = 0 and xm ≤ x∗, then f ′(x) > 0 for 0 ≤ x < xm and
f ′(x) < 0 for x > xm and f(x) > 0.

THEOREM 2.2

The positive fixed point of a population model is globally asymptotically stable
on (0,∞) if and only if it has no periodic 2-cycle.

2.3 Basin of Attraction of Periodic Orbits

We now extend the study in Section 2.2 to periodic orbits. Let cr = {x1, x2,
. . . , xr} be a periodic r-cycle. Then each point xi ∈ cr is a fixed point under
f r. Let g = f r. Then the (immediate) basin of attraction {B(xi)}W s(xi) is
defined, respectively, as in Definition 2.3 under the map g. This leads to the
following definition.

DEFINITION 2.4 The basin of attraction W s(cr) is defined as

W s(cr) =
r∪

i=1
W s(xi)
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and the immediate basin of attraction B(cr) is defined as

B(cr) =
r∪

i=1
B(xi).

LEMMA 2.2

Let cr = {x1, x2, . . . , xr} be a periodic r-cycle. Then for i = j, W s(xi) ∩
W s(xj) = ∅.

PROOF Let y ∈W s(xi) ∩W s(xj). Then

lim
n→∞ f

nr(y) = xi and lim
n→∞ f

nr(y) = xj .

By the uniqueness of the limit of a sequence, we conclude that xi = xj , a
contradiction.

In the previous section we have seen examples of continuous maps whose
fixed points are globally asymptotically stable. Population models constitute
a class of maps where such phenomenon occur.

The burning question now is whether or not we can have a globally asymp-
totically stable periodic cycles (not fixed points). This question has been
settled recently1 by Elaydi and Yakubu [34].

THEOREM 2.3 (Elaydi-Yakubu)

Let f : I → R be a continuous map on an interval I. Then f has no globally
asymptotically stable periodic cycles. Assume that cr = {x1, x2, . . . , xr} is a
globally asymptitically stable periodic cycle.

PROOF Let g = f r. Then under g, W s(xi) is an open subset of I, for
1 ≤ i ≤ r. Moreover, by Lemma 2.2, W s(xi)∩W s(xj) = ∅ as in Lemma 2.2,

i = j. If W s(cr) =
r∪

i=1
W s(xi), then I is the union of disjoint open sets, which

violates the assumption that I is an interval.

REMARK 2.4 Theorem 2.3 says that only a fixed point of a continuous
map can be globally asymptotically stable.

1The result was proved for general connected metric spaces. The proof presented here can
be easily modified to obtain the general result. Notice that the interval I may be replaced
by a connected metric space.
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Exercises - (2.2 and 2.3)

1. Investigate the basin of attraction of the fixed points of the map

f(x) =

{
x2 if −3 ≤ x ≤ 1,
4
√
x− 3 if 1 < x ≤ 9.

2. Let f(x) = |x− 1|. Find W s(12 ).

3. Suppose that f : I → I is a continuous and onto map on an interval I.
Let x be an asymptotically stable periodic point of period k ≥ 2. Show
that W s(f(x)) = f(W s(x)).

4. Describe the basin of attraction of all fixed and periodic points of the
maps:

(a) f(x) = x2,
(b) g(x) = x3,
(c) h(x) = 2xe−x,
(d) q(x) = − 4

π arctanx.

5. Investigate the basin of attraction of the fixed points for the map

f(x) =






x
2 if 0 ≤ x ≤ 0.2,
3x− 1

2 if 0.2 < x ≤ 1
2 ,

2− 2x if 1
2 < x ≤ 1.

6. Let f be a continuous map that has two periodic points x and y, x = y,
with periods r and t, r = t, respectively. Prove thatW s(x)∩W s(y) = ∅.

7. Suppose that a set M is invariant under a one-to-one continuous map
f . A point x ∈ M is said to be an interior point if (x − δ, x + δ) ⊂ M
for some δ > 0. Prove that the set of all interior points of M , denoted
by int(M), is invariant.

8. Let x∗ be an attracting fixed point under a continuous map f . If the
immediate basin of attraction B(x∗) = (a, b), show that the set {a, b}
is invariant. Then conclude that there are only three scenarios in this
case: (1) both a and b are fixed points, or (2) a or b is fixed and the
other is an eventually fixed point, or (3) {a, b} is a 2-cycle.

9.* Show that for Ricker map

R(x) = xep−x, 0 < p < 2,
W s(x∗) = (0,∞), where x∗ = p.
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10. Consider the Beverton-Holt map

f(p) =
µKp

K + (µ− 1)p
, K > 0.

(a) If 0 < µ < 1, find the basin of attraction of the fixed point p∗1 = 0.

(b) If µ > 1, find the basin of attraction of the fixed point p∗2 = K.

11. Consider the map

g(x) = x

(

x− 3
2

)

[−2− (x − 1)− 6(x− 1)2].

Show that the fixed point x∗ = 1 is locally but not globally asymptoti-
cally stable.

12. Let f be a continuous function on R and let x∗ be a fixed point of f .
Let (y1, y2) be an interval containing x∗ such that

x < f(x) < x∗ for y1 < x < x
∗, (2.1)

x∗ < f(x) < x for x∗ < x < y2 (2.2)

and f is increasing on the interval (y1, y2). Prove that (y1, y2) ⊂W s(x∗).

13. (Term project). Consider the logistic map F (x) = µx(1− x) defined on
[0, 1], where 3 < µ < 1 +

√
6. Show that the basin attraction W s(c2) of

the periodic 2-cycle WS(c2) = (0, 1)\Efixx∗(f), where x∗ = µ−1
µ .

14. (Term project). Consider the Ricker map R(x) = xep−x, defined on
[0,∞), where 2 < p <2.5264. Show that the basin of attraction of
the periodic 2-cycle c2 is given by WS(c2) = (0,∞)\EFixx∗(f), where
x∗ = p.

15.* (Term project). Let cr be the locally asymptotically stable periodic
orbit of the logistic map with r = 2n. What is W s(cr)? Prove your
statement.

16.* Repeat Problem 2.3 for the Ricker map.

17.* Another proof of Elaydi-Yakubu Theorem. Use the following steps to
prove Elaydi-Yakubu Theorem.

(i) LEMMA 2.3

Let f : I ⊂ R → R be a continuous map on an interval I. If there
exists x0 ∈ I such that O(x0) (closure of the orbit2) is bounded,

2

O(x0) is the union of the orbit O(x0) and the limit points of O(x0).
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then f has a fixed point that is either a limit point of O(x0) or is
located between points in O(x0).

(ii) Let {x1, x2} be a globally asymptotically stable periodic 2-cycle.
Then O(x1) = {x1, x2} is compact and bounded. By the Lemma in
(i), f must have a fixed point x∗, which is either one of the points
x1, x2 or lies between them. This violates the assumption.

2.4 Singer’s Theorem

We are still plagued with many unresolved issues concerning periodic attrac-
tors. The main question that we are going to address in this: How many
periodic attractors can a continuous map possess? In 1978, David Singer [97]
gave a satisfactory answer to this question for maps with negative Schwarzian
derivations. Recall from Section 1.7 that the Schwarzian derivative Sf of a
map f is defined by the formula

Sf(x) =
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

(2.3)

It turns out that many polynomials have negative Schwarzian derivatives
as demonstrated by the following result.

LEMMA 2.4

Let p(x) be a polynomial of degree n, p(x) = a0x
n + a1xn−1 + · · ·+ an, such

that all the roots of its derivative p′(x) are distinct and real. Then Sp(x) < 0
(−∞ is allowed).

PROOF Let r1, r2, . . . , rn−1 be the real and distinct roots of p′(x). Then
p′(x) = a(x − r1)(x − r2) . . . (x − rn−1), where a = na0. Taking the natural
logarithm of both sides yields

ln p′(x) = ln a+
n−1∑

i=1

ln(x− ri).

Differentiating with respect to x we obtain

p′′(x)
p′(x)

=
n−1∑

i=1

1
(x− ri) (2.4)
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Differentiating one more time we get

p′(x)p′′′(x)− (p′′(x))2

(p′(x))2
=
p′′′(x)
p′(x)

−
(
p′′(x)
p′(x)

)2

= −
n−1∑

i=1

1
(x − ri)2 (2.5)

Now using (2.4) and (2.5) yields

Sp(x) =
p′′′(x)
p′(x)

−
(
p′′(x)
p′(x)

)2

− 1
2

(
p′′(x)
p′(x)

)2

= −
n−1∑

i=1

1
(x− ri)2 −

1
2

(
n−1∑

i=1

1
(x− ri)

)2

< 0.

The following lemma provides us with necessary conditions to identify maps
that possess negative Schwarzian derivatives.

LEMMA 2.5
Assume that f is a C3 map on R and Sf(x) < 0. Then the following state-
ments hold true.

(i) If u is a point at which f ′(x) has a local minimum, then f ′(u) ≤ 0, and
if v is a point at which f ′(x) has a local maximum, then f ′(v) ≥ 0. In
other words, f ′(x) cannot have a positive local minimum or a negative
local maximum.

(ii) Let a1, a2, a3 be three fixed points of f such that a1 < a2 < a3. If
f ′(a2) ≤ 1, then f has a critical point in the interval (a1, a3), i.e., there
exists a point d ∈ (a1, a3) with f ′(d) = 0.

PROOF

(i) The proof of (i) is left to the reader as Problem 14.

(ii) Since f(a1) = a1 and f(a2) = a2, it follows by the Mean Value Theorem
that for some b1 ∈ (a1, a2), f ′(b1) = 1. Similarly, there exists b2 ∈
(a2, a3) such that f ′(b2) = 1 (see Fig. 2.3). Furthermore, since f ′

is continuous on [b1, b2] it must attain its minimum value at a point
c ∈ [b1, b2]. If c is either b1 or b2, then f ′(a2) is a local minimum of f ′.
Thus, without loss of generality, we may assume that c ∈ (b1, b2), and
f ′(c) is a local minimum of f ′. Thus f ′′(c) = 0 and f ′′′(c) > 0. Now if
f ′(c) = 0, we are done as we have a critical point in the interval (a1, a3).
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a
1

f(x)

x

b
1

a
2

b
2

a
3

FIGURE 2.3
There exists a number b1 ∈ (a1, a2) with f ′(b1) = 1 and a number b2 ∈ (a2, a3)
with f ′(b2) = 1. This implies the existence of a critical point d with f ′(d) = 0.

On the other hand, if f ′(c) = 0 we then have 0 > Sf(c) = f ′′′(c)
f ′(c) . Since

f ′′′(c) > 0, we must have f ′(c) < 0. And since f ′(b1) = 1 > 0, it follows
by the Intermediate Value Theorem that f ′(d) = 0 for some d between
b1 and c and the proof is now complete.

The above lemma provides us with ways to eliminate maps that do not
process negative Schwarzian derivative.

Example 2.4

(i) Consider the map f(x) = 1
3x

3− 1
2x

2+x+ 1
2 . Then f

′(x) = x2−x+1 has
no real roots. This is an indication that this polynomial may not have
negative Schwarzian derivative in light of Lemma 2.4. But to be definite
about it we invoke Lemma 2.5 (i). Notice that f ′′(x) = 2x−1 = 0 implies
that x = 1

2 is a critical point of f ′. And since f ′′′(x) = 2 > 0, f ′ has a
local minimum at x = 1

2 with the value f ′
(
1
2

)
= 3

4 > 0. By Lemma 2.5
(i) we can affirm that the map f does not have a negative Schwarzian
derivative (Figure 2.4)
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FIGURE 2.4
f cannot have a negative Schwarzian derivative.

(ii) The map f(x) = 3
4x + x

3 cannot possess a negative Schwarzian deriva-
tive, it has three fixed points − 1

2 , 0,
1
2 but f has no critical points in the

interval
(− 1

2 ,
1
2

)
(see Fig. 2.5).

We need one more technical result before stating Singer’s Theorem, the
product rule for the Schwarzian derivative.
Product Rule:

S(f ◦ g)(x) = Sf(g(x)) · (g′(x))2 + Sg(x) (2.6)

The proof is left for the reader as Problem 7. As a consequence of the
product rule, we obtain the following result.

COROLLARY 2.1

(i) If Sf < 0 and Sg < 0, then S(f ◦ g) < 0.

(ii) If Sf < 0, then Sfk < 0 for all k ∈ Z+.

PROOF

(i) Use the Product Rule (2.6); see Problem 13.
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FIGURE 2.5
f cannot have a negative Schwarzian derivative.

(ii) Use mathematical induction (Problem 13)

THEOREM 2.4
Suppose that f is a C3 map defined on the closed interval I = [a, b], a = −∞,
b =∞ are allowed, such that Sf(x) < 0 for all x ∈ I (Sf(x) = −∞ is allowed).
If p is an attracting k-periodic point, then either

(i) the immediate basin of attraction W s(p) extends to a or to b (−∞ or
+∞), or

(ii) the immediate basin of attraction W s(p) contains a critical point xc

(f ′(xc) = 0).

As an immediate consequence of this we get Singer’s Theorem.

COROLLARY 2.2 (Singer, 1978)
Suppose that f is a C3 map on a closed interval I such that Sf(x) < 0, for
all x ∈ I. If f has n critical points in I, then for every k ∈ Z+, f has at most
(n+ 2) attracting k-periodic orbits.

PROOF If there are n critical points, then by Theorem 2.4 (ii), there
are n attracting k-periodic cycles for any given k. We may have two more
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additional attracting k-periodic cycle by Theorem 2.4 (i). Thus the maximum
number of attracting periodic cycles is n+ 2.

PROOF OF THEOREM 2.4
Let I = [a, b], where a may take the value of −∞ and b may be ∞, and let

p be an attracting k-periodic point of f . Then p is an attracting fixed point
of the map g = fk. Let B(p) be the immediate basin of attraction of p under
g. If p ∈ (a, b), then B(p) is of the form (c, d), [a, c), or (d, b]. By Theorem
2.1, g(B(p)) ⊂ B(p). Assume that B(p) = (c, d). Then g must map (c, d) into
itself. However, g will not map the points c or d into the interior of interval
(c, d) since neither c nor d is in B(p). Hence we have three cases to consider.

1. g(c) = c, and g(d) = d (both fixed points of g)

2. g(c) = d, and g(d) = c ({c, d} is a 2-periodic orbit of g)

3. g(c) = g(d) = c or d (one point is fixed and the other is eventually fixed
points of g)

Case 1: g(c) = c, and g(d) = d.
Since p is an attraction fixed point of g, it follows that −1 ≤ g′(p) ≤ 1.

By Corollary 2.1, Sg < 0. Hence by Lemma 2.5, for the fixed points p,
c < p < d, g must have a critical point x̃ in the interval, (c, d), g′(x̃) = 0. But
0 = g′(x̃) = f ′(fk−1(x̃)) . . . f ′(x̃). Thus f ′(f i(x̃)) = 0 for some i, 0 ≤ i ≤ k−1.
Since f i(x̃) ∈ (c, d), B(p) contains the critical point f i(x̃) of f .

Case 2: g(c) = d, and g(d) = c.
This case reduces to Case 1 if one considers the map h = g2. For then

h(c) = c and h(d) = d.
Case 3: g(c) = g(d) = c or d.
By the Mean Value Theorem g′(x̃) = 0 for some x̃ ∈ (c, d). Then as in Case

1, one may show that this implies that f has a critical point in (c, d).

Remarks about Singer’s Theorem

1. The above proof shows that if the map has a negative Schwarzian deriva-
tive and the immediate basin of attraction J = (c, d) of a periodic point
p is bounded, then p must attract a critical point. This remark leads to
the solution of the following two examples.

Example 2.5

The map f(x) = 1 − 2x2 on [−1, 1] has no attracting periodic points.
To show this, note that 0 is the only critical point. But the orbit of 0 is
0, 1,−1,−1,−1, . . .. Thus, −1 is a possible attracting fixed point of f .
But, this is impossible because f ′(−1) = 4 (Theorem 1.3).
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FIGURE 2.6
(a) g(c) = c, g(d) = d, (b) g(c) = d, g(d) = c, (c) g(c) = g(d) = c,
(d) g(c) = g(d) = d
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Example 2.6

The logistic map Fµ(x) = µx(1− x), 0 < µ ≤ 4, x ∈ [0, 1], has at most
one attracting periodic cycle. As we saw in Chapter 1, for 0 < µ ≤ 1,
0 is the only attracting fixed point where the region of attraction is
[0,1]. For 1 < µ < 4, Fµ has only one critical point 1

2 . By Corollary
2.2, there are at most three attracting periodic cycles associated with
intervals of the form [0, c), (c, d), and (d, 1] with 0 < c < d < 1. Since
F ′

µ(0) = µ > 1, the fixed point 0 is unstable (Theorem 1.3); therefore,
[0, c) cannot be a basin of attraction. Furthermore, Fµ(1) = 0 and
hence (d, 1] is not a basin of attraction either. We conclude that there
is at most one attracting periodic cycle in (c, d) for a given µ ∈ (1, 4].
Figure 2.7 is part of the bifurcation diagram of Fµ which shows a window
with six horizontal curves. We may wonder whether this represents two
attracting 3-periodic cycles, one attracting 6-periodic cycle, or another
combination. The above example gives us the definite answer, namely,
that this is an attracting 6-periodic cycle. Moreover, since there is only
one attracting 3-periodic cycle, only one 3-periodic cycle will appear in
the bifurcation diagram precisely at window 3 when µ = 1 +

√
8 (see

Fig. 2.8).

2. If the map has a negative Schwarzian derivative and the basin of attrac-
tion for an attracting periodic cycle is unbounded or contains an end
point, then this periodic cycle may not attract a critical point, as the
following example shows.

Example 2.7

Let G(x) = µtan−1(x), µ = 0. Then, G′(x) = µ
1+x2 . Clearly G(x)

has no critical points. Now, if |µ| < 1, then x∗ = 0 is an asymptotically
stable fixed point where the basin of attraction is (−∞,∞) (Figure 2.10).
While if µ > 1, then G has two attracting fixed points x∗1 and x∗2 with
basins of attraction of the form (−∞, 0) and (0,∞), respectively (see
Fig. 2.9). Finally, if µ < −1, then G has an attracting 2-cycle {x1, x2}
with a basin of attraction of the form (−∞, 0) ∪ (0,∞) (see Fig. 2.11).

Exercise - (2.4)

1. Give an example of a polynomial that does not have a negative Schwarzian
derivative.
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FIGURE 2.7
The appearance of a 6-cycle.

FIGURE 2.8
The appearance of a 3-periodic cycle.
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G(x)

x
x0* x2*

x1*

y=x

FIGURE 2.9
The map G(x) = µ tan−1(x) with µ > 1, W s(x∗1) = (−∞, 0), W s(x∗2) =
(0,∞).

G(x)

x

y=x

FIGURE 2.10
The map G(x) = −µ tan−1(x) with µ = 1

2 . x
∗ = 0 is globally asymptotically

stable.
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FIGURE 2.11
An attracting 2-cycle {x1, x2} of the map G with basin of attraction (−∞, 0)∪
(0,∞).

2. Give an example of a continuous function f that has an attracting fixed
point but Sf > 0.

3. Sketch a graph of a continuous function that has two asymptotically
stable fixed points.

4. Let f be a continuous map on R. Prove that

(a) if f(b) = b and x < f(x) < b for all x ∈ [a, b), then a ∈ W (b).

(b) if f(b) = b and b < f(x) < x for all x ∈ (b, c], then c ∈ W (b).

5. Show that Sf < 0 for f(x) = x exp(r(1 − x
k )), r, k ∈ R.

6. Let g(x) = ax+b
cx+d be a linear “fractional transformation.” Show that

Sg(x) = 0.

7. Prove Formula (2.6).

8. Consider the linear fractional transformation g(x) defined in Problem 6
(a) shows that for any map f ∈ c3, S(g ◦ f) = S(f).

9. Show that the logistic map Fµ has no attracting periodic points if µ >
2 +

√
5.

10. Show that the logistic map F4(x) = 4x(1−x) has no attracting periodic
points.

11. Let h(x) = µ sinx for 0 ≤ x ≤ π. Determine the maximum possible
number of attracting cycles of h for 0 < µ < π.

12. Let f be a C3 map. Show that Sf = 0 if and only if f(x) = (ax +
b)/(cx+ d) for some real numbers a, b, c, d.
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13. Prove Corollary 2.1.

14. In the proof of Theorem 2.4, give a detailed proof of the existence of a
critical point of f in Case 2 where g(c) = d and g(d) = c.

2.5 Bifurcation

In this section, we resume our investigation of the bifurcation phenomena
discussed in Sec. 1.9. But before embarking on such a task, we need to explain
what bifurcation really means. Roughly speaking, the term bifurcation refers
to the phenomenon of a system exhibiting new dynamical behavior as the
parameter is varied. As we have seen in Chapter 1 (see Fig. 1.28), the logistic
map Fµ(x) = µx(1 − x) undergoes a period doubling at an infinite sequence
of values of the parameter µ : µ1, µ2, µ3, . . ., where µ1 = 3, µ2 = 1 +

√
6, . . ..

Note that for the fixed point x∗ = µ−1
µ , F ′

µ1
= −1. Similarly, if {x1, x2} is the

2-cycle of Fµ2 (or the fixed points of F 2
µ2
), then [F 2

µ2
(xi)]′ = −1. This is a

trademark of a period-doubling bifurcation that is always associated with the
appearance of a slope of −1.

The logistic map Fµ undergoes another important type of bifurcation, com-
monly called saddle node or tangent bifurcation. This bifurcation is associ-
ated with the appearance of a slope of 1. Now, it can be shown that period 3
appears at µ̃ = 1 +

√
8 ≈ 3.8284 (see Saha and Strogatz [90] for an elemen-

tary derivation). Figure 2.12 depicts the graph of F 3
µ for µ < µ̃(µ = 3.75).

Here, F 3
µ has only two fixed points that are fake 3-periodic cycles; they are

fixed points of Fµ. Figure 2.13 shows how period 3 appears when µ = µ̃ at
which F 3

µ̃ touches the diagonal line at the 3-periodic cycle {x1, x2, x3}. Since
[F 3

µ̃(xi)]′ = 1 and [F 3
µ̃(xi)]′′ = 0, it follows from Theorem 1.5 that this 3-

periodic cycle is unstable (actually it is semiasymptotically stable from the
left). Finally, Fig. 2.14 depicts the graph of F 3

µ for µ > µ̃(µ = 3.95) where
each point in the 3-periodic cycle {x1, x2, x3} gives rise to two new fixed
points of F 3

µ , i.e., two new 3-periodic cycles. On one cycle (indicated by black
dots in Fig. 2.14) the slope of F 3

µ is less than 1 in magnitude. Consequently,
this cycle is attracting. However, the other cycle (indicated by open dots)
is unstable since the slope of F 3

µ exceeds 1. By increasing µ on the attract-
ing cycle, (F 3

µ)
′ decreases to −1, at which the 3-periodic cycle undergoes a

double-period bifurcation and the appearance of 2k×3 cycles, k = 1, 2, 3, etc.
(see Fig. 2.7). On the other hand, if we decrease µ (starting from µ̃ = 1+

√
8),

the 3-periodic cycle disappears (Fig. 2.12) and the system exhibits an inter-
esting phenomenon known as intermittency (Pomeau and Mennaville [81]).
Figure 2.15 shows the behavior of an orbit for Fµ with µ = 3.828 where part
of the orbit looks like a 3-periodic cycle. Then the orbit goes into an erratic
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FIGURE 2.12
The disappearance of 3-periodic cycles when µ < µ̃ = 1 +

√
8.

behavior to return again to the “ghostly” 3-periodic cycle. Such behavior
will be repeated indefinitely and is always associated with the saddle node
bifurcation.

Harrison and Biswas [46] gave an experimental example of intermittency
in a laser. In Fig. 2.16, we plot the intensity of the emitted laser light as a
function of time. The tilt of the mirror in the laser cavity (the parameter
of the function) is then varied. As you see in the figure, the lowest panel
demonstrates that the laser is pulsating periodically. Moving up in Fig. 2.16,
we observe the appearance of ghostly 3-cycles with intermittent bouts of chaos.

The next example gives a detailed account of both types of bifurcation.

Example 2.8

Consider the family of maps Gc(x) = c − x2, where c is scalar (Fig. 2.17).
Then, for c < − 1

4 , there are no fixed points. At c = − 1
4 we witness the

appearance of the fixed point x∗ = − 1
2 . Here we have a tangent bifurcation

since G′
c(− 1

2 ) = 1. To draw the bifurcation diagram (c–x), we find the equa-
tion of the fixed points of Gc. This is obtained by putting Gc(x) = x. The
equation is given by c = x2 + x

(
or x = − 1

2 ± 1
2

√
1 + 4c

)
. The upper branch

in Fig. 2.18 is given by x = − 1
2 +

1
2

√
1 + 4c and the lower branch is given by

x = − 1
2 − 1

2

√
1 + 4c. At c∗ = − 1

4 and x∗ = − 1
2 , G

′
c∗(x

∗) = 1, which indicates
the appearance of a tangent bifurcation. The fixed point x∗ = − 1

2 is unsta-
ble (semistable from the right). Note that for (c, x) on the upper branch,
|G′

c(x)| < 1 which implies that every fixed point on this branch is attracting.
This state of affairs is indicated by a solid curve. On the other hand, the
lower branch is a dashed curve since |G′

c(x)| > 1 and thus the fixed points are
unstable.
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FIGURE 2.13
The appearance of a 3-periodic cycle when µ = µ̃ = 1 +

√
8.

FIGURE 2.14
For µ = 3.9, Hµ has two 3-periodic cycles. The black dots indicate the at-
tracting 3-periodic cycle and the open dots indicate the unstable 3-perioidic
cycle.
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FIGURE 2.15
The orbit is nearly a 3-periodic cycle (ghostly 3-periodic cycle) for Hµ when
µ = 3.828.

0 5 10

Time (µs)

l(t)

t

FIGURE 2.16
The intensity of the emitted laser light I(t) as a function of time t.
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FIGURE 2.17
Graphs of parabolas Gc(x) = c− x2 for various values of c.

FIGURE 2.18
Bifurcation diagram for Gc(x) = c− x2.
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Things change dramatically at c̃ = 3
4 . Here at the fixed point x̃ = 1

2 ,
G′

c̃(x̃) = −1. This fixed point is attracting by Theorem 1.6. A 2-periodic
cycle is born for c > 3

4 . To find the bifurcation equation of this 2-periodic
cycle, we solve the equation G2

c(x) = x or x4 − 2cx2 + x + c2 − c = 0. We
factor out the bifurcation equation of the fixed points x2+x− c = 0 to obtain
the bifurcation equation of the genuine 2-cycle: c = x2 − x + 1 which has

two branches x1,2 = 1
2 ±

√
c− 3

4 . The 2-cycles {x1, x2} are attracting for
3
4 < c ≤ 11

4 .

We are now ready to formalize the above discussion. For notational con-
venience, a one-parameter family Hµ(x) may be written as a map H(µ, x) of
two variables, i.e., H(µ, x) : R × R −→ R. This is particularly convenient
when we take partial derivatives with respect to the parameter µ.

THEOREM 2.5 (The Saddle-node Bifurcation)
Suppose that Hµ(x) ≡ H(µ, x) is a C2 one-parameter family of one-dimensional
maps (i.e., both ∂2H

∂x2 and ∂2H
∂µ2 exist and are continuous), and x∗ is a fixed point

of Hµ∗ , with H ′
µ∗(x∗) = 1. Assume further that

A =
∂H

∂µ
(µ∗, x∗) = 0 and B =

∂2H

∂x2
(µ∗, x∗) = 0.

Then there exists an interval I around x∗ and a C2 map µ = p(x), where
p : I −→ R such that p(x∗) = µ∗, and Hp(x)(x) = x. Moreover, if AB < 0,
the fixed points exist for µ > µ∗, and, if AB > 0, the fixed points exist for
µ < µ∗.

REMARK 2.5 The conclusion of the preceding theorem states that two
curves of fixed points given by µ = p(x) emanate from the fixed point (µ∗, x∗).
Furthermore, the sign of AB determines the direction of the bifurcation; if
AB < 0, then we have Fig. 2.19 and for AB > 0 we have Fig. 2.20.

To prove the above theorem, we need a version of the implicit function
theorem (Protter and Morrey [82]) which we state here without proof.

THEOREM 2.6 (The Implicit Function Theorem)
Suppose that G : R × R −→ R is a C1 map in both variables such that for

some (µ∗, x∗) ∈ R× R, G(µ∗, x∗) = 0 and ∂G
∂µ (µ

∗, x∗) = 0. Then, there exists
an open interval J around µ∗, an open interval I around x∗, and a C1 map
µ = p(x), where p : I −→ J such that

1. p(x∗) = µ∗.

2. G(p(x), x) = 0, for all x ∈ I.
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FIGURE 2.19
Saddle-node bifurcation for Fµ : µ = p(x) when AB < 0.

FIGURE 2.20
Saddle-node bifurcation for Fµ : µ = p(x) when AB > 0.

PROOF OF THEOREM 2.5
Let G(µ, x) = H(µ, x)− x. Then it is easy to see that the map G satisfies

the hypothesis of the implicit function theorem stated above. Hence, there
exists a C1 map µ = p(x) with µ∗ = p(x∗), and G(p(x), x) = 0. Thus, for all
x in some interval I,

H(p(x), x) = x. (2.7)

Differentiating both sides of Equation (2.7) with respect to x and using the
chain rule, we obtain

∂H

∂µ
(µ∗, x∗)p′(x∗) +

∂H

∂x
(µ∗, x∗) = 1. (2.8)

Since ∂H
∂x (µ∗, x∗) = 1, p′(x∗) = 0. Thus, x∗ is a critical point of the curve

µ = p(x) as may be seen in Fig. 2.19.
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Differentiating (2.8) one more time with respect to x yields

∂2H

∂µ2
(µ∗, x∗)[p′(x∗)]2 +

∂H

∂µ
(µ∗, x∗)p′′(x∗) +

∂2H

∂x2
(µ∗, x∗) = 0

Since p′(x∗) = 0, we have

p′′(x∗) = −∂
2H(µ∗, x∗)/∂x2

∂H
∂µ (µ∗, x∗)

= −B
A
. (2.9)

It follows from Formula (2.9) that if AB < 0, then p′′(x∗) > 0 and the curve
p(x) is concave upward at x = x∗. Hence, the curve p(x) opens to the right.
The direction is reversed if AB > 0 (see Fig. 2.20).

REMARK 2.6 Two types of bifurcation appear when ∂H
∂x (µ∗, x∗) = 1,

but ∂H
∂µ (µ∗, x∗) = 0. The first type is called transcritical bifurcation,

which appears at µ∗ = 1, x∗ = 0 for the logistic map Fµ(x) = µx(1 − x).
In this bifurcation, two branches of fixed points, one attracting (x = 0) and
another unstable (x = µ−1

µ ), meet when µ = 1. Beyond µ = 1, the first
branch x = 0 becomes unstable and the other branch becomes an attractor.
In other words, exchange of stability occurs at µ = 1 (see Fig. 2.21). Note
that ∂2F

∂x2 (1, 0) = −2 = 0.

FIGURE 2.21
Exchange of stability at µ = 1.

The mapHµ(x) = µx−x3 exhibits another type of bifurcation called pitch-
fork bifurcation at x∗ = 0 and µ∗ = 1. This bifurcation, however, is dif-
ferent from the transcritical bifurcation because ∂2H

∂x2 (1, 0) = 0. As shown in
Fig. 2.22, for 0 < µ ≤ 1 we have only one branch of attracting fixed points:
x = 0. Beyond µ = 1, this fixed point loses its stability and two new branches
of attracting fixed points x = ±√µ− 1 appear.

As was pointed out in Alligood, et al. [2], these two bifurcations are not
essential (generic) in the sense that any translation of the maps gives rise to the
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x

µ

FIGURE 2.22
Pitchfork Bifurcation.

saddle node bifurcation. In other words, the maps Fµ(x) = µx(1−x)+α, α = 0
and Hµ(x) = µx − x3 + α, α = 0 exhibit a saddle node bifurcation (see
Problems 6 and 7).

Next we introduce to you the mathematical foundation of the familiar
period-doubling bifurcation.

THEOREM 2.7 (Period-Doubling Bifurcation)

Suppose that

1. Hµ(x∗) = x∗ for all µ in an interval around µ∗.

2. H ′
µ∗(x∗) = −1.

3. ∂2H2

∂µ ∂x(µ
∗, x∗) = 0.

Then, there is an interval I about x∗ and a function p : I −→ R such that
Hp(x)(x) = x but H2

p(x)(x) = x.

PROOF Let G(µ, x) = H2
µ(x) − x. Then, from Assumption (1),

∂G

∂µ
(µ∗, x∗) =

[
∂H

∂µ
(µ∗, x∗)

]2
.

If ∂G
∂µ (µ

∗, x∗) = 0 and we can apply the implicit function theorem (Theo-
rem 2.6) to obtain the desired result. On the other hand, if ∂G

∂µ (µ
∗, x∗) = 0

then it is not possible to apply the implicit function theorem. To rectify the
situation, we introduce another function B(µ, x) defined as follows:

B(µ, x) =
{
G(µ, x)/(x − x∗) if x = x∗,
∂G
∂x (µ

∗, x∗) if x = x∗.
(2.10)
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TABLE 2.1
Types of bifurcation of fixed points.

Canonical Noncanonical ∂H
∂x

∂H
∂µ

∂2H
∂x2

Bifurcation Example Example (µ∗, x∗) (µ∗, x∗) (µ∗, x∗)
Saddle-node Hµ(x) = x + µ ∓ x2 Hµ(x) = µ − x2 1 	= 0 	= 0
(fold, tangent) µ∗ = 0, x∗ = 0 µ∗ = − 1

4 , x∗ = − 1
2

Pitchfork Hµ(x) = x + µ ∓ x3 Hµ(x) = µx − x3 1 0 0
µ∗ = 0, x∗ = 0 µ∗ = 1, x∗ = 0

Transcritical Hµ(x) = x + µx ∓ x∗ Hµ(x) = µx(1− x) 1 0 	= 0
µ∗ = 0, x∗ = 0 µ∗ = 1, x∗ = 0

Period- Hµ(x) = −x − µ + x3 Hµ(x) = µ − x2 -1 	= 0 	= 0
doubling µ∗ = 0, x∗ = 0 µ∗ = 3

4 , x∗ = 1
2

(flip) Hµ(x) = µx(1− x)
µ∗ = 3, x∗ = 2

3

We first observe that

B(µ∗, x∗) =
∂G

∂x
(µ∗, x∗)

= [H ′
µ∗(x∗)]2 − 1

= 0.

Moreover,

∂B

∂µ
(µ∗, x∗) =

∂

∂µ

(
∂G

∂x
(µ∗, x∗)

)

=
∂

∂µ

(
∂

∂x
H2(µ∗, x∗)− 1

)

=
∂2

∂µ∂x
H2(µ∗, x∗)

= 0.

Hence, by the implicit function theorem there is a C1 map p(x) defined
on an interval around x∗ such that p(x∗) = µ∗ and B(p(x), x) = 0. Hence,
G(p(x), x)/(x − x∗) = 0, x = x∗. Consequently, H2

p(x)(x) = x and thus x is of
period 2 for µ = p(x). It is left to you in Problem 8 to verify that

p′(x∗) = 0. (2.11)

In conclusion, we summarize our findings as in Table 2.1.

Example 2.9 [86]
Consider fµ(x) = −µx + ax2 + bx3, a, b > 0. The map has the fixed point
0 since fµ(0) = 0. Notice that f ′µ(x) = ∂fµ(x)

∂x = −µ + 2ax + 3bx2 and
f ′µ(0) = −µ. Since f ′1(0) = −1, the period-doubling bifurcation is present. To
find the 2-periodic orbit, we need to solve the equation f2µ(x) = x. Now

f2µ(x) = µ2x+ (−aµ+ aµ2)x2 + (−bµ− 2a2µ− bµ3)x3 +O(x4)
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where O(x4) consists of terms of degree 4 or higher. Since f2µ(x)− x = 0 has
0 as a root, we need to factor out x from this equation to obtain

Q(µ, x) =
f2µ(x)− x

x

= µ2 − 1 + (−aµ+ aµ2)x+ (−bµ− 2a2µ− bµ3)x2 +O(x3).

Notice that

Q(0, 1) = 0
∂Q

∂x
(0, 1) = 0

∂Q

∂µ
(0, 1) = 2 = 0

∂2Q

∂x2
(0, 1) = −4(b+ a2).

Let µ = p(x) as in Theorem 2.1 and consider

Q(p(x), x) = µ2 − 1 + (−ap(x) + ap2(x))x
+ (−bp(x)− 2a2p(x) − bp3(x))x2 +O(x3) = 0.

Differentiating gives3

dQ

dx
=
∂Q

∂x
(p(x), x) +

∂Q

∂µ
(p(x), x)p′(x) = 0

dQ

dx

∣
∣
∣
∣
(1,0)

= 0 = 0 + 2p′(0).

Hence p′(0) = 0.
Differentiating again we get

0 =
d2Q

dx2
(p(x), x) +

∂2Q

∂x∂µ
(p(x), x)p′(x) +

∂2Q

∂x∂µ
(p(x), x)p′(x)

+
∂2Q

∂µ2
(p(x), x)[p′(x)]2 +

∂Q

∂µ
(p(x), x)p′′(x)

and at x = 0 and µ = 1, we get

0 = −4(b+ a2) + 2p′′(0)

p′′(0) = −2(b+ a2).

3

dQ
dx
= ∂Q

∂x
+ ∂Q

∂µ
∂µ
∂x
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Expanding µ = p(x) around x = 0 using Taylor’s Theorem, yields

µ = p(x) = p(0) + p′(0)x+
p′′(0)x2

2
+O(x3)

= 1− (2(b+ a2)x2

2
+O(x3).

If b + a2 = 0, the 2-periodic orbit appears either for µ < 1 or µ > 1 as the
quadratic term dominates O(x3) near x = 0. To find the stability of the
periodic orbit we need the find the derivative of f2 at (0, 1).

By Taylor’s Theorem, for multivariables, we get

∂(f2)
∂x

(p(x), x) =
∂(f2)
∂x

(1, 0) +
∂2(f2)
∂x2

(1, 0)x

+
∂2(f2)
∂µ∂x

(0, 1)(p(x) − 1) +
1
2
∂3(f2)
∂x3

(1, 0)x2 + . . .

= 1 +O(x) + 2(b+ a2)x2 − 6(b+ a2)x2 + O(x3)

= 1− 4(b+ a2)x2 +O(x3). (2.12)

Now, if b+a2 > 0, the 2-periodic orbit is asymptotically stable, and if b+a2 <
0, the 2-periodic orbit is unstable.

The reader is asked to verify the computation above of the four terms in
the expression of ∂(f2)

∂x (p(x), x) as Problem 14.

Exercises - (2.5)

1. Show that the map Hµ(x) = −x−µx+x3, undergoes a period-doubling
bifurcation at µ∗ = 0. Draw the bifurcation diagram for the map.

2. (Ricker map). Consider the population model x(n+1) = Rµ(x(n)) where
Rµ(x) = µxe−x, where x(n) is the population density in year n and
µ > 0 is the growth rate. Show that this map undergoes a period-
doubling bifurcation at µ∗ = e2. Draw the bifurcation diagram for this
map and interpret your results.

3. Show that the mapHµ(x) = µ+x+x2 exhibits a Saddle-node bifurcation
at µ∗ = 0 and draw its bifurcation diagram.

4. Show that the map Gµ(x) = −(1+µ)x+x3 undergoes a period-doubling
bifurcation at µ∗ = 0. Draw its bifurcation diagram.

5. Show that the map Hµ(x) = µx(1−x)+α, α = 0 exhibits a Saddle-node
bifurcation and sketch its bifurcation diagram.
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6. Show that the map Hµ(x) = µx−x3+α, α = 0 undergoes a Saddle-node
bifurcation and sketch its bifurcation diagram.

7. Prove Formula (2.11).

8. Determine the saddle node and period-doubling bifurcation for the map
Hµ(x) = µ sinx, for |x| < π and 0 < µ ≤ π

2 .

9. Consider the map B defined by (2.10). Show that

(a) ∂B
∂x (µ

∗, x∗) = 1
2

∂2G
∂x2 (µ∗, x∗).

(b) ∂2B
∂x2 (µ∗, x∗) = 1

3
∂3G
∂x3 (µ∗, x∗).

(Hint: Use L’Hopital’s Rule.)

10. Suppose that in addition to the hypothesis of Theorem 2.7 that SHµ∗(x∗)
= 0, where S denotes the Schwarzian derivative. Show that the curve
µ = p(x) satisfies p′′(x∗) = 0.

[Hint: Show that p′′(x) = − 2
3SHµ∗(x∗).]

11.* Show that the period 3 window for the logistic map Fµ(x) = µx(1 − x)
starts at µ = 1 +

√
8.

12. Show that Assumption (3) in Theorem 2.7 can be replaced by the as-
sumption ∂2H

∂µ∂x (µ
∗, x∗) = 0.

13. Verify the computations in (2.12).

14.* (Term project) Let fµ(x) = µx− x3.
(a) Carry out the bifurcation analysis as in Example 2.9.
(b) Draw the bifurcation diagram.
(c) Write an essay about the dynamics of the map and discuss the

bifurcation diagram.

15.* (Term project: Reverse period-doubling) Do all one dimensional maps
with a single maximum lead to a period-doubling route to chaos? The
following map, called the Gaussian map, provides a negative answer.
Let G(x) = e−bx2

+ c.

(a) Let b = 7.5. Plot the graph of G for c = −0.9, and −0.3. Find the
fixed points.

(b) Plot the bifurcation diagram with b = 7.5 and c ranges from -1 to
1, with x0 = 0. Carry out a qualitative analysis of this diagram
and summarize your findings in an essay.

(c) Repeat (b) but for x0 = 0.7.
(d) Let b = 4, x0 = 0. Plot the bifurcation diagram of G for c between

-1, 1. Write a quantitative analysis of the diagram.
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2.6 Sharkovsky’s Theorem

Aleksandr Nikolayevich Sharkovsky (1936 - )

In 1964, A. N. Sharkovsky discovered one of the most remarkable theo-
rems (named after him) for continuous maps on the real line. Published in
Russian, his theorem remained totally unknown in the West until the pub-
lication of the famous Li and York “Period three implies Chaos” ten years
later. And in 1996, the Converse of Sharkovsky’s theorem was publicized
widely in the American Mathematical Monthly by the author of this book.

Sharkovsky’s Theorem created a new field of Mathematics called Itera-
tion Theory. His recent research is focused on turbulence, and boundary
value problems. He is currently at the Institute of Mathematics, National
Academy of Ukraine and a consulting editor of the Journal of Difference
Equations and Applications.

2.6.1 Li-Yorke Theorem

In 1975, Li and Yorke [62] published the article, “Period three implies chaos”
in the American Mathematical Monthly. In this paper, they proved that if a
continuous map f has a point of period 3, then it must have points of any pe-
riod k. Soon afterward, it was found that Li-Yorke’s theorem is only a special
case of a remarkable theorem published in 1964 by the Ukranian mathemati-
cian Alexander Nikolaevich Sharkovsky [93]. Sharkovsky introduced a new
ordering � of the positive integers in which 3 appears first. He proved that
if k � r and f has a k-periodic point, then it must have an r-periodic point.
This clearly implies Li-Yorke’s theorem. However, to their credit, Li and Yorke
were the first to coin the word “chaos” and introduce it to mathematics.

It is worth mentioning that neither Li-Yorke’s theorem nor Sharkovsky’s
theorem is intuitive. To illustrate this point, recall from Example 1.14 that the
tent map T (x) = 1−2|x− 1

2 | has two cycles of period 3 : { 27 , 47 , 67} and { 29 , 49 , 89}.
Is it intuitively clear that the tent map has cycles of all periods? I do not

think so.
Let us now turn our attention to Sharkovsky’s ordering of the positive
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integers. This ordering is defined as follows:
3 � 5 � 7 � . . . 2× 3 � 2× 5 � 2× 7 � . . .
odd integers 2× odd integers

22 × 3 � 22 × 5 � 22 × 7 � . . . 2n × 3 � 2n × 5 � 2n × 7 � . . .
22× odd integers 2n× odd integers

. . . . . . . . . . . .� 2n � . . .� 23 � 22 � 2 � 1
powers of 2.

We first list all the odd integers except 1, then 2 times the odd integers,
22 times the odd integers, and, in general, 2n times the odd integers for all
n ∈ Z+. This is followed by powers of 2 in a descending order. It is easy to
see that this ordering exhausts all of the positive integers. Notice that m� n
signifies that m appears before n in the Sharkovsky’s ordering.

THEOREM 2.8 (Sharkovsky’s Theorem)

Let f : I → I be a continuous map on the interval I, where I may be finite,
infinite, or the whole real line.
If f has a periodic point of period k, then it has a periodic point of period

r for all r with k � r.

PROOF See the Appendix at the end of this chapter. Proof of the
theorem may also be found in Block and Coppel [12].

We will now make a few comments about the theorem and then give a proof
of a consequence of it: the Li-Yorke theorem.

1. The only way that a continuous map f has finitely many periodic points
is if f has only periods that are powers of 2. Otherwise, it has infinitely
many periodic points. For example, if f has a periodic point of period
210 × 5, then it has infinitely many periodic points of periods

210 × 5, 210 × 7, 210 × 9, . . . 211 × 3, 211 × 5, 211 × 7, . . .
. . . 2n, 2n−1, . . . , 22, 2, 1.

2. If m�n, then there are continuous maps with periodic points of period
n but not of period m (see the proof of Theorem 2.10).

3. Sharkovsky’s theorem does not extend to two or higher dimensional
Euclidean spaces. It is not even true for the unit circle S1. For example,
the map f : S1 → S1 defined by f(eiθ) = ei(θ+

2π
3 ) is of period 3 at all

points in S1, but f has no other periods.

Now we go back and prove the Li-Yorke theorem.
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THEOREM 2.9 (Li and Yorke)
Let f : I → I be a continuous map on an interval I. If there is a periodic

point in I of period 3, then for every k = 1, 2, . . . there is a periodic point in
I having period k.

To prove this theorem, we need some preliminary results.

LEMMA 2.6
Let f : I → R be continuous, where I is an interval. For any closed interval
J ⊂ f(I), there is a closed interval Q ⊂ I such that f(Q) = J .

PROOF Let J = [f(p), f(q)], where p, q ∈ I. If p < q, let r be the
largest number in [p, q] with f(r) = f(p) and let s be the smallest number
in [p, q] such that f(s) = f(q) and s > r. We claim that f([r, s]) = J .
We observe that by the intermediate value theorem, we have f([r, s]) ⊃ J .
Assume that there exists t with r < t < s such that f(t) /∈ J . Without loss of
generality, suppose that f(t) > f(q). Applying the intermediate value theorem
again yields f([r, t]) ⊃ J . Hence, there is x ∈ [r, t) such that f(x) = f(q),
which contradicts our assumption that s is the smallest number in [p, q] with
f(p) = f(q). The case where p > q is similar. The proof is now complete.

LEMMA 2.7
Let f : I → I be continuous and let {In}∞n=0 be a sequence of closed and
bounded intervals with In ⊂ I and In+1 ⊂ f(In) for all n ∈ Z+. Then, there
is a sequence of closed and bounded intervals Qn such that Qn+1 ⊂ Qn ⊂ I0
and fn(Qn) = In for n ∈ Z+.

PROOF Define Q0 = I0. Then, f0(Q0) = I0. If Qn−1 has been defined
so that fn−1(Qn−1) = In−1, then In ⊂ f(In−1) = fn(Qn−1). By applying
Lemma 2.6 on fn, there is a closed bounded interval Qn ⊂ Qn−1 such that
fn(Qn) = In.

We are now well prepared to give the proof of Theorem 2.9.

PROOF OF THEOREM 2.9
Suppose that f has a 3-cycle {x, f(x), f2(x)}. Then one may rename the

elements of the cycle so that it will become {a, b = f(a), c = f(b)} with either
a < b < c or a > b > c. For example, if x < f2(x) < f(x), we let a =
f(x), b = f(a), c = f2(a) and thus we have a > b > c. Let us assume that
a < b < c. Write J = [a, b], L = [b, c]. For any positive integer k > 1, let {In}
be a sequence of intervals with In = L for n = 0, 1, . . . , k − 2 and Ik−1 = J ,
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and define In to be periodic inductively, In+k = In for n ∈ Z+. The sequence
{In} looks like

L,L, . . . , L, J, L, L, . . . , L, J, L, L, . . . , L, J, . . .
(k − 1) times (k − 1) times (k − 1) times.

If k = 1, let In = L for all n ∈ Z+. Since f(a) = b, f(b) = c, and f(c) = a,
it follows by the intermediate value theorem that L, J ⊂ f(L) and L ⊂ f(J)
(see Fig. 2.23).

Hence, one may apply Lemma 2.7 to produce a sequence {Qn} of closed,
bounded intervals with Qk ⊂ Q0 = L and fk(Qk) = Ik = L. Consequently,
L ⊂ fk(L). By applying Theorem 1.2 to fk, we conclude that fk has a fixed
point in L and, consequently, f has a k-periodic point in I.

FIGURE 2.23
f(a) = b, f(b) = c, f(c) = a. Hence J ⊂ f(L) and L ⊂ f(J).

The next example [100] illustrates how the presence of period 3 for a con-
tinuous map on R implies the existence of periodic points of all periods.

Example 2.10

Contemplate the function (Fig. 2.24)

f(x) =

{
x+ 1

2 for 0 ≤ x < 1
2 ,

2− 2x for 1
2 ≤ x ≤ 1.

The map f has the periodic orbit
{
0, 12 , 1

}
. Moreover, f has the fixed point

2
3 . Let us write every x ∈ [0, 1] in its binary expansion,

x =
∞∑

j=1

aj

2j
= 0.a1a2a3 . . . ,
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0.5 10

0.5

1

FIGURE 2.24

where each aj is either 0 or 1. Now for 0 ≤ x < 1
2 , a1 = 0 and thus

f(x) =
1
2
+ 0.0a2a3 · · · = 0.1a2a3 . . . .

On the other hand if 1
2 ≤ x ≤ 1, a1 = 1 and hence

f(x) = 2− 2(0.1a2a3 . . . ) = 2− 1.a2a3a4 . . .
= 1− 0.a2a3a4 . . .

f(x) = 0.a′2a
′
3a

′
4 . . . where a′j = 1− aj .

One may show that

f2(0.10a3a4 . . . ) = 0.a3a4a5 . . . (2.13)

and
f2(0.0a2a3 . . . ) = 0.a′2a

′
3a

′
4 . . . . (2.14)

To find a point of period 2 we use (2.14) which implies that a′2 = 1, a′3 =
a2, a

′
4 = a3, . . . . Thus the point 0.01 = 1

3 is a point of period 2 and the
periodic 2-cycle is

{
1
3 ,

5
6

}
.

To find a point of period 4, we let a′2 = 1 and a′3 = 0 in (2.13). Then

f4(0.001a4a5 . . . ) = f2(0.10a′4a
′
5 . . . ) = 0.a′4a

′
5a

′
6 . . . .

Therefore 0.001a4a5 . . . is of period 4 if a′4 = 0, a′5 = 0, a′6 = 1. Hence
the point x = 0.001110 = 2

9 (Why?) and the periodic 4-cycle is given by{
2
9 ,

13
18 ,

5
9 ,

8
9

}
. In general this procedure yields a point of period 2 + 2k of the

form x = 0.0a1 . . . a2k1a′1 . . . a′2k, where aj = 0 if j is odd and aj = 1 if j
is even, 1 ≤ j ≤ 2k. (Problem 3) Now to find a point of period 5, we let
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a3 = 1 and a4 = 0 and use (2.14). Then f5(0.0010a5a6 . . . ) = 0.a5a6 . . . .
Hence x = 0.0010a5a6a7a8 . . . is of period 5 if a5 = a6 = 0, a7 = 1, a8 = 0
and thus x = 0.0010 = 2

15 (Why?). Hence the periodic 5-cycle is given by{
2
15 ,

19
30 ,

11
15 ,

8
15 ,

14
15

}
. In general, a point x = 0.00a1 . . . a2k with aj = 1 if j

is odd and aj = 0 if j is even, a ≤ j ≤ 2k, yields a point of period 3 + 2k
(Problem 4).

2.6.2 A Converse of Sharkovsky’s Theorem

The question that we are going to address in this section is the following:
given any positive integers k and r with k� r, is there a continuous map that
has a point of period r but no points of period k? The answer to this question
is a definite yes. Here we give a simple proof of this result which is based on
my paper [31].

THEOREM 2.10 (A Converse of Sharkovsky’s Theorem)
For any positive integer r, there exists a continuous map fr : Ir → Ir on the

closed interval Ir such that fr has a point of prime period r but no points of
prime periods s, for all positive integers s that precede r in the Sharkovsky’s
ordering, i.e., s� . . .� r.

PROOF In order to accomplish the proof, we have three cases to con-
template.

1. Odd periods

2. Periods of the form 2n× odd positive integers

3. Periods of powers of 2, i.e., 2n

Case 1: Odd Periods.

(a) Let us construct a continuous map that has points of period 5 but no
points of period 3. Define a map f : [1, 5]→ [1, 5] as follows:

f(1) = 3, f(2) = 5, f(3) = 4, f(4) = 2, and f(5) = 1.

On each interval [n, n + 1], 1 ≤ n ≤ 4, we assume f to be linear (see
Fig. 2.25).

Observe first that none of the points 1, 2, 3, 4, 5 is a 3-periodic point;
they all belong to the single 5-cycle: 1

f→ 3
f→ 4

f→ 2
f→ 5

f→ 1. Note
also that

f3([1, 2]) = [2, 5], f3([2, 3]) = [3, 5], and f3([4, 5]) = [1, 4].
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1 2 3 4 5

1

2

3

4

5

x

f(x)

FIGURE 2.25
A map of period 5 but no points of period 3.

Hence, f3 has no fixed points in the intervals [1, 2], [2, 3], and [4, 5]. The
situation with the interval [3, 4] is much more involved since f3([3, 4]) =
[1, 5]. This implies by Theorem 1.1 that f3 must have a fixed point x̄
in the interval [3, 4]. We must show now that this fixed point of f3 is
really a fixed point of f and thus is not of prime period 3. Observe
that f(x̄) ∈ [2, 4]. So, if f(x̄) ∈ [2, 3], then f2(x̄) ∈ [4, 5] and f3(x̄) ∈
[1, 2]. But, this is impossible since f3(x̄) = x̄ ∈ [3, 4]. Therefore, we
conclude that f(x̄) ∈ [3, 4]. Note that f2(x̄) ∈ [2, 4]. Again, if f2(x̄) ∈
[2, 3], then f3(x̄) ∈ [4, 5], yet another contradiction. Thus, the orbit of
x̄, {x̄, f(x̄), f2(x̄)} is a subset of the interval [3, 4].

Now, on the interval [3,4], f(x) = 10 − 2x has the unique fixed point
x∗ = 10

3 . Moreover, on [3,4], f3(x) = 30− 8x also has the unique fixed
point x̄ = 10

3 = x∗. Hence, f has no points of prime period 3.

(b) One may generalize the above construction in order to manufacture
continuous maps that have points of period 2n + 1 but no points of
period 2n − 1. Details will be given in the problems (Problems 3, 4,
and 5).

Case 2: Periods of the Form 2k(2n+ 1).

(a) We begin by constructing a map that has points of period 2× 5 but has
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no points of period 2 × 3. Consider first the map f : [1, 5] → [1, 5] as
defined in Case 1(a). This map has points of period 5, but has no points
of period 3. We will use this map to construct a new map f̃ , called the
double of f , as follows:

f̃ : [1, 13]→ [1, 13],

f̃(x) =






f(x) + 8; 1 ≤ x ≤ 5

x− 8; 9 ≤ x ≤ 13.

For 5 < x < 9, we connect the points (5, 9) and (9, 1) by a line
(Fig. 2.26). The proof that the double map f̃ has a 10-cycle but no
6-cycle is left to the reader as Problem 6.

1 2 3 4 5

1

2

3

4

5

6 7 8 9 10 11 12 13

13

12

11

10

9

8

7

6

f(x)

x

FIGURE 2.26
A 10-cycle but no 6-cycles.

(b) The general procedure for constructing the double f̃ of any map f :
[1, 1 + h]→ [1, 1 + h] is as follows: f̃ : [1, 1 + 3h]→ [1, 1 + 3h], where

f̃(x) =






f(x) + 2h; 1 ≤ x ≤ 1 + h

x− 2h; 1 + 2h ≤ x ≤ 1 + 3h

and f̃ is linear for 1+h < x < 1+2h. So, if we want to construct a map
with points of period 2(2n+ 1), but no points of period 2(2n− 1), n =
3, 4, 5, . . ., we start with a map f that has points of period (2n + 1),
but no points of period (2n− 1). Then, its double map f̃ will have the
desired properties (Problem 7).
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Case 3: Periods of the Form 2n.

(a) It is easy to construct a map that has points of period 20 = 1 (fixed
points), but no points of prime period 21. Just pick any map f(x) =
ax + b with a = ±1. To construct a map that has points of period 2
but no points of period 22, we consider the map f(x) = −x+ b. Then,
x = b

2 is a fixed point of f . However, f2(x) = −(−x+ b)+ b = x. Thus,
every point, with the exception of x∗ = b

2 , is of prime period 2.

(b) To construct a map that has points of period 22, but no points of pe-
riod 23, we use the double map f̃ of the map f(x) = −x + 3 (see
Fig. 2.27). Map doubling may be used repeatedly to construct maps
with 2n-cycles, but no 2n+1-cycles.

1 2 3 4

1

2

3

4

x

f(x)

FIGURE 2.27
A 4-cycle but no 8-cycles.

Unresolved questions that remain to be settled are as follows:

1. Can we construct a continuous map that has points of period 2n × 3,
but has no points of any period of the form 2n−1× odd integer (see
Problem 12)?

2. Can we construct a continuous map that has points of period 2n for all
n ∈ Z+, but no points of any other period [2] (see Problems 12 and 13)?
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Exercise - (2.6)

In Problem 1–4, consider the map f in Example 2.10.

1. Find a point of period 6, and then find the corresponding orbit.

2. Find a point of period 7, and then find the corresponding orbit.

3. Show that the point x = 0.0a1 . . . a2k1a′1 . . . a′2k is of period 2 + 2k, if
aj = 0, if j is odd, and aj = 1, if j is even 1 ≤ j ≤ 2k.

4. Show that the point x = 0.00a1 . . . a2k, with aj = 1, if j is odd, and
aj = 0 if j is even is of period 3 + 2k, 1 ≤ j ≤ 2k.

5. Show that the piecewise linear map g : [1, 7]→ [1, 7], shown in Fig. 2.28,
has a 7-cycle, but does not have a 5-cycle.

1 2 3 4 5

1

2

3

4

5

6 7

7

6

f(x)

x

FIGURE 2.28
A 7-cycle but no 5-cycles.

6. Mimic Problem 1 to construct a map that has a 9-cycle, but not a
7-cycle.

7. Construct a map that has a (2k+1)-cycle, but has no (2k− 1)-cycle for
any k > 3.

8. Consider the map f , defined in Fig. 2.25, on the interval I = [1, 5].
Define a new function f̃ on J = [1, 13] (called the double of f) by
compressing the graph of f into the upper left square. Explicitly, we let

f̃(x) =

{
f(x) + 8 for 1 ≤ x ≤ 5
x− 8 for 9 ≤ x ≤ 13.
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Then connect the points (5, 9) and (9, 1) by a line. Show that the map
f̃ (Fig. 2.26) has a 10-cycle, but not a 6-cycle.

9. Mimic Problem 4 to produce a map with a 14-cycle but not a 10-cycle.

10. Construct a map that has a 2(2n+ 1)-cycle but no 2(2n− 1)-cycles.

11. Let f be a map defined on the interval I = [1, 1 + h]. Define f̃ , “the
double of f ,” on [1, 1 + 3h], as follows:

f̃(x) =

{
f(x) + 2h for 1 ≤ x ≤ 1 + h
x− 2h for 1 + 2h ≤ x ≤ 1 + 3h.

and filling the rest of the graph as in Fig. 2.28. Prove that f̃ has a 2n-
periodic point at x if and only if f has an n-periodic point at x. Show
that if f has points of period 2k(2n + 1), then f̃ has points of period
2k+1(2n+ 1).

12. Construct a map that has an 8-cycle but no 16-cycle.

13. Construct a map that has a 2k-cycle, but no 2k+1-cycle, for k > 3.

14. (a) Construct a continuous map that has a point of period 2× 3, but
no points of odd periods.

(b) Describe the procedure of constructing a map of period 2n×3, but
has no points of period 2n−1× odd integer.

For another construction of the double map on the same interval: Let
I = [0, 1] and f : I → I be continuous. Define the double map f̃ by

f̃(x) =






2
3 + 1

3f(3x) for 0 ≤ x ≤ 1
3

[2 + f(1)](23 − x) for 1
3 ≤ x ≤ 2

3

x− 2
3 for 2

3 ≤ x ≤ 1.

15. Show that f̃ has a 2n-periodic point at x, if and only if f has an n-
periodic point at x.

16.* Use Problem 11 to construct a continuous map that has fixed points of
period 2n for all n ∈ Z+, but has no points of any other period.

(Hint: Start with f(x) = 1
3 on [0, 1]. Let f1 = f̃ by its double map,

f2 = f̃1, . . . , fn = f̃n−1. Define f∞(x) = lim
n→∞fn(x). Show that f∞ is

continuous and has points of period 2n for all n and no other periods.)

17. Let f be a continuous map on the interval [a, b]. If there exists a point
x0 ∈ [a, b] with f2(x0) < x0 < f(x0), or f(x0) < x0 < f2(x0), prove
that f has a 2-cycle in [a, b].
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18. Prove that a homeomorphism of R cannot have periodic points with
prime period greater than 2. Give an example of a homeomorphism
that has a point of prime period 2.

19.* (Term Project) Generalize the Li-Yorke theorem (Theorem 2.9) as fol-
lows: Let J be an interval and let f : J → J be continuous. Assume
there is a point a ∈ J for which the points b = f(a), c = f2(a), and d =
f3(a), satisfy d ≤ a < b < c (d ≥ a > b > c). Prove that for every
k = 1, 2, . . . there is a periodic point in J having period k.

20.* (Term Project) (Li and Yorke) [62]. Under the assumption of Prob-
lem 14, show that there is an uncountable set S ⊂ J , containing no
periodic points, which satisfies the following conditions:

(a) For every x, y ∈ S with x = y,

lim
n→∞ sup |Fn(x) − Fn(y)| > 0

and
lim

n→∞ inf |Fn(x)− Fn(y)| = 0.

(b) For every y ∈ S and periodic point q ∈ J ,

lim
n→∞ sup |Fn(x) − fn(q)| > 0.

2.7 The Lorenz Map

Let us consider the Raleigh-Benard convection experiment, which led the
MIT meteorologist Ed Lorenz in 1963 to introduce his now famous Lorenz
equations. Consider a fluid contained between two rigid plates and subjected
to gravity (see Fig. 2.29). The lower plate is kept at a higher temperature
T0 + ∆T than the temperature T0 of the upper plate. The warm fluid near
the bottom plate expands and rises, and the cool fluid above sinks, setting up
a clockwise or counterclockwise current. An equilibrium state of this system
occurs when the fluid is at rest and heat is transported upward through ther-
mal conditions. Now, if the difference in temperature exceeds a critical value,
the equilibrium loses its stability and convection rolls appear.

In his paper, “Deterministic non-periodic flow,” Lorenz considered the
Raleigh-Benard convection assuming that variations of the fluid occur in only
two spatial dimensions. As a mathematical model to describe the Raleigh-
Benard convection, he suggested the following highly idealized 3-dimensional
system of first-order differential equations (now called the Lorenz equations):
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Edward Norton Lorenz (1917 - )

Edward Lorenz is one of the earliest and most influential pioneers of chaos
theory. Though his training was in Meteorology, he has a deep understand-
ing of differential equations. In 1960 he began a project to simulate weather
patterns modeled by a system of three differential equations (now named
after him). To his total surprise, he discovered that each time he changes
slightly the initial conditions, the simulated weather patterns changed dra-
matically. This led him to the discovery of one of the hallmarks of chaos,
namely sensitive dependence on initial conditions, popularly known as the
butterfly effect. Moreover, the orbits seemed to trace a strange distinctive
shape, a kind of double spiral in three dimensions, like a butterfly with its
two wings, the Lorenz strange attractor. Lorenz is currently a professor
Emeritus of Meteorology at the Massachusetts Institute of Technology.

1. ẋ = −σx+ σy
2. ẏ = −xz + rx − y
3. ż = xy − bz.

where the quantity x is proportional to the circulatory fluid flow velocity; the
fluid circulates clockwise if x > 0 and counterclockwise if x < 0. The quan-
tity y is proportional to the temperature difference between ascending and
descending fluid elements, and z is proportional to the distortion of the ver-
tical temperature profile from its equilibrium. The parameters of the system
are the Prandtl number σ, the Raleigh number r, and b has no name but is
related to the height of the fluid layer.

Lorenz used numerical methods to study the limiting behavior of the tra-
jectories (orbits) of the system. He used the parameters σ = 10, b = 8

3 , r = 28.
He plotted x(t) against z(t) to get, to his surprise, a butterfly pattern (see

Fig. 2.30). This is the Lorenz strange attractor, which we will comment on
shortly.

Lorenz wrote that “the trajectory apparently leaves one spiral only after
exceeding some critical distance from the center. Moreover, the extent to
which this distance is exceeded appears to determine the number of circuits
to be executed before changing spirals again. It, therefore, seems that some
single feature of a given circuit should predict the same feature of the following
circuit.”
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FIGURE 2.29
Raleigh-Benard convection.

Let us define what a strange attractor is. We say that a set A is a stable
attractor if:

1. It is invariant; i.e., a trajectory x(t) [or orbit O+(x)] that starts in A
stays indefinitely in A.

2. A attracts an open set of initial conditions; that is the basin of attraction
of A is open.

3. A is minimal; there is no proper subset of A that satisfies the above two
conditions.

If, in addition, A possesses sensitive dependence on initial conditions,
which means roughly that points that are arbitrarily close initially be-
come (exponentially) separated at the attractor for a sufficient time,
then A is said to be a strange attractor.

Lorenz found an ingenious method to study his model using only one-
dimensional maps. Consider the surface on which ż = 0, given by xy−bz = 0.
The maximum of z for every trajectory lies on this surface; let z(n) denote
the nth intersection of trajectory with this surface (Fig. 2.31(a)). Plotting
the next maximum z(n+ 1) as a function f of the current maximum z(n) we
get the tent-like curve depicted in Fig. 2.31(b). The map z(n+ 1) = f(z(n))
is called the Lorenz map.

Note that the graph of Lorenz map is reminiscent of an old friend, the tent
map T defined as

T (x) =






2x if 0 ≤ x ≤ 1
2

2(1− x) if 1
2 ≤ x ≤ 1.
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FIGURE 2.30
A Lorenz attractor.

2.8 Period-Doubling in the Real World

Period-doubling has been observed in real experiments and the Feigenbaum
number which has been extracted from the experimental bifurcation points
shows quite reasonable agreement with δ = 4.6692 . . . obtained from the lo-
gistic map in section 1.9.

The following table [35] shows the experimental period-doubling scenario
for seven different materials.

Let us now explain one of the experiments that was performed by Libch-
aber [64] and his coworkers. A box of liquid Mercury was heated from below
and a temperature gradient established through the thickness of Mercury. A
dimensionless measure of the temperature gradient is the Rayleigh number
Ra. For Ra less than a critical value, Rc, the fluid remains motionless and the
heat flow up through the mecury via conduction. For Ra > Rc, convection
occurred and cylinderical rolls formed (Fig. 2.29). The rolls were then stabi-
lized by the application of an external DC magnetic field, the rolls tending to
align along the magnetic field direction. For Ra slightly above Rc, the tem-
perature at a fixed point on a roll was observed to be constant. As Ra was
further increased, instability occured with a wave propogating along the roll
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FIGURE 2.31
(a) Lorenz examined the behavior of successive maxima of the 3-coordinate
of the trajectory; this is the vertical direction z in Fig. 2.30. (b) The Lorenz
Map.

TABLE 2.2

Observed period-doubing and Feigenbaum constant δ.
Experiment Period-doubling observed δ

Water 4 4.3± 0.8
Mercury 4 4.4± 0.1
Diode 4 4.5± 0.6

Transistor 4 4.7± 0.3
Josephson 4 4.5± 0.3

Laser feedback 3 4.3± 0.3
Helium 3 4.8± 0.6
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leading to a temperature variation at the point being monitored. As Ra was
further increased, the recorded temperature variations, as a function of time,
indicated a series of period-doubling from which the Feigenbaum number was
extracted.

In all the performed experiments, scientists observed that it was difficult
to obtain accurate data for more than about four period-doublings. However,
it is remarkable that the observed Feigenbaum constant δ is very much in
agreement with that obtained from the theoretical logistic map.

2.9 Poincaré Section/Map

2.9.1

In Section 1.3.2, we explained how a Poincaré map may be used to show the
existence of a periodic solution of a system of two differential equations. In
this section we provide a concrete example of how this scheme works.

Example 2.11

Consider the differential system

dx

dt
= y + x(1 − x2 − y2)

dy

dt
= −x+ y(1− x2 − y2)

or in polar coordinates

dr

dt
= r(1 − r2), dθ

dt
= 1.

Choose the line L as the positive x-axis. Let r0 be an initial point on L. Then
solving the second equation yields θ(t) = t. Thus at t = 2π, θ(2π) = 2π, the
first return of (r0, 0) to the x-axis (L) occurs at t = 2π. Let P denotes the
Poincaré map, then P (r0) = r1, where r1 satisfies

∫ r1

r0

dr

r(1 − r2) =
∫ 2π

0

dt = 2π.
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Using partial fractions
∫ r1

r0

dr

r
+

1
2

∫ r1

r0

dr

1− r −
∫ r1

r0

dr

1 + r
= 2π

ln
r1

√
1− r21

− ln
r0

√
1− r20

= 2π

ln
r1

√
1− r20

r0
√
1− r21

= 2π

r21
1− r21

=
r20

1− r20
e4π.

Hence

r21 =
r20e

4π

1− r20 + r20e4π
=

1
1 + (r−20 − 1)e−4π

and

r1 = [1 + (r−20 − 1)e−4π]−
1
2 .

The Poincaré map is thus given by

P (r) = [1 + e−4π(r−2 − 1)]−
1
2 .

This map has two fixed points r∗1 = 0, r∗2 = 1. The fixed point r∗2 = 1 is
globally asymptotically stable (Fig. 2.32) (Problem 1).

From this we conclude that the differential system has a (globally) asymp-
totically stable limit cycle (excluding the origin); see Fig. 2.33.

2.9.2 Belousov-Zhabotinskii Chemical Reaction

One of the most interesting application of Poincaré sections is to the Belousov-
Zhabotinskii reaction (BZ). In this experiment, malonic acid is oxidized in an
acidic medium by bromate ions. Several chemists, Rous, Simoyi, Wolf, and
Swinney [88, 96] conducted an experiment on the BZ reaction in a continuous
flow stirred tank reactor.

Fresh chemicals are pumped through the reactor at a constant rate to re-
plenish the reactants. The flow rate represents a control parameter. The
scientists measured the concentration of bromide ions B(t) at time periods.
From the collected data, a time series graph is plotted (Fig. 2.34).

Roux et al (1983) suspected the presence of chaos as the time series show an
oscillatory chaotic motion. To verify their conjecture, they used an effective
method, known as attractor reconstruction where delay is introduced. A two
dimensional vector X(t) = (B(t), B(t + T )) is introduced, for some delay
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FIGURE 2.32
The Poincaré map shows the fixed point r∗2 = 1 is globally asymptotically
stable.

FIGURE 2.33
A limit cycle.



Attraction and Bifurcation 113

6 12 18 24 30

170

185

TIME (MINUTES)

B
R

O
M

ID
E

 IO
N

 P
O

T
E

N
T

IA
L 

(m
V

)

FIGURE 2.34
Time series.

T > 0. Plotting the orbit of the vector X(t) in a two-dimensional phase
space, for T = 8.8, the resulting figure looks similar to the Rössler attractor4

(Fig. 2.35). Consider a line L crossing the orbit of X(t) (dashed line). Let
x(1), x(2), . . . , x(n), . . . denote successive values of B(t + T ) at points where
the orbit of X(t) crosses the dashed line L. Plotting xn+1 versus xn yields the
graph shown in Figure 2.36. The graph looks like the logistic map and thus
chaos occurs through period-doubling scenario. Coffman et al [18] verified the
period-doubling scenario in the laboratory (Figure 2.37).

Exercises - (2.9)

1. Show that the fixed point r∗2 = 1 in Example 2.9 is globally asymptoti-
cally stable on (0,∞).

2. Consider the differential system

dr

dt
= br(1 − r), dθ

dt
= 1.

(a) Find the Poincaré map associated with this system.

(b) For which values of b is the orbit at r0 = 1 asymptotically stable?

4See Chapter 3
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FIGURE 2.35
The Rössler attractor.

x(n+1)

x(n)

FIGURE 2.36
x(n+1) versus x(n), where x(n)’s are the successive values of B(t+T ) where
the orbit of X(t) crosses the dashed line L.
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FIGURE 2.37
Period-doubling scenario.

Appendix

Proof of Sharkovsky’s Theorem (Theorem 2.8)

We first need the following lemma.

LEMMA 2.8
Let f be continuous on the interval [a, b], and let I0, I1, . . . , Ik−1 be closed
subintervals of [a, b]. If f(Ij) ⊃ Ij+1, j = 0, 1, . . . , k − 2, f(Ik−1) ⊃ I0, then
the equation fk(x) = x has at least one solution x0 ∈ I0 such that

f j(x0) ∈ Ij , j = 0, 1, . . . , k − 1

PROOF Let us use the notation Ii → Ij or Ij ← Ii to denote f(Ii) ⊃ Ij .
Hence the assumption in the lemma can be written as

I0 → I1 → I2 → . . .→ Ik−1 → I0

Now, for any j, 0 ≤ j ≤ k − 1, Ij+1 = [f(p), f(q)] for some p, q ∈ Ij . If
p < q, we let r be the largest number in [p, q] such that f(r) = f(p) and let
s be the smallest number in [p, q] with f(s) = f(q) and s > r. We claim
that f([r, s]) = Ij+1. We observe that by the intermediate value theorem we
have f([r, s]) ⊃ Ij+1. Assume now there exists t with r < t < s such that
f(t) /∈ Ij+1. Without loss of generality, suppose that f(t) > f(q). Applying
the intermediate value theorem again yields f([r, t]) ⊃ Ij+1. Hence there is
x ∈ [r, t) such that f(x) = f(q), which contradicts our assumption that s
is the smallest number in [p, q] with f(p) = f(q). The case where p < q is
similar.
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Let I∗j = [r, s]. Then we have I∗j ⊃ Ij and f(I∗j ) = Ij+1. Summarizing, there
exist I∗j ⊃ Ij such that f(I∗j ) = I∗j+1. This implies that there exists I∗k−1 ⊃ Ik1

with f(I∗k−1) = I0, I
∗
k−2 ⊃ Ik−2 with f(I∗k−2) = I∗k−1, . . . , and I

∗
0 ⊃ I0

such that f(I∗0 ) = I∗1 . This implies that f j(I∗0 ) = I∗j , for j = 0, 1, . . . , k −
2, and fk(I∗0 ) ⊃ I∗0 . Hence, by Theorem 1.2, fk has a fixed point x0 ∈ I∗0 ⊃
I0. This completes the proof of the lemma.

PROOF OF THEOREM 2.8 Assume that f has a periodic point x0
of prime odd period k. Reorder the points in the orbit of x0 and write it
as x1, x2, x3, . . . , xk with xi < xi+1, i = 1, 2, . . . , k − 1. Observe that f(xk)
must be less than xk. Let j be the largest index for which f(xj) > xj . Let
I1 = [xj , xj+1]. Since f(xj+1) ≤ xj+1, we have f(xj+1) ≤ xj . Consequently,
f(I1) ⊃ I1 and thus I1 → I1. Since x0 is not of period 2, f(I1) must contain
at least one other interval of the form [xi, xi+1].

Let U2 denote the union of all intervals of the form [xi, xi+1] that are covered
by f(I1). Then U2 ⊃ I1 and U2 = I1. Moreover, if I2 = [xi, xi+1] is any
interval in U2, then I1 → I2.

Let U3 denote all the intervals of the form [xi, xi+1] that are covered by the
image of some interval in U2. Repeating this process inductively, we let Ur+1

be the union of all intervals that are covered by the image of some interval
in Ur. Observe that if Ir+1 is any interval in Ur+1, there is a sequence of
intervals I2, I3, . . . , Ir with Ii ⊃ Ui such that I1 → I2 → · · · → Ir → Ir+1.

Note that the sequence Ur forms an increasing union of intervals. Since the
orbit {x1, x2, . . . , xk} is finite, there exists an s such that Us+1 = Us. For this
s, Us contains all intervals of the form [xi, xi1 ], for otherwise x0 would have a
period less than k. Observe that there is at least one interval [xi, xi+1] = I1
in some Ur whose image covers I1. This is clear since k is odd and thus there
are more xi’s on one side of I1 than on the other side. Hence some xi’s must
change sides under f , and some must not. Thus, there is at least one interval
whose image covers I1. This implies that there is a chain of the form (see
Fig. 2.38) I1 → I2 → · · · → Is → I1 where Ii is of the form [xj , xj+1] for some
j, and I2 = I1. Moreover, we assume that s is the smallest integer for which
this chain exists, i.e., this chain is the shortest nontrivial path from I1 to I1.

If s < k − 1, then one of loops I1 → I2 → · · · → Is → I1 or I1 → I2 →
· · · → Is → I1 → I1 gives a fixed point of fm with m odd and m < s. This
point must have a prime period less than s since I1 ∩ I2 consists of only one
point, and that point has period greater than m. Therefore s = n− 1.

Since s is the smallest integer that works, we cannot have I& → Ij for any
j > C+1. This implies that the orbit of x0 should be ordered in R in one two
possible ways as depicted in Figs. 2.39 and 2.40.

Thus we can extend the diagram in Fig. 2.38 to that shown in Fig. 2.41.
This proves Sharkovsky’s theorem for the case when the period k is odd.
Note that periods larger than k are given by cycles of the form I1 → I2 →

· · · → Ik−1 → I1 → · · · → I1. The smaller even periods are given by cycles of
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FIGURE 2.38
A chain I1 → I2 → . . .→ Ik → I1.

the form

Ik−1 → Ik−2 → Ik−1
Ik−1 → Ik−4 → Ik−3 → Ik−2 → Ik−1

etc.
Observe that if k is even, then f must have a periodic point of period 2. This

follows from the above argument provided we can guarantee that some xi’s
change sides under f and some do not. For if this is not true, then all of the xi’s
must change sides and hence f [x1, xj ] ⊃ [xj+1, xj ] and f [xj+1, xk] ⊃ [x1, xj ].
But then we must have a 2-periodic point in [x1, xj ].

Now we prove the theorem for k = 2m. Let n = 2& with C < m. Consider
g = fk/2. By assumption g has a periodic point of period 2m−&+1. Thus g has
a point z of period 2. The point z has period 2& under f . Finally, we assume
that k = p.2m, where p is odd. This will be left to the reader as exercises.

Exercises

1. Prove that if f has period p.2m with p odd, then f has period q.2m with
q odd and q > p.

2. Prove that if f has period p.2m with p odd, then f has period 2&, C ≤ m.

3. Prove that if f has period p.2m with p odd, then f has period q.2m with
q even.
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In-1
In-3

I2I4

I1 I3 I5

In-2

FIGURE 2.39
One possible ordering of Ij ’s.

In-2
In-3

I2 I4I1

I3I5

In-1

FIGURE 2.40
Another possible ordering of Ij ’s.

FIGURE 2.41
A chain for odd periods.
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Chaos in One Dimension

The “butterfly effect”: Does the flap of a butterfly’s wings in Brazil
set off a tornado in Texas?

Edward Lorenz

3.1 Introduction

The origin of the word chaos (χα′ os) is the Greek verb chasken, meaning
“to yawn” or “to gape open,” referring either to the primeval emptiness of
the universe before things came into being, or the abyss of Tartarus, the
underworld (Encyclopedia Britannica, Vol. 5, p. 276). In modern dictionaries,
chaos is defined as “total disorder and confusion.”

The study of what we now call “chaotic systems” is due to Henri Poincaré
and certainly to the ergodic theorists Birkhoff [11] and Von Neuman [106] in
the 1930s. The expression “chaos” became popularized through the paper of
Li and Yorke [62], “Period three implies chaos.” Examples of chaotic sys-
tems include turbulent flow of fluids, population dynamics, irregularities in
heartbeat, plasma physics, economic systems, weather forecasting, etc. These
systems share the property of having a high degree of sensitivity to initial con-
ditions. In other words, a very small change in initial values (due to error in
measurement, noise, etc.) will multiply in such a way that the new computed
system bears no resemblance to the one predicted.

Meteorologist and mathematician Edward Lorenz [65] introduced one of
the most interesting examples of chaotic systems. In his study of weather
forecasting, he concluded that weather is unpredictable, although it is deter-
ministic. Thus, long-term weather forecasting would always elude science.
This is due again to the fact that weather patterns are sensitive to initial
conditions. Lorenz called this magnification of errors in weather forecasting
the “butterfly effect.” The metaphor says the flapping of a butterfly’s wings
in Brazil may cause a tornado in Texas several weeks later.

Another simple example of a chaotic system is the ball in a two-well po-
tential as shown in Fig. 3.1. If the base vibrates with periodic motions of
sufficiently large amplitude, the ball will jump from one well to the other in

119
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FIGURE 3.1
A pinball machine.

a chaotic manner. A popular model of such a mechanical system is a pinball
machine where the ball’s movement is again totally unpredictable.

Finally, it has been recognized by Sharkovsky [93], Li and Yorke [62], and
many others that there is a hidden, self-organizing order in chaotic systems.
A certain degree of order in chaotic systems has led to various definitions of
chaos in literature. In this book, we adopt Devaney’s definition of chaos (see
Section 3.4).

In Section 3.9 we present a comparative study of the various notions of
chaos that are used in the literature.

Devaney’s definition of chaos has three components: transitivity, sensitive
dependence on initial conditions, and the density of the set of periodic points.
In the sequel we study these three important concepts in detail.

3.2 Density of the Set of Periodic Points

One of the building blocks of chaos is the abundance of periodic points in the
system. This can be described mathematically as the presence of a dense set
of periodic points. So what is a dense set?

DEFINITION 3.1 Let I be an interval in R. Then a set A is said to be
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dense in I if for any x ∈ I any open interval containing x must intersect A.
In other words, for each δ > 0, the open interval J = (x− δ, x+ δ) contans a
point in A.

Example 3.1

The set of rational numbers Q is dense in R.

SOLUTION To prove this we consider x ∈ R and we write it in its
decimal expansion

x =
∞∑

n=0

dn

10n

where dn ∈ {0, 1, . . . , 9}. Let δ > 0. Then there exists a positive integer m

such that 10−m < δ. Consider the rational number y =
m∑

n=0

dn

10n . Then

|x− y| =
∞∑

n=m+1

dn

10n
≤

∞∑

n=m+1

9
10n

=
9

10m+2

1− 1
10

=
1

10m
.

Hence |x− y| < δ. This proves that Q is dense in R.
Similarly, one may show that for any interval I in R, the set Q∩ I is dense

in I.

In the next example we revisit the tent map and study the density of the
set of periodic points in a greater detail.

Example 3.2

(The Tent Map Revisited). Think about the tent map T that we previ-
ously encountered, which is defined as

T (x) =






2x; 0 ≤ x ≤ 1
2

2(1− x); 1
2 < x ≤ 1.

Show that the set of periodic points of T is dense in the closed interval [0, 1].

SOLUTION Before formalizing our investigation, let us do some explo-
ration. Recall that the fixed points of T are x∗1 = 0 and x∗2 = 2

3 . Consider
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now the following rational numbers:

1
3

T
→

2
3 ;

1
3 is eventually fixed.

1
4

T
→

1
2

T
→ 1 T

→ 0; 1
4 is eventually fixed.

3
4

T
→

1
2

T
→ 1 T

→ 0; 3
4 is eventually fixed.

1
5

T
→

2
5

T
→

4
5

T
→

2
5 ;

1
5 is eventually 2-periodic.

2
5

T
→

4
5 ;

2
5 is of period 2.

3
5

T
→

4
5

T
→

2
5 ;

3
5 is eventually 2-periodic.

4
5

T
→

2
5 ;

4
5 is of period 2.

Clearly, all points of the form r
2k are eventually fixed points. Moreover, points

of the form r
s with s odd are eventually periodic when r is also odd, and

periodic if r is even. These observations will be established rigorously by the
following two lemmas. However, our main objective here is to show that the
set of periodic points is dense. This is done in Theorem 3.1.

LEMMA 3.1
A point b ∈ (0, 1) is eventually periodic under T if and only if it is rational.

PROOF Let b = r
s be in its reduced form. First, assume that s = 2k+1

be an odd integer. Then T n
(

r
s

)
= even integer

s , for all n ∈ Z+. Moreover,

there are exactly k numbers in the interval [0, 1] of the form even integer
s ,

namely, 2
s ,

4
s , . . . ,

2k
s . Hence the orbit of the point b has at most k elements,

and consequently b is eventually periodic. On the other hand, if s = 2k is an
even integer, then for some positive integer m either:

1. Tm(b) = integer
odd integer, which we have discussed above, or

2. Tm(b) = 1 and hence Tm+n(b) = 0 for all n ∈ Z+; b is eventually fixed.

Thus, in either case, b is eventually periodic. Conversely, assume that b is
an eventually periodic point of T .

Generally, T n(b) = tn ± 2nb, for some integer tn. Since b is eventually
periodic, T n(b) = T n+k(b) for some positive integer k. Thus, tn+k ± 2n+kb =
tn ± 2nb, or

b =
tn+k − tn
±2n ∓ 2n+k
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which shows that b is rational.

LEMMA 3.2
Let b = r

s be a rational number in the interval (0, 1). Then, b is a periodic
point of the tent map T if and only if r is an even integer and s is an odd
integer.

PROOF Let b = r
s ∈ (0, 1) with r being an even integer and s an odd

integer. It follows from Theorem 3.1 that the point b is an eventually periodic
point of the tent map T . Therefore, there exists a least nonnegative integer
m and a least positive integer n > m such that Tm(b) = T n(b). If m = 0, we
are done and b is an n-periodic point of T . But, suppose that m > 0. Then,
from the definition of T ,

Tm−1
(r

s

)
=

even integer
s

.

Thus,

Tm
(r

s

)
=






2(EI)
s

=
4(I)
s
, if 0 ≤ Tm−1

(r

s

)
≤ 1

2

2
(

1− EI
s

)

=
4(I)
s

+ 2, if
1
2
< Tm−1

(r

s

)
≤ 1,

where EI is an even integer and I is an integer. Hence, for Tm( r
s ) to be equal

to T n( r
s), we must either have both Tm−1( r

s) and T n−1( r
s) in the interval

[0, 12 ] or have both in the interval (12 , 1].
Without loss of generality, assume that both Tm−1( r

s) and T
n−1( r

s ) are in
the interval [0, 12 ]. Then,

2Tm−1
(r

s

)
= Tm

(r

s

)
= T n

(r

s

)
= 2T n−1

(r

s

)
.

Consequently, Tm−1( r
s) = T n−1( r

s ), which contradicts the minimality of m
and n. Therefore, m = 0 and b is an n-periodic point of the tent map T .

The converse is left to the reader as Problem 1.

THEOREM 3.1
The set of periodic points of the tent map T is dense in the closed interval
[0,1].

PROOF Let J = (a, b) be an open subinterval of [0, 1] where t = b −
a. Choose an odd integer s such that s > 2

t . Consider now that the set

A =
{
1
s
,
2
s
, . . . ,

(s− 1)
s

}

. We observe that for any two successive numbers
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r

s
,
r + 1
s

in A,
r + 1
s

− r

s
=

1
s
<
t

2
. This implies that there are two successive

numbers
m

s
and

(m+ 1)
s

in A that belong to the interval J . Now, either m
or m + 1 is an even integer. Thus, the interval J contains a point c of the
form c = even integer

odd integer . Now, by virtue of Lemma 3.2, the point c is a periodic

point of T . Consequently, the set of periodic points of T is dense in [0, 1].

3.3 Transitivity

In this section we study topological transitivity of maps on R or on an interval
I. We begin our exposition by stating the definition.

DEFINITION 3.2 Let f be a map on an interval I (or R). Then f is
said to be topologically transitive if for any pair of nonempty open intervals
J1 and J2 in I there exists a positive integer k such that fk(J1) ∩ J2 = ∅.
Equivalently, one may replace the interval J1 and J2 be open subsets U1 and

U2 of I. Note that an open set is just the union of open intervals.

Intuitively, under a transitive map, a point in I wanders all over I, and its
orbit gets as close as we wish to every other point in I.

In many instances, it is easier to use the following criterion to prove that
the given map is transitive.

THEOREM 3.2

If the map f : I → I on the interval I has a dense orbit, then it is topologically
transitive. The converse is true if I is a closed interval.

PROOF Suppose that the point a ∈ I has a dense orbit. Let U and V
be any pair of nonempty open sets in I. There are positive integers r, s such
that f r(a) ∈ U and fs(a) ∈ V . Let b = f r(a) and c = fs(a). Without loss of
generality, assume that k = s−r ≥ 0. Then fk(b) = fs−r(f r(a)) = fs(a) = c.
Consequently, fk(U) ∩ V = φ. The proof of the converse is beyond the scope
of this book.

In the following example, the doubling map D will play an important role
in our discussion of chaos.
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0.5 1

1

0

FIGURE 3.2
The doubling map D.

Example 3.3
The doubling map D : [0, 1]→ [0, 1] is defined as

D(x) =






2x for 0 ≤ x < 1
2 ,

2x− 1 for 1
2 ≤ x < 1,

0 for x = 1.

Equivalently, the doubling map D may be defined in the compact form

D(x) = 2x (mod 1),

where “ (mod 1) ” stands for modulo 1. This means we drop the integral part
leaving only the fractional part. For example, D(0.8) = 1.6 (mod 1) = 0.6

We are going to show that the map D is transitive and has a dense set of
periodic points.

THEOREM 3.3
Let D : [0, 1]→ [0, 1] be the doubling map. Then PerD is dense in [0, 1] and
the map D is topologically transitive.

PROOF We first show that PerD is dense in [0, 1]. Let x ∈ [0, 1] be

written in its binary expansion, x =
∞∑

j=1

aj

2j where aj is either 0 or 1. Then

D(x) = a1 +
∞∑

j=2

aj

2j−1 (mod 1) =
∞∑

j=2

aj

2j−1 =
∞∑

r=1

ar+1
2r (since a1 = 0 or 1 and

thus omitted under “(mod 1)”).
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Note that the nth iterate simply shifts the expansion by n places:

Dn(x) = Dn




∞∑

j=1

aj

2j



 =
∞∑

r=1

ar+n

2r
.

Moreover, if a point x has an expansion that repeats every n places, aj+n = aj

for all j, then Dn(x) = x and, consequently, x is a periodic point of period n.

Now given a point x =
∞∑

j=1

aj

2j ∈ [0, 1] and δ > 0, there exists a positive integer

N such that 1
2N < δ. Consider the N -periodic point y =

∞∑

j=1

bj

2j in [0, 1], where

b1, b2, . . . , bN repeats and b1 = a1, b2 = b2, . . . , bN = aN . Then

|x− y| =
∣
∣
∣
∣
∣
∣

∞∑

j=N+1

aj

2j
−

∞∑

j=N+1

aj

2j

∣
∣
∣
∣
∣
∣
≤

∞∑

j=N+1

1
2j

=
1
2N

< δ.

Hence PerD is dense in [0, 1].
Next, we show that D is topologically transitive. To show this, by virtue

of Theorem 3.2, it suffices to produce a dense orbit. Consider the point

z =
∞∑

j=1

cj

2j , where cj ’s appear as follows

01
1− block

,
00 01 10 11
2− block

,
000 001 010 100 011 101 110 111

3− block
.

This sequence consists of all the blocks of 0’s and 1’s of length 1 (there are
only 2), of length 2 (these are four 2-blocks), etc. We claim that the orbit

O(z) is dense in [0, 1]. Now let x =
∞∑

j=1

aj

2j be an arbitrary point in [0, 1]

and let δ > 0 be given. Then, there exists a positive integer N such that
1
2N < δ. Now the string a1, a2, . . . , aN must appear as one of the N -blocks
in the binary expansion of z. Hence there is a positive integer k such that

Dk(z) =
∞∑

r=1

cr+k

2r with a1 = ck+1, a2 = ck+2, . . . , aN = ck+N . Now

|Dk(z)− x| =
∣
∣
∣
∣
∣
∣

∞∑

j=N+1

aj

2j
−

∞∑

r=N+1

cr+k

2r

∣
∣
∣
∣
∣
∣
≤

∞∑

j=N+1

1
2j

=
1
2N

< δ.

Hence O(z) is dense in [0, 1].
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Exercises - (3.2 and 3.3)

In Problems 1 and 2, consider the Baker map B : [0, 1]→ [0, 1] defined as

B(x) =

{
2x for 0 ≤ x < 1

2 ,
2x− 1 for 1

2 ≤ x ≤ 1.

(Notice the difference between the Baker map and the doubling map.)

1. (a) Prove that x ∈ (0, 1) is a periodic point of the map B if x =
r

(2n − 1)
, for r = 0, 1, 2, . . . , 2n − 2.

(b) Prove that PerB is dense in [0, 1].

2. Show that B is transitive.

3. Show that the tripling map f(x) = 3x (mod 1) is topologically transitive
and the set of periodic points Perf is dense in [0, 1] (use a ternary
expansion).

4. Consider the map f : [0, 1)→ [0, 1) defined by f(x) = 10x mod 1.

(a) Show that the set of periodic points of f is dense in [0, 1).

(b) Show that f is transitive.

In Problems 5 and 6 consider the double angle-map g : S1 → S1 on the
unit circle S1 defined as g(θ) = 2θ, where θ represents the point eiθ on
S1 (Fig. 3.3).

5. Show that g is topologically transitive.

6. (a) Show that a point θ ∈ S1 is n-periodic if it is of the form

θ =
2kπ

2n − 1
, for some positive integer k.

(b) Show that Perg is dense in S1. In S1 an open interval (x− δ, x+ δ)
is now replaced by an open arc (θ − δ, θ + δ).

7. Consider the triple angle map h : S1 → S1 on the unit circle S1 defined
as h(θ) = 3θ.

(a) Show that the set of periodic points Perh is dense in S1.

(b) Show that h is topologically transitive.
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FIGURE 3.3
The double angle-map.

8. Let f : I → I be a continuous map on an interval I. Prove that f is
topologically transitive and Perf is dense in I if and only if for each pair
of open intervals J1 and J2 in I, there exists a periodic point p ∈ J1 and
a nonnegative integer k such that fk(p) ∈ J2.

9.* (Term Project)[73]
Let f : I → I be a one-to-one continuous map on the closed bounded
interval I.

(a) Show that either f is strictly increasing or f is strictly decreasing
on I.

(b) Show that f is not transitive on I.

(c) Show that if f is strictly increasing, then every periodic point is a
fixed point. Moreover, if f has a non-fixed point, then the set of
periodic points Perf is not dense in I.

(d) Show that if f striclty decreasing, then there is exactly one fixed
point and all other periodic points are of period 2. Moreover, if
f2(x) = x for some x ∈ I, then the set of periodic points Perf is
not dense in I.

10.* [102] Let f : I → I be a continuous map on an interval I. Show that
the following statements are equivalent.

(a) f is transitive and its set of periodic point Perf is dense in I.

(b) Given any two open subintervals J1 and J2 in I, there exists a
periodic point p ∈ J1 and a nonnegative integer k such that fk(p) ∈
J2.
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3.4 Sensitive Dependence

If you look back at the introduction of this chapter you will remember that
one of the main characteristics of a chaotic system is its sensitive dependence
on initial conditions or, metaphorically speaking, the butterfly effect. In other
words, a small error in the initial data will be magnified significantly by iter-
ation. Therefore, in such a system, computer calculations may be misleading.
Below is the formal definition of sensitivity.

DEFINITION 3.3 A map of an interval I is said to possess sensitive
dependence on initial conditions if there exists ν > 0 such that for any
x0 ∈ I and δ > 0, there exists y0 ∈ (x0 − δ, x0 + δ) and a positive integer k
such that

∣
∣fk(x0)− fk(y0)

∣
∣ ≥ ν.

The number ν will be called the sensitivity constant of f .

The simplest function with sensitive dependence is the linear map f(x) =
cx, c > 1. For the initial points x0, and x0 + δ, we have

fn(x0 + δ)− fn(x0) = cn(x0 + δ)− cnx0
= cnδ.

Hence, |fn(x0 + δ)− fn(x0)| will increase to ∞ as n goes to ∞, regardless
of how small δ is. However, this linear map is not an interesting example
because it does not possess any of the other properties of chaos.

A more interesting example is provided by the quadratic map F4(x) =
4x(1 − x). In Fig. 3.4, we let x0 = 0.09 and x0 + δ = 0.11. We observe that
after each iteration the error almost doubles.

A similar phenomenon is observed in the tent map T .
We now examine this phenomenon in the doubling map that we discussed

in Example 3.3.

Example 3.4

(The Doubling Map Revisited). Consider the doubling map D : [0, 1]→
[0, 1]. We will show that D has sensitive dependence on initial conditions. Let
I1 =

[
0, 12

)
and I2 =

[
1
2 , 1

)
. Then for any two points x, y ∈ [0, 1), either (i)

x, y ∈ I, or (ii) x ∈ I1, y ∈ I2.

SOLUTION Case (i): If x, y ∈ I1, then |D(x)−D(y)| = |2x−2y| = 2|x−y|
on the other hand if x, y ∈ I2, then |D(x)−D(y)| = |2x−1−2y+1|= 2|x−y|.
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FIGURE 3.4
The error almost doubles after each iteration.

Case (ii): Suppose now that x ∈ I1 and y ∈ I2. Then |D(x) − D(y)| =
|2x − 2y + 1| ≥ 1 − 2|x− y|. Note that if |x− y| < 1

4 , then −2|x− y| > − 1
2 .

Hence
|D(x)−D(y)| ≥ 1− 1

2
=

1
2
.

Select ν = 1
4 where ν is the sensitivity constant of D. If x0 ∈ I and δ > 0,

we pick any point y0 ∈ (x0 − δ, x0 + δ). If x0, y0 ∈ I1 or I2, then the distance
between xj = Dj(x0) and yk = Dk(y0) will at least double the distance
between yk−1 and xk−1. Hence

|yk − xk| ≥ 2|yk−1 − xk−1|
≥ 2k|y0 − x0|.

Hence, eventually |xj − yj | ≥ 1
4 = ν for some positive integer j. On the other

hand if x0 ∈ I1 and y0 ∈ I2 and |x0 − y0| < 1
4 , then |D(x0) − D(y0)| >

1
4 = ν. Finally if x0 = 0 or x0 = 1, the above argument will carry over in a
straightforward manner.

This exponential stretching exhibited by the preceding map may be ex-
pressed by the Liapunov exponent λ. Roughly speaking, the Liapunov
exponent λ(x) at a point x measures the growth in error per iteration or the
average loss of information during successive iterates of points near x.

How do we define this formally? We begin by considering a point x0 and a
neighboring point x0 + δ. Then the error en is defined as

en = |fn(x0 + δ)− f(x0)|,
and the relative error

∣
∣
∣
en
δ

∣
∣
∣ =

|fn(x0 + δ)− fn(x0)|
δ

.
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If the map f possesses sensitive dependence on initial conditions, we expect
the relative error en

δ to grow exponentially with n, and thus

enλ̃ = lim
δ→0

en
δ

= lim
δ→0

|fn(x0 + δ)− fn(x0)|
δ

, for some λ̃ > 0.

Hence

eλ̃n =
∣
∣
∣
∣
d

dx
fn(x0)

∣
∣
∣
∣ = |f ′(x0)f ′(x(1)) . . . f ′(x(n− 1))|

and

λ̃ =
1
n

n−1∑

k=0

ln f ′(x(k)).

This motivates us to define the Liapunov exponent λ(x0) for a map f as

λ(x0) = lim
n→∞

1
n
ln |[fn(x0)]′|. (3.1)

We can easily verify that

ln |[fn(x0)]′| =
n−1∑

k=0

ln |f ′(x(k))|, (3.2)

where x(k) = fk(x0). Thus, Equation 3.1 becomes

λ(x0) = lim
n→∞

1
n

n−1∑

k=0

ln |f ′(x(k))|. (3.3)

Formula (3.3) tells us that the Liapunov exponent (the rate of convergence
of two orbits) is the rate of change of the natural logarithm of the absolute
value of the derivatives of the map evaluated at the orbit points. Note that
if the application of the map to two nearby points leads to two points further
apart, then the absolute value of the derivative of the map is greater than 1
when evaluated at these orbit points, and hence its logarithm is positive. If
the orbit points continue to diverge, then the rate of change of the logarithm
of the absolute values of the derivatives is positive, and hence the presence of
sensitive dependence on initial conditions.

As we will see in the examples that follow, if the Liapunov exponent λ is
positive, then sensitive dependence exists. Moreover, as the Liapunov expo-
nent becomes larger, the magnification of error becomes greater.

Example 3.5
Find the Liapunov exponent of the tent map

T (x) =






2x for 0 ≤ x ≤ 1
2

2(1− x) for 1
2 < x ≤ 1.
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FIGURE 3.5
Failure of the rotation map Rλ(θ) = θ + 2πλ to be sensitive dependent.

SOLUTION Let x0 ∈ (0, 1). Then,

T (x(k)) =






2x(k) if 0 ≤ x(k) ≤ 1
2

2(1− x(k)) if 1
2 < x(k) ≤ 1.

Hence, |T ′(x(k))| = 2.
By Equation (3.3), we have

λ(x0) = lim
n→∞

1
n

n−1∑

k=0

ln 2 ≈ 0.6931.

This implies that the tent map possesses sensitive dependence.

Example 3.6
Consider the rotation map on the unit circle S1 defined by Rλ(θ) = θ + 2πλ
for some λ ∈ R. Hence |R′

λ(x)| = 1 and

λ(x0) = lim
n→∞

1
n

n−1∑

k=0

ln 1 = 0.

This clearly indicates that the rotation map Rλ fails to be sensitive (see
Fig. 3.5).

A Numerical Scheme to Compute Liapunov Exponents

It is often the case that one may not be able to exactly compute Liapunov
exponents. In this case, one resorts to numerical schemes. We will illustrate
the scheme for the logistic map Fµ(x) = µx(1−x). For a fixed value of µ, start
with an initial point say 0.5. Discard the first 400 (transient) iterates. Then
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FIGURE 3.6
The graph of the Liapunov exponent λ of the logistic map Fµ as a function
of µ.

compute an additional 100 iterates. The Liapunov exponent is now estimated
by the formula

λ(0.5) =
1
500

500∑

k=401

ln |µ− 2µx(k)|.

Starting with µ = 3 and increasing µ by 1
1000 , we end up with Fig. 3.6.

The negative spikes corresponds to the 2n-cycles where we have stable cycles
that do not possess sensitive dependence. Note also that λ remains negative
for 3 < µ < µ∞ ≈ 3.57, and approaches zero at the period-doubling bifur-
cation. As λ increases toward 4, it oscillates between positive and negative
values. The positive values of λ increase to ln 2 as we get closer and closer to
λ = 4, which demonstrates that Fµ is increasingly sensitive to initial condi-
tions.

REMARK 3.1 As was shown in the case of the tent map T , it is easy
to compute Liapunov exponents if the derivative of the considered map is
constant. Another instance is when the point we are considering is either
periodic or eventually periodic. For if {x(0), x(1), . . . , x(k− 1)} is a k-cycle of

a point x0 = x(0) under a map f , then, λ(x0) = 1
k

k−1∑

j=0

ln |f ′(x(j))|. Similarly,

if a point y0 is eventually periodic to a k-cycle {x(0), x(1), . . . , x(k − 1)},

then λ(y0) = 1
k

k−1∑

j=0

ln |f ′(x(j))| (Problem 8). The latter phenomenon may

be extended to asymptotically periodic points. A point y0 is asymptotically
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periodic if its orbit converges to a periodic orbit {x(0), x(1), . . . , x(k− 1)} for
some k ∈ Z+. In other words, lim

n→∞ |y(n)− x(n)| = 0.

THEOREM 3.4
Suppose that a point y0 is asymptotically periodic to a periodic point x0 such
that f ′(y(k)) = 0 for all k. Then λ(y0) = λ(x0), provided both Liapunov
exponents exist.

PROOF This is left to the reader as Problem 13.

In reference [2] a chaotic orbit of a map f is defined to be a bounded orbit
with a positive Liapunov exponent, but not asymptotically periodic. Although
this is a plausible definition, it is not universally accepted yet and we will not
adopt it in this book.

Exercises - (3.4)

A rough estimate of a Liapunov exponent λ(x0) of a map f maybe obtained
by the formula

λ(x0) ≈ 1
n
ln

∣
∣
∣
∣
en
e0

∣
∣
∣
∣ , (3.4)

where e0 is the initial error in x0 and en = |fn(x0 + e0)− fn(x0)| is the error
after n iterations.

In Problems 1–5, use Formula (3.4) to approximate the Liapunov exponent.

1. f(x) = 4x(1− x) on [0, 1], n = 5, 6, 7, x0 = 0.1, e0 = 0.01

2. f(x) = 4x3 − 3x on [−1, 1], n = 5, 6, 7, x0 = 0.1, e0 = 0.01

3. f(x) = sinx on [0, 2π], n = 5, 6, 7, x0 = 0.3, e0 = 0.01

4. f(x) = 8x4 − 8x2 on [−1, 1], n = 5, 6, 7, x0 = 0.1, e0 = 0.01

5. Let

f(x) =






3x for 0 ≤ x ≤ 1
3

2− 3x for 1
3 < x ≤ 2

3
3− 3x for 2

3 < x ≤ 1.

(a) Find the Liapunov exponent of f .

(b) Show directly that f possesses sensitive dependence on initial con-
ditions.
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6. (a) Find the Liapunov exponent of the Baker map

B(x) =
{
2x, 0 ≤ x < 1

2
2x− 1, 12 ≤ x ≤ 1.

(b) Show directly that B has sensitive dependence on initial conditions.

7. Consider the generalized Baker map

Bµ(x) =






2µx if 0 ≤ x < 1
2

µ(2x− 1) if 1
2 ≤ x ≤ 1,

where m > 0.

(a) Determine the Liapunov exponent of Bµ.

(b) Determine the values of µ for which Bµ has sensitive dependence.

8.* Suppose that y is an eventually periodic point of a map f where it joins
a k-cycle {x1, x2, . . . , xk} of a point x. Show that

λ(y) = λ(x) =
1
k

k∑

j=1

|f ′(xj)|.

9. Show that for 1 < µ < 3 and µ = 2, the Liapunov exponent of the
logistic map Fµ(x) = µx(1− x) is given by λ(x) = ln |2− µ|.

10. Define the Liapunov number L(x0) of a point x0 = x(0) as

L(x0) = lim
n→∞(|f ′(x0)||f ′(x(1))| . . . |f ′(x(n))|) 1

n .

Show that if L is the Liapunov number of x0 under f , then Lk is the
Liapunov number of x0 under fk.

11. Show that if lim
n→∞xn = x, then

lim
n→∞

1
n

n∑

i=1

xi = x.

12. Show that any asymptotically periodic point of the tent map T must be
eventually periodic.

13. Prove Theorem 3.4. (Hint: Use Problem 12.)

14. A map f is said to be expansive if there exists δ > 0 such that for any
x, y ∈ X with x = y, there exists k ∈ Z+ with d(fk(x), fk(y) > δ.
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FIGURE 3.7
Graph of f·4.

(a) Show that the map f(x) = cx, c > 1 is expansive.

(b) Show that neither the tent map T nor the logistic map F4 is ex-
pansive.

15. (Senior Project/Master’s Thesis) [73] For each α ∈ R, defined the func-
tion fα : [0, 1)→ [0, 1) by fα(x) = frac(x−α). To explain frac, we write
a given number x as the sum of an integer and a number frac(x) in [0, 1),
which is the fractional part of x. For instance, f·4(0) = frac(0 − ·4) =
frac(−1 + ·6) = ·6; f·4(·5) = frac(·5− ·4) = ·1 (Fig. 3.7).

(a) Show that

fα(x) =

{
x+ 1− frac(α) if 0 ≤ x < frac(α),
x− frac(α) if frac(α) ≤ x < 1.

(b) Show that fα ◦ fβ = fα+β, for any α, β ∈ R.

(c) Show that fα is one-to-one.

(d) Show that if α is not an integer, then fα has a discontinuity at
frac(α), but fα is continuous and increasing on each of the intervals
[0, frac(α)) and [frac(α), 1).

(e) Show that fα has a periodic point if and only if α is rational and
if α = ± p

q in reduced form, p, q are positive integers, then every
point in [0, 1) is a periodic point of period q.

(f) If α is irrational, show that fα is transitive and possesses sensitive
dependence on initial conditions but has no periodic points.
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3.5 Definition of Chaos

We are now ready to define chaos according to Devaney [25].

DEFINITION 3.4 A map f : I → I, where I is an interval, is said to
be chaotic if:

1. f is transitive

2. The set of periodic points P is dense in I

3. f has sensitive dependence on initial conditions

REMARK 3.2 Recently, Banks et al. [4] showed that conditions (1)
and (2) in Definition 3.4 imply Condition (3) of sensitive dependence on initial
conditions. However, no other two conditions imply the third (see Problems 5
and 6).

We start this section by establishing Banks et al. result [4].

THEOREM 3.5

Let f : I → I be a continuous map on an interval I. If f is transitive and
its set of periodic points is dense, then f possesses sensitive dependence on
initial conditions, i.e., f is chaotic.

To simplify the proof of this theorem, we first present the following lemma.

LEMMA 3.3

Let f : I → I be a continuous map on an interval I such that f has at least
two periodic points with nonoverlapping orbits. Then, there exists ε0 > 0 such
that for every x ∈ I there is a periodic point p ∈ I with d(x, fn(p)) ≥ ε0, for
all n ∈ Z+.

PROOF Choose two periodic points p0 and q0 such that O(p0)∩O(q0) =
∅. If O(p0) = {p0, p1, . . . , pn−1}, and O(q0) = {q0, q1, . . . , qm−1}, we let ε0 =
1
2 min {d(pi, qj) : i = 0, 1, . . . , n − 1, j = 0, 1, . . . ,m − 1}. Let x ∈ I be
an arbitrary point. Then by the triangle inequality we have for any r, s ∈
Z+, 2ε0 ≤ d(f r(p0), fs(q0)) ≤ d(f r(p0), x)+d(x, fs(q0)). So, if d(f r(p0), x) ≤
ε0, then d(x, fs(q0)) ≥ ε0 for all s ∈ Z+ and if d(fs(q0), x) ≤ ε0; then
d(x, f r(p0)) ≥ ε0 for all r ∈ Z+. This completes the proof of the lemma.
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q=f    (z)

FIGURE 3.8
There exists z ∈ Bδ(x) such that fm(z) ∈ U .

PROOF OF THEOREM 3.5 We let our final ε be ε = 1
4ε0, where ε0,

as in the preceding lemma. Let x ∈ I and δ > 0 be given, with δ < ε (without
loss of generality). By the density of the set of periodic points, there exists
a k-periodic point y ∈ I such that |x − y| < δ. By Lemma 3.3 there exists a
periodic point p such that

|x− fn(p)| ≥ ε0 = 4ε, for all n ∈ Z
+. (3.5)

Let

U =
k−1⋂

i=0

f−i(Bε(f i(p)). (3.6)

It is easy to show that

U = {z : |f i(z)− f i(p)| < ε for 0 ≤ i ≤ k − 1}. (3.7)

Then, U is open1 and nonempty since it contains at least the point p (Prob-
lem 1). Since f is transitive there exists z ∈ Bδ(x) such that fm(z) ∈ U for
some m ∈ Z+ (see Fig. 3.8). Let r ∈ Z+ such that m

k < r < m
k + 1 or 0 <

kr −m < k.
Now,

|x− fkr−m(p)| ≤ |x− y|+ |y − fkr(z)|+ |fkr(z)− fkr−m(p)|. (3.8)

Recall that |x− y| < δ < ε. Furthermore, since

fkr(z) = fkr−m(q) ∈ Bε(fkr−m(p)), for some q ∈ fm(z) or z = f−m(q),

it follows that |fkr(z)− fkr−m(p)| < ε. Hence, from Equation (3.8) we get

4ε ≤ |x− fkr−m(p)| < 2ε+ |y − fkr(z)|.

This implies by (3.5) that

|y − fkr(z)| > 2ε and since y is of period k, |fkr(y)− fkr(z)| > 2ε

1A set U is open if it is the union of open intervals.
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since y is k-periodic. Therefore, by the triangle inequality,

2ε < |fkr(y)− fkr(z)| ≤ |fkr(y)− fkr(x)|+ |fkr(x) − fkr(z)|.

Therefore, either |fkr(y) − fkr(x)| > ε or |fkr(x) − fkr(z)| > ε. This estab-
lishes sensitive dependence on initial conditions.

REMARK 3.3 More recently, Vellekoop and Berglund [104] showed that
for continuous maps on intervals in R, transitivity implies that the set of
periodic points is dense. It follows from Theorem 3.5 that in this case tran-
sitivity implies chaos. The proof of this result will be facilitated by first
establishing the following lemma.

LEMMA 3.4
Let f : J → J be a continuous map on an interval J (not necessarily finite)
in R. Suppose that there exists a subinterval I of J such that I contains no
periodic points of f . If x, fm(x), and fn(x) are all in I, with 0 < m < n,
then either x < fm(x) < fn(x) or x > fm(x) > fn(x).

PROOF Let m and n be integers such that 0 < m < n, and let I ⊂ J
be an interval with no periodic points of f . Suppose that for some x ∈ I, we
have x < fm(x), fm(x) > fn(x) and fm(x), fn(x) ∈ I. Define a new function
g = fm. Then, from the preceding sentence, we have x < g(x). Claim that
for all k > 1,

x < g(x) ≤ gk(x). (3.9)

Now, if g2(x) < g(x), then the function h(z) = g(z) − z is positive at
z = x and negative at z = g(x). By the intermediate value theorem, this
implies that h(y) = g(y)− y = 0 for some y between x and g(x). This means
that g(y) = fm(y) = y and y is thus a periodic point of f . But y ∈ I
since x and g(x) are in I; clearly we have a contradiction. This proves that
x < g(x) < g2(x). By mathematical induction, we may complete the proof of
the claim (Problem 2).

Now, x < gk(x) for all k ∈ Z+ and in particular for k = n − m we have
x < gn−m(x) = f (n−m)m(x). By letting h = fn−m, we have

x < hm(x). (3.10)

Furthermore, from the first line in the proof, fn−m(fm(x)) = fn(x) < fm(x)
or h(fm(x)) < fm(x). By an argument similar to that used for g we can show
that

hm(fm(x)) < fm(x). (3.11)

Using Eqs. (3.10) and (3.11), it is easy to see that the function p(y) = hm(y)−y
is positive at y = x and negative at y = fm(x). Thus, by the intermediate
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value theorem, there exists z ∈ I between x and fm(x) such that hm(z) =
f (n−m)m(z) = z, a contradiction. This proves that x < fm(x) < fn(x). The
second part of the proof is left to you as Problem 3.

THEOREM 3.6

Let f : J → J be a continuous map on an interval J (not necessarily finite)
in R. If f is transitive, then the set of periodic points in J is dense in J , that
is, f is chaotic.

PROOF Suppose that f is transitive and assume there exists a subinterval
I of J , which is void of periodic points of f . Let x ∈ I such that x is not an end
point of I, U ⊂ I be an open interval containing x, and V ⊂ I\U be an open
interval in I disjoint from U . By the transitivity of f , there exists m ∈ Z+

such that for some y ∈ U, fm(y) ∈ V . Since fm is continuous, there exists an
open interval Ũ containing y with fm(Ũ) ⊂ V . Therefore, fm(Ũ) ∩ Ũ = ∅.
Since fm(Ũ) may not be open, we choose an open interval Ṽ ⊂ fm(Ũ) such
that fm(y) ∈ Ṽ . Using the transitivity of f again, we have fk(Ṽ ) ∪ Ũ = ∅
for some k ∈ Z+. Thus, there exists z ∈ Ũ with fm+k(z) = fn(z) ∈ Ũ .
Obviously, this is a flagrant violation of Lemma 3.4 since z, fn(z) ∈ Ũ while
fm(z) /∈ Ũ . This completes the proof of the theorem.

We caution you that the preceding theorem fails to hold for nonintervals
or higher dimensional spaces or even for the unit circle S1, as may be seen in
the following example.

Example 3.7

(Irrational Rotation of the Circle). Consider the rotation map Rλ :
S1 → S1 defined by Rλ(θ) = θ + 2πλ, where λ is an irrational number (see
Fig. 3.5). Show that Rλ is transitive, but the set of periodic points is not
dense.

SOLUTION Let θ ∈ S1. Then, Rm
λ (θ) = Rn

λ(θ) if m = n. Otherwise,
θ+2πmλ = θ+2πnλ, which implies that 2π(m−n)λ = 1. Thus, (m−n)λ ∈ Z.
But, since λ is irrational, we must have m = n. Hence, the orbit O+(θ) is
an infinite set in S1. Furthermore, since O+(θ) is a bounded sequence, it
must have a convergent subsequence. Therefore, for ε > 0 there exist positive
integers r and s with |Rr

λ(θ)−Rs
λ(θ)| < ε. Without loss of generality, we may

assume that m = r − s > 0. Since Rλ preserves arc length in S1, it follows
that

|Rm
λ (θ)− θ| = |Rs

λ(R
m
λ (θ))−Rs

λ(θ)|
= |Rr

λ(iθ)−Rs
λ(θ)| < ε.
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FIGURE 3.9
An open ball centered at U0.

Now, under Rm
λ , the arc of length less than ε connecting θ to Rm

λ (θ) is
mapped to the arc, of less than ε, connecting Rm

λ (θ) to R2m
λ (θ). This arc, in

turn, is mapped to the arc of length less than ε joining R2m
λ (θ) to R3m

λ (θ),
etc. So the points θ,Rm

λ (θ), R2m
λ (θ), . . . partition S1 into arcs of length less

than ε. But since ε was arbitrarily chosen, it follows that O+(θ) intersects
every open arc in S1; and thus O+(θ) is dense in S1.

Observe that Rλ has no periodic points in S1.

REMARK 3.4 Theorem 3.5 is valid for more general spaces such as Rn,
in which the distance between two points (vectors) in the Euclidean distance

‖U − V ‖ =
√
(u1 − v1)2 + · · ·+ (un − vn)2

where U = (u1, u2, . . . , un), V = (v1, v2, . . . , vn). The interval (a, b) is replaced
by the open ball Bδ(U0) = {V | ‖U0 − V ‖ < δ} (Fig. 3.9).

One may go further in abstraction and define a distance d between two
points in a space X as a function which satisfies the following properties
(abstracted from the absolute value | | function)

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x) (symmetry),

3. d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality).

A spaceX with the metric d is called a metric space, and is denoted sometimes
as (X, d).

One may show that (Rn, ‖‖) is a metric space. In the next section we will
encounter metric spaces that are not Euclidean spaces Rn and one may define
an open ball in a metric space (X, d) as

Bδ(x0) = {y0 : d(x0, y0) < δ}.
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A set U is open in X if it is the union of open balls, and a set G is closed if
it is the complement of an open set.

The main point I wish to make here is that Theorem 3.5 is valid for general
metric spaces, while Theorem 3.6 is valid only on intervals in R as illustrated
in Example 3.7. It should be noted that the proof of Theorem 3.5, in the
setting of metric spaces, is not much different from the proof given here.

Exercises - (3.5)

1. Show that the set U defined in Equation (3.6) is open and nonempty.

2. Prove Statement (3.9).

3. Prove the second part of Lemma 3.4.

4. Give an example of a continuous function f , on an interval I, such that
the set of periodic points of f is dense in I, but f does not have sensitive
dependence on initial conditions.

5. Let

X = S1\
{
2πp
q

: p, q ∈ Z, q = 0
}

.

Define f : I → I by f(θ) = 2θ. Show that f is transitive on I, but I
has no periodic points of f .

6. Let Y = S1 × [0, 1]. Define g : Y → Y by g(θ, t) = (2θ, t)

(a) Show that g possesses sensitive dependence on initial conditions.

(b) Show that the set of periodic points of g is dense in Y .

(c) Show that g is not transitive on Y .

7. Let

f(x) =






3
2x 0 ≤ x < 1

2

3
2 (1− x) 1

2 ≤ x ≤ 3
4

be defined on the interval I = [0, 34 ].

(a) Show that f has sensitive dependence on initial conditions.

(b) Show that the set of periodic points is not dense in I.
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8. Let 0 < β < 0.5, and fβ : [0, 1]→ [0, 1] be defined by

fβ(x) =






2(β − x) for 0 ≤ x ≤ β
2(x− β) for β ≤ x ≤ 0.5 + β
2(0.5 + β − x) + 1 for 0.5 + β ≤ x ≤ 1.

(a) Draw the graph of fβ .

(b) Find the intervals on which fβ is chaotic and describe its dynamics.

9. Define a function f on R+ as follows:

f(x) =






3x 0 ≤ x < 1
3

−3x+ 2 1
3 ≤ x ≤ 2

3

3x− 2 2
3 ≤ x < 1

f(x− 1) + 1 x ≥ 1.

(a) Show that f has sensitive dependence on initial conditions.

(b) Show that the set of periodic points of f is dense in I.

(c) Show that f is not transitive on R.

10. Let f : I → I be a continuous map on an interval I.

(a) Suppose that for any nontrivial closed intervals U and V contained
in I,we can find n so that fn(U) ⊃ V . Prove that f is chaotic
on I.

(b) Is the converse of part (a) true?

11. Suppose that f : X → X is topologically transitive on a metric space
X . Prove that either X is an infinite set or X consists of the orbit of a
single periodic point.

12. (a) Give the definition of chaos in metric spaces.

(b) Prove Theorem 3.5 from metric spaces.

13.* (Conjecture: Senior Project/Master’s Thesis) Let f : X → X be a
continuous map on a metric space X (an interval I) which is chaotic.
Show that if X is connected, then fm is chaotic for all m ∈ Z+.

14.* [103] Let f : X → X be a continuous map on metric space X . Show
that f is chaotic if and only if for any given nonempty open sets U and
V in X there exists a periodic point p ∈ U and a nonnegative integer k
such that fk(p) ∈ V .
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15. (Term Project) [102] If X is not connected, the conjecture in Problem
13 fails. Consider the space S1 × {0, 1}, where S1 is the unit circle.

(a) The “switch” map σ : {0, 1} → {0, 1} is defined as σ(0) = 1 and
σ(1) = 0. Show that σn is transitive for all n ∈ Z+.

(b) Let g be the double angle map on S1. Define

f = g × σ : S1 × {0, 1} → S1 × {0, 1}

as

f(θ, i) = (g(θ), σ(i)) =

{
(2θ, 1) if i = 0,
(2θ, 0) if i = 1.

.

Show that f is chaotic.

(c) Show that f2 is not chaotic by showing that it is not transitive.

3.6 Cantor Sets

Cantor sets play an important role in both analysis and in chaos theory. In this
section we will present a brief description of Cantor sets and their topological
properties. We begin our task by presenting some notions from topology.

DEFINITION 3.5

(i) Let A be a subset of R. Then x0 ∈ R is said to be a limit point of A if
for every δ > 0, there exists a ∈ A ∩ (x0 − δ, x0 + δ), a = x0.

A is said to be perfect if every point in A is a limit point of A.

(ii) A subset A of R is connected if it is not the union of two nonempty
open subset of R. Equivalently, A ⊆ R is connected if and only if it is
an interval.

A is said to be totally disconnected if the only nonempty connected subset
of A are the one-point sets.

(iii) A subset A of R is a Cantor set if it is closed, bounded, perfect, and
totally disconnected.

Example 3.8
(The Cantor Middle-Third Set). We begin with a bounded closed inter-
val S0 = [0, 1]. Remove its open middle third (13 ,

2
3 ) and denote the remaining

set as S1 so that S1 = [0, 13 ] ∪ [23 , 1]. Next remove the open middle third of
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FIGURE 3.10
The construction of the Cantor middle-third set.

each of the subintervals of S1 to obtain S2 = [0, 19 ] ∪ [29 ,
1
3 ] ∪ [23 ,

7
9 ] ∪ [89 , 1].

Continue this inductively (Fig. 3.10) to obtain a nested sequence of closed
intervals {Sn}, where Sn+1 ⊂ Sn.

The Cantor set is defined as

K =
∞⋂

n=1

Sn. (3.12)

Clearly, K is nonempty since it contains the end points of the subintervals
of each Sn such as 0, 19 ,

2
9 ,

1
3 ,

2
3 ,

7
9 , . . . Furthermore, K is closed since it is the

intersection of closed sets; it is also bounded since it is a subset of the interval
[0, 1].

Ternary Representation of K

When a number has both terminating and nonterminating ternary represen-
tation, we agree to use the nonterminating form except when the terminating
representation ends in 2. For example, 1

3 has two ternary representations, .1
and .02̄, but we choose the nonterminating representation .02̄.

To show this, write

1
3
=
x1
3

+
x2
32

+
x3
33

+ · · ·

The choice x1 = 1, xi = 0 for all i > 1 is discarded since this would lead to
the terminating representation .1. Let x1 = 0, then multiply both sides by 32

to obtain 3 = x2 + x3
3 + x4

32 + · · ·
Since x2 takes only the values 0, 1, or 2, we must take x2 = 2. Subtracting 2

from both sides of the equation and multiplying by 3 leads to x3 = 2. Hence,
1
3 = .02.
Similarly, one may show that 7

9 = .202.
We are going to show that x ∈ K if and only if it has the ternary repre-

sentation .x1x2x3 . . ., where each xi is either 0 or 2. To do this we write the
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intervals Si in ternary representation. The set S1 = [0, .02̄]∪[.2, .2̄] = I11∪I12.
If x = .x1x2x3 . . . ∈ S1, then x1 = 0 if x ∈ I11, and x1 = 2 if x ∈ I12. We
write the set S2 in ternary representation as

S2 = [0, .002̄] ∪ [.02, .02̄] ∪ [.2, .202̄] ∪ [.22, .2̄] = I21 ∪ I22 ∪ I23 ∪ I24.

Then,

1. x ∈ I21 if and only if x = .00x3x4 . . .

2. x ∈ I22 if and only if x = .02x3x4 . . .

3. x ∈ I23 if and only if x = .20x3x4 . . .

4. x ∈ I24 if and only if x = .22x3x4 . . .

Continuing inductively, one may show that x ∈ K, if and only if xi ∈ {0, 2}
for all i = 1, 2, 3, . . . (see Fig. 3.10).

We are now in a position to show that K is perfect. So let x = .x1x2x3 . . .
be a point in K where x1 is either 0 or 2. Define a sequence {xn} in K, where
xn = .x1x2 . . . xn ∗ ∗ . . . is a number in [0, 1] that agrees with x in the first

n ternary places. Then, |xn − x| ≤
∞∑

i=n+1

2
3i

=
1
3n
→ 0 as n → ∞. Hence,

xn → x as n→∞. Thus, x is a limit point of K.
Finally, K is totally disconnected since any interval in [0, 1] must contain

numbers with nonterminating 1 in their ternary representation. Therefore, K
is a Cantor set.

Another interesting property of the Cantor middle-third set is that it pro-
vides us with an example of an uncountable set, which is totally disconnected
(or a set of measure zero). This assertion may be concluded using a result
from real analysis, which states that any nonempty perfect set of R must be
uncountable [82]. However, we may prove this latter statement by using a
rather simple and elegant arrangement. Define a map h : [0, 1] → K as fol-
lows. We write each point x ∈ [0, 1] in a binary expansion x = .x1x2x3 . . .,
where each xi is either 0 or 1. We let h(x) = y = .y1y2y3 . . . , with yi = 2xi.
Then, clearly h is one-to-one. Since the interval [0,1] is uncountable, so is K.

Example 3.9
(Another Cantor Set). Consider the logistic map

Fµ(x) = µx(1 − x) on I = [0, 1],

where µ > 4. Note that in this case Fµ(12 ) > 1. Since Fµ(0) = 0, it follows,
by the intermediate value theorem, that there exists α0 ∈ (0, 12 ) such that
Fµ(α0) = 1. Since Fµ is monotone on [0, 12 ], the interval I0 = [0, α0] consists
of all points x to the left of 1

2 where Fµ(x) ∈ I. Similarly, there exists
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α1 >
1
2 with Fµ(α1) = 1 and such that Fµ(x) ∈ I for all x ∈ I1 = [α1, 1] [see

Fig. 3.11(a) and (b)].

Let A1 = I0 ∪ I1.
Then A1 = {x ∈ I : Fµ(x) ∈ I} .
Define A2 =

{
x ∈ I : F 2

µ(x) ∈ I
}
= {x ∈ I : Fµ(x) ∈ A1} .

Then, A2 consists of the four closed intervals A2 = I00 ∪ I01 ∪ I11 ∪ I10, (see
Fig. 3.12) where

I00 = {x : x ∈ I0 and Fµ(x) ∈ I0} ,
I01 = {x : x ∈ I0 and Fµ(x) ∈ I1} ,
I11 = {x : x ∈ I1 and Fµ(x) ∈ I1} ,
I10 = {x : x ∈ I1 and Fµ(x) ∈ I0} .

Continuing this process, we construct An = ∪Is0s1...sn−1 , where si is either
0 or 1, and

Is0s1...sj =
{
x ∈ I : x ∈ Is0 , Fµ(x) ∈ Is1 , . . . , F

j
µ(x) ∈ Isj

}

=
j⋂

k=0

F−k
µ (Isk

)

= Is0 ∩ F−1
µ (Is1s2...sj ). (3.13)

We first note that An =
{
x ∈ I : Fn

µ (x) ∈ I}. Furthermore,

Is0s1...sn = Is0s1...sn−1 ∩ F−n
µ (Isn) ⊂ Is0s1...sn−1

Hence, An+1 ⊂ An. Define the set

Λ =
∞⋂

n=1

An. (3.14)

In the discussion that follows, we will show that Λ is a Cantor set.
We begin this task by computing points α0 ∈ I0, and α1 ∈ I1. This amounts

to solving the equation µx(1 − x) = 1. Hence,

α0 =
1
2
−

√
µ2 − 4µ
2µ

,

and α1 =
1
2
+

√
µ2 − 4µ
2µ

. To prove that Λ is a Cantor set we now assume

that µ > 2 +
√
5. Although this is true for µ > 4, the proof becomes very

much involved for 4 < µ ≤ 2+
√
5 and we choose to leave it for more advanced

texts.
We start the proof by using the following technical lemma.
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FIGURE 3.11
A1 = I0 ∪ I1. If x0 /∈ A1, then Fµ(x0) /∈ I.

FIGURE 3.12
A2 = I00 ∪ I01 ∪ I11 ∪ I10.
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LEMMA 3.5

For µ > 2 +
√
5, there exists ε > 0 such that |F ′

µ(x)| > 1 + ε, for all x ∈ A1.
Moreover, the length of each subinterval in An is less than 1

(1+ε)n .

PROOF Let µ = 2 +
√
5 + δ, for some δ > 0. Then,

F ′
µ(α0) = (2 +

√
5 + δ)− 2(2 +

√
5 + δ)

[
1
2
−

√
1 + δ2 + 2

√
5δ

2(2 +
√
5 + δ)

]

=
√

1 + δ2 + 2
√
5δ

> 1 + ε, for some ε > 0.

Since F ′′
µ = −2µ < 0, F ′

µ is decreasing. So F ′
µ(x) > F ′

µ(α0) > 1 +
ε for all x ∈ I0. By a similar argument, one may show the same result for
all x ∈ I1. This proves the first part of the lemma. The second part of the
lemma is left as Problem 14.

Finally, we are ready to prove our main result.

THEOREM 3.7

The set Λ is a Cantor set.

PROOF Since Λ is the intersection of closed sets, it is closed. Further-
more, Λ is bounded since it is contained in the interval [0, 1] and nonempty
since it contains at least the end points of all the intervals of the form
Is0s1...sn , n ∈ Z+, and si = 0 or 1. We leave it to you to show that Λ is
perfect and totally disconnected (Problem 4).

3.7 Symbolic Dynamics

As we promised in the preceding section, we will now introduce the sequence
space

∑+
2 of all the one-sided sequences on the two symbols 0 and 1. This

is defined as follows:

∑+
2 = {x = {xn}∞n=0 : xn = 0 or 1} .

Thus, elements of
∑+

2 are infinite strings of 0’s and 1’s such as

{0 0 1 0 1 . . .}, {0 1 0 0 . . .}
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etc. An overbar over a group of digits indicates that the group is repeated
indefinitely. For example,

{0 1 0 0 1 0 . . .}
denotes the sequence

{0 1 0 0 1 0 1 0 1 0 . . .}.
On

∑+
2 , we define the shift map σ :

∑+
2 →

∑+
2 by letting

σ{x0 x1 x2 x3 . . .} = {x1 x2 x3 . . .}.
For example, σ{1 0 1 1̄ . . .} = {0 1 1̄ . . .}.
The apparent simplicity of the map σ enables us to have a full understanding

of its properties. There are two fixed points of σ: the constant sequences
{0 0̄ . . .} and {1 1̄ . . .}. Eventually fixed points are in abundance; they are
of the forms {x0 x1 . . . xn1̄ . . .} and {x0 x1 . . . xn0̄ . . .} for all n > 0. The
k-periodic points are of the form {x0 x1 . . . xk−1 . . . }.

Since there are 2k ways of arranging the block x0 x1 . . . xk−1, it follows
that there are 2k periodic points of period k. Eventually periodic points are
also in abundance; they are of the form

{x0 x1 . . . xn xn+1 xn+2 . . . xn+k−1 . . .}.
Next, we define a metric (or a distance function) on

∑+
2 as follows: for

x = {xn} and y = {yn} in
∑+

2 , we let

d(x, y) =
∞∑

i=0

|xi − yi|
2i

. (3.15)

We will now make a few observations about the distance function d.

REMARK 3.5

1. Since |xi−yi| is either 0 or 1, we then have d(x, y) ≤
∞∑

i=0

1
2i

= 2. Hence,

this metric is bounded.

2. Suppose that xi = yi for i = 0, 1, 2, . . . , n. Then, d(x, y) ≤ 1
2n . To show

this, observe that

d(x, y) =
n∑

i=0

0
2i

+
∞∑

i=n+1

|xi − yi|
2i

≤
∞∑

i=n+1

1
2i
.

Thus,

d(x, y) ≤ 1
2n
.
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3. If, on the other hand, d(x, y) < 1/2n, then xi = yi for i = 0, 1, 2, . . ., n.
To show this, assume that xj = yj for some j ≤ n.

Then, d(x, y) =
∞∑

i=0

|xi − yi|
2i

≥ 1
2j
≥ 1

2n
, a contradiction.

Based on the above remarks, the following conclusions can be made.

LEMMA 3.6
The function d defined by Equation (3.15) is a metric on

∑+
2 .

PROOF This is left to the reader as Problem 4.

Example 3.10
Find d(x, y) if

1. x = {0 1 1̄ . . .} and y = {1 0 1̄ . . .}.
2. x = {0 1 0 1 0 1 0̄ } and y = {0 1 0 1 0 1 1̄ . . .}.

SOLUTION

1. d(x, y) = |x1−y1|
20 + |x2−y2|

21 + · · · = 1 + 1
2 + 0 + · · · = 3

2

2. d(x, y) =
∞∑

i=6

1
2i

=
1
26

1− 1
2

=
1
25

The next step is to show that the shift map σ is chaotic on the sequence
space. But before doing so, we need to establish its continuity.

LEMMA 3.7
The shift map σ :

∑+
2 →

∑+
2 is continuous.

PROOF Let ε > 0 be given and x = {x0 x1 x2 . . . } ∈
∑+

2 .
Then, for some n ∈ Z+, 1

2n < ε. Let δ = 1
2n+1 . If y ∈

∑+
2 with d(x, y) < δ,

then, from Remark 3.5(3) above, we conclude that xi = yi for i = 0, 1, . . . , n+
1. Let σ(x) = x̃ and σ(y) = ỹ. Then x̃i = ỹi for i = 0, 1, . . . , n. Remark 3.5(2)
then gives d(x̃, ỹ) ≤ 1

2n < ε. Consequently, σ is continuous at x. Since x was
arbitrarily chosen, σ is continuous on

∑+
2 .

Now we are ready to establish the chaoticity of σ on
∑+

2 .
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THEOREM 3.8

The shift map σ :
∑+

2 →
∑+

2 is chaotic on
∑+

2 .

PROOF We first prove that the set of periodic points of σ is dense in∑+
2 . So let x = {xi} = {x0, . . . , xn, . . . } be an arbitrary point in

∑+
2 . We

will produce a sequence of periodic points that converges to x. This sequence
is constructed as follows:

y1 = {x0 . . .},
y2 = {x0 x1 . . .},

...
yn = {x0 x2 . . . xn . . .}.

It is easy to prove that yn → x as n→∞ (Why?).

Next, we exhibit a dense orbit in
∑+

2 . Consider the sequence

z =
{

01
1− block

,
00 01 10 11
2− blocks

,
000 001 010 100 011 101 110 111

3− blocks
, . . .

}

.

This sequence consists of all the blocks of 0’s and 1’s of length 1 (there are
only 2), of length 2 (there are four 2-blocks), etc. We claim that O(z) =

∑+
2 .

To prove the claim, let x ∈∑+
2 and Bδ(x) be a ball around x, for some δ > 0.

To show that x ∈ O(z), it suffices to show that Bδ(x) ∩ O(z) = ∅. Choose
n ∈ Z+ such that 1

2n < δ. Then, the first n+ 1 terms x0 x1 x2 . . . xn in the
sequence x must appear in the n-blocks in the sequence z. Therefore, for some
k ∈ Z+, σk(z) agrees with x in the first n terms. Thus, d(σk(z), x) ≤ 1

2n < δ
and the proof of the claim is now complete. It follows from Theorem 3.5 that
σ is chaotic on

∑+
2 .

Before ending this section, we want to show that
∑+

2 is indeed a Cantor set.
This will be accomplished with minimal effort. Define a map h : K →∑+

2 as
follows: for x = 0.x0 x1 x2 . . . with xi is either 0 or 2, we let

h(x) = y = {y0, y1, y2, . . .}, where yi =
xi

2
. (3.16)

It is not hard to verify that h is a homeomorphism; that is, h is one-to-one
onto, continuous such that the inverse h−1 has the same properties. Thus,∑+

2 inherits all of the topological properties of K; thus,
∑+

2 is a Cantor set
(Problem 8).
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Exercises - (3.6 and 3.7)

In Problems 1–3 we consider the map h : R → R defined by

h(x) =






3x; x ≤ 1
2

3(1− x); x > 1
2 .

1. Find all the fixed points of the map h and write down their ternary
expansion.

2. Show that if x ∈ (19 ,
2
9 ) ∪ (13 ,

2
3 ) ∪ (79 ,

8
9 ), then h

n(x)→ −∞ as n→∞.

3. Define the set E = {x ∈ [0, 1] : hn(x) ∈ [0, 1] for all n ∈ Z+}.

(a) Prove that E is the Cantor middle-third set K.

(b) Use Part (a) to show that the map f : E → [0, 13 ] ∩ E, defined by
f(x) = 1

3x, is a homeomorphism.

4. Prove that the set Λ defined by Formula (3.14) is perfect and totally
disconnected.

(Hint: Use Lemma 3.5.)

5. (The Cantor middle-fifth set). Let S̃0 = [0, 1]. Remove its open middle
fifth (25 ,

3
5 ) and denote the remaining set by S̃1 so that S̃1 = [0, 25 ]∪[35 , 1].

Next, remove the open middle fifths of each of the two subintervals
of S̃1 to obtain S̃2 = [0, 4

25 ] ∪ [ 625 ,
2
5 ] ∪ [35 ,

19
25 ] ∪ [2125 , 1]. We define S̃n

inductively. Prove that the set K̃ =
∞⋂

n=0

S̃n is a Cantor set.

6. A point x is a nonwandering point for a map g if, for any open interval
J containing x, there exists p ∈ J and k ∈ Z+\{0} such that gn(p) ∈ J .
Let Ω(g) be the set of all nonwandering points of g.

(a) Show that Ω(g) is a closed set.

(b) Show that Ω(Fµ) = Λ, if µ > 2 +
√
5.

7. Let E be the set of all sequences in
∑+

2 that contain no consecutive 0’s.

(a) Show that E is invariant under the shift map σ.

(b) How many periodic points of period k does σ have in E?

(c) Is σ : E → E chaotic on E?

8. Use the map h in (3.16) above to show that
∑+

2 is a Cantor set.
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9. Let
∑+

N be the set of all sequences x = x0 x1 x2 . . . where xi is one of
the numbers in the set {0, 1, 2, . . . , N − 1}. Define a metric on

∑+
N by

letting

dN (x, y) =
∞∑

i=0

|xi − yi|
N i

.

Show that dN is a metric on
∑+

N .

10. Consider the shift map σ :
∑+

N → ∑+
N , where

∑+
N is as defined in

Problem 8. Prove that σ is chaotic on
∑+

N .

11. Show that:

(a) the set of eventually periodic points of the shift map σ that are not
periodic is dense in

∑+
2 .

(b) The set of points that are neither periodic nor eventually periodic,
of the shift map σ, is dense in

∑+
2 .

12. For:

(a) x = {x1 x2 . . .} ∈
∑+

2 , define the stable set

W s(x) =
{
y ∈∑+

2 : d(σn(x), σn(y))→ 0 as n→∞
}
.

Describe the set W s(x).

(b) Let b = 1010 · · · . Determine W s(b).

13. Complete the proof of Lemma 3.5 by showing that the length of each
interval in An is less than 1

(1+ε)n for some ε > 0.

14. Show that the map h defined by (3.16) is a homeomorphism.

3.8 Conjugacy

So far, we have shown that the shift map σ, on the sequence space
∑+

2

(Lemma 3.7) is chaotic. In Example 3.13, we will show that the double-angle
map is chaotic on the unit circle S1. In this section, we will show that if two
maps are conjugate, they must then have identical topological properties. In
particular, if a map is conjugate to either the shift map or the double-angle
map, it is then chaotic.

Recall that if f : J → J is a one-to-one and onto map such that f and f−1

are continuous, then f is said to be a homeomorphism. For example, the
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FIGURE 3.13
The map f is h-conjugate to the map g.

map f(x) = x3 is a homeomorphism on R, whereas the map f(x) = x2 is not
a homeomorphism on R but a homeomorphism on R+.

Next, we begin our exposition by introducing the notion of conjugacy.

DEFINITION 3.6 Let f : A → A and g : B → B be given maps.
Then f and g are said to be conjugate, denoted by f ≈ g, if there exists a
homeomorphism h : A→ B such that h ◦ f = g ◦ h (Fig. 3.13).
We also say that f is h-conjugate to g to emphasize the importance of the

homeomorphism h.

It is not difficult to show that the conjugacy relation ≈ is an equivalence
relation (Problem 1). Furthermore, if f ≈ g, then fk ≈ gk for all k ∈ Z+

(Problem 2).

Example 3.11
Consider the logistic map Fµ(x) = µx(1 − x), with 0 < µ ≤ 4 and the
quadratic map G(x) = ax2 + bx + c, where a = 0. Show that Fµ and G are
conjugate via the homeomorphism

h(x) = −µ
a
x+

µ− b
2a

. (3.17)

SOLUTION It is easy to verify that the map h : [0, 1]→
[
−µ−b
2a , µ−b

2a

]
is

indeed a homeomorphism. Now, if h(Fµ(x)) = G(h(x)), we must have

−µ
a
[µx(1− x)] + µ− b

2a
= a

[−µ
a
x+

µ− b
2a

]2
+ b

(−µ
a
x+

µ− b
2a

)

+ c,

which gives

c =
b2 − µ2 + 2µ− 2b

4a
.
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Therefore, for this value of c, Fµ is h-conjugate to G.
If the conjugacy map h between two maps f and g happens to be linear, as

in the above example, we say that f is linearly conjugate to g.

We illustrate this procedure in the next example.

Example 3.12

Show that F4(x) = 4x(1 − x) on [0, 1] is linearly conjugate to the map
f(x) = 2x2 − 1 on [−1, 1].

SOLUTION From the preceding example (Formula (3.17)), the map
h(x) = −2x+ 1 is the conjugation map which takes [0, 1] onto [−1, 1]. More-
over,

h(F4(x)) = 8x2 − 8x+ 1 = f(h(x)).

Since h is a homeomorphism, it conjugates F4 and g.

Next, we show that conjugacy preserves chaos.

THEOREM 3.9

Suppose that the map f : A→ A is h-conjugate to the map g : B → B. Then
f is chaotic on A, if and only if g is chaotic on B.

PROOF Suppose that f is chaotic on A. To show that g is chaotic,
we first show that it is transitive. Let U and V be two open sets in B and
suppose that g h-conjugates f . Then h(U) and h(V ) are open sets in A.
Since f is chaotic, there exists k ∈ Z+ such that fk(h(U))∩h(V ) = ∅. Hence,
h(gk(U)) ∩ h(V ) = ∅ (see Problem 2). Consequently, gk(U) ∩ V = ∅. Hence,
g is transitive.

Next, we show that the set P of periodic points in B is dense in B. To
this end, we let U be any open subset of B. Then, h−1(U) is an open subset
of A and thus must contain a k-periodic point x ∈ A. Since x = fk(x), it
follows that h(x) = h(fk(x)) = gk(h(x)). So k(x) is a k-periodic point of g.
Furthermore, h(x) ∈ h(h−1(U)) = U , and consequently, the set P is dense
in B. We now use Theorem 3.5 to conclude that the map g is chaotic on B.

The first application of Theorem 3.9 is on the logistic map Fµ, which will
be stated in the next result.

THEOREM 3.10

If µ > 2 +
√
5, then the logistic map Fµ is chaotic on the space Λ.
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PROOF We prove the theorem by establishing a conjugacy between Fµ

and the shift map σ. The conjugacy map h : Λ → ∑+
2 is defined as follows:

For x ∈ Λ we let

h(x) = {a0 a1 a2 . . .}, where an =






0 if Fn
µ (x) ∈ I0

1 if Fn
µ (x) ∈ I1.

(3.18)

In other words, h(x) = {a0 a1 a2 . . .}, if and only if Fn
µ (x) ∈ Ian for each

n ∈ Z+. The sequence h(x) is called the itinerary of x.
Next, we show that the map h is one-to-one and onto. To do so, we need

to show that if a = a0 a1 a2 . . . ∈
∑+

2 , then h
−1(a) is exactly one point.

Observe that if x ∈ h−1(a), then x ∈ Ia0 a1 ... an for all n ∈ Z+; i.e., h−1(a) =
∞⋂

n=0

Ia0 a1 ... an . Recall from Example 3.9 that

Ia0 ⊃ Ia0 a1 ⊃ Ia0 a1 a2 . . . ⊃ Ia0 a1 ... an ⊃ . . . ,
and from Lemma 3.5, the length of Ia0 a1 ... an tends to 0 as n → ∞. This
implies by the nested interval theorem (Problem 14) that h−1(a) is indeed a
single point in

∑+
2 .

The proof that h and h−1 are continuous is left to Problem 4. We also can
show that Fµ is h-conjugate to σ (Problem 5).

Now, since σ is chaotic on
∑+

2 (Theorem 3.8), it follows from Theorem 3.9
that Fµ is chaotic on Λ for µ > 2 +

√
5.

REMARK 3.6 Observe that in the proof of Theorem 3.9, we only need
the fact that the conjugacy map h is onto, continuous, and open. Hence, we
really did not need to assume that the conjugacy map h is one-to-one. This
leads to the introduction of a weaker notion called semiconjugacy, which
we will now explore.

DEFINITION 3.7 The map f : A → A, and g : B → B are said to be
semiconjugate if there exists a map h : A→ B, with h ◦ f = g ◦ h and such
that h is onto, continuous, and open.

THEOREM 3.11
If f : A → A and g : B → B are semiconjugate, then f is chaotic, if and
only if g is chaotic.

PROOF Modify the proof of Theorem 3.9 (Problem 14).

Before we illustrate the utility of conjugacy, we are going to revisit the
double-angle map.
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Example 3.13
(The Double Angle Map). Let g : S1 → S1 be a map on the unit circle
given by g(θ) = 2θ. Show that g is chaotic on S1.

SOLUTION We observe first that a point θ in S1 is k-periodic if and
only if gk(θ) = θ or 2kθ = θ. This is true if and only if 2kθ = θ + 2nπ, for
some n ∈ Z+. Solving for θ, we obtain

θ =
2nπ

2k − 1
. (3.19)

Thus, we conclude that the point θ is k-periodic if and only if θ is of the
form (3.19), for n = 0, 1, 2, . . . , 2k − 2. Hence, there are (2k − 1) periodic
points of period k in this map, which may be written in the form2

x(n) = 2nπ/(2k − 1). (3.20)

Let U be an open arc on S1 defined as U = {θ|θ1 < θ < θ2} (Fig. 3.14). Let
d = (θ2−θ1)

2 .

FIGURE 3.14
An open arc in S1 : U = {θ|θ1 < θ < θ2}.

Now, if θ(n) = 2nπ
2k−1 and θ(n + 1) = 2(n+1)π

2k−1 are two consecutive angles in
Formula (3.19), then θ(n+1)− θ(n) = 2π

2k−1 . Choose k sufficiently large such
that 2π

2k−1 < d. Hence, there exist n, and k ∈ Z+ with θ(n) = 2nπ/(2k − 1) ∈
U . Hence, the set of periodic points is dense in S1. To prove that g is
transitive, let U and V be two open arcs in S1 such that the length of the

2The points x(n) in Formula (3.19) are the roots of the equation z(2
k−1) = 1 in the complex

domain. If we let ω = 2iπ/(2k − 1), then x(0) = 1, x(1) = ω, x(2) = ω2, . . . , x(2k − 2) =
ω2k−2.
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arc U is δ. Then, g(U) has length 2δ, g2(U) has length 4δ, and eventually
gk(U) = S1 for some k ∈ Z+. Thus, gk(U) ∩ V = ∅.

By Theorem 3.6 (for metric spaces), g is chaotic.

To illustrate the utility of the preceding theorem, we give the following
example.

Example 3.14

1. Use the double-angle map g : S1 → S1 given by g(θ) = 2θ of Exam-
ple 3.13 to show that the logistic map F4(x) = 4x(1 − x) is chaotic on
the interval I = [0, 1].

2. Use the logistic map F4 to show that the tent map T is chaotic on
I = [0, 1].

3. Show that the doubling map D : [0, 1] → [0, 1] and the double angle
map g : S1 → S1 are conjugate. Conclude that D is chaotic on [0, 1].

SOLUTION

1. Define the map h : S1 → I by letting h(θ) = sin2( θ
2 ). This map is onto

(not one-to-one), continuous, and open. Furthermore,

h(g(θ)) = sin2(θ) = F4(h(θ)).

Thus, h semiconjugates g with F4. Since g is chaotic on S1 it follows
from Theorem 3.11 that F4 is chaotic on I.

2. Define the map h : I → I by letting h(x) = sin2(π
2x). Then, h semicon-

jugates T with F4. To prove this, we will show that F4 ◦ h = h ◦ T .
Now

F4(h(x)) = 4 sin2
(π

2
x
) [

1− sin2
(π

2
x
)]

= 4 sin2
(π

2
x
)
cos2

(π

2
x
)

= sin2(πx),

on the other hand

h(T (x)) =

{
h(2x) = sin2(πx) if 0 ≤ x ≤ 1

2 ,
h(2− 2x) = sin2(π − πx) = sin2 πx if 1

2 ≤ x ≤ 1.

Thus h semiconjugates T with F4 and hence T is chaotic.
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3. Use the conjugacy h : [0, 1] → S1, defined by h(x) = 2πx. The details
are left to the reader as Problem 9.

Exercises - (3.8)

1. Show that the conjugacy relation ≈ between maps is an equivalence
relation.

2. Show that if f ≈ g, then fk ≈ gk, for all k ∈ Z+.

In Problems 3–8 we consider the map h : Λ→ ∑+
2 as defined by Equation

(3.18), where µ > 2 +
√
5.

3. For µ = 5, find (a) h
(√

5−1
2
√
5

)
, (b) h

(
1+

√
5

2
√
5

)
.

4. Prove that the map h and h−1 are continuous.

5. Show that Fµ is h-conjugate to σ.

6. Show that the map f(x) = x2 − 3
4 on [− 3

2 ,
3
2 ] and the logistic map

F3(x) = 3x(1− x) on [0, 1] are linearly conjugate.

7. Show that the map Gλ(x) = 1 − λx2 on [−1, 1], where λ ∈ (0, 2] is
conjugate to the logistic map Fµ on the interval

[
1− µ

4 ,
µ
4

]
, where µ ∈

(2, 4]. Then, show that G2 is chaotic on [-1,1].

8. Suppose that f1 is linearly conjugate to f2, and f2 is linearly conjugate
to f3. Prove that f1 is linearly conjugate to f3.

9. Show that the doubling mapD : [0, 1]→ [0, 1] is conjugate to the double
angle map g : S1 → S1. Then conclude that D is chaotic on [0, 1].

10. Consider the maps f : S1 → S1 defined by f(θ) = 3θ and g : [−1, 1]→
[−1, 1] defined by g(x) = 4x3 − 3x.

(a) Show that f and g are semiconjugate.

(b) Show that g is chaotic on [-1,1].

In Problems 11–13 we consider another quadratic map defined byQc(x)=x2+
c on the interval J = [−2, 2].

11. Show that Q−2 is conjugate to the logistic map F4 and then conclude
that Q−2 is chaotic on the interval [-2,2].
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12. (a) Show that c < − (5 + 2
√
5)

4
corresponds to the case µ > 2+

√
5 for

the logistic map Fµ.

(b) Let Jn = {x ∈ J : Qn
c (x) ∈ J} and Λ̃ =

∞⋂

n=1

Jn. Show that if c <

− (5 + 2
√
5)

4
, then Λ̃ is a Cantor set.

13. Prove that the map Qc is chaotic on Λ̃ for c < − (5 + 2
√
5)

4
.

14. Prove Theorem 3.11.

15. Let f : R → R1 be a C1 -map and I1, I2 be two disjoint closed bounded
intervals. Let I = I,∪I2 and assume that f(Ii) ⊃ I, for i = 1, 2. Assume
also that |f ′(x)| ≥ λ > 1 for all x ∈ I ∩ f−1(I).

(a) Prove that Λ =
∞⋂

k=0

f−k(I) is a Cantor set.

(b) Define h : Λ −→∑+
2 as the itinerary map (3.18). Show that h is a

conjugacy map.

(c) Show that f is chaotic on Λ.

3.9 Other Notions of Chaos

We are now in a position to present the three notions of chaos put forth by Li
and Yorke [62], Block and Coppel [12], and Devaney [25]. In this presentation,
we will follow the paper by Aulbach and Kieninger [3] and assume that the
space X is compact, which in Rn means that X is closed and bounded. The
assumption of compactness is not essential in the definition of chaos, but it
makes the relationship among the various notions of chaos more transparent.
We will use the definition of chaos in the sense of Devaney (Definition 3.4).

DEFINITION 3.8 A continuous map f : X → X is L/Y-Chaotic if there
exists an uncountable subset S of X such that

1. lim sup
n→∞

d(fn(x), fn(y)) > 0 for all x, y ∈ S, x = y,

2. lim inf
n→∞ d(fn(x), fn(y)) = 0 for all x, y ∈ S, x = y,

3. lim sup
n→∞

d(fn(x), fn(p)) > 0 for all x ∈ S, p ∈ X, p periodic.
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It may be shown [12] that condition (3) in L/Y-chaos is redundant, since
conditions (1) and (2) imply condition (3). In their famous paper [62], T.Y.
Li and J. Yorke had an additional condition for L/Y-chaos: “f has periodic
points of all periods.” This was the main reason behind the title of their paper
“”Period 3 implies chaos.” They proved that if a continuous map on R has
period 3, then it must have points of all periods (see Theorem 2.9).

DEFINITION 3.9 A continuous map f : X → X is B/C-chaotic if there
exists a positive integer m and a compact fm-invariant subset Y of X such
that fm|Y is semiconjugate to the shift map σ on

∑+
2 .

THEOREM 3.12 [55]
If the continuous maps f and g are conjugates, then f is chaotic in any one
of the three senses if and only if g is chaotic in the same sense.

The preceding theorem may be extended to the case when f and g are
semiconjugates.

THEOREM 3.13 [3]
Let f : I → I be a continuous map on a closed and bounded interval I. Then
the following hold:

(i) D-chaos ⇔ f has a positive topological entropy,3

(ii) B/C-chaos ⇒ L/Y -chaos � D-chaos.

The following example illustrates the above result.

Example 3.15
(Truncated Tent Map). Consider the tent map T . Now, for each λ ∈ (0, 1],
we define Gλ : [0, 1]→ [0, 1] by Gλ(x) = min{λ, T (x)}.

3In the one-dimensional setting the topological entropy, which we denote by h, is a measure
of the growth of the number of periodic cycles as a function of the length of the period

h(f) = lim
n→∞

lnNn

n
,

where Nn is the number of distinct periodic orbits of length n.
For general metric spaces, the topological entropy of f is defined by

h(f) = lim
ε→0

„
lim sup
n→∞

1

n
logN(n, ε)

«

where, roughly speaking, N(n, ε) represents the number of distinguishable orbit segments of
length n, assuming we cannot distinguish points that are less than ε apart. The interested
reader may consult Ott [75], or Block and Coppel [12] for more details on topological
entropy.
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X

P(X  )

0

0

Σ
ψ t

FIGURE 3.15
A 2-dimensional Poincaré map.

Define λn := min{λ ∈ (0, 1] : T has a 2n-periodic point in (0, λ]}. Then we
may show that λ∗ = lim

n→∞ λn ≈ 0.824908 . . .. The following observations may

be shown [3]:

1. For each λ ∈ (0, λ∗), Gλ is not chaotic in any of the three senses.

2. Gλ∗ is L/Y -chaotic, but neither B/C-chaotic nor D-chaotic.

3. For each λ ∈ (λ∗, 1], Gλ is chaotic in the three senses.

3.10 Rössler’s Attractor

In Section 1.3.2 we defined a one-dimensional Poincaré map associated with
a system of two differential equations. This definition may be extended to a
system of three differential equations of the form

ẋ = f(x, y, z)
ẏ = g(x, y, z) (3.21)
ż = h(x, y, z).

The Poincaré map this time will be planar, that is a 2-dimensional map. Let
Γ be a periodic orbit (limit cycle) of system (3.21) and let Σ be a plane
intersecting Γ transversely (Σ is called a Poincaré section). For a point X0 ∈
Σ, the point P (X0) is defined as the next intersection of the orbit through X0

of system (3.21) with Σ, as illustrated in Fig. 3.15.
Let Y0 be the initial point of the periodic orbit Γ. Then Y0 is a fixed point

of the Poincaré map P . Hence P reduces the study of stability of a periodic
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orbit of Equation (3.21) to the study of the stability of the fixed point Y0
under the Poincaré map P .

We now apply this procedure to studying a famous attractor, named after
its creator Otto Rössler.

In 1977, O.E. Rössler [87] was able to extract simpler, asymmetric attracting
structures from the Lorenz attractor. He proposed the following system of
three differential equations.

ẋ = −y − z
ẏ = x+ ay (3.22)
ż = b+ z(x− c).

Notice that the only nonlinear term zx appears in the third equation.
At this stage we are not assuming any background in differential equations.

But we will use simple but important observations:

(a) ẋ(t) > 0 implies x(t) is increasing,

(b) ẋ(t) < 0 implies x(t) is decreasing,

(c) ẋ(t) = 0 implies x(t) is constant.

If one assumes that z is small enough to be negligible, then we have

ẋ = −y
ẏ = x+ ay

which can be written as
ẍ− aẋ+ x = 0. (3.23)

To solve this second order differential equation, we let x(t) = eλt (compare
with difference equations: x(n) = λn). Then substituting ẋ = λeλt, ẍ = λ2eλt,
we get λ2eλt − aλeλt + eλt = 0. Dividing by eλt we obtain the characteristic
equation

λ2 − aλ+ 1 = 0

λ1,2 =
a±√a2 − 4

2
.

Clearly for 0 < a < 2, λ1,2 = (a±i√a2 − 4)/2. Moreover x(t) = e
a
2 t(c1 cosβt+

c2 sinβt), where β =
√
4− a2/2 which is an unstable spiral (focus).

Now in the full system (3.23), orbits (trajectories) near the x− y plane spi-
ral outward from the origin. This produces spreading of adjacent trajectories,
which is a key ingredient in the mixing action of chaos. Note that this spread-
ing is achieved with only linear terms. If the original system is fully linear,
then the spreading would merely continue and all trajectories (orbits) diverge
far away from the origin. The nonlinear term will dramatically change this
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FIGURE 3.16
Steroscopic view of the Rössler attractor for parametric values a = 0.432,
b = 2, c = 4.

scenario as the constant c will play the role of a control. In the third equation
if x is less than c, the z subsystem is asymptotically stable (Why?) and tends
to z = −b/(x− c) (this is obtained by letting ż = 0 and thus 0 = b+z(x− c)).
However, if x > c, the z-subsystem diverges (unstable). Choosing b > 0
ensures that this divergence will be toward positive z.

Figure 3.15 shows an orbit spiraling outwards while appearing to remain in
a plane near to and parallel to the x−y plane. When x becomes large enough,
the z subsystem switches on and the orbit leaps upwards. Once a becomes
large, the z tem in the first equation comes into play, and ẋ becomes large and
negative, throwing the orbit back toward smaller x. Eventually x decreases
below c, the z variable becomes self restoring, and the orbit lands near the
x − y plane again. Through the feedback of z to the ẋ equation, orbits are
folded back and reinserted closer to the origin, where they begin an outward
spiral once more. Rössler named this chaotic attractor “spiral chaos.”

Next we will construct a Poincaré section, which would appear on this scale
to be a line segment. Hence the point where an orbit on the attractor crosses
this half-plane can be identified by giving the distance from the center, that is,
the x-coordiante of the point alone. This key observation allows one to study
the dynamics of the attractor via a one-dimensional map. To find this map,
we consider an orbit on the attractor, and letting x(n+1) be the x-coordiante
of the (n+1)th crossing of the Poincaré section as a function of x(n). Plotting
x(n + 1) versus x(n) produces Fig. 3.17 which is reminiscent of the logistic
map Fµ(x) = µx(1 − x).

For fixed values of a = b = 0.2 and for different values of c, Fig. 3.17 shows
that the differential system (3.22) undergoes period-doubling in its route to
chaos.
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x(n+1)

x(n)

x(n+1)=x(n)

FIGURE 3.17
One-dimensional map constructed from an orbit of the differential system
(3.22).

FIGURE 3.18
The Poincaré section is intersected twice for each periodic orbit. For a = b =
0.2 and (i) c = 2.6, (ii) c = 3.5, (iii) c = 4.1, (iv) c = 4.6. At the value c = 4.6,
the sytem is in full-blown chaos.
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FIGURE 3.19
Saturn with its rings.

FIGURE 3.20
Mimas, largest moon of Saturn.

3.11 Saturn’s Rings

The rings of Saturn [35] are almost circular and nearly planar in nature,
(Fig. 3.19). They are 250,000 Km across, but no more than 1.5 Km thick.
The rings are composed mainly of water ice ranging in size from 1 cm to
several meters. A nonlinear map which produces a ring pattern qualitatively
resembling the rings of Saturn has been developed by Fröyland [41]. This map
is three dimensional in essence but may be written in the following form.

θ(n+ 1) = θ(n) + 2π
(

σ

r(n)

) 3
2

r(n+ 1) = 2r(n)− r(n− 1)− a cos θ(n)
(r(n)− σ)2

where r(n) is the radial distance of a ring particle from the center of Saturn
after the nth revolution, θ(n) the angular position of a ringle particle with
respect to Mimas after n revolutions, and σ is the radial distance of Mimas
from Saturn’s center. Recall that Mimas is the is the largest moon out of 18
moons of Saturn (Fig. 3.20).

The above equation may be written as a 3-dimensional system of first order
difference equation by letting θ(n) = θ(n), r(n) = r(n), z(n) = r(n− 1). This
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yields

θ(n+ 1) = θ(n) + 2π
(

σ

r(n)

) 3
2

r(n + 1) = 2r(n)− z(n)− a cos θ(n)
(r(n) − σ)2 (3.24)

zn+1 = r(n)

or

F




θ
r
z



 =






θ + 2π
(

σ
r

) 3
2

2r − z − a cos θ(n)
(r(n)−σ)2

r




 . (3.24′)

In this model, there are two important forces acting on the ring particles, the
dominant effect of Saturn’s attracting gravitational force and the perturbing
influence of Mimas. The effect of Saturn may be explained as follows. Each
time Mimas completes an orbit of radius σ with a period Tσ, it undergoes
an angular change of 2π radians. If Tn is the period for any other satellite
object in its nth revolutions, the angle θ that the object makes with respect
to Mimas on the n+ 1st revolution will be given by

θ(n+ 1) = θ(n) + 2π
(
Tσ

Tn

)

. (3.25)

Now Kepler’s third law for planetary orbits states that the period T of an
object orbiting a planet of mass Mp in a circular orbit of radius r is given by

T 2 =
4π2

GMp
r3 (3.26)

where G = 6.67 × 10−11 N −m2/Kg2 is the gravitational constant. Letting
r(n) be the distance of a ring particle from Saturn’s center after n revolutions,
then

Tσ

Tn
=

(
σ

r(n)

) 3
2

. (3.27)

Substituting (3.27) into (3.25) yields the first equation in (3.24).
The effect of Mimas is to perturb the radial distance r of a ring particle,

causing the distance to change from one orbit to the next. By Newton’s second
law, a particle’s radial acceleration is given by

m
d2r

dt2
= Fr (3.28)

where Fr is the radial component of the gravitational force between Mimas
and the particle of mass m. Using Euler’s method (see Section 1.3.1) we
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replace d2r
dt2 by (r(n + 1) − 2r(n) + r(n − 1))/(∆t)2, where we set ∆t = Tσ.

This gives
r(n+ 1) = 2r(n)− r(n− 1) + f(r(n), θ(n))

where f(r(n), θ(n)) = (Tσ)
2Fr(r(n),θ(n))

m . To find f we apply Newton’s law of
gravitation to the interaction between Mimas (mapMσ) and a particle. Hence

f = −a g(θ(n))
(r(n)− σ)2

with a = GMσ(Tσ)2 = 4π2σ3 Mσ

Ms
, Ms being the mass of Saturn, and the

angular-dependent map g(θ(n)) is given by cos(θ(n)). The parameter a is
approximately equal to 17, and Ms = 5.68× 1026Kg.

Conservative versus nonconservative maps

Maps that conserve area or volume are called conservative maps. Consider a
two dimensinal map

F

(
x
y

)

=
(
f(x, y)
g(x, y)

)

.

Under this map an infinitesimal area dx dy maps into the new area

dx dy = |det J(x, y)| dxdy
where

J =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)

is the Jacobian matrix. Clearly, a map is conservative if |det J | = 1. For
three-dimensional system of the form

F




x
y
z



 =




f(x, y, z)
g(x, y, z)
h(x, y.z)



 ,

the Jacobian is defined as

J =







∂f
∂x

∂f
∂y

∂f
∂z

∂g
∂x

∂g
∂y

∂g
∂z

∂h
∂x

∂h
∂y

∂h
∂z





 .

For our map F




θ
r
z



 in (3.24)′, we have

J =







1 −3σ 3
2

r
5
2

0

a sin θ
(r−σ)2 2 + 2a cos θ

(r−σ)3 −1
0 1 0





 .
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Notice that det J = 1, and hence our map is conservative, i.e., it preserves
volumes.



4

Stability of Two-Dimensional Maps

Is evolution a matter of survival of the fittest or survival of the
most stable?

A. M. Waldrop

4.1 Linear Maps vs. Linear Systems

Recall from linear algebra that a map L : R2 → R2 is called a linear transfor-
mation if

1. L(U1 + U2) = L(U1) + L(U2) for U1, U2 ∈ R2

2. L(αU) = αL(U) for U ∈ R2 and α ∈ R.

Moreover, it is always possible to represent f (with a given basis for R2) by
a matrix A. A typical example is

L

(
x
y

)

=
(
ax+ by
cx+ dy

)

which may be written in the form

L

(
x
y

)

=
(
a b
c d

) (
x
y

)

or
L(U) = AU, (4.1)

where U =
(
x
y

)

and A =
(
a b
c d

)

.

By iterating L, we conclude that Ln(U) = AnU . Hence, the orbit of U
under f is given by

{U,AU,A2U, . . . , AnU, . . .} (4.2)

Thus, to compute the orbit of U , it suffices to compute AnU for n ∈ Z+.

171
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Another way of looking at the same problem is by considering the following
two-dimensional system of difference equations

x(n+ 1) = ax(n) + by(n)
y(n+ 1) = cx(n) + dy(n), (4.3)

or
U(n+ 1) = AU(n). (4.4)

By iteration, one may show that the solution of Equation (4.4) is given by

U(n) = AnU(0). (4.5)

So, if we let U0 = U(0), then Ln(U0) = U(n).
The form of Equation (4.3) is more convenient when we are considering

applications in biology, engineering, economics, and so forth. For example,
x(n) and y(n) may represent the population sizes at time period n of two
competitive cooperative species, or preys and predators.

In the next section, we will develop the necessary machinery to compute An

for any matrix of order two. The general theory may be found in [32, 33, 60].

4.2 Computing An

Consider a matrix A = (aij) of order 2×2. Then, p(λ) = det(A−λI) is called
the characteristic polynomial of A and its zeros are called the eigenvalues
of A. Associated with each eigenvalue λ of A a nonzero eigenvector V ∈ R2

with AV = λV .

Example 4.1
Find the eigenvalues and the eigenvectors of the matrix

A =
(
2 3
1 4

)

.

SOLUTION First we find the eigenvalues of A by solving the character-
istic equation det(A− λI) = 0 or

∣
∣
∣
∣
2− λ 3
1 4− λ

∣
∣
∣
∣ = 0

which is
λ2 − 6λ+ 5 = 0.
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Hence, λ1 = 1 and λ2 = 5. To find the corresponding eigenvector V1, we solve
the vector equation AV1 = λV1 or (A− λ1I)V1 = 0.

For λ1 = 1, we have
(
1 3
1 3

)(
v11
v21

)

=
(
0
0

)

.

Hence, v11 + 3v21 = 0. Thus, v11 = −3v21. So, if we let v21 = 1, then
v11 = −3. It follows that the eigenvector V1 corresponding to λ1 is given by

V1 =
(−3

1

)

.

For λ2 = 5, the corresponding eigenvector may be found by solving the
equation (A− λ2I)V2 = 0. This yields

(−3 3
1 −1

) (
v12
v22

)

=
(
0
0

)

.

Thus, −3v12+3v22 = 0 or v12 = v22. It is then appropriate to let v12 = v22 = 1

and hence V2 =
(
1
1

)

.

To find the general form for An for a general matrix A is a formidable task
even for a 2 × 2 matrix such as in Example 4.1. Fortunately, however, we
may be able to transform a matrix A to another simpler matrix B whose nth
power Bn can easily be computed. The essence of this process is captured in
the following definition.

DEFINITION 4.1 The matrices A and B are said to be similar if there
exists a nonsingular1 matrix P such that

P−1AP = B.

We note here that the relation “similarity” between matrices is an equiva-
lence relation, i.e.,

1. A is similar to A.

2. If A is similar to B then B is similar to A.

3. If A is similar to B and B is similar to C, then A is similar to C.

The most important feature of similar matrices, however, is that they possess
the same eigenvalues.

1A matrix P is said to be nonsingular if its inverse P−1 exists. This is equivalent to saying
that det P �= 0, where det denotes determinant.
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THEOREM 4.1
Let A and B be two similar matrices. Then A and B have the same eigen-
values.

PROOF Suppose that P−1AP = B or A = PBP−1. Let λ be an
eigenvalue of A and V be the corresponding eigenvector. Then, λV = AV =
PBP−1V . Hence, B(P−1V ) = λ(P−1V ). Consequently, λ is an eigenvalue of
B with P−1V as the corresponding eigenvector.

The notion of similarity between matrices corresponds to linear conjugacy,
which we have encountered in Chapter 3. In other words, two linear maps are
conjugate if their corresponding matrix representations are similar. Thus, the
linear maps L1, L2 on R2 are linearly conjugate if there exists an invertible
map h such that

L1 ◦ h = h ◦ L2
or

h−1 ◦ L1 ◦ h = L2.

The next theorem tells us that there are three simple “canonical” forms for
2× 2 matrices.

THEOREM 4.2
Let A be a 2 × 2 real matrix. Then A is similar to one of the following
matrices:

1.
(
λ1 0
0 λ2

)

2.
(
λ 1
0 λ

)

3.
(
α β
−β α

)

PROOF Suppose that the eigenvalues λ1 and λ2 are real. Then, we
have two cases to consider. The first case is where λ1 = λ2. In this case, we
may easily show that the corresponding eigenvectors V1 and V2 are linearly
independent (Problem 10). Hence, the matrix P = (V1, V2), i.e., the matrix
P whose columns are these eigenvectors, is nonsingular. Let P−1AP = J =(
e f
g h

)

. Then,

AP = PJ. (4.6)

Comparing both sides of Equation (4.6), we obtain

AV1 = eV1 + gV2.
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Hence,
λ1V1 = eV1 + gV2.

Thus, e = λ1 and g = 0.
Similarly, one may show that f = 0 and h = λ2. Consequently, J is a

diagonal matrix of the form (a).
The second case is where λ1 = λ2 = λ. There are two subcases to consider

here. The first subcase occurs if we are able to find two linearly independent
eigenvectors V1 and V2 corresponding to the eigenvalue λ. This subcase is
then reduced to the preceding case. We note here that this scenario happens

when (A − λI)V = 0 for all V ∈ R2. In particular, one may let V1 =
(
1
0

)

and V2 =
(
0
1

)

, which are clearly linearly independent.

The second subcase occurs when there exists a nonzero vector V2 ∈ R2 such
that (A − λI)V2 = 0. Equivalently, we are able to find only one eigenvector
(not counting multiples) V1 with (A − λI)V1 = 0. In practice, we find V2 by
solving the equation

(A− λI)V2 = V1.

The vector V2 is called a generalized eigenvector of A. Note that AV1 = λV1
and AV2 = λV2 + V1. Now, we let P = (V1, V2) and P−1AP = J . Then,

AP = PJ. (4.7)

Comparing both sides of Equation (4.7) yields

J =
(
λ 1
0 λ

)

. (4.8)

The matrix J is in a Jordan form.
Next, we assume that A has a complex eigenvalue λ1 = α+ iβ. Since A is

assumed to be real, it follows that the second eigenvalue λ2 is a conjugate of
λ1, that is, λ2 = α − iβ. Let V = V1 + iV2 be the eigenvector corresponding
to λ1. Then,

AV = λ1V

A(V1 + iV2) = (α+ iβ)(V1 + iV2).

Hence,

AV1 = αV1 − βV2
AV2 = βV1 + αV2,

letting P = (V1, V2) we get P−1AP = J . Hence,

AP = PJ. (4.9)
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Comparison of both sides of Equation (4.9) yields

J =
(
α β
−β α

)

. (4.10)

Theorem 4.2 gives us a simple method of computing the general form of An

for any 2× 2 real matrix. In the first case, when P−1AP = D =
(
λ1 0
0 λ2

)

,

we have

An = (PDP−1)n

= PDnP−1 (4.11)

= P

(
λn
1 0
0 λn

2

)

P−1.

In the second case, when P−1AP = J =
(
λ 1
0 λ

)

, then

An = PJnP−1

= P

(
λn nλn−1

0 λn

)

P−1. (4.12)

Equation (4.12) may be easily proved by mathematical induction (Problem 11).

In the third case, we have P−1AP = J =
(
α β
−β α

)

. Let ω = arctan (β/α).

Then cosω = α/|λ1|, sinω = β/|λ1|. Now, we write the matrix J in the form

J = |λ1|
(
α/|λ1| β/|λ1|
−β/|λ1| α/|λ1|

)

= |λ1|
(

cosω sinω
− sinω cosω

)

.

By mathematical induction one may show that (Problem 11)

Jn = |λ1|n
(

cosnω sinnω
− sinnω cosnω

)

. (4.13)

and thus

An = |λ1|nP
(

cosnω sinnω
− sinnω cosnω

)

P−1. (4.14)

Example 4.2
Solve the system of difference equations

X(n+ 1) = AX(n) (4.15)

where

A =
(−4 9
−4 8

)

, X(0) =
(
1
0

)

.
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SOLUTION The eigenvalues of A are repeated: λ1 = λ2 = 2. The only

eigenvector that we are able to find is V1 =
(
3
2

)

. To construct P we need to

find a generalized eigenvector V2. This is accomplished by solving the equation

(A−2I)V2 = V1. Then, V2 may be taken as any vector
(
x
y

)

, with 3y−2x =

1. We take V2 =
(
1
1

)

. Now if we put P =
(
3 1
2 1

)

, then P−1AP = J =
(
2 1
0 2

)

. Thus, the solution of Equation (4.15) is given by

X(n) = PJnP−1x(0)

=
(
3 1
2 1

) (
2n n2n−1

0 2n

) (
1 −1
−2 3

) (
1
0

)

= 2n

(
1− 3n
−2n

)

.

REMARK 4.1 If a map f : R
2 → R

2 is given by f(X0) = AX0, then

fn(X0) = AnX0 = PJnP−1X0. In particular, if X0 =
(
1
0

)

, then fn(X0) =

2n

(
1− 3n
−2n

)

for all n ∈ Z
+.

Exercises - (4.1 and 4.2)

In Problems 1–5, find the eigenvalues and eigenvectors of the matrix A and
compute An.

1. A =
(−4.5 5
−7.5 8

)

2. A =
(

4.5 −1
2.25 1.5

)

3. A =
(

8/3 1/3
−4/3 4/3

)

4. A =
(

2 3
−3 2

)

5. A =
(−2 −3

1 1

)
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6. Let L : R2 → R2 be defined by L(X) = AX , where A is as in Problem 1.

Find Ln

(
0
1

)

.

7. Solve the difference equation X(n + 1) = AX(n), where A is as in

Problem 3, and X(0) =
(
1
1

)

.

8. Solve the difference equation X(n + 1) = AX(n), where A is as in
Problem 4, and X(0) = X0.

9. Let f : R2 → R2 be defined by f(X) = AX , with A as in Problem 5.

Find fn

(
0
1

)

.

10. Let A be a 2 × 2 matrix with distinct real eigenvalues. Show that the
corresponding eigenvectors of A are linearly independent.

11. (a) If J =
(
λ 1
0 λ

)

, show that Jn =
(
λn nλn−1

0 λn

)

.

(b) If J =
(
α β
−β α

)

, show that Jn = |λ|n
(

cosnω sinnω
− sinnω cosnω

)

, where

|λ| =
√
α2 + β2, ω = arctan

(
β
α

)
.

12. Let a matrix A be in the form

A =
(

0 1
−p2 −p1

)

.

(a) Show that if A has distinct eigenvalues λ1 and λ2, then

P−1AP =
(
λ1 0
0 λ2

)

,

where P =
(

1 1
λ1 λ2

)

.

(b) Show that if A has a repeated eigenvalue λ, then

P−1AP =
(
λ 1
0 λ

)

,

where P =
(
1 0
λ 1

)

.

(c) Show that ifA has complex eigenvalues λ1 = α+iβ and λ2 = α−iβ,
then

P−1AP =
(
α β
−β α

)

,

where P =
(
1 0
α β

)

.
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4.3 Fundamental Set of Solutions

Consider the linear system

X(n+ 1) = AX(n), (4.16)

where A is a 2× 2 matrix. Then, two solutions X1(n) and X2(n) of Equation
(4.16) are said to be linearly independent if X2(n) is not a scaler multiple of
X1(n) for all n ∈ Z+. In other words, if c1X1(n)+c2X2(n) = 0 for all n ∈ Z+,
then c1 = c2 = 0. A set of two linearly independent solutions {X1(n), X2(n)}
is called a fundamental set of solutions of Equation (4.16).

DEFINITION 4.2 Let {X1(n), X2(n)} be a fundamental set of solutions
of Equation (4.16). Then

X(n) = k1X1(n) + k2X2(n), k1, k2 ∈ R (4.17)

is called a general solution of Equation (4.16).

Finding X1(n) and X2(n) is generally an easy task. We now give an explicit
derivation.

In the sequel λ1, λ2 denote the eigenvalues of A;V1, V2 are the corresponding
eigenvectors of A.

We have three cases to consider.

Case (i)

Suppose that P−1AP = J =
(
λ1 0
0 λ2

)

. Then a general solution may be given

by

X(n) = AnX(0) = PJnP−1X(0)

= (V1, V2)
(
λn
1 0
0 λn

2

) (
k1
k2

)

where
(
k1
k2

)

= P−1X(0). Then,

X(n) = k1λ
n
1V1 + k2λ

n
2V2. (4.18)

Here, X1(n) = λn
1V1 and X2(n) = λn

2V2 constitute a fundamental set of
solutions since in this case V1 and V2 are linearly independent eigenvectors.
Note that one may check directly that λn

1V1 and λn
2V2 are indeed solutions of

Equation (4.16) (Problem 13a).
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Case (ii)

Suppose that P−1AP = J =
(
λ 1
0 λ

)

. Then, a general solution may be

given by

X(n) = PJnP−1X(0)

= (V1, V2)
(
λn nλn−1

0 λn

) (
k1
k2

)

= k1λ
nV1 + k2(nλn−1V1 + λnV2) (4.19)

Hence, X1(n) = λnV1 and X2(n) = λnV2 + nλn−1V1 constitute a funda-
mental set of solutions of Equation (4.16) (Problem 13b).

Case (iii)

Suppose that P−1AP = J =
(
α β
−β α

)

. If ω = arctan(β/α), then the general

solution may be given by

X(n) = PJnP−1X(0)

= (V1V2)|λ1|n
(

cosnω sinnω
− sinnω cosnω

) (
k1
k2

)

= |λ1|n[k1 cosnω + k2 sinnω)V1 (4.20)
+(−k1 sinnω + k2 cosnω)V2].

Hence, X1(n) = |λ1|n[(k1 cosnω)V1 − (k1 sin(nω))V2] and X2(n)
= (|λ1|n[(k2 sin(nω))V1+(k2 cos(nω)]V2 constitute a fundamental set of solu-
tions (Problem 13c).

Example 4.3
Solve the system of difference equations

X(n+ 1) = AX(n), X(0) =
(
1
2

)

,

where

A =
(−2 −3

3 −2
)

.

SOLUTION The eigenvalues of A are λ1 = −2+3i and λ2 = −2−3i. The
corresponding eigenvectors are V =

(−1
i

)

and V =
(−1
−i

)

, respectively.

This time, we take a short cut and use Equation (4.20). The vectors

V1 and V2 referred to in this formula are the real part of V, V1 =
(−1

0

)

, and
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the imaginary part of V, V2 =
(
0
1

)

. Now, |λ1| =
√
13, ω = arctan(−32 ) ≈

123.69◦. Thus,

X(n) = (13)n/2

[

(k1 cosnω + k2 sinnω)
(−1

0

)

+ (−k1 sinnω + k2 cosnω)
(
0
1

) ]

X(0) =
(
1
2

)

= k1

(−1
0

)

+ k2

(
0
1

)

.

Hence, k1 = 1, k2 = 2. Thus,

X(n) = (13)n/2

[

(cosnω + 2 sinnω)
(
1
0

)

+ (− sinnω + 2 cosnω)
(
0
1

) ]

= (13)n/2

(− cosnω − 2 sinnω
− sinnω + 2 cosnω

)

.

4.4 Second-Order Difference Equations

A second-order difference equation with constant coefficients is a scalar equa-
tion of the form

u(n+ 2) + p1u(n+ 1) + p2u(n) = 0 (4.21)

Although one may solve this equation directly, it is sometimes beneficial to
convert it to a two-dimensional system. The trick is to let u(n) = x1(n) and
u(n+ 1) = x2(n).

Then we have

x1(n+ 1) = x2(n)
x2(n+ 1) = −p2x1(n)− p1x2(n)

which is of the form
X(n+ 1) = AX(n) (4.22)

where

X(n) =
(
x1(n)
x2(n)

)

, and A =
(

0 1
−p2 −p1

)

.

The characteristic equation of A is given by

λ2 + p1λ+ p2 = 0. (4.23)

Observe that we may obtain the characteristic Equation (4.23) by letting
u(n) = λn in Equation (4.21). Thus, if λ1 and λ2 are the roots of Equation
(4.23), then u1(n) = λn

1 and u2(n) = λn
2 are solutions of Equation (4.21).

Using Eqs. (4.18), (4.19), and (4.20), we can make the following conclusions:
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1. If λ1 = λ2 and both are real, then the general solution of Equation
(4.21) is given by

u(n) = c1λ
n
1 + c2λn

2 , (4.24)

2. If λ1 = λ2 = λ, then the general solution of Equation (4.21) is given by

u(n) = c1λ
n + c2nλn, (4.25)

3. If λ1 = α+iβ, λ2 = α−iβ, then the general solution of Equation (4.21)
is given by

u(n) = |λ1|n(c1 cosnω + c2 sinnω), (4.26)

where ω = arctan (β/α).

Example 4.4
Solve the second-order difference equation

x(n+ 2) + 6x(n+ 1) + 9x(n) = 0, x(0) = 1, x(1) = 0.

SOLUTION The characteristic equation associated with the equation is
given by λ2 + 6λ+ 9 = 0.

Hence, the characteristic roots are λ1 = λ2 = −3. The general solution is
given by

x(n) = 9(−3)n + c2n(−3)n
x(0) = 1 = c1

x(1) = 0 = −3c1 − 3c2.

Thus, c2 = −1 and, consequently,

x(n) = (−3)n − n(−3)n
= (−3)n(1 − n)

Exercises - (4.3 and 4.4)

1. Solve the system

x1(n+ 1) = −x1(n) + x2(n)
x2(n+ 1) = 2x2(n)
with x1(0) = 1, x2(0) = 2.
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2. Find the general solution of the system

X(n+ 1) = AX(n), where A =
(
1 −5
1 −1

)

.

3. Solve the problem X(n+ 1) = AX(n), where A =
(

1 1
−2 4

)

.

4. Solve the system

X(n+ 1) = AX(n), with A =
(
2 −1
0 4

)

, X(0) =
(
1
2

)

.

5. Solve the system x(n+ 1) = Ax(n), with A =
(
3 1
0 3

)

.

6. Solve the difference equation

x(n+ 2)− 5x(n+ 1)6x(n) = 0, x(0) = 2

(a) By converting it to a system,

(b) Directly as it is.

7. Solve the difference equation

F (n+ 2) = F (n+ 1) + F (n), F (1) = 1, F (2) = 1.

(This is called the Fibonacci sequence.)

8. The Chebyshev polynomials of the first and second kind are defined as
follows:

Tn(x) = cos(n cos−1(x)),

Un(x) =
1√

1− x2 sin[(n+ 1) cos−1(x)], for |x| < 1.

(a) Show that Tn(x) satisfies the difference equation

Tn+2(x) − 2xTn+1(x) + Tn(x) = 0, T0(x) = 1, T1(x) = x.

(b) Solve for Tn(x).

(c) Show that

Un+2(x) − 2xUn+1(x) + Un(x) = 0, U0(x) = 1, U1(x) = 2x.

(d) Write down the first four terms of Tn(x) and Un(x).

9. Solve the equation x(n+ 2) + 16x(n) = 0.
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10. Let A be a 2× 2 real matrix with distinct eigenvalues λ1 and λ2. Prove
that the corresponding eigenvectors V1 and V2 are linearly independent.

11. Let A be a 2× 2 real matrix with a repeated eigenvalue λ. Let V1 be an
eigenvector corresponding to λ and let V2 be a generalized eigenvector.
Show that V1 and V2 are linearly independent.

12. Let A be a 2× 2 real matrix with complex eigenvalues λ1 = α+ iβ and
λ2 = α−iβ. Suppose that V = V1+iV2 is the eigenvector corresponding
to λ1. Prove that the matrix P = (V1, V2) is nonsingular. (Hint: It
suffices to show that V1 and V2 are linearly independent.)

13. (a) Show that X1(n) and X2(n), obtained from Equation (4.18), are
solutions of Equation (4.16).

(b) Show that X1(n) and X2(n), obtained from Equation (4.19), are
solutions of Equation (4.16).

(c) Show that X1(n) and X2(n), obtained from Equation (4.20), are
solutions of Equation (4.16).

In Problems 14 and 15, consider the nonhomogeneous equation

Y (n+ 1) = AY (n) + g(n) (4.27)

where A is a 2× 2 matrix and g is a function defined on Z
+.

14. Show that

Y (n) = AnY (0) +
n−1∑

k=0

An−k−1g(k). (4.28)

(This is called the variation of constants formula.)

15. Use Formula (4.28) to find the solution of Equation (4.27) with

A =
(
2 1
0 2

)

, g(n) =
(
n
1

)

, Y (0) =
(
1
0

)

.

16. Solve the equation y(n+ 2)− 5y(n+ 1) + 4y(n) = 4n.

4.5 Phase Space Diagrams

One of the best graphical methods to illustrate the various notions of stability
is the phase portrait or the phase space diagram. Let f : R2 → R2 be a

given map. Then, starting from an initial point X0 =
(
x1(0)
x2(0)

)

, we plot the
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sequence of point X0, f(X0), f2(X0), f3(X0), . . . and then connect the points
by straight lines. An arrow is placed on these connecting lines to indicate
the direction of the motion on the orbit. In many instances, we need to be
prudent in choosing our initial points in order to get a better phase portrait.

In this section, we consider linear systems for which f(X) = AX , where A
is a 2×2 matrix. Observe that if A−I is nonsingular, i.e., det(A−I) = 0, then

the origin
(
0
0

)

is the only fixed point of the map f . Equivently, X∗ =
(
0
0

)

is the only fixed point of the system

X(n+ 1) = AX(n) (4.29)

As stipulated in Theorem 4.2, there exists a nonsingular matrix P such that
P−1AP = J where J is one of the forms (1), (2), or (3) in Theorem 4.2. If
we let

X(n) = PY (n) (4.30)

in Equation (4.29), we obtain

Y (n+ 1) = JY (n). (4.31)

Our plan here is to draw the phase portrait of Equation (4.31), then use
the transformation (4.30) to obtain the phase portrait of the original sys-
tem (4.29).

(I). We begin our discussion by assuming that J is in the diagonal form

J =
(
λ1 0
0 λ2

)

, where λ1 and λ2 are not necessarily distinct. Here we have

two linearly independent solutions:

Y1(n) = λn
1V1, and Y2(n) = λn

2V2, where V1 =
(
1
0

)

and V2 =
(
0
1

)

are the eigenvectors of A corresponding to the eigenvalues λ1 and λ2, respec-
tively.

Observe that Y1(n) is a multiple of V1, and thus must stay on the line ema-
nating from the origin in the direction of V1; in this case, the x axis. Similarly,
Y2(n) must stay on the line passing through the origin and in the direction
of V2; in this case, the y axis. These two solutions are called straight line
solutions. The general solution is given by

Y (n) = k1λ
n
1

(
1
0

)

+ k2λn
2

(
0
1

)

, Y (0) =
(
k1
k2

)

. (4.32)

We have the following cases to consider:

1. If |λ1| < 1 and |λ2| < 1, then all solutions tend to the origin as n→∞.
Observe that if |λ1| < |λ2| < 1, then, |λn

1 | goes to zero faster than |λn
2 |.
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FIGURE 4.1a
(a) A sink: 0 < λ1 < λ2.

FIGURE 4.1b
(b) A sink: 0 < λ2 < λ1 < 1.
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FIGURE 4.2a
(a) A source: λ1 > λ2 > 1.

And consequently, any solution Y (n) in the form (4.31) is asymptotic

to the straight line solution Y2(n) = λn
2

(
0
1

)

(see Fig. 4.1a).

On the other hand, if |λ1| > |λ2|, then Y (n) is asymptotic to Y1(n) =

λn
1

(
1
0

)

(see Fig. 4.1b).

Phase portraits 4.1a and 4.1b are called sinks.

2. If |λ1| > 1, and |λ2| > 1, then we obtain an source as illustrated in
Figs. 4.2a and 4.2b.

Note that if |λ1| > |λ2| > 1, then Y (n) is asymptotic to Y2(n) = λn
2

(
0
1

)

(the y axis) when n→ −∞ and is dominated by Y1(n) = λn
1

(
1
0

)

when
n→∞.

3. If |λ1| < 1 and |λ2| > 1, then we obtain a saddle (Fig. 4.3). In this case,

when n→∞ Y (n), is asymptotic to Y2(n) = λn
2

(
0
1

)

as n→∞ and is

asymptotic to Y1(n) = λn
1

(
1
0

)

as n→ −∞. Similar analysis is readily

available for the case |λ1| > 1 and |λ2| < 1.

4. If λ1 = λ2, then

Y (n) = k1λ
n

(
1
0

)

+ k2λn

(
0
1

)

= λn

(
k1
k2

)

.
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FIGURE 4.2b
(b) A source: λ2 > λ1 > 1.

FIGURE 4.3
A saddle: 0 < λ1 < 1, λ2 > 1.
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FIGURE 4.4
A sink: 0 < λ1 < λ2 < 1.

Hence, every solution Y (n) lies on a line passing through the origin with
a slope k2/k1 (see Fig. 4.4).

Observe that in each of the four subcases, the presence of a negative eigen-
value will cause the solution Y (n) to oscillate around the origin and the phase
portrait will not look as nice as in Figs. 4.1a–4.4.

(II). Suppose that J is in the form

J =
(
λ 1
0 λ

)

.

Then, we only have one straight line solution, Y1(n) = λnV1 = λn

(
1
0

)

.

The general solution is given by

Y (n) = k1λ
n

(
1
0

)

+ k2

(

nλn−1
(
1
0

)

+ λn

(
0
1

))

= (k1λ+ k2n)λn−1
(
1
0

)

+ k2λn

(
0
1

)

.

Now, if |λ| < 1, then, Y (n) → 0 as n → ∞, since lim
n→∞nλ

n−1 = 0 (by

L’Hopital Rule). Since the term k1λ
n

(
0
1

)

tends to the origin, as n → ∞,

faster than the term (k1λ+k2n)λn

(
1
0

)

, our solution Y (n) tends to the origin

asymptotic to the x axis (see Fig. 4.5a). In this case, the origin is called a
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FIGURE 4.5a
(a) A degenerate sink: λ1 = λ2 = λ, 0 < λ < 1.

FIGURE 4.5b
(b) A degenerate source: λ1 = λ2 = λ, λ > 1.
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degenerate sink. Figure 4.5b depicts the case when |λ| > 1 and in this case,
the origin is called a degenerate source.

(III). Suppose that J is in the form

J =
(
α β
−β α

)

.

In this case, we have no straight line solutions due to the presence of cosnβ

and sinnβ in the solutions Y1(n) = |λ1|n(k1 cosnβ + k2 sinnβ)
(
1
0

)

and

Y2(n) = |λ1|n(−k1 sinnβ + k2 cosnβ)
(
0
1

)

. The general solution is given by

Y (n) = |λ1|n
(
k1 cosnβ + k2 sinnβ
−k1 sinnβ + k2 cosnβ

)

with Y (0) =
(
k1
k2

)

. Define an angle γ by setting cos γ = k1/r0, and

sin γ = k2/r0, where r0 =
√
k21 + k22 . Then

y1(n) = |λ1|nr0 cos(nω − γ)
y2(n) = −|λ1|nr0 sin(nω − γ).

Thus, the solution in polar coordinates is given by

r(n) =
√
y21(n) + y

2
2(n)

= r0|λ1|n (4.33)

θ(n) = arctan
(
y2(n)
y1(n)

)

= −(nw − γ) (4.34)

It follows from Eqs. (4.33) and (4.34) that

1. If |λ1| < 1, then we have a stable focus where each orbit spirals to-
ward the origin [Fig. 4.6(a)]. On the other hand, if |λ1| > 1, then we
have an unstable focus, where each orbit spirals away from the origin
[Fig. 4.6(b)].

2. If |λ1| = 1, then we have a center, where the orbits follow a circular
path [Fig. 4.6(c)]. This is due to the fact that y21(n) + y22(n) = r20 .

To this end, we have obtained the phase portraits of Equation (4.31), which
may be called “canonical” phase portraits. To obtain the phase portraits of
the original system (4.29), we apply (4.30), i.e., we apply P to the orbits

of Equation (4.31). Since P
(
1
0

)

= (V1, V2)
(
0
1

)

= V1, and P
(
0
1

)

=
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(V1, V2)
(
0
1

)

= V2, applying P to the orbits Y (n) amounts to rotating the

coordinates; the x axis to V1 and the y axis to V2. In other words, the straight
line solutions are now along the eigenvectors V1 and V2. Using this observa-
tion, one may opt to sketch the phase portrait of Equation (4.29) directly
and without going through the canonical forms.

The set of points on the line emanating from the origin along V1 is called
the stable subspace W s; the set of points on the line passing through the
origin in the direction of V2 is called the unstable subspace W u. Hence,

W s = {X ∈ R
2 : AnX → 0 as n→∞}, (4.35)

Wu = {X ∈ R
2 : A−nX → 0 as n→∞} (4.36)

The following example illustrates the above-described direct method to
sketch the phase portrait.

Example 4.5
Sketch the phase portrait of the system X(n+ 1) = AX(n), where

A =
(

1 1
0.25 1

)

SOLUTION The eigenvalues of A are λ1 = 3
2 , and λ2 = 1

2 ; the corre-

sponding eigenvectors are V1 =
(
2
1

)

and V2 =
(

2
−1

)

, respectively. Hence,

we have two straight line solutions, X1(n) = (1.5)n
(
2
1

)

and X2(n)

= (0.5)n
(

2
−1

)

. The general solution is given by X(n) = k1(1.5)n
(
2
1

)

+

k2(0.5)n
(

2
−1

)

. Note that x(n) is asymptotic to the line through V1 =
(
2
1

)

(see Fig. 4.7).

4.6 Stability Notions

Consider the map f : R2 → R2 and let X∗ =
(
x∗1
x∗2

)

be a fixed point of f ; i.e.,

f(X∗) = X∗.
Our main objective in this section is to introduce the main stability notions

pertaining to the fixed point x∗. Observe that these notions were previously
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FIGURE 4.6
(a) Stable focus: |λ1| < 1. (b) Source: |λ1| > 1. (c) Center: λ1,2 = α ± iβ,
|λ1,2| = 1.
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FIGURE 4.7
Saddle: λ1 > 1, 0 < λ2 < 1. Stable and unstable subspaces: W s, Wu.

introduced in Chapter 1. The only difference in R2 is that we replace the
absolute value by a convenient “norm” on R2. Roughly speaking, a norm
of a vector (point) in R2 is a measure of its magnitude. A formal definition
follows.

DEFINITION 4.3 A real valued function on a vector space V is said to
be a norm on V , denoted by | |, if the following properties hold:
1. |X | ≥ 0 and |X | = 0 if and only if X = 0, for X ∈ V .
2. |αX | = |α||X | for X ∈ V and any scalar α.

3. |X + Y | ≤ |X |+ |Y | for X,Y ∈ V (the triangle inequality).

In the sequel, we choose the C1 norm on R2 defined for X =
(
x1
x2

)

as

|X | = |x1|+ |x2| (4.37)

For each vector norm on R2 there corresponds a norm || || on all 2 × 2
matrices A = (aij) defined as follows

||A|| = sup{|AX | : |X | ≤ 1}. (4.38)

It may be easily shown that for X ∈ R2,

|AX | ≤ ||A|| |X | (4.39)
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Let ρ(A) be the spectral radius of A defined as ρ(A) = max{|λ1|, |λ2| :
λ1, λ2 are the eigenvalues of A}. Then it may be shown that for our selected
vector norm

||A||1 = max{(|a11|+ |a21|), (|a12|+ |a22|)}. (4.40)

(For a proof see [49].)

For example, if X =
(
1
2

)

, |X | = 3. And for the matrix A =
(

1 3
−2 −4

)

,

||A||1 = max{3, 7} = 7. The eigenvalues of A are λ1 = −2, λ2 = −1. Note
that ρ(A) = max{| − 2|, | − 1|} = 2, and thus ρ(A) ≤ ||A||1.

It is left to the reader to prove, in general, that ρ(A) ≤ ||A||1 for any matrix
A (Problem 14).

Without any further delay, we now give the required stability definitions.

DEFINITION 4.4 A fixed point X∗ of a map f : R2 → R2 is said to be

1. stable if given ε > 0 there exists δ > 0 such |X − X∗| < δ implies
|fn(X)−X∗| < ε for all n ∈ Z+ (see Fig. 4.8a).

2. attracting (sink) if there exists ν > 0 such that |X −X∗| < ν implies
lim

n→∞ f
n(X) = X∗. It is globally attracting if ν =∞ (see Fig. 4.9).

3. asymptotically stable if it is both stable and attracting. It is globally
asymptotically stable if it is both stable and globally attracting, (see
Fig. 4.12(a))

4. unstable if it is not stable (see Fig. 4.8b).

REMARK 4.2 In [91], Sedaghat showed that a globally attracting fixed
point of a continuous one-dimensional map must be stable. Kenneth Palmer
pointed out to me that this result may be found in the book of Block and
Coppel [12]. Moreover, the proof in Block and Coppel requires only local
attraction (see Appendix for a proof). The situation changes dramatically in
two- or higher dimensional continuous maps, for there are continuous maps
that possess a globally attracting unstable fixed point. We are going to present
one of these maps and put several others as problems for you to investigate.

Example 4.6

Consider the two-dimensional map in polar coordinates

g

(
r
θ

)

=
( √

r√
2πθ

)

, r > 0, 0 ≤ θ ≤ 2π.
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FIGURE 4.8a
(a) The fixed point X∗ = 0 is stable.

FIGURE 4.8b
(b) X∗ = 0 is an unstable fixed point.
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FIGURE 4.9

x∗ =
(
1
0

)

is an unstable globally attracting fixed point.

Then,

gn

(
r
θ

)

=

(
r2

−n

(2π)(1−2
−n)θ2

−n

)

.

Clearly lim
n→∞ g

n

(
r
θ

)

=
(

1
2π

)

≡
(
1
0

)

. Thus, each orbit is attracted to the

fixed point
(
1
0

)

. However, if θ = δπ, 0 < δ < 1, then the orbit of
(
r
θ

)

will

spiral clockwise around the fixed point
(
1
0

)

before converging to it. Hence,
(
1
0

)

is globally attracting but not asymptotically stable (see Fig. 4.9).

4.7 Stability of Linear Systems

In this section, we focus our attention on linear maps where f(X) = AX , and
A is a 2× 2 matrix. Equivalently, we are interested in the difference equation

X(n+ 1) = AX(n). (4.41)

For such linear maps, we can provide complete information about the sta-

bility of the fixed point X∗ =
(
0
0

)

. The main result now follows.
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THEOREM 4.3
The following statements hold for Equation (4.41):

(a) If ρ(A) < 1, then the origin is asymptotically stable.

(b) If ρ(A) > 1, then the origin is unstable.

(c) If ρ(A) = 1, then the origin is unstable if the Jordan form is of the form(
λ 1
0 λ

)

, and stable otherwise.

PROOF Suppose that ρ(A) < 1. Then it follows from Eqs. (4.18), (4.19),
(4.20), that lim

n→∞X(n) = 0. Thus, the origin is (globally) attracting. To prove
stability, we consider three cases.

(i) Suppose that the solution X(n) is given by Equation (4.18). This is
the case when the eigenvalues of the matrix A are real and there are two
linearly independent eigenvectors.

X(n) = P

(
λn
1 0
0 λn

2

)

P−1X(0).

Hence,

|X(n)| ≤ ||P || ||P−1||ρ(A)|X(0)|
≤ M |X(0)|

where M = ||P || ||P−1|| ρ(A).
Now, given ε > 0, let δ = ε/M . Then |X(0)| < δ implies that |X(n)| <
Mδ = ε. This shows that the origin is stable.

(ii) Suppose that the solution X(n) is given by Equation (4.19). This
case occurs if the matrix A has a repeated eigenvalue λ and only one
eigenvector.

X(n) = P

(
λn nλn−1

0 λn

)

P−1X(0)

|X(n)| ≤ ||P || ||P−1|| (n|λ|n−1 + |λ|n)|X(0)|.

Since n|λ|n → 0 as n → ∞, there exists N ∈ Z+, such that the term
(n|λ|n−1 + |λ|n) is bounded by a positive number L. Hence,

|X(n)| ≤M |X(0)|
where M = L||P || ||P−1||.
The proof of the stability of the origin may be completed by seting
δ = ε/M as in part (a).
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(iii) If A is not in the form
(
λ 1
0 λ

)

, then it is either diagonalizable to J =
(
λ1 0
0 λ2

)

, where |λ1| < 1 and |λ2| = 1 or |λ2| < 1 and |λ1| = 1. In either

case, Jn is bounded and hence the origin is stable.

The proofs of parts (b) and (c) are left to you as Problem 11.

Exercises - (4.5 – 4.7)

In Problems 1–9, sketch the phase portrait of the system X(n+1) = AX(n),
when A is the given matrix. Determine the stability of the origin.

1.
(
1/2 0
0 1/2

)

2.
(
1/5 0
0 2

)

3.
(
2 1
0 2

)

4.
(−1/2 1

0 −1/2
)

5.
(

0.5 0.25
−0.25 0.5

)

6.
(

1 1
−1 3

)

7.
(−3 −4
7.5 8

)

8.
(−2 1
−7 3

)

9.
(

1 2
−1 −1

)

10.
(

1 3
−1 1

)

11.
(
1 1
1
4 1

)
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12. Show that if X∗ is a fixed point of a linear map f on R2 and is asymp-
totically stable, then it must be globally asymptotically stable.

13. Complete the proof of Theorem 4.3.

14. Prove that for any 2× 2 matrix A, ρ(A) < ||A||.

4.8 The Trace-Determinant Plane

4.8.1 Stability Analysis

Table (4.1) provides a partial summary of everything we have done so far.
In this section we provide another important way of presenting these results,
namely, trace-determinant plane, where we employ pictures, rather than a
table. This turns out to be a better scheme when one is interested in studying
bifurcation in two-dimensional systems.

The following two results provide the framework for using the trace-deter-

minant plane. Recall that for matrix A =
(
a11 a12
a21 a22

)

, tr A = a11 + a22, and

det A = a11a22 + a12a21.

THEOREM 4.4
Let A = (aij) be a 2× 2 matrix. Then ρ(A) < 1 if and only if

|tr A| − 1 < det A < 1. (4.42)

PROOF

(i) Assume that ρ(A) < 1. If λ1, λ2 are the eigenvalues of A, then |λ1| < 1
and |λ2| < 1. The characteristic equation of the matrix A is given by
det (A−λI) = λ2−(a11+a22)λ−(a11a22−a12a21) = 0, or λ2−(tr A)λ+
det A = 0. Hence the eigenvalues are

λ1 =
1
2

[
tr A+

√
(tr A)2 − 4 det A

]
,

λ2 =
1
2

[
tr A−

√
(tr A)2 − 4 det A

]
.

Case (a) λ1 and λ2 are real roots, i.e., (tr A)2− 4 det A ≥ 0. Now −1 < λ1,
λ2 < 1 implies that

−2 < tr A±
√

(tr A)2 − 4 det A < 2
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TABLE 4.1

Partial summary of the stability of linear systems.
Type Eigenvalue Phase Portrait

Saddle 0 < λ1 < 1 < λ2

Sink 0 < λ2 < λ1 < 1

Source λ2 > λ1 > 1

Spiral Sink λ = α± iβ, |λ| < 1, β = 0

Spiral Source λ = α± iβ, |λ| > 1, β = 0

Center λ = α± iβ, |λ| = 1, β = 0

“Oscillatory” Saddle −1 < λ1 < 0, λ2 < −1

“Oscillatory” Source λ1 > 1, λ2 > −1
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or
−2− tr A <

√
(tr A)2 − 4 det A < 2− tr A (4.43)

−2− tr A < −
√
(tr A)2 − 4 det A < 2− tr A. (4.44)

Squaring the second inequality (4.43) yields

1− tr A+ det A > 0. (4.45)

Similarly, if we square the first inequality in (4.44) we obtain

1 + tr A+ det A > 0. (4.46)

Now from the second inequality (4.43) and the first inequality in
(4.44) we obtain 2+ tr A > 0 and 2− tr A > 0 or |tr A| < 2. Since
(tr A)2 − 4 det A ≥ 0, it follows that

det A ≤ (tr A)2/4 < 1. (4.47)

Combining (4.45), (4.46) and (4.47) yields (4.42).
Case (b) λ1 and λ2 are complex conjugates, i.e.,

(tr A)2 − 4 det A < 0. (4.48)

In this case we have λ1,2 = 1
2

[
tr A± i√4 det A− (tr A)2

]
and

|λ1|2 = |λ2|2 = (tr A)2

4
+

4 det A
4

− (tr A)2

4
= det A.

Hence 0 < det A < 1. To show that inequalities (4.45) and (4.46)
hold, note that since det A > 0 either (4.45) (if tr A > 0) or
(4.46) (if tr A < 0) holds. Without loss of generality, assume that
tr A > 0. Then (4.45) holds. From (4.48), tr A < 2

√
det A. If

we let det A = x, then x ∈ (0, 1) and f(x) = 1 + x − 2
√
x <

1 + det A− tr A. Note that f(0) = 1 and f ′(0) = 1− 1√
x
indicate

that f is decreasing on (0, 1) with range (0, 1). This implies that
1 + det A− tr A > f(x) > 0 and this completes the proof.

(ii) Conversely, assume that (4.42) holds. Then we have two cases to con-
sider.

Case (a) (tr A)2 − 4 det A ≥ 0. Then

|λ1,2| = 1
2

∣
∣
∣tr A±

√
(tr A)2 − 4 det A

∣
∣
∣

<
1
2

∣
∣
∣tr A±

√
(det A+ 1)2 − 4 det A

∣
∣
∣

<
1
2

(
det A+ 1 +

√
(det A− 1)2

)

=
1
2
(det A+ 1− (det A− 1)) = 1.
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Case (b) (tr A)2 − 4 det A < 0. Then

|λ1,2| = 1
2

∣
∣
∣tr A± i

√
4 det A− (tr A)2

∣
∣
∣

=
1
2

√
(tr A)2 + 4 det A− (tr A)2

=
√
det A < 1.

As a by-product of the preceding result, we obtain the following criterion
for asymptotic stability.

COROLLARY 4.1
The origin in Equation (4.41) is asymptotically stable if and only if condition
(4.42) holds true.

Note that condition (4.42) may be spelled out in the following three in-
equalities:

1 + tr A+ det A > 0, or

det A > −tr A− 1 (4.45)′ (4.49)

1− tr A+ det A > 0, or

det A > tr A− 1 (4.46)′ (4.50)

det A < 1. (4.47)′ (4.51)

Viewing det A as a function of tr A, the above three inequalities give us the
stability region as the interior of the triangle bounded by the lines det A =
−tr A− 1, det A = tr A− 1, and det A = 1, as shown in Fig. 4.10.

Next we delve a little deeper into finding the exact values of the eigenvalues
of the matrix A along the boundaries of the triangle enclosing the stability
region. The following result provides us with the needed answers. Let λ1 =
1
2

(
tr A+

√
(tr A)2 − 4 det A

)
, λ2 = 1

2

(
tr A−√

(tr A)2 − 4 det A
)
be the

eigenvalues of A.

THEOREM 4.5
The following statements hold for any 2× 2 matrix A.

(i) If |tr A| − 1 = det A, then we have

(a) the eigenvalues of A are λ1 = 1 and λ2 = det A if tr A > 0,

(b) the eigenvalues of A are λ2 = −1 and λ1 = −det A if tr A < 0,.
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(ii) If |tr A|−1 < det A, and det A = 1, then the eigenvalues of A are e±iθ,
where θ = cos−1(tr A/2).

PROOF

(i) Let |tr A| − 1 = det A. Then (tr A)2 − 4 det A = (det A + 1)2 ≥ 0.
This implies that the eigenvalues are real numbers. Moreover, λ1,2 =
1
2

(
tr A±√

(tr A)2 − 4 det A
)
= 1

2 (tr A± (det A− 1)).

(a) If tr A > 0, then tr A = 1 + det A, and consequently,

λ1,2 =

{
1
det A

.

(b) If tr A < 0, then tr A = −1− det A, and consequently,

λ1,2 =

{
1
det A

.

(ii) Let |tr A| − 1 < det A, and det A = 1. Then (tr A)2 − 4 detA <
(det A + 1)2 − 4 = 0. Hence, the eigenvalues are complex conjugates.
Moreover,

λ1,2 =
1
2

(
(tr A)2/4±

√
4 det A− (tr A)2

)

=
1
2
tr A±

√
1− (tr A)2.

Thus |λ1,2| =
√
(tr A)2/4 + 1− (tr A)2/4 = 1. Furthermore, θ = arctan(λ1,2)

= tan−1
(

±
√
1−(tr A)2/4

(tr A)2/4

)

= cos−1(tr A/2), which give λ1,2 = e±iθ = cos θ ±
i sin θ.

4.8.2 Navigating the Trace-Determinant Plane

The trace-determinant plane is effective in the study of linear systems with
parameters. It provides us a chart of those locations where we can expect
dramatic changes in the phase portrait. There are three critical loci. Let T
denotes the trace and D denote the determinant. Then there are three critical
lines: D = tr A − 1, D = −tr A − 1, and D = 1; they enclose the stability
region in the trace-determinant planes.

We now illustrate our analysis by the following example.
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λ
2

λ
1 λ

1
λ

2

1 2−1−2

det A

tr A0

real eigenvalue

det A = 1/4 (tr A)
2

= − det A,

= − 1

complex eigenvalue

det A = tr A − 1

= 1, = det A

FIGURE 4.10a
(a) The stability region for Equation (4.41) is the shaded triangle.
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(b) The determination of eigenvalues in different regions.
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FIGURE 4.10c
(c) Description of the dynamics of Equation (4.41) in all the regions in the
det-trace plane.

Example 4.7

Consider the one-parameter family of linear systems X(n + 1) = AX(n),
where

A =
(−1 a
−2 1

)

which depends on the parameter a. As a varies, the determinant of the matrix,
det A, is always 2a − 1, while the trace of the matrix, tr A, is always 0. As
we vary the parameter a from negative to positive values, the corresponding
point (T,D) moves vertically along the line T = 0. Now if D < −1, which
occurs if 2a − 1 < −1 or a < 0, we have a degenerate case, λ1 = 1 and

λ2 = −1 with corresponding eigenvectors
(
0
1

)

and
(
1
1

)

. Thus every point

on the y-axis is a fixed point and every other point in the plane is periodic of
period 2. For 0 < a ≤ 1

2 , we have a sink, and for 1
2 < a < 1 we have a spiral

sink. At exactly a = 1 we have a center, and if a > 1 we have a spiral source
(see Fig 4.10b).

The values of a where critical dynamical changes occur are called bifurcation
values. In this example, the bifurcation values of a are 0, 1

2 , 1.

Exercises - 4.8

In problems 1-6, consider the one-parameter families of linear systems
X(n + 1) = AX(n), where A depends on a parameter α. In a brief essay,
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discuss different types of dynamical behavior exhibited by the systems as α
increases along the real line, modeled after Example 4.7.

1. A =
(

2 3
1 + α 4

)

2. A =
(
3 + α 2
−2 3

)

3. A =
(
2 + α 1
0 2

)

4. A =
(
α+ 1 1
α α+ 1

)

5. A =
(
α+ 1 α2 + α
1 α+ 1

)

6. A =
(
α+ 1

√
1− α2

1 1

)

, −1 ≤ α ≤ 1

In problems 7-9, we consider two-parameter families of the linear system
X(n+ 1) = AX(n), where A depends on two parameters α, β.

In the ab-plane, identify all regions where the system possesses a saddle, a
sink, a spiral sink, and so on.

7.* A =
(
α+ 1 1
β 2

)

8.* A =
(
α+ 1 β
β α+ 1

)

In the trace-determinant plane (Fig. 4.10d).

1. Show that we have a saddle in regions in 3© and 5©.

2. Show that we have an oscillatory saddle in regions 7© and 8©.

3. (a) Show that we have an oscillatory source in region 6©.

(b) Show that we have a spiral source in region 3©.

4.9 Liapunov Functions for Nonlinear Maps

In 1892, the Russian mathematician A. M. Liapunov (sometimes transliter-
ated as Lyapunov) introduced a new method to investigate the stability of
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nonlinear differential equations. This method, now known as Liapunov’s sec-
ond method, allows one to determine the stability of solutions to a differential
equation without actually solving it.

In this section, we will adapt Liapunov’s second method to two-dimensional
maps/difference equations. The adaptation process is more or less straight-
forward and follows closely to LaSalle [60] and Elaydi [32].

Consider the difference equation

X(n+ 1) = f(X(n)) (4.52)

where f : G→ R2, G ⊂ R2, is continuous. Let X∗ be a fixed point of f , that
is, f(X∗) = X∗. For V : R2 → R, we define the variation ∆V of V relative
to Equation (4.52) as

∆V (X) = V (f(X))− V (X).

Hence,
∆V (X(n)) = V (X(n+ 1))− V (X(n)).

So, if ∆V ≤ 0, then V is nonincreasing along the orbits of f .

DEFINITION 4.5 A real valued function V : G→ R, G ⊂ R2, is said to
be a Liapunov function on G if

1. V is continuous on G

2. ∆V (X) ≤ 0, whenever X and f(X) ∈ G.

Let B(X, γ) = {Y ∈ R2 : |Y − X | < γ} denote the open ball around X .
Then, we say that the Liapunov function is positive definite atX∗ if V (X) > 0
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FIGURE 4.11
A Liapunov function V and its level curves.

for all X ∈ B(X∗, δ), for some δ > 0, X = X∗, and V (X∗) = 0. The function
V is said to be negative definite if −V is positive definite.

We now present the reader with an informal geometrical discussion on the
first Liapunov stability theorem. Without loss of generality, we focus our at-
tention on the stability of the fixed point X∗ = 0. Suppose that there exists a
positive definite Liapunov function V defined on B(0, η), η > 0. Figure 4.11(a)
illustrates the graph of V in a three-dimensional coordinate system, while

Fig. 4.11(b) depicts the level curves V
(
x1
x2

)

= c in the plane. Assume that

for some ε > 0, B(0, ε) contains the level curve V
(
x1
x2

)

= c̃ and this level

curve, in turn, contains the ball B(0, δ), 0 < δ ≤ ε.
Now, if X ∈ B(0, δ), then V (X) ≤ c̃. Since ∆V ≤ 0, it follows that

V (fn(X)) ≤ V (X) ≤ c̃, for all n ∈ Z+. Consequently, the orbit of X stays
indefinitely in B(0, ε), and hence 0 is a stable fixed point. On the other hand,
if ∆V < 0, then V (fn(X)) < V (X) < c̃ for all n ∈ Z+, which intuitively leads
to the conclusion that fn(X)→ 0 as n→∞. This is the essence of the proof
of the next theorem. A more rigorous proof follows.

THEOREM 4.6

Suppose that V is a positive definite Liapunov function defined on an open
ball G = B(X∗, γ) around a fixed point X∗ of a continuous map f on R2.
Then, X∗ is stable. If, in addition, ∆V (X) < 0, whenever X and f(X) ∈
G,X = X∗, then X∗ is asymptotically stable on G. Moreover, if G = R2 and
V (X)→∞ as |X | → ∞, then X∗ is globally asymptotically stable.

PROOF Choose α1 > 0 such that B(X*, α1) ⊂ G ∩H . Since f is con-
tinuous, there is α2 > 0 such that if X ∈ B(X*, α2) then f(X) ∈ B(X*, α1).
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Let 0 < ε ≤ α2 be given. Define ψ(ε) = min {V (X)|ε ≤ |X −X*| ≤ α1}. By
the intermediate value theorem, there exists 0 < δ < ε such that V (X) < ψ(ε)
whenever |X −X*| < δ.

Realize now that if X0 ∈ B(X*, δ), then X(n) ∈ B(X*, ε) for all n ≥ 0.
This claim is true because, if not, there exists X0 ∈ B(X*, δ) and a positive
integerm such thatX(r) ∈ B(X*, ε) for 1 ≤ r ≤ m and X(m+1) ∈ B(X*, ε).
Since X(m) ∈ B(X*, ε) ⊂ B(X*, α2), it follows that X(m+ 1) ∈ B(X*, α1).
Consequently, V (X(m+1)) ≥ ψ(ε). However, V (X(m+1)) ≤, . . . ,≤ V (X0) <
ψ(ε) and we thus have a contradiction. This establishes stability.

To prove asymptotic stability, assume that X0 ∈ B(X*, δ). Then X(n) ∈
B(X*, ε) holds true for all n ≥ 0. If {X(n)} does not converge to X*, then
it has a subsequence {X(ni)} that converges to Y ∈ Rk. Let E ⊂ B(X*, α1)
be an open neighborhood of Y with X* ∈ E. Having already defined on
E the function h(x) = V (f(X))/V (X), we may consider h as well defined,
continuous, and h(X) < 1 for all X ∈ E. Now if η ∈ (h(Y ), 1) then there
exists δ > 0 such that X ∈ B(Y, δ) implies h(X) ≤ η. Thus for sufficiently
large ni,

V
(
f(X(ni))

) ≤ ηV (
X(ni − 1)

) ≤ η2V (
X(ni − 2)

)
, . . . ,≤ ηniV (X0).

Hence,
lim

ni→∞V
(
X(ni)

)
= 0.

But, since limni→∞ V
(
X(ni)

)
= V (Y ), this statement implies that V (Y ) = 0,

and consequently Y = X*.
To prove the global asymptotic stability, it suffices to show that all solutions

are bounded and then repeat the above argument. Begin by assuming there
exists an unbounded solutionX(n), and then some subsequence {X(ni)} → ∞
as ni → ∞. Since V (X) → ∞, as |X | → ∞, this assumption implies that
V

(
X(ni)

) →∞ as ni →∞, which is a contradiction since V (X0) > V
(
X(ni)

)

for all i. This concludes the proof.

Example 4.8
Consider the two-dimensional system

x(n+ 1) =
ay(n)

1 + x2(n)

y(n+ 1) =
bx(n)

1 + y2(n)

(4.53)

or the map

F

(
x
y

)

=
(
ay/(1 + x2)
bx/(1 + y2)

)

.

Discuss the stability of the zero solution of Equation (4.53).
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SOLUTION Take V (x, y) = x2 + y2. Then V is positive definite.
Moreover,

∆V
(
x
y

)

= V

(

F

(
x
y

))

− V
(
x
y

)

=
a2y2

(1 + x2)2
+

b2x2

(1 + y2)2
− x2 − y2 (4.54)

=
(

b2

(1 + y2)2
− 1

)

x2 +
(

a2

(1 + x2)2
− 1

)

y2

≤ (b2 − 1)x2 + (a2 − 1)y2.

Now, we have three cases to consider.
The first case is if a2 < 1 and b2 < 1, then ∆V < 0 and thus we conclude

from Theorem 4.3 that the origin is asymptotically stable. Furthermore, since

V

(
x
y

)

→∞ as
∣
∣
∣
∣

(
x
y

)∣
∣
∣
∣ →∞, the origin is globally asymptotically stable (see

Fig. 4.12(a)).
However, in the second case, if a2 ≤ 1 and b2 ≤ 1, then ∆V ≤ 0 and we

can only conclude from Theorem 4.3 that the origin is stable.
In the final case, when a2 > 1 and b2 > 1, Theorem 4.3 fails to provide us

with information about the stability (or lack thereof) of the origin.

It is now evident that finer analysis is needed to fully understand the sta-
bility in the last two cases. Subsequently, we are led to an important result
due to LaSalle [60], which is commonly known as LaSalle’s invariance prin-
ciple [32]. To prepare for such important results, we should become familiar
with certain terminology, some old and some new.

Recall that a set H is (positively) invariant under a map f : R2 → R2 if
f(H) ⊂ H . The (positive) limit set Ω(x) of x ∈ R2 is defined to be the set of
all limit points of its positive orbit O(x). It may be shown (Problem 2) that

Ω(x) =
∞⋂

i=0

∞⋃

n=i

fn(x). (4.55)

Furthermore, Ω(x) is closed and (positively) invariant (Problem 3).
A closed set H is said to be invariantly connected if it is not the union of

two nonempty disjoint closed invariant sets.
The nagging question still persists as to whether or not Ω(X) is nonempty

for a given X ∈ R2. The next lemma settles this question.

LEMMA 4.1
If O(x) is bounded, then Ω(x) is nonempty, compact, and invariant.

PROOF The proof is left to the reader as Problem 2.
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FIGURE 4.12
(a) a2 < 1, b2 < 1, the origin is globally asymptotically stable. (b) a2 =
1, b2 = 1, an orbit approaching a 4-cycle. (c) a2 > 1, b2 > 1, the origin is
unstable.
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Now, let V be a Liapunov function on a subset G ⊂ R2. Define

E = {X ∈ G : ∆V (X) = 0}.
Let M be the maximal invariant subset of E, and for c ∈ R+, V −1(c) = {X :
V (X) = c, X ∈ R2}.

THEOREM 4.7 (LaSalle’s Invariance Principle)
Suppose that V is a positive definite Liapunov function defined on an open
ball G = B(X∗, γ) around a fixed point X∗ of a two-dimensional map f . If
for X ∈ G, O(X) is bounded and contained in G, then for some c ∈ R+,
fn(X)→M ∩ V −1(c) as n→∞.

PROOF Let X ∈ R2 such that O(x) is bounded. Then, by Lemma 4.1,
Ω(X) = φ. Now, since V (fn(X)) is nonincreasing and bounded below,
lim

n→∞V (f
n(X)) = c, for some c ∈ R+. For Y ∈ Ω(X), fni(X) → Y as

ni → ∞, for some subsequence of positive integers ni. By the continuity of
V , it follows that

lim
ni→∞V (f

ni(X)) = V (Y ) = c.

Hence, Ω(X) ⊂ V −1(c). Furthermore, since Ω(X) is invariant, V (f(Y )) =
V (Y ) and consequently, ∆V (Y ) = 0. Hence Ω(X) ⊂ E. But, Ω(X) is
invariant, which implies that it must be contained inM . Therefore, fn(X)→
M ∩ V −1(c).

A remark is now in order. Note that if M = {X∗} is a singleton, then
the preceding theorem tells us that X∗ is definitely an asymptotically stable
fixed point. This observation leads to the complete analysis of part (b) of
Example 4.8.

Example 4.9
(Example 4.8 Revisited). Let us reexamine case (b) in Example 4.8 in light
of LaSalle’s invariance principle. Here are the two subcases to consider.

Case one is where a2 ≤ 1, b2 ≤ 1, and a2+b2 < 2. Without loss of generality,
we may assume that a2 < 1 and b2 = 1. Then, ∆V ≤ (a2 − 1)y2 which is
zero when y = 0. Thus E is the x axis. To find the largest invariant subset

M of E, note that for
(
x
0

)

∈ E, F
(
x
0

)

=
(

0
bx

)

. Hence, M =
{(

0
0

)}

.

Consequently, the origin is asymptotically stable.
In case two, a2 = 1 and b2 = 1. It follows from Equation (4.54) that

∆V = 0 if x = 0 or y = 0. Thus E = M = the union of the two coordinate
axes. LaSalle’s invariance now tells us that there exists c > 0 such that each

orbit O+(u) approaches the set
{(±c

0

)

,

(
0
±c

)}

.



214 Discrete Chaos

Now, if c = 0, F 4

(
c
0

)

=
(
c
0

)

, and that
(
c
0

)

is a point of period 4

with the cycle
{(

c
0

)

,

(
0
bc

)

,

(
abc
0

)

,

(
0
ac

)}

. Similarly, we may show that
{(

0
c

)

,

(
ac
0

)

,

(
0
abc

)

,

(
bc
0

)}

is also a 4-cycle. Since Ω(u) is invariantly

connected, each orbit must approach only one of these 4-cycles [Fig. 4.12(b)].
Finally, we observe that if ab = 1, then we have 2-cycles instead.

We now end this section by giving a result about instability. This will
enable us to treat the remaining case of Example 4.8.

THEOREM 4.8

Let V : G ⊂ R2 → R be a continuous function such that relative to Equation
(4.52), ∆V positive definite (negative definite) on a neighborhood of a fixed
point x∗. If there exists a sequence xi → x∗ as i→∞ with V (xi) > 0 (V (xi) <
0), then x∗ is unstable.

PROOF Assume that ∆V (x) > 0 for x ∈ B(η), x = 0,∆V (0) = 0. We
will prove Theorem 4.8 by contradiction, first assuming that the zero solution
is stable. Then for ε < η, there will exist δ < ε such that ‖x0‖ < δ implies
‖x(n, 0, x0)‖ < ε, n ∈ Z+.

Since ai → 0, pick x0 = aj for some j with V (x0) > 0, and ‖x0‖ < δ.
Hence 0(x0) ⊂ B(ε) ⊂ B(η) is closed and bounded (compact). Since its
domain is compact, V (x(n)) is also compact and therefore bounded above.
Since V (x(n)) is also increasing, it follows that V (x(n)) → c. Following the
proof of LaSalle’s invariance principal, it is easy to see that limn→∞ x(n) = 0.
Therefore, we would be led to believe that 0 < V (x0) < limn→∞ V (x(n)) = 0.
This statement is unfeasible—so the zero solution cannot be stable, as we first
assumed. The zero solution of Equation (4.37) is thus unstable.

The conclusion of the theorem also holds if ∆V is negative definite and
V (ai) < 0.

We are now in a position to tackle the remaining case in Example 4.8.
Assume now that a2 > 1 and b2 > 1. Let δ be sufficiently small such that

b2 > (1+ δ2)2 and a2 > (1+ δ2)2. Define a function V
(
x
y

)

= x2+ y2 on the

open disc B(0, δ) centered at the origin and with radius δ. Then V is clearly
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positive definite. Moreover, for
(
x
y

)

∈ B(0, δ) we have

∆V
(
x
y

)

=
(

b2

(1 + y2)2
− 1

)

x2 +
(

a2

(1 + x2)2
− 1

)

y2

≥
(

b2

1 + δ2)2
− 1

)

x2 +
(

a2

(1 + δ2)2
− 1

)

y2

> 0 if
(
x
y

)

=
(
0
0

)

.

Hence by Theorem 4.3, the origin is unstable (see Fig. 4.12(c)).

4.10 Linear Systems Revisited

In Sec. 4.3, we have settled most of the questions concerning the stability of
second-order linear systems:

X(n+ 1) = AX(n). (4.56)

In this section, we are going to construct suitable Liapunov functions for
System (4.56). This is important for our program since by modifying such
Liapunov functions we can find appropriate Liapunov functions for a large
class of nonlinear equations of the form

Y (n+ 1) = AY (n) + g(Y (n))

which we will study in the next section. But, before embarking on our task
we need to introduce a few preliminaries about definite matrices.

Let X ∈ R2, B = (bij) a real symmetric 2 × 2 matrix, and consider the
quadratic form V : R2 → R defined by

V (X) = XTBX =
2∑

i=1

2∑

j=1

bijXiXj (4.57)

where XT denotes the transpose of vector X .
A matrix B is said to be positive (negative) definite if the corresponding

V (X) as defined in Equation (4.57) is positive (negative) for all 0 = X ∈
R2. If, however, V (X) ≥ 0 (V (X) ≤ 0) for all X ∈ R2, then B is positive
(negative) semidefinite. The following result, due to Sylvester [74], gives a
complete characterization of the notion of definiteness of V .

THEOREM 4.9
Let V be a quadratic form as defined in Equation (4.57). Then the following
statements hold true:
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1. V is positive definite if and only if all principle minors of B are positive,
i.e., if and only if

b11 > 0 and detB > 0.

2. V is negative definite if and only if

b11 < 0 and detB > 0.

3. V is positive (negative) definite if and only if all eigenvalues of B are
nonzero and positive (negative), respectively.

4. If λ1, λ2 are the eigenvalues of B, λm = mini |λi|, λM = maxi |λi|,
i = 1, 2, then

λm|X |2 ≤ V (X) ≤ λM |X |2. (4.58)

5. V is semidefinite (positive or negative) if and only if the nonzero eigen-
values of B have the same sign.

Let B =
(
3 2
2 5

)

. Then, the principal minors are 3 and
(
3 2
2 5

)

where both

have positive determinants. Hence, B is positive definite by Theorem 4.9.
Notice that the eigenvalues of B are λ1 = 4

√
5, and λ2 = 4 −√5, which are

also positive. Moreover, if we let V (X) = XTBX , then

V (X) = (x1 x2)
(
3 2
2 5

) (
x1
x2

)

= 3x21 + 4x1x2 + 5x22.

Let us now go back to Equation (4.56) and consider the function V (X) =
XTBX , where B is positive definite as a prospective candidate for a Liapunov
function. Then,

∆V (X(n)) = XT (n+ 1)BX(n+ 1)−XT (n)BX(n)
= XT (n)ATBAX(n)−XT (n)BX(n)
= XT (n)(ATBA−B)X(n).

Thus, ∆V (X(n)) < 0 if and only if

ATBA−B = −C (4.59)

for some positive definite matrix C. Equation (4.59) is called the Liapunov
equation of System (4.56). The preceding argument established part of the
following result whose complete proof is omitted.

THEOREM 4.10
ρ(A) < 1 if and only if for every symmetric and positive definite matrix
C, Equation (4.59) has a unique solution B, which is also symmetric and
positive definite.
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PROOF See [74].

An immediate corollary of Theorem 4.10, which will be useful in the next
section, now follows.

COROLLARY 4.2

If ρ(A) > 1, then there exists a real symmetric matrix B that is not positive
semidefinite such that Equation (4.59) holds for some symmetric positive
definite matrix C.

Exercises - (4.9) and (4.10)

1. Consider the system

x1(n+ 1) = x2(n)− x2(n)[x21(n) + x22(n)]
x2(n+ 1) = x1(n)− x1(n)[x21(n) + x22(n)].

Prove that the zero solution is asymptotically stable.

2. Prove Lemma 4.1.

3. Consider the system

x1(n+ 1) = g1(x1(n), x2(n))
x2(n+ 1) = g2(x1(n), x2(n))

with g1(0, 0) = g2(0, 0) = 0, and for x = (x1, x2) in a neighborhood of
the origin

g1(x1, x2) g2(x1, x2) > x1x2.

Show that the origin is unstable.

(Hint: Let V = x1x2.)

4. Determine the stability of the equilibrium points of the system

x1(n+ 1) = x21(n)− x22(n)
x2(n+ 1) = 2x1(n)x2(n)

by converting it to a polar system (x1(n) = r(n) cos θ(n), x2(n) =
r(n) sin θ(n)). Draw the phase portrait of the system and show that
the unit circle is a limit cycle.
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5. Determine the stability of the origin for the map

f

(
x
y

)

=
(
2y − 2yx2
1
2x+ xy

2

)

.

Draw the phase portrait of the system.

6. Verify Formula (4.55).

7. Determine the stability of the origin for the map

F

(
x
y

)

=
(

y
αx/(1 + βy2)

)

, β > 0.

8. Suppose that V : R
2 → R is a continuous function with ∆2V (fn(X)) >

0 for fn(X) = 0, where f is a two-dimensional continuous map. Prove
that either O(X) is unbounded or it tends to the origin. [Here ∆2 =
∆ ◦∆; ∆2V (fn(X)) = V (fn+2(X))− 2V (fn+1(X)) + V (fn(X)).]

9. Suppose that V is a Liapunov function for a continuous map f on R

such that

(a) Gλ = {X : V (X) < λ} is bounded for each λ ∈ R2,

(b) the set M is compact (M is the maximal invariant subset of E).

Prove that M is a global attractor.

10. Wade through Problem 8 again, after replacing the condition ∆2V (fn(X))
> 0 by ∆2V (fn(X)) < 0.

11. Consider the system

x(n+ 1) = y(n)
y(n+ 1) = x(n) + f(x(n))

such that ∆[y(n)f(x(n))] > 0 for all n ∈ Z+. Show that the solutions
are either unbounded or tend to the origin.

(Hint: Use V (x, y) = xy and then use Problem 8.)

12.* Show that the origin of the system

x(n+ 1) = x(n) +
x2(n)(y(n)− x(n)) + y5(n)

r2(n) + r6(n)

y(n+ 1) = y(n) +
y2(n)(y(n) − 2x(n))
r2(n) + r6(n)

is globally attracting, but unstable.
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13. Let B be a positive definite symmetric matrix with eigenvalues λ1 < λ2.
Let V (X) = XTBX . Show that

λ1|X |2 ≤ V (X) ≤ λ2|X |2.

14. Suppose that ρ(A) < 1, where A is a real 2 × 2 matrix. Show that the

matrix B =
∞∑

r=0

(AT )rCAr is symmetric and positive definite whenever

C is. Then prove that this matrix B is a solution of Equation (4.59).

15. Prove that if a matrix B is a positive definite matrix, all of its eigenvalues
are positive.

16. Prove Theorem 4.10.

17. Prove Corollary 4.2.

4.11 Stability via Linearization

In Chapter 1, we saw how the values of the derivative f ′(o∗) of a nonlinear,
one-dimensional map f at a hyperbolic fixed point o∗ determines completely
the stability of o∗. For if |f ′(o∗)| < 1, then o∗ is asymptotically stable or a
sink if |f ′(o∗)| > 1, then o∗ is unstable or a repeller. In essence, what we are
saying is that the behavior of the linear difference equation

Y (n+ 1) = f ′(X∗)Y (n) (4.60)

determines the behavior of the original equation

X(n+ 1) = f(X(n)) (4.61)

near the fixed points.
In the language of maps, this amounts to saying that the behavior of the

linear map g(X) = f ′(X∗)X determines the behavior of the nonlinear map
f(X) near the fixed point X∗. Such a process is commonly called a lineariza-
tion of the nonlinear map f or the difference equation (4.61). Now, consider
a two-dimensional map f : G ⊂ R2 → R2, where G is an open subset of R2.
Then f is said to be continuously differentiable, (or a C1 map) if its partial
derivatives ∂f

∂x1
and ∂f

∂x2
exist and are continuous. If there is a 2× 2 matrix A

such that

lim
X→Q

|f(X)− f(Q)−A(X −Q)|
|X −Q| = 0,
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then the derivative Df(Q) of f at Q is defined as Df(Q) = A. Hence, if

f =
(
f1
f2

)

, then

Df(Q) = A =

(
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)∣
∣
∣
∣
Q

.

The matrix A is often called the Jacobian matrix of f . By the mean value
theorem, we have

f(X) = f(Q) +A(X −Q) + g(X,P ) (4.62)

where

lim
X→Q

g(X,Q)
|X −Q| = 0. (4.63)

Statement (4.63) may be expressed in the little “o” language as g(X,Q) =
o(|X −Q|) as X tends to Q.

Suppose now that Q = X∗ is a fixed point of f , that is, f(X∗) = X∗. Then
Equation (4.62) yields

f(X)−X∗ = A(X −X∗) + g(X,X∗). (4.64)

It is clear that g(X∗, X∗) = 0.
To simplify our exposition, we make the change of variables Y = X −X∗.

Equation (4.64) becomes

f(Y +X∗)−X∗ = AY + g(Y ). (4.65)

If we now let h(Y ) = f(Y +X∗)−X∗ in Equation (4.65), we get

h(Y ) = AY + g(Y ) (4.66)

with g(Y ) = o(|Y |) as Y tends to 0.
We now make two important observations concerning the relationship be-

tween the maps f and h. First, since h(0) = f(X∗)−X∗ = 0, it follows that
0 is a fixed point of h if and only if X∗ is a fixed point of f . Second, note
that hn(Y ) → 0 as n → ∞ if and only if fn(X) = fn(Y + X∗) → X∗ as
n → ∞. Hence, 0 is stable (asymptotically stable) under h if and only if X∗

is stable (asymptotically stable) under f . A similar statement can be made
about instability. Hence, without loss of generality, we may work directly
with the map h in Equation (4.66). In other words, it suffices to consider the
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nonhomogeneous system

Y (n+ 1) = AY (n) + g(Y (n)) (4.67)

with A = Df(X∗), g(Y ) = o(|Y |), and g(0) = 0.
The linear part of Equation (4.67) is the homogeneous equation

X(n+ 1) = AX(n). (4.68)

The main result of this section now follows.

THEOREM 4.11
Let f : G ⊂ R2 → R2 be a C1 map, where G is an open subset of R2, X∗ is a
fixed point of f , and A = Df(X∗). Then the following statements hold true:

1. If ρ(A) < 1, then X∗ is asymptotically stable.

2. If ρ(A) > 1, then X∗ is unstable.

3. If ρ(A) = 1, then X∗ may or may not be stable.

PROOF

1. Assume that ρ(A) < 1. Then by virtue of Theorem 4.10 , there exists a
real symmetric and positive definite matrix B such that ATBA − B =
−C, where C is positive definite. Now, consider the Liapunov function
V (Y ) = Y TBy. Then the variation of V relative to Equation (4.67) is
given by

∆V Y = −Y TCY + 2Y TATBg(Y ) + V (g(Y )). (4.69)

Now, Equation (4.31) allows us to pick a γ > 0 such that Y TCY ≥
4γ|Y |2 for all Y ∈ R2. There exists δ > 0 such that if |Y | < δ, then
|AT Bg(Y )| ≤ γ|Y | and V (g(Y )) ≤ γ|Y |. Hence, it follows from Equa-
tion (4.69) that ∆V (Y (n)) ≤ −γ|Y (n)|2 which implies by Theorem 4.3
that the zero solution of Equation (4.67) is asymptotically stable.

2. Assume that ρ(A) > 1. Then, we use Corollary 4.2 to choose a real,
symmetric 2×2 matrixB such thatBTAB−B = −C is negative definite,
where B is not positive semidefinite. Thus, the function V (Y ) = Y TBY
is negative at points arbitrarily close to the origin. Now, as in part 1,
∆V (Y (n)) ≤ −γ|Y (n)|2. Thus, by Theorem 4.10, the zero solution of
Equation (4.67) is unstable.

3. We prove this part by using the following example.
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Example 4.10

1. Consider the system

x1(n+ 1) = x1(n) + x22(n) + x
2
1(n)

x2(n+ 1) = x2(n).

The linear part has the matrix

A =
(
1 0
0 1

)

with ρ(A) = 1. To determine the stability of the origin we use the
Liapunov function V (X) = x1 + x2. Then, V is not positive and

∆V (X(n)) = x21(n) + x
2
2(n) > 0 if (x1, x2) = (0, 0).

Hence, by Theorem 4.10, the origin is unstable.

2. Let us now consider the system

x1(n+ 1) = x1(n)− x31(n)x22(n)
x2(n+ 1) = x2(n)

with the linear part as in (a). This time we use the Liapunov function
V (X) = x21 + x22. Then

∆V (X(n)) = x41(n)x
2
2(n)[−2 + x21(n)x22(n)].

Hence, ∆V ≤ 0 if x21x
2
2 < 2. Thus, the origin is stable by Theorem 4.3.

Example 4.11
(Pielou Logistic Delay Equation [77]). One of the most popular contin-
uous models for the growth of a population is the well-known Verhulst-Pearl
differential equation given by

x′(t) = x(t)[a− bx(t)], a, b > 0

where x(t) is the size of the population at time t, x′(t) = dx
dt , a is the rate of

growth of the population if the resources were unlimited and the individuals
did not affect one another, and −bx2(t) represents the negative effect on the
growth of the population due to crowdedness and limited resources.
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The solution to this equation may be obtained by separation of variables x
and t, and then integrating both sides. Hence,

x(t) =
a/b

1 + (e−at/cb)
.

This implies that

x(t+ 1) =
a/b

1 +
(
e−a(t+1)/cb

)

=
(a/b) ea

1 + (e−at/cb) + (ea − 1)
.

Dividing by the quantity [1 + (e−at/cb)] both the numerator and the denom-
inator on the right-hand side we obtain

x(t+ 1) =
eax(t)

1 + b
a (e

a − 1)x(t)

or

x(t+ 1) =
αx(t)

1 + βx(t)
.

This equation is called the Pielou logistic equation.
Now, if we assume that there is a delay of time period 1 in the response of

the growth rate per individual to density change, then we obtain the difference
equation (replace t by n)

x(n+ 1) =
αx(n)

1 + βx(n− 1)
. (4.70)

As an example of a population that can be modeled by Equation (4.70) is
the blowfly (Lucilia cuprina) [54]. We now write Equation (4.70) in system
form. Let x1(n) = x(n− 1), and x2(n) = x(n). Then,

(
x1(n+ 1)
x2(n+ 1)

)

=

(
x2(n)
αx2(n)

1+βx1(n)

)

=
(
f1(x1, x2)
f2(x1, x2)

)

. (4.71)

There are two fixed points
(
0
0

)

and
(
(α− 1)/β
(α− 1)/β

)

.

1. The fixed point Z∗
1 =

(
0
0

)

. Here,

A = Df(0) =
(
0 1
0 α

)

with eigenvalues 0 and α. Since α > 1, the origin is unstable by Theo-
rem 4.11.
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FIGURE 4.13
For the Pielou Logistic equation, (a) the trivial solution is unstable. (b) The
equilibrium Z∗

2 = ((α − 1)/β, (α− 1)β) is asymptotically stable.

2. The fixed point Z∗
2 =

(
(α− 1)/β
(α− 1)/β

)

. In this case,

A = Df(z∗2) =
(

0 1
1−α

α 1

)

.

By Theorem 4.11, ρ(A) < 1 if and only if

|tr A| < 1 + detA < 2
if and only if

1 < 1 + α−1
α < 2

if and only if
0 < α−1

α < 1

Clearly this is satisfied if α > 1. Hence, by Theorem 4.11, z∗2 is asymp-
totically stable (see Fig. 4.13).

4.11.1 The Hartman-Grobman Theorem

Similar to the one-dimensional case, we say a fixed point x∗ of a planar map f
is hyperbolic if |λ| = 1, for all eigenvalues of A = Df(x∗). Theorem 4.11 has
given us almost complete information about the stability of hyperbolic fixed
points.

An extension of this result to periodic points is straightforward and will
be left to the reader. In proving Theorem 4.11, we have relied heavily on
Liapunov function techniques. One may arrive at the same conclusion by
looking at matters through conjugacy, a topic treated in Chapter 3. This is
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the essence of the so-called Hartman-Grobman theorem, which roughly states
that near a hyperbolic fixed point, a map is conjugate to the linear map
induced by its derivative at the fixed point. But this comes with a price, we
require the map f to be C1 diffeomorphism, that is a homeomorphism such
that f , f ′, and their inverses are continuously differentiable.

THEOREM 4.12
(Hartman-Grobman Theorem). Let f : R2 → R2 be a C1 diffeomorphism
with a hyperbolic fixed point X∗. Then there exist open neighborhoods G of X∗

and H of the origin and a homeomorphism h : H → G such that f(h(X)) =
h(AX) for all X ∈ H, where A = Df(X∗).

In fact, Hartman [85, cf.] showed that the conjugacy map h is C1 if f
is C2. As a corollary of the Hartman-Grobman theorem, one may easily
establish Theorem 4.11.

4.11.2 The Stable Manifold Theorem

Finally, our discussion of the stability of nonlinear maps will not be complete
without the stable manifold theorem. Roughly speaking, this theorem states
that if the origin is a saddle under the linear map induced by the derivative
of a planar map f , then under f the origin exhibits a saddle-like behavior.

An accurate statement of the theorem now follows. However, its proof, is
omitted and the interested reader is referred to [25, 85]. Here we assume that
the eigenvalues of A = Df(X∗) are |λ1| < 1 and |λ2| > 1 with corresponding
eigenvectors V1 and V2.

THEOREM 4.13
(The Stable Manifold Theorem). Let X∗be a hyperbolic fixed point of
a C1 map f : G ⊂ R2 → R2. Then there exists ε > 0 and C1 curves
γ1 : (−ε, ε)→ R2 and γ2 : (−ε, ε)→ R2 such that

1. γ1(0) = γ2(0) = X∗.

2. γ′1(0) = V1, and γ′2(0) = V2.

3. If Q = γ1(t), then fn(Q)→ X∗ as n→∞.

4. If Q ∈ γ2(t), then f−n(Q)→ X∗ as n→∞.

The curve γ1 is called the stable manifold and is usually denoted byW s(X∗);
likewise the curve γ2 is called the unstable manifold and is denoted byWu(X∗).
Note that for the linear map A = Df(X∗), the stable manifold is the line in
the direction of the eigenvector V1, whereas the unstable manifold is the line
in the direction of the eigenvector V2. Moreover, at the origin, the stable
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uW s
W

FIGURE 4.14
The stable manifold W s and the unstable manifold Wu.

(unstable) manifold of the map f is tangent to the eigenvector V1 (V2) (see
Fig. 4.14).

Exercises - (4.10 and 4.11)

1. Show that the zero solution of the equation

x(n+ 2)− 1
2
x(n+ 1) + 2x(n+ 1)x(n) +

13
16
x(n) = 0

is asymptotically stable.

2. Linearize the map f
(
x
y

)

=
(
sin y − 1

2x
y

(0.6+x)

)

around the origin and de-

termine the stability of the origin. Draw the phase space diagram for
both f and Df(0).

3. Find conditions on α such that the origin is asymptotically stable under
the map

f

(
x
y

)

=
(

y
αx

(1+βy2)

)

, β > 0.

4. Determine the values of a for which the origin is

(a) attracting

(b) repelling

(c) a saddle point
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for the map

f

(
x
y

)

=
(

y
a sinx− y

)

.

Then draw the phase space diagram of f for a = −.2, 1, 3.
5. Determine the conditions for the asymptotic stability of the zero solution

of the system

x1(n+ 1) =
ax1(n)

[1 + x2(n)]
x2(n+ 1) = [βx2(n)− x1(n)][1 + x1(n)].

6. Determine the stability of all the fixed points of the map

f

(
x
y

)

=
(
y2 − 1

2x
1
4x+

1
2y

)

,

and draw the phase space diagram.

7. Determine the conditions on a and b so that the origin is asymptotically
stable under the map

f

(
x
y

)

=
(

y
a sinx+ by

)

.

8. The cat map C is defined by

C

(
x
y

)

=
(

(x+ y)mod 1
(x+ 2y)mod 1

)

.

(a) Show that the origin is a saddle.

(b) Find the two 2-cycles of C and determine their stability.

(c) Show that if A = DC(0), then

An =
(
c2n−1 c2n
c2n c2n+1

)

, n ≥ 2

where c1 = 1 = c2 and cn+1 = cn+ cn−1 (cn is called the Fibonacci
sequence).

9. Determine the stability of all fixed points of

f

(
x
y

)

=
(
x2 + 1

4
4x− y2

)

and draw the phase space diagram of f .
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10. Suppose that the zero solution of the system x(n+1) = Ax(n) is asymp-
totically stable. Prove that the zero solution of the system y(n + 1) =
(A+ B(n))y(n), where B(n) = (bij(n)) is a matrix function defined on

Z+, is asymptotically stable if
∞∑

n=0

||B(n)|| <∞.

11. Verify Equation (4.69).

12. Consider the map

Eλ

(
x
y

)

=
(

ex − λ
−λ

2 arctan y

)

.

(a) Find all fixed points of Eλ and determine their stability.
(b) Identify the stable and unstable manifolds (if any) and sketch them.

13.* Let X∗
1 and X∗

2 be saddle points for a homeomorphism f : R2 → R2. A
point p is called heteroclinic if lim

n→∞ f
n(p) = X∗

1 and lim
n→∞ f

−n(p) =

X∗
2 . If X

∗
1 = X∗

2 , then p is called a homoclinic point of f . Prove that
conjugacy preserves homoclinic and heteroclinic points.

14.* Let f : R2 → R2 be given by

f

(
x
y

)

=
(

1
2x

2y − 15
8 x

3

)

.

(a) Show that the origin is a saddle point of Df(0).
(b) Find the stable and unstable manifolds W s(0) and Wu(0).
(c) Find the conjugacy homeomorphism between f and Df(0).
(d) Identify the heteroclinic points of f .

4.12 Applications

4.12.1 The Kicked Rotator and the Hénon Map

Consider a damped rotator that is periodically kicked by an external force F
(see Fig. 4.15).

Then, its equation of motion is given by

θ̈ + Γθ̇ = F (4.72)

where

F = Kf(θ)
∞∑

n=0

δ(t− nT ), n ∈ Z
+ (4.73)
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FIGURE 4.15
A damped rotator kicked by an external force F .

and θ̇ = dθ
dt is the angular velocity, and where, Γ denotes the damping constant

and T the time period between two kicks. In Expression (4.73), the function
δ is the Dirac delta function2 which is defined as

δ(t− t0) = 0 if t = t0
∫ ∞

−∞
δ(t− t0)dt = 1.

It is frequently convenient to represent impulse forcing functions by means of
the delta function since it is amenable to the techniques of Laplace transform.

Analogous to difference equations, the second-order differential equation
(4.72) may be put as a system of first-order equations as follows. Letting
x = θ and y = θ̇ yields

ẋ = y

ẏ = −Γy +Kf(x)
∞∑

n=0

δ(t− nT ). (4.74)

Next, we discretize System (4.74) by letting x(n) = lim
ε→0

x(nT −ε) and y(n) =
lim
ε→0

y(nT−ε). By integrating the second part of Equation (4.74) for nT −ε <
t < (n+ 1)T − ε, we obtain

y(t) = y(n)e−Γ(t−nT ) +K
∞∑

m=0

f(x(m))
∫ t

nT−ε

eΓ(s−t)δ(s−mT )ds

2Paul A. M. Dirac (1902) was awarded the Nobel Prize (with Erwin Schrödinger) in 1933
for his fundamental work in quantum mechanics.
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or

y(n) = y(t)eΓ(t−nT ) −KeΓ(t−n)
∞∑

m=0

f(x(m))
∫ t

nT−ε

eΓ(s−t)δ(s−mT )ds

and

y(n+ 1) = e−ΓT [{y(t)eΓ(t−nT )

−KeΓ(t−n)
∞∑

m=0

f(x(m))
∫ t

nT−ε

eΓ(s−t)δ(s−mT )dt}

+ keΓ(t−n)
∞∑

m=0

f(x(m))
∫ (n+1)T−ε

nT−ε

eΓ(s−t)δ(s−mT )dt].

Thus,
y(n+ 1) = e−ΓT [y(n) +Kf(x(n))]. (4.75)

Similarly, by integrating the first equation of System (4.74) and substituting
for y we have

x(n+ 1) = x(n) +
1− e−ΓT

Γ
(y(n) +Kf(x(n))) (4.76)

In the next section, we will introduce a concrete realization of this model.

4.12.2 The Hénon Map

In 1976, the French Astronomer Michael Hénon [48] suggested a simplified
model for the dynamics of the Lorenz system, which we alluded to in Chap-
ter 3. The Hénon map (and the Hénon attractor) has become in recent years
one of the icons of chaos theory and no treatment of dynamical systems is
complete without it. In this section, our aim is limited to the discussion of
stability and attractors of the Hénon map, given by

x(n+ 1) = 1− ax2(n) + y(n)
y(n+ 1) = bx(n) (4.77)

where a and b are real parameters with |b| < 1. The Hénon map may be
derived from Eqs. (4.75) and (4.76) by simple manipulations and by letting
T = 1. Let us write Equation (4.76) as

x(n+ 1) = x(n) +
eΓ − 1

Γ
y(n+ 1).

Then,

y(n+ 1) = (x(n + 1)− x(n)) Γ
(eΓ − 1)

.
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Substituting for y(n) and y(n+ 1) in Equation (4.75) yields

x(n+ 1) + e−Γx(n− 1) = (1 + e−Γ)x(n) +
1− e−Γ

Γ
Kf(x(n)) (4.78)

If we now put b = −e−Γ and

1− e−Γ
Γ

Kf(x(n)) + (1 + e−Γ)x(n) = 1− ax2(n),

then Equation (4.78) becomes

x(n+ 1) = 1− ax2(n) + bx(n− 1).

The last second-order difference equation is equivalent to the Hénon map. We
now make a few important observations.

First, the Hénon map contracts areas for |b| < 1. [If b = 0, we get the
quadratic map x(n + 1) = 1 − ax2(n).] To see this, we find the determinant
of the Jacobian matrix of H . If | detDH | < 1 for all (x, y), the map is area
contracting. Now, from vector calculus we know that H maps an infinitesimal
rectangle at (x, y) with area dx dy into an infinitesimal parallelogramwith area
| detDH(x, y)dx dy|. Thus, if | detDH(x, y)| < 1, then H is area contracting.

Notice that for the Hénon map

DH(x, y) =
(−2ax 1

b 0

)

where detDH(x, y) = −b. Hence if |b| < 1, the Hénon map is area contracting.
Second, H is invertible and

H−1
(
x
y

)

=
(

1
by−1 + a
b2 y

2 + x

)

.

The simplest way to see this is to decompose H into three simple maps T1,
T2, and T3 as follows:

T1

(
x
y

)

=
(

x
1− ax2 + y

)

T2

(
x
y

)

=
(
bx
y

)

T3

(
x
y

)

=
(
y
x

)

Observe that T1 is an area-preserving bending map, T2 contracts in the x
direction (for |b| < 1), and T3 rotates by 90◦ (see Fig. 4.16). The composite
transformation T3 ◦ T2 ◦ T1 yields the Hénon map H .

Now, we need to show that T1, T2, and T3 are invertible, and hence H−1 =
T−1
1 ◦ T−1

2 ◦ T−1
3 . The details are left to the reader as Problem 5.
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FIGURE 4.16
Decomposition of the action of the Henon map: H = T3 ◦ T2 ◦ T1.
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Third, H is one-to-one. This can easily be seen by showing that T1, T2,
and T3 are one-to-one.

Fourth, if a = 0, H has a fixed point
(
x∗

y∗

)

if a ≥ − 1
4 (1− b)2. If H has two

fixed points
(
x∗1
y∗1

)

and
(
x∗2
y∗2

)

, then we have

(
x∗1
y∗1

)

=
(

1
2a (b − 1 +

√
(1− b)2 + 4a)

b
2a (b − 1 +

√
(1− b)2 + 4a)

)

,

(
x∗2
y∗2

)

=
(

1
2a (b − 1−√

(1− b)2 + 4a)
b
2a (b − 1−√

(1− b)2 + 4a)

)

.

Furthermore, if a = 0 and a ∈ (− 1
4 (1 − b)2, 34 (1 − b)2), then

(
x∗1
y∗1

)

is asymp-

totically stable and
(
x∗2
y∗2

)

is a saddle. The details are left to the reader as

Problem 5.

Finally, for a fixed value of the parameter b in (0, 1),
(
x∗1
y∗1

)

loses its stability

and becomes a saddle at a = 3
4 (1− b)2 and a new stable 2-cycle is born. The

reason is that one of the eigenvalues of DH
(
x∗1
y∗1

)

will decrease and pass

−1 (Problem 5). Hénon picked b = 0.3 and noticed that a period-doubling
cascade starts at a = 0.3675 and ends at a ≈ 1.058. Beyond a ≈ 1.06,
a strange attractor appears. In fact, there is a region R that gets mapped
inside itself and contracts in area by the factor 0.3. This is called the trapping
region, which is in the case of the Hénon map, a quadrilateral (see Fig. 4.17).

Forward iterates of the trapping region shrink down to a limit set called
the Hénon attractor, which has zero area. Moreover, this attractor is indeed
a strange attractor (see Fig. 4.18).

Figure 4.18 is generated for a = 1.4, b = 0.3 by computing 10,000 successive
iterates of the Hénon map starting from the origin. Zooming into the strange
attractor, we can see that there are six parallel curves. If we zoom further
on the top three curves, we can see that they are really six curves grouped
the same way as the first batch. This self-similarity continues to arbitrarily
small scales. Benedick and Carleson [8] proved that this strange attractor is
the closure of a branch of the unstable manifold. We will return to the Hénon
map in the next chapter.

4.12.3 Discrete Epidemic Model for Gonorrhea [54]

Let us consider two distinct heterosexual populations P1 and P2. Let xi(n),
i = 1, 2, be the fraction of the population Pi infected by gonorrhea at time
period n. Then 1 − xi(n) is the fraction of the population that is suscep-
tible. It is assumed the populations P1 and P2 are constant and infected
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FIGURE 4.17
The trapping region R and its image H(R).

FIGURE 4.18
The Henon attractor.
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members of the population can transmit gonorrhea to a susceptible person
in the other population. To formulate our model, let us first assume there
is no transmission of gonorrhea between the two populations. Then, the re-
lation between the fraction of infected population Pi at time period n+ 1 is
given by

x1(n+ 1) = (1− b1)x1(n), 0 < b1 < 1 (4.79)
x2(n+ 1) = (1− b2)x2(n), 0 < b2 < 1 (4.80)

where b1x1(n) and b2x2(n) are the fractions of the populations P1 and P2,
respectively, that have been cured. Clearly, lim

n→∞ xi(n) = 0, which means that
eventually there will be infected persons in either population. Unfortunately,
this is not a realistic model and a modification is needed. Now, at time period
n, part of the function of the susceptible (1− x1(n)) of population P1 will be
infected due to sexual engagements with population P2. This is accounted
for by adding the nonlinear term a1x2(n)(1− x1(n)) to the right-hand side of
Equation (4.79). Similarly, to account for the infected among susceptibles in
population P2, we add to the left-hand side of Equation (4.80) the nonlinear
term a2x1(n)(1− x2(n)). The more realistic model is now in the form

x1(n+ 1) = a1x2(n)(1 − x1(n)) + (1− b1)x1(n)
x2(n+ 1) = a2x1(n)(1 − x2(n)) + (1− b2)x2(n) (4.81)

where 0 < ai < 1, 0 < bi < 1, i = 1, 2. There are two fixed points, the origin

O and the point x∗ =
(
x∗1
x∗2

)

, where

x∗1 =
1− γ1γ2
1 + γ1

, x∗2 =
1− γ1γ2
1 + γ2

with γi = bi

ai
.

Assume that a1a2 − b1b2 ≤ 0. Then, taking V
(
x1
x2

)

= b2x1 + a1x2 as our

Liapunov function on the open set G =
{(

x1
x2

)

: 0 < xi < 1, i = 1, 2
}

, we

get ∆V (x) = (a1a2 − b1b2)x1 − a1(a2 + b2)x1x2 ≤ 0. Clearly, E = {x ∈ G :
∆V (x) = 0} is the union of the coordinate axes. The largest invariant set M
in E is the origin. Thus, by Theorem 4.6, the origin is globally asymptotically
stable relative to G.

If a1a2 − b1b2 > 0, we obtain an unrealistic negative equilibrium point x∗.
In this case, it may be shown (Problem 6) that the origin is unstable. Next,
we consider the positive equilibrium point x∗. In this case, we choose the
Liapunov function

V (x) = a2|x1 − x∗1|+ a1
(
1 + γ1
1 + γ2

)

|x2 − x∗2|.
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Then it may be shown that (Problem 6)

∆V (x) ≤ −a1a2(x1|x2 − x∗2|+ ρx2|x1 − x∗1|) ≤ 0

with ρ = 1+γ1
1+γ2

. By the same reasoning as in the previous assumption, we
conclude that x∗ is globally asymptotically stable relative to G− {0}.

4.12.4 Perennial Grass

Let x(n) denote the litter of a perennial grass per square meter on the ground
in year (season) n. This occurs since underground roots sprout and produce
new biomass, which then falls to the ground as litter (the dead plant material
produced at the end of a growing season). A litter layer mulches the soil
surface and intercepts light, thus inhibiting growth until it decays. Once
litter decays, it stimulates growth by releasing nitrogen.

In [28], the following model was proposed.

x(n+ 1) = ax(n) + (b + cx(n− 1))e−x(n), n = 0, 1, . . . (4.82)

with a, c ∈ (0, 1) and b > 0 such that x(−1) and x(0) are positive initial data.
Here ax(n) is the fraction of the present litter that has not decayed yet, and
b + cx(n − 1))e−x(n) is the litter accumulation, which depends on past and
present litter. Writing Equation (4.82) as a system yields

(
y1(n+ 1)
y2(n+ 1)

)

=
(

y2(n)
(b+ cy1(n))e−y2(n) + ay2(n)

)

(4.83)

The fixed points are obtained by solving the two equations y1 = y2 and

(b + cy1)e−y2 + ay2 = y2. Hence, if y∗ =
(
y∗1
y∗2

)

is an equilibrium point, then

h(y∗1) = ay∗1 − y∗1 + (b+ cy∗1)e
−y∗

1 = 0.

Note that h(0) = b > 0, and the origin is not an equilibrium point. Moreover,
h(∞) = −∞, which implies by the intermediate value theorem the existence
of a positive equilibrium point with y∗1 = y∗2 > 0. Furthermore, the positive
fixed point is indeed unique since

h′(y∗1) = a− 1 + (c− b− cy∗1)e−y∗
1

= 1−a
b+cy∗

1
(−b− by∗1 − cy∗12)

< 0.

The linearized system corresponding to System (4.83) is given by

u(n+ 1) = Au(n) (4.84)

where

A =

(
0 1

c
(

x∗−ax∗
b+cx∗

)
a− (1− a)x∗

)
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with x∗ = x∗1 = x∗2.
By Theorem 4.11 a sufficient condition for the local stability of x∗ is given

by

|a− (1− a)x∗| < 1− c(1− a)x∗
b+ cx∗

< 2. (4.85)

Now, Equation (4.85) is equivalent to the equation

(1− a)cx∗2 + ((1− a)b − 2ax∗)− b(1 + a) < 0,

that is

0 < x∗ <
a

1− a −
b

2c
+

√
(2ac− (1 − a)b2 + 4(1− a2)bc)

2(1− a)c .

Hence, x∗ is (locally) asymptotically stable if

x∗ ≤ a

1− a . (4.86)

Indeed, it was shown in [28], that under Condition (4.86), x∗ attracts all
positive solutions of Equation (4.83). For the case x∗ > a

1−a , it may be shown
[28] that Equation (4.83) is permanent, i.e., for any initial conditions x(−1)
and x(0) ∈ (0,∞), there exists N ∈ Z+ such that

D ≤ x(n) ≤ E, for n ≥ N
where D and E are positive numbers.

Further analysis of this model reveals a period-doubling bifurcation and the
onset of chaos. Such behavior has been exhibited by computer analysis.

Exercises - (4.12)

1. In the epidemic Model (4.83), show by using linearization that the pos-
itive equilibrium point x∗ is asymptotically stable if γ1γ2 < 1.

2. In the epidemic Model (4.83), introduce a third population group that
infects members of the group and those outside, and analyze the stability
of the model.

3. Consider a predator–prey model in which predators search over a con-
stant area and have unlimited capacity for consuming the prey:

N(t+ 1) = rN(t) exp(−aP (t))
P (t+ 1) = N(t){1− exp(−aP (t))}

where t ∈ Z+, a > 0, r > 1, N(t) is the size of the prey population,
and P (t) is the size of the predator population at time period t.
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(a) Find the positive equilibrium point (N∗, P ∗).

(b) Determine the local stability of (N∗, P ∗) using linearization.

4. A general form for models of insect predator (P )–prey (N), or insect
parasitism, is

N(t+ 1) = rN(t)f(N(t), P (t)), P (t+ 1) = N(t)[1− f(N(t), P (t))]

where f is a nonlinear function that incorporates assumptions about
predators searching, and r > 0 is the rate of increasing of the prey pop-
ulation. Furthermore, it is assumed that 0 < f < 1, f is an increasing
function.

(a) Find conditions on r so that a positive equilibrium point (N∗, P ∗)
exists.

(b) Determine under what conditions (N∗, P ∗) is asymptotically
stable.

5. (a) Show that the maps T1, T2, and T3 that define the Hénon map are
invertible.

(b) Show that for a fixed b ∈ (0, 1) if a > 3
4 (1 − b)2, then one of the

eigenvalues of DH(x∗1) is less than −1.
(c) Show that if a ∈ (

1
4 (1− b)2, 3

4 (1− b)2
)
, a = 0, then x∗1 is asymp-

totically stable and x∗2 is a saddle.

6. (a) In the gonorrhea model, show that the origin is unstable if a1a2 −
b1b2 > 0.

(b) In the gonorrhea model, show that the positive equilibrium point
x∗ is globally asymptotically stable relative to G− {0}, where

G =
{(

x1
x2

)

: 0 < xi < 1, i = 1, 2
}

.

7. [76] Consider the following mathematical model for plant competition:

p(n+ 1) = (1− α) cp(n)
cp(n) + q(n)

+ αp(n)

q(n+ 1) = p(1− β) dq(n)
p(n) + dq(n)

+ βq(n)

where 0 < α, β < 1.

(a) Find conditions under which the positive equilibrium point (p∗, q∗)
exists.

(b) Use a Liapunov function to determine the stability of (p∗, q∗).
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Appendix

THEOREM 4.14
[12] Let z be an attracting fixed point of a continuous map f : I → R, where
I is an interval. Then z is stable.

PROOF There is an open interval G containing z such that for all x in
G, fn(x)→ z as n→∞. This implies that z is the only periodic point in G.
In particular, f2(x) = x if x ∈ G and x = z. Put

G− = {x ∈ G : x < z}, G+ = {x ∈ G : x > z}.
By the Intermediate Value Theorem, f2(x) < x for all x in G− or f2(x) > x
for all x in G−. Suppose f2(x) < x for all x in G−. Then if f2(x) is also in G−,
f4(x) < f2(x) and so f4(x) < x. Now, for a given n, if x ∈ G− is close enough
to z, f2k(x) ∈ G for 0 ≤ k ≤ n and then it follows by repetition of the above
argument that for such x, f2n(x) < x. However, since z is the only periodic
point in G, it is also true that f2n(x) < x for all x in G− or f2n(x) > x for
all x in G−. It follows that f2n(x) < x for all n and all x ∈ G−. However this
means that f2n(x) does not converge to z, a contradiction. Hence we must
have f2(x) < x for all x in G−. Similarly, we can show that f2(x) < x for all
x in G+.

It follows that f(x) = x for x = z in G. If f(x) < x for all x in G−, it
would follow that f2(x) < f(x) < x if x ∈ G− is so close to z that f(x) ∈ G.
So f(x) > x for all x in G−. Similarly, f(x) < x for all x in G+. Then if H
is a sufficiently small open interval containing z, H ⊂ G and f(H) ⊂ G.

Assume first that f(x) ≤ z for all x ∈ H with x < z and f(x) ≥ z for all
x ∈ H with x > z. Then for every closed interval K ⊂ H with z ∈ K we have
f(K) ⊂ K. Thus z is stable.

Otherwise for some x0 ∈ H , either x0 < z < f(x0) = b or b = f(x0) < z <
x0. Assume for definiteness that x0 < z < f(x0) = b. Define

a = sup{x0 ≤ a < z : f(a) = b}.
Then f(a) = b, a < z and f(x) < b for a < x ≤ z. Hence f(x) > a for
z ≤ x ≤ b, since f(z) = z > a and f(x) = a would imply f2(x) = b ≥ x. It
follows that for J = (a, b) we have f(J) ⊂ J , since b > f(x) > x for a < x < z
and a < f(x) < x for z < x < b. Then fn(J) is decreasing sequence of
compact intervals all containing z. Let K = [c, d] be the intersection. Note
that z ∈ K and f(K) = K. If c = d = z, it follows that z is stable.

Assume c < d. Then z > c, because if z = c, then f(x) < x for c < x ≤ d
so that f(K) = K. Also z < d, because if z = d, then f(x) > x for c ≤ x < d
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so that f(K) = K. Since f(x) > x for c ≤ x < z but f(K) = K, there must
exist x2 ∈ (z, d] such that f(x2) = c. Since f(z) = z and there exists x ∈ [c, z)
such that f(x) = d (since f(K) = K but f(x) < x if z < x ≤ d), it follows
from the Intermediate Value Theorem that there exists x1 ∈ [c, z) such that
f(x1) = x2. However, then f2(x1) = c ≤ x1, which is a contradiction.



5

Bifurcation and Chaos in Two Dimensions

Lo! Thy dread empire, Chaos! Is restor’d; Light dies before thy
uncreating word; Thy hand, great anarch! Lets the curtain fall,
And universal darkness buries all.

Alexander Pope, The Duncaid

5.1 Center Manifolds

In Chapter 4, Theorem 4.11, we were able to give a complete determination
of the stability of two-dimensional maps via linearization, when the fixed
point is hyperbolic, i.e., the eigenvalues of the Jacobian matrix are off the
unit circle. However, Theorem 4.11 failed to address the stability of non-
hyperbolic fixed points. Here comes the center manifold theory to our rescue.
Roughly speaking, a center manifold is a setMc in a lower dimensional space,
where the dynamics of the original system can be obtained by studying the
dynamics on Mc. For instance, if a nonhyperbolic map is defined on R2, then
its dynamics may be analyzed by studying the dynamics on an associated
one-dimensional center manifold Mc. In light of our complete understanding
of the stability of one-dimensional maps, the reduction procedure to center
manifolds is one of the most powerful tools in dynamical systems. We begin
our exploration by introducing the necessary notations, definitions, theory
and examples.

Consider the s-parameter map F (µ, u), F : Rs × Rk → Rk, with u ∈ Rk,
µ ∈ R

s, where F is Cr (r ≥ 3) on some sufficiently large open set in R
k ×R

s.
Let (µ∗, u∗) be a fixed point of F , i.e.,

F (µ∗, u∗) = u∗. (5.1)

We have seen in Chapters 1 and 4 that the stability of hyperbolic fixed points
of F is determined from the stability of the fixed points under the linear map

J = DuF (µ∗, u∗). (5.2)

241
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However, the situation is drastically different if one of the eigenvalues λ of J
lies on the unit circle, that is, |λ| = 1. There are three separate cases in which
the fixed point (u0, µ0) is nonhyperbolic.

1. J has one real eigenvalue equal to 1 and the other eigenvalues are off
the unit circle.

2. J has one real eigenvalue equal to −1 and the other eigenvalues are off
the unit circle.

3. J has two complex conjugate eigenvalues with modulus 1 and the other
eigenvalues are off the unit circle.

When k = 2, cases 1 and 2 can be reduced to the one-dimensional cases that
were discussed in Chapter 2. This task may be accomplished using the center
manifold theory, which we will develop shortly. The third case is new and
has no analogue in the one-dimensional theory. It will give rise to a new
bifurcation, the Neimark-Sacker bifurcation.1 We now present a version of
center manifold theory that meets our needs.

By a change of variables, we may assume, without loss of generality, that
u0 = 0. Let us temporarily suppress the parameter µ. Then, the map F can
be written in the form

x '−→ Ax+ f(x, y)
y '−→ By + g(x, y) (5.3)

where J in Equation (5.2) has the form J =
(
A 0
0 B

)

. Moreover, all of the

eigenvalues of A lie on the unit circle and all of the eigenvalues of B are off
the unit circle. Furthermore,

f(0, 0) = 0, g(0, 0) = 0
Df(0, 0) = 0, Dg(0, 0) = 0.

Observe that System (5.3) corresponds to the system of difference equations

x(n+ 1) = Ax(n) + f(x(n), y(n)),
y(n+ 1) = By(n) + g(x(n), y(n)).

From now on, we assume that A is a t × t matrix and B is an s × s matrix,
with t+ s = k. The following results are taken from [16].

1It is often called the Hopf bifurcation, a name borrowed mistakenly from the theory of
differential equations.
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THEOREM 5.1
There is a Cr-center manifold for System (5.3) that can be represented locally
as

Mc ={(x, y) ∈ R
t × R

s : y = h(x), |x| < δ, h(0) = 0,
Dh(0) = 0, for a sufficiently small δ}. (5.4)

Furthermore, the dynamics restricted to Mc are given locally by the map

x '−→ Ax+ f(x, h(x)), x ∈ R
t. (5.5)

This theorem asserts the existence of a center manifold, i.e., a curve y =
h(x) on which the dynamics of System (5.3) is given by Equation (5.5). The
next result states that the dynamics on the center manifold Mc determines
completely the dynamics of System (5.3).

THEOREM 5.2
The following statements hold.

1. If the fixed point (0, 0) of Equation (5.5) is stable, asymptotically stable,
or unstable, then the fixed point (0,0) of System (5.3) is stable, asymp-
totically stable, or unstable, respectively.

2. For any solution (x(n), y(n)) of System (5.3) with an initial point (x0, y0)
in a small neighborhood around the origin, there exists a solution z(n)
of Equation (5.5) and positive constants L, β > 1 such that

|x(n) − z(n)| ≤ Lβn, and |y(n)− h(z(n))| ≤ Lβn for all n ∈ Z
+.

The question that still lingers is how to find the center manifold Mc or,
equivalently, how to compute the curve y = h(x). The first thing that comes
to mind is to substitute for y in System (5.3) to obtain the system

x(n+ 1) = Ax(n) + f(x(n), h(x(n)))
y(n+ 1) = h(x(n+ 1))

= h[Ax(n) + f(x(n), h(x(n)))]
= Bh(x(n)) + g(x(n), h(x(n))).

Equating the two equations for y(n+ 1) yields the functional equation

F(h(x)) = h[Ax+ f(x, h(x)]−Bh(x) − g(x, h(x)) = 0. (5.6)

Solving Equation (5.6) is a formidable task, so at best one can hope to approx-
imate its solution via power series. The next result provides the theoretical
justification for our approximation.
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THEOREM 5.3
Let ψ : Rt → Rs be a C1-map with ψ(0) = ψ′(0) = 0. Suppose that2

F(ψ(x)) = O(|x|r) as x→ 0 for some r > 1. Then,

h(x) = ψ(x) +O(|x|r) as x→ 0.

We now present examples to compute the center manifold Mc.

Example 5.1

Consider the map F =
(
f
g

)

given by

(
x
y

)

'−→
(−1 0

0 − 1
2

) (
x
y

)

+
(
xy
x2

)

.

Then,
Mc = {(x, y) ∈ R

2 : y = h(x), h(0) = h′(0) = 0}.
The function h must satisfy Equation (5.6)

h(Ax + f(x, h(x))) −Bh(x)− g(x, h(x)) = 0

or
h(−x+ xh(x)) + 1

2
h(x) − x2 = 0. (5.7)

Let us assume that h(x) takes the form

h(x) = c1x
2 + c2x3 +O(x4). (5.8)

Then, substituting Equation (5.8) in Equation (5.7) yields

c1x
2 − c2x3 +O(x4) + 1

2
(c1x2 + c2x3 +O(x4))− x2 = 0.

Hence,

c1 +
1
2
c1 − 1 = 0 or c1 =

2
3

−c2 + 1
2
c2 = 0 or c2 = 0.

Consequently, h(x) = 2
3x

2 + O(x4) and the map f on the center manifold
is given by

x '−→ −x+ 2
3
x3 +O(x5)

2F(ψ(x)) = O(|x|r) as x → 0, “read as big O,” means that lim
x→0

F(ψ(x))
O(|x|r)

= M , for some

real number M .
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FIGURE 5.1
An asymptotically stable nonhyperbolic fixed point (0, 0). The curve h(x) =
−x+ 2

3x
3 +O(x4) is the graph of the center manifold Mc. The orbits on the

y-axis oscillate but converge to origin.

whose Schwarzian derivative at zero (see Chapter 1) is given by

S(f)(0) =
f ′′′(0)
f ′(0)

− 2
3

(
f ′′(0)
f ′(0)

)2

= −4 < 0.

Thus, by Theorem 1.6, x∗ = 0 is asymptotically stable under the map f . This
implies by Theorem 5.2 that the origin is asymptotically stable under the map
F (see Fig. 5.1).

Example 5.2

Consider the two dimensional map F =
(
f
g

)

given by

(
x
y

)

'−→
(

0 1
− 1

2
3
2

) (
x
y

)

+
(

0
−y3

)

, x, y ∈ R
2. (5.9)

The eigenvalues of the linear part are λ1 = 1, λ2 = 1
2 , with corresponding

eigenvectors V1 =
(
1
1

)

and V2 =
(
2
1

)

. In order to find the center manifold, we

first need to diagonalize the matrix
(

0 1
− 1

2
3
2

)

by using the matrix T =
(
1 2
1 1

)

whose columns are the eigenvectors V1 and V2. Letting
(
x
y

)

= T

(
u
v

)

, yields

T

(
u
v

)

'−→
(

0 1
− 1

2
3
2

)

T

(
u
v

)

+
(

0
−(u+ v)3

)

.

Hence (
u
v

)

'−→ T−1
(

0 1
− 1

2
3
2

)

T

(
u
v

)

+ T−1
(

0
−(u+ v)3

)

.



246 Discrete Chaos

Substituting for T−1 =
(−1 2

1 −1
)

we obtain

F(h(u)) = h(AU + F (u, h(u))−Bh(u)− g(u, h(u)) = 0 (5.10)

where A = 1, B = 1
2 , f(u, v) = −2(u+ v)3, g(u, v) = (u+ v)3. Let us assume

that h(x) takes the form

h(u) = au2 + bu3 +O(u4). (5.11)

Substituting form Equation (5.11) into Equation (5.10) yields

a(u− 2(u+ au2 + bu3 +O(u4))3)2 + b(u− 2(u+ au2 + bu3 +O(u4))3)3 + . . .

−1
2
(au2 + bu3 +O(u4)) − (u+ au2 + bu3 +O(u4))3 = 0

or

au2 + bu3 − 1
2
au2 − 1

2
bu3 − u3 +O(u4) = 0.

Equating coefficients of like powers to zero yields

u2 : a− 1
2
a = 0⇒ a = 0

u3 : b− 1
2
b− 1 = 0⇒ b = 0.

Thus the center manifold is given by the graph of

h(u) = 2u3 +O(u4)

and the map f on the center manifold is given by

u '−→ u− 2u3 +O(u4).

Notice that u∗ = 0 is a fixed point of f at which f ′(0) = 1, f ′′(0) = 0, and
f ′′′(0) < 0. This implies by Theorem 1.6 that the origin is asymptotically

stable under the map F =
(
f
g

)

(see Figure 5.2).
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uMu

u
The center manifold

FIGURE 5.2
An asymptotically stable nonhyperbolic fixed point (0, 0). The curve h(u) =
2u3 +O(u4) represents the center manifold Mc.

REMARK 5.1

1. The choice of the form of the map h is not unique. It can be shown
(see [16]) that any two center manifolds of a given fixed point may differ
only in transcendentally small terms. In other words, the Taylor series
expansion of any two center manifolds must agree in all orders.

2. If the matrix J of the linear part is not in diagonal form, we must first
diagonalize it before computing the center manifold as the next example
will illustrate.

Center Manifolds Depending on Parameters

Suppose now that System (5.3) depends on a vector of parameters, say, µ ∈
Rm. Then, System (5.3) takes the form

x(n+ 1) = Ax(n) + f(µ, x(n), y(n))
y(n+ 1) = By(n) + g(µ, x(n), y(n)) (5.12)

where

f(0, 0, 0) = 0, g(0, 0, 0) = 0
Df(0, 0, 0) = 0, Dg(0, 0, 0) = 0

where f and g are Cr functions (r ≥ 3) in some neighborhood of (x, y, µ) =
(0, 0, 0).

The first step in handling Equation (5.12) is to increase the numbers of
equations to k +m by writing it in the form

x(n+ 1) = Ax(n) + f(µ(n), x(n), y(n))
µ(n+ 1) = µ(n)
y(n+ 1) = By(n) + g(µ(n), x(n), y(n)).

(5.13)
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The center manifold Mc now takes the form

Mc = {(µ, x, y) : y
= h(x, µ), |x| < δ1, |µ| < δ2, h(0, 0) = 0, Dh(0, 0) = 0}. (5.14)

Substituting for y into System (5.13) yields

x(n+ 1) = Ax(n) + f(µ, x(n), h(x(n)))
y(n+ 1) = h[Ax(n) + f(µ, x(n), h(x(n)))]

= Bh(µ, x(n)) = g(µ, x(n), h(µ, x(n))).

The latter equations lead to the functional equation

F(h(µ, x)) = h[Ax+ f(µ, h(µ, x), x)]
−Bh(µ, x)− g(µ, h(µ, x), x) = 0. (5.15)

Note that if µ is one-dimensional, it should be treated as a dependent variable,
so terms like xµ or yµ will be viewed as nonlinear terms and will be absorbed
by f and g. If µ is multidimensional, then we pick one component as a
dependent variable and the remaining components are viewed as constants.
For example, h(µ, x) takes the form

h(µ, x) = c1x
2 + c2xµ+ c3µ2 + . . . (5.16)

Compare Equation (5.16) with Equation (5.8).

5.2 Bifurcation

5.2.1 Eigenvalues of 1 or -1

In this section we focus our attention on the bifurcation of two dimensional
maps. The extension to higher dimensions should be apparent to the reader
after comprehending the two dimensional case.

Let us consider the one-parameter family of maps

F (µ, u) : R
2 × R → R (5.17)

with u = (x, y) ∈ R2, µ ∈ R and F ∈ Cr, r ≥ 5. If (µ∗, u∗) is a fixed
point, then we make a change of variables, so that our fixed point is (0, 0).
Let J = DuF (0, 0). Then using the center manifold theorem, we find a one-
dimensional map fµ(u) defined on the center manifold Mc. By Theorem 5.1,
we deduce the following statements:

1. Suppose that J has an eigenvalue equal to 1. Then we have
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FIGURE 5.3
The occurrence of the three main types of bifurcation.

(a) a saddle-node bifurcation (fold bifurcation), if ∂F
∂µ (0, 0) = 0 and

∂2F
∂2u (0, 0) = 0

(b) a pitchfork bifurcation, if ∂f
∂µ(0, 0) = 0 and ∂2f

∂2µ(0, 0) = 0

(c) a transcritical bifurcation, if ∂f
∂µ (0, 0) = 0 and ∂2f

∂2µ(0, 0) = 0.

2. If J has an eigenvalue equal to −1, then we have a period-doubling (flip)
bifurcation.

3. If J has a pair of complex conjugate eigenvalues of modulus 1, a new
type of bifurcation, called the Neimark-Sacker bifurcation appears. The
Neimark-Sacker bifurcation will be discussed in more details in the
sequel.

Let T = tr J , D = det J . Then the following trace-determinant dia-
gram (Fig. 5.3) illustrate the main bifurcation phenomena (compare with
Fig. 4.10).

5.2.2 A Pair of Eigenvalues of Modulus 1 - The Neimark-
Sacker Bifurcation

We now turn our attention to the case when the Jacobian matrix J =
DuF (u0, µ0) has two complex conjugate eigenvalues. Let us start with an
illustrative example.
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Example 5.3

Consider the family of maps

Fµ

(
x1
x2

)

= (1 + µ− x21 − x22)
(
cosβ − sinβ
sinβ cosβ

) (
x1
x2

)

(5.18)

where β = β(µ) is a smooth function of the parameter µ and 0 < β(0) < π.
Observe that the origin is a fixed point of the map Fµ for all µ with the
Jacobian matrix

J = (1 + µ)
(
cosβ − sinβ
sinβ cosβ

)

.

The matrix J has eigenvalues λ1,2 = (1+µ)e±iβ with |λ1,2| = |1+µ|. Hence,
at µ = 0, the eigenvalues cross the unit circle, a clear sign of the appearance
of a Neimark-Sacker bifurcation. Clearly, the origin is asymptotically stable
for −2 < µ < 0. To analyze the bifurcation when µ = 0, it is more convenient
to write the map Fµ in polar coordinates (r, θ). To facilitate this change of
coordinates, write Equation (5.18) as a two-dimensional system of difference
equations:

(
x1(n+ 1)
x2(n+ 1)

)

= (1 + µ− x21(n)− x22(n))
(
cosβ − sinβ
sinβ cosβ

) (
x1(n)
x2(n)

)

. (5.19)

Now, putting x1(n) = r(n) cos θ(n), x2(n) = r(n) sin θ(n) in Equation (5.19),
we obtain

r(n+ 1) = (1 + µ)r(n) − r3(n)
θ(n+ 1) = θ(n) + β. (5.20)

The form of Equation (5.20) enables us to detect easily the presence of an
invariant circle by letting (1 + µ)r − r3 = r. Hence, the invariant circle is of
radius r∗ =

√
µ. Thus, this invariant circle appears when µ crosses the value

0 as shown in Fig. 5.4. When µ = 0, the map r '−→ r− r3 is one-dimensional
and its stability can be determined by using the techniques of Chapter 1.

Note also that the cobweb diagram indicates that the origin is (slowly)
asymptotically stable (see Fig. 5.5).

Thus, for µ = 0, the origin is asymptotically stable. When µ becomes
positive, the origin loses its stability and gives rise to an attracting (asymp-
totically stable) circle with radius r =

√
µ. The dynamics on this circle are

determined by the map θ '−→ θ + β, which is a rotation by an angle β in
the counterclockwise direction. This phenomenon is called a Neimark-Sacker
bifurcation (or a Hopf bifurcation).
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FIGURE 5.4
Supercritical Neimark-Sacker bifurcation of the map in (5.18), (a) µ < 0, (b)
µ = 0, (c) µ > 0.
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FIGURE 5.5
For µ = 0, the Cobweb diagram for the one dimension map r → r− r3 shows
that 0 is asymptotically stable.

REMARK 5.2 An analogous but different scenario may occur if we con-
sider the map

F̃µ

(
x1
x2

)

= (1 + µ+ x21 + x
2
2)

(
cosβ − sinβ
sinβ cosβ

) (
x1
x2

)

. (5.21)

This map undergoes a Neimark-Sacker bifurcation at µ = 0 but in a manner
different from that of Equation (5.18) (see Fig. 5.6). The reader is asked to
provide details in Problem 4.

To this end, we have described in detail the occurrences of the Neimark-
Sacker bifurcation for the map in Example 5.3. In the sequel, we will show
that the dynamics of this map are typical for a certain class of two-dimensional
maps with one parameter. So, let us consider the family of Cr maps (r ≥ 5)
Fµ : R2 × R → R2 such that the following conditions hold:

1. Fµ(0) = 0, i.e., the origin is a fixed point of Fµ.

2. DFµ(0) has two complex conjugate eigenvalues λ(µ) = r(µ)eiθ(µ) and
λ(µ), where r(0) = 1, r′(0) = 0, θ(0) = θ0. Thus, |λ(0)| = 1.

3. eikθ0 = 0 for k = 1, 2, 3, 4, 5, i.e., λ(0) is not a low root of unity.

Based on the above assumptions, we make the following claims.

1. By a change of basis in R2, we may assume, without loss of generality,
that

J = DFµ(0, 0) = (1 + µ)
(
cosβ(µ) − sinβ(µ)
sinβ(µ) cosβ(µ)

)

.
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FIGURE 5.6
Supercritical Neimark-Sacker bifurcation of the map in (5.21), (a) µ < 0, (b)
µ = 0, (c) µ > 0.
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2. From assumption 3, by a change of coordinates, we may assume that
our map Fµ takes the form

Fµ

(
x1
x2

)

= Nµ

(
x1
x2

)

+O

(∣
∣
∣
∣

(
x1
x2

)∣
∣
∣
∣

5
)

(5.22)

where

Nµ

(
r
θ

)

=
(
(1 + µ)r − f(µ)r3
θ + β(µ) + g(µ)r2

)

, (5.23)

with f(0) = 0. Notice that the radius of the invariant circle is given by
r =

√
µ/f(µ).

THEOREM 5.4
(Neimark-Sacker). Suppose that Fµ satisfies assumptions 1–3. Then, for
sufficiently small µ, Fµ has an invariant closed curve enclosing the origin if
µ/f(µ) > 0. Moreover, if f(0) > 0, this curve is attracting, and if f(0) < 0,
it is repelling.

PROOF See [59, 72, 89].

Exercises - (5.1 and 5.2)

1. Consider the delayed logistic equation

x(n+ 1) = µx(n)(1 − x(n− 1)).

(a) Change the equation to a two-dimensional system.

(b) Show that for µ > 1, there exists a nontrivial positive fixed point.

(c) Show that for µ = 2, the nontrivial fixed point undergoes a Neimark-
Sacker bifurcation.

(d) Draw a phase space diagram for the system for

i. µ < 2.
ii. µ = 2.
iii. µ > 2.

2. Consider the discrete predator–prey system

x(n+ 1) = αx(n)(1 − x(n))− x(n)y(n)
y(n+ 1) =

1
β
x(n)y(n)
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where x(n) denotes the prey population at generation n and y(n) denotes
the predator population at generation n. Show that a nontrivial fixed
point of the map undergoes a Neimark-Sacker bifurcation.

3. Discuss the existence of a Neimark-Sacker bifurcation for the Hénon
map.

4. Analyze the bifurcation structure of the map in Equation (5.21).

5. Analyze the bifurcation structure of the map

r '−→ µr + βr3

θ '−→ θ + φ+ γr2

with β = 0, γ = 0, and µ > 0.

6. Consider the map

r '−→ r + (dµ+ ar2)r
θ '−→ θ + φ0 + φ1µ+ br2.

(a) Show that r =
√−µd/a is an invariant circle.

(b) Show that the invariant circle described in part (a) is asymptoti-
cally stable for a < 0 and unstable for a > 0.

(c) Draw the phase diagrams for the following cases:

i. d > 0, a > 0.
ii. d > 0, a < 0.
iii. d < 0, a > 0.
iv. d < 0, a < 0.

In Problems 7–13, compare center manifolds near the origin. Describe the
bifurcations of the origin.

7.

x '−→ −1
2
x− y − xy2

y '−→ −1
2
x+ µy + x2

8.

x '−→ x2 + µy
y '−→ y + xy
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9.

x '−→ −x+ y − xy2
y '−→ y + µy2 + x2y

10.

x '−→ 2x+ 3y
y '−→ x+ x2 + µy2 + xy2

11.

x '−→ µ+ µx+ x2 − y2
y '−→ x3 + y2

12.

x '−→ µ+ x+ x2 − y2
y '−→ µ+ x2 + y2

13.

x '−→ µ+
1
2
x− y − x2

y '−→ 1
2
x+ y2

14. Consider the map

Fα

(
x
y

)

=
(
cosβ − sinβ
sinβ cosβ

)

[

(1 + α)
(
x
y

)

+ (x2 + y2)
(
a −b
b −a

) (
x
y

)]

.

Let z = x + iy, z = x− iy, |z|2 = zz = x2 + y2, d = a+ ib. Show that
the map Fα may be written in the complex form z '−→ µz + cz|z|2.

15*. [25] Let Fµ be a map in the complex form z '−→ µz + α1z2 + α2zz +
α3z

2 +O(|z|3), µ = 0. Show that there exists a diffeomorphism h such
that h−1 ◦Fµ ◦h = Gµ = µz+O(|z|3), provided that µ is not a kth root
of unity for k = 1 or 3. (Hint: Use h(z) = z + a1z2 + a2zz + a3z2, with
a1 = −α1

µ(1−µ) , a2 =
−α2

µ(1−µ) , a3 =
−α3
µ−µ2 .)

16*. [25] Let Fµ be a map in the complex form z '−→ µz + β1z3 + β2z2z +
β3zz

2+ β4z3 +O(|z|4), µ = 0. Show that there exists a diffeomorphism
h such that h−1 ◦ Fµ ◦ h = Gµ = µz + β2z2z +O(|z|4), provided that µ
is not a kth root of unity for k = 2 or 4. (Hint: Use L(z) = z + b1z3 +
b3zz

2 + b4z3, with b1 = −β1
µ(1−µ2) , b3 =

−β3
µ(1−µ2)

, b4 = −β4
µ−µ3 .)
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FIGURE 5.7
Construction of a torus.

17*. [25] Let Fµ be the map in the complex form z '−→ µz+β2z2z+O(|z|4),
µ = 0. Show that there exists a diffeomorphism h such that h−1◦Fµ◦h =
Gµ = µz + β2z2z + O(|z|5), provided that µ is not a kth root of unity
for k = 3 or 5.

5.3 Hyperbolic Anosov Toral Automorphism

In Chapter 3, we used the double map on the circle S1 to illustrate one-
dimensional chaos. This was due mainly to the simplicity of its dynamics
and the transparency of proving the existence of chaos. In this section, we
initiate our exploration of two-dimensional chaos by introducing hyperbolic
automorphisms on the torus. To construct a torus T , we start with a unit
square in R2. Then, we identify the vertical sides by gluing them together. In
the second step, we identify the horizontal sides, which are now in the form
of circles, by gluing them together. In other words, a point of the form (x, 0)
is identified with the point (x, 1) and a point of the form (0, y) is identified
with a point of the form (1, y) (see Fig. 5.7).

Formally, the torus T is obtained from the plane by identifying all points
whose coordinates differ by an integer. This defines an equivalence relation
on R2, where (x1, y1) ∼ (x2, y2) if x2 − x1 = n1 and y2 − y1 = n2, for some
n1, n2 ∈ Z. This equivalence relation may be also described by the projection
map π : R2 → T with π(x, y) = [x, y]. Clearly, for any pair of integers m and
n, π(x+ n, y +m) = [x, y].

We are now ready to introduce the promised hyperbolic toral automor-
phism.

DEFINITION 5.1 Let A = (aij) be a 2 × 2 matrix with the following
properties:

(a) A is hyperbolic, i.e., its eigenvalues are off the unit circle.
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FIGURE 5.8

LA ◦ π
(
x
y

)

= π ◦A
(
x
y

)

.

(b) The entries aij , 1 ≤ i, j ≤ 2, are integers.

(c) detA = ±1.
It follows immediately from (a) and (c) that the eigenvalues of A are real

with one eigenvalue inside the unit circle and the other outside the unit circle
(Problem 3).
The matrix A induces a map LA : T → T , such that LA ◦ π = π ◦A. This

map is called a hyperbolic toral automorphism (see Fig. 5.8). Since detA =
±1, A−1 is also hyperbolic with integer entries (Problem 3). Thus A−1 induces
the hyperbolic toral automorphism (LA)−1.

The map LA on the torus T may be obtained by multiplying the matrix

A times the vector
(
x
y

)

, followed by taking the product vector modulus 1.

Explicitly, LA

(
x
y

)

= A

(
x
y

)

mod 1. Let us illustrate the dynamics of LA

by an example.

Example 5.4
(The Cat Map). Consider the map CA on the torus T induced by the

matrix A =
(
2 1
1 1

)

. This map is commonly called the cat map, for reasons

that will be explained in the sequel. The eigenvalues of A are λ1 = 3+
√
5

2 and
λ2 = 3−√

5
2 . Moreover, detA = 1. Thus, by Definition 5.1, the map CA on T

is a hyperbolic toral automorphism.

Let us now contemplate the image of a unit square under A. Note that
(
2 1
1 1

) (
1
0

)

=
(
2
1

)

,

(
2 1
1 1

) (
0
1

)

=
(
1
1

)

,

(
2 1
1 1

) (
1
1

)

=
(
3
2

)

.
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Thus A takes the unit square into a parallelogram as shown in Fig. 5.9(a). In
Fig. 5.9(b), we see that under A, the cat is smeared all over the parallelogram,
and this is how the map acquired its name.

Note that the only fixed point of CA is the origin. There are two cycles:
{(

1/5
2/5

)

,

(
4/5
3/5

)}

and
{(

2/5
4/5

)

,

(
3/5
1/5

)}

.

It is intriguing to observe that

An =
(
F2n F2n−1
F2n−1 F2n−2

)

where Fn denotes the Fibonacci sequence with F0 = F1 = 1 (Problem 2).
Moreover, the number of k-periodic points of CA is given by

|(F2n − 1)(F2n−2 − 1)− F 2
2n−1|. (5.24)

After delving into the cat map as a warm-up, we now focus our attention on
the general properties of hyperbolic toral automorphisms. The main results
of this section follow.

THEOREM 5.5
Let LA : T → T be a hyperbolic toral automorphism on the torus T . Then
LA is chaotic.

PROOF To prove that LA is chaotic, it suffices, by virtue of Theorem 3.4,
to show that the set of periodic points of LA is dense in T , and LA is topolog-
ically transitive. We complete the proof by establishing the following results.

LEMMA 5.1
The set of periodic points of LA is dense in T .

PROOF For each positive integer n, let

Un = {[i/n, j/n] ∈ T : 0 ≤ i, j < n, i, j ∈ Z
+}.

Then Un has n2 points. Moreover, since the entries ofA are integers, LA(Un) ⊂
Un. Hence, for x ∈ Un, there are positive integers r < s such that Lr

A(x) =
Ls

A(x) and |r − s| ≤ n2. This implies that Ls−r
A (x) = x; consequently, x is

periodic with period less than or equal to n2. Observe that

U =
∞⋃

n=1

Un (5.25)
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FIGURE 5.9
(a) Image of a unit square under the map A. (b) A cat in a unit square.
(c) Image of a cat under the map A.
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is dense in T (Problem 4).

LEMMA 5.2

The map LA is topologically transitive.

PROOF See the Appendix at the end of the chapter.

Exercises - (5.3)

1. Let fA : T → T be the map induced by the matrix A =
(
2 0
0 2

)

.

(a) Show that the map fA fails to be a diffeomorphism (Hint: Show
that f is noninvertible.)

(b) Prove that the set of periodic points of fA is dense in T .

(c) Show that the set of eventually fixed points of fA is also dense in
T .

(d) Show that f is chaotic on T .

2. Let A =
(
2 1
1 1

)

be the matrix which induces the cat map CA. Show

that

An =
(
F2n F2n−1
F2n−1 F2n−2

)

where Fn is the Fibonacci sequence defined by Fn+1 = Fn +Fn−1, with
F0 = F1 = 1.

3. Let A be a 2× 2 matrix that satisfies the assumptions in Definition 5.1.

(a) Show that A has two real eigenvalues λ1 and λ2 such that |λ1| <
1 and |λ2| > 1.

(b) Show that A−1 induces a toral automorphism LA−1 = (LA)−1.

4. Prove that the set U defined by Formula (5.25) is dense in T .

5. Let LA be a hyperbolic toral automorphism on the torus T . Then, a
point u ∈ T is called nonwandering if for every open neighborhood G
of u there exists a positive integer n such that LA(G) ∩ G = φ. Prove
that every point in T is nonwandering.
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6. A map f on a metric space X is called expansive if there is ε > 0
such that for every pair of points x, y ∈ X there is an integer k such
that d(fk(x), fk(y)) > ε. Show that a hyperbolic toral automorphism
is expansive.

7. Given a map f : T → T , there is a lift F : R2 → R2 such that π◦F = f◦π
and F (x+m) = F (x)+m for all x ∈ R2, m ∈ Z×Z. If f, g : T → T are
two C1 maps with lifts F,G : R

2 → R
2, then we define the d1(f, g) =

sup{d(f ◦ π(x), g ◦ π(x)), ||F ′(x) − G′(x)|| : x = (x1, x2) ∈ R2, with
0 ≤ x1, x2 ≤ 1}.

(a) Show that d1 is a metric on the set of C1 maps on the torus T .

(b) A C1 diffeomorphism f on T is said to be structurally stable if
there is a ball Bδ(f) such that every g ∈ Bδ(f) is topologically
conjugate to f . Prove that every hyperbolic toral automorphism
is structurally stable.

8. A point x is recurrent for f if for any open neighborhood U of x there
exists a positive integer n such that fn(x) ∈ U . Prove that homoclinic
points of a hyperbolic toral automorphism are not recurrent.

5.4 Symbolic Dynamics

In Chapter 3 we encountered the sequence space
∑+

2 of all one-sided sequences
of the form x1x2 . . ., where xi is either 0 or 1. It was shown that the shift
map σ on

∑+
2 is chaotic. This, in turn, was used to show, via conjugacy, that

several one-dimensional maps are chaotic. In an analogous fashion, we will
introduce the space

∑
2 of all two-sided sequences . . . x−3x−2x−1.x0x1x2x3 . . .,

where the decimal point separates both sides of the sequence. The space
∑

2

will be equipped with the metric defined by

d(x, y) =
∞∑

i=−∞

|xi − yi|
2|i|

(5.26)

for each x, y ∈ ∑
2.

It is easy to show that d is indeed metric on
∑

2. As in Sec. 3.7, one may
easily show that if d(x, y) < 1

2n , then xi = yi for |i| ≤ n. Conversely, if xi = yi

for |i| ≤ n, then d(x, y) ≤ 1
2n−1 .

The shift map σ :
∑

2 →
∑

2 moves the decimal point one place to
the right. For instance, if x = . . . x−3x−2x−1.x0x1x2x3 . . ., then σ(x) =
. . . x−3x−2x−1x0.x1x2x3 . . .
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Note that there are two fixed points of σ, the doubly repeated sequence
. . . 0.0 . . . and . . . 1.1 . . . The two cycles of σ are . . . 10.10 . . ., . . . 01.01 . . .
An n-cycle is of the form . . . x−n . . . x−2x−1.x0x1 . . . xn−1 . . ., where x−n =
x0, . . . , x−1 = xn−1.

LEMMA 5.3

The shift map σ :
∑

2 →
∑

2 is a homeomorphism.

PROOF The proof is similar to that of Lemma 3.6 and will hence be
omitted.

After the preceding preliminary work we are now ready to prove one of the
main results in this section.

THEOREM 5.6

The shift map σ :
∑

2 →
∑

2 is chaotic on
∑

2.

PROOF To prove that σ is chaotic on
∑

2, then, according to Theo-
rem 3.4, it suffices to show that it is transitive and the set of periodic points
of σ is dense in

∑
2. In order to prove transitivity, we need to construct a

dense orbit in
∑

2. For this purpose we select the two-sided sequence x̃, which
has the form

. . . 0011 0010 0001 0000 11 10 01 00.0 1 000 001 010 011 100 101 110 111 . . . .

In the right side of the sequence x̃, for each positive integer n all possible
n-tuples appear in a specific order, whereas in the left side of the sequence
x̃, for each positive even integer n all possible n-tuples appear in the same
backward order. We leave it to the reader to show that indeed the orbit of x̃
is dense in

∑
2. To show that the set of periodic points of σ is dense in

∑
2,

let x = . . . x−3x−2x−1.x0x1x2 . . . be an arbitrary sequence in
∑

2. Then, for
each positive integer n, the sequence x̂ given by

x−n . . . x−2x−1 x0x1x2 . . . xn︸ ︷︷ ︸
x−n . . . x−2x−1. x0x1x2 . . . xn︸ ︷︷ ︸

x−n . . .

is of period 2n + 1. Moreover, d(x, x̂) ≤ 1
2n−1 , which implies that the set of

periodic points of σ is dense in
∑

2. Hence, σ is chaotic on
∑

2.

5.4.1 Subshifts of Finite Type

In Chapter 3, we have discussed
∑+

2 and its extension
∑+

N , the space of all
one-sided sequences of positive integers between 1 andN . This sequence space
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FIGURE 5.10
Graph of the partition in Example 5.5.

has a metric defined for x = (x0x1x2 . . .) and y = (y0y1y2 . . .) by

dN (x, y) =
∞∑

i=0

|xi − yi|
N i

.

Let A = aij be an N × N matrix such that aij = 0 or 1 for all i and j,∑
j aij ≥ 1 for all i, and

∑
i aij ≥ 1 for all j. Define

+∑

A

= {x ∈
+∑

N

: axixi+1 = 1 for all i ∈ Z
+}.

The matrix A is called the transition matrix. It generates a distinctive sub-
space

∑+
A of

∑+
N . Moreover, the shift map σA :

∑+
A → ∑+

A, which is the
restriction of the shift map σ on

∑+
N , is called a subshift of finite type for the

matrix A.

Example 5.5
Let

A =




1 0 0
0 1 1
1 0 1



 .

Then,
∑+

A consists of all sequences of 1’s, 2’s, and 3’s such that 1 may follow 1,
2 may follow 2, 3 may follow 3, 3 may follow 2, but not vise versa, 1 may
follow 3, but not vise versa. Fox example,

111 . . . , 222 . . .333 . . .111 . . . , 333 . . .111 . . . , 222 . . . , 333 . . .

are all the types of sequences in
∑+

A. A graphical representation is given in
Fig. 5.10.

Another interesting fact about σA is that we can compute the number of
k-cycles of σA from knowing the trace of Ak, which will be denoted by tr(Ak),
where tr(Ak) is the sum of diagonal entries of Ak. Moreover, it turns out
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that tr(Ak) obeys the famous Fibonacci difference equation. These topics
and more will be the focus of our discussion.

LEMMA 5.4
Let A be an N ×N transition matrix. Then, the number of k-cycles of σA is
equal to tr(Ak).

PROOF We first observe that σk
A(x) = x for x ∈ ∑+

A if and only if x
is in the form (x0x1 . . . xk−1 . . .) such that ax0x1 = ax1x2 = · · · = axk−1x0 =
1. Hence, the product ax0x1ax1x2 . . . axk−1x0 = 1 if and only if the string
x0x1 . . . xk−1 is a piece of a sequence in

∑+
A, and equal to zero otherwise.

This implies that
∑

x0,x1,...,xk−1

ax0x1ax1x2 . . . axk−1x0 = number of k-cycles of σA

where the sum is taken over all positive values xi between 1 and N . It may
be shown that this sum is actually equal to tr(Ak).

In general, σA does not have chaotic properties on
∑+

A. However, for certain
transition matrices, σA is transitive on

∑+
A. Now, we introduce this type of

transition matrices.

DEFINITION 5.2 An N ×N transition matrix A is reducible if there
exists a pair i, j such that (Ak)ij = 0 for all k ≥ 1. Otherwise, A is said to be
irreducible. In other words, A is irreducible if there is an allowable string
x0x1 . . . xN−1 from i to j for every pair i, j, that is, the transition from xj−1
to xj is allowable for j = 1, . . . , N , or axj−1axj = 1, j = 1, . . . , N .

For example, the matrix A in Example 5.5 is reducible because it is not
possible to go from 1 to 2. The matrix

A =




1 0 1
0 1 1
1 1 0





is irreducible as you may see in Fig. 5.11.
Recall that a matrix A = (aij) is positive if aij > 0 for all i, j and eventually

positive if the entries of Ak are positive for some k > 1. It follows that positive
and eventually positive matrices are irreducible. The following result is key
to our interest in irreducible matrices.

THEOREM 5.7
For a transition matrix A, the following are equivalent.
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FIGURE 5.11

Graph of the partition for the matrix A =




1 0 1
0 1 1
1 1 0



.

1. A is irreducible.

2. σA is (topologically) transitive on
∑+

A.

PROOF The proof will be left to the reader as Problem 14.

Exercises - (5.4)

1. Without appealing to Theorem 5.6, prove that σ :
∑

2 →
∑

2 possesses
sensitive dependence on initial conditions.

2. Show that the sequence x̃, given in the proof of Theorem 5.6, has a
dense orbit.

3. Prove Lemma 5.3.

In Problems 4–7, use the following information:
For a sequence x ∈ ∑

2, define the stable set W s(x) and the unstable set
Wu(x) of x as follows:

W s(x) = {y : |σn(x) − σn(y)| → 0 as n→∞}, and
(5.27)

Wu(x) = {y : |σn(x) − σn(y)| → 0 as n→ −∞}.
4. Let z ∈ ∑

2. Prove that W s(z) consists of all sequences whose terms
agree with z to the right of some term in z.

5. A sequence x ∈ ∑
2 is said to be homoclinic to the sequence 0 =

. . . 000.000 . . . if x ∈ W s(0) ∩Wu(0). Prove that the set of homoclinic
sequences to 0 is dense in

∑
2.
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6. A sequence x ∈ ∑
2 is said to be heteroclinic if x ∈ W s(0) ∩ W s(1),

where 1 = . . . 111.111 . . .. Prove that the set of heteroclinic sequences is
dense in

∑
2.

7. Define a map h :
∑+

2 →
∑

2 by h(x0x1x2 . . .) = . . . x5x3x1.x0x2x4 . . .
Prove that h is a homeomorphism.

8. Draw the graph of partition for the following matrices and then deter-
mine their reducibility.

(a)







1 1 0 0
1 1 1 0
1 0 1 1
0 0 1 0







(b)







1 1 0 0
1 1 1 0
0 0 1 1
0 0 1 0







9. Suppose the ij entry of Ak, where A is a transition matrix is bij . Show
that there are bij allowable strings of length k + 1 starting at i and
ending at j, that is, ix1x2 . . . xk−1j.

10. A transition matrix is called a permutation if the sum of each row is 1.
Show that a transition matrix A = (aij) is a permutation if and only if∑

j aij = 1 for all i.

11. Let A =
(
0 1
1 1

)

. Find all fixed points of σA, σ2A, σ
3
A, and σ

4
A. Give the

least period of each cycle.

12. (a) Show that tr(Ak+2) =tr(Ak+1)+tr(Ak), where A is the matrix
given in Problem 8.

(b) Find a formula for the trace of Bk, where B =




1 1 0
1 1 0
0 0 1



.

13. Let F : R → R be a C1 function. Suppose that we have k closed and
bounded intervals I1, I2, . . . , Ik and M > 1 such that |F ′(x)| ≥ M for

all x ∈
k⋃

i=1

Ii = I and F (Ii) ⊃ Ij whenever F (Ii)∩ Ij = φ. Let A be the

matrix of the subshifts of finite type defined by aij = 1 if F (Ii) ⊃ Ij and
aij = 0 if F (Ii)∩ Ij = φ. Assuming that A is transitive and irreducible,
show that F1Λ is conjugate to the subshift of finite type σA on

∑
A,

where Λ =
k⋃

i=1

F−i(I).
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14.* Prove Theorem 5.7. (Hard)

15. (Project) Let A be an N ×N transition matrix and let
∑

A be the set
of all two-sided sequences of 1’s, 2’s, and 3’s. Develop parallel results
such as Lemma 5.4 and Theorem 5.7.

5.5 The Horseshoe and Hénon Maps

In 1967, Steven Smale [98] introduced a map, which is often called Smale’s
horseshoe map. It will be the first example of a chaotic map that is topo-
logically conjugate to the double-sequence space

∑
2. The map may be de-

scribed geometrically as follows. We start with a square S with side length 1.
Then, we attach to S two semicircles D1 and D2, to make up a region D
(see Fig. 5.12). The horseshoe map H : D → D may be described as follows:
contract S in the y direction by a factor of δ < 1

2 and expand it in the x
direction by a factor of 1

δ .
The regions D1 and D2 are contracted to small semicircular regions with

radius 1
2δ and will be mapped inside the region D1. The map H can be seen

as a composition of two functions H1 and H2. The first map H1 stretches out
the region D to a region D̃ that is more than twice in length and is less than
half in width. This is followed by the second map H2, which folds or bends
the region D̃ in the middle so that it crosses the square S twice. The main
interest in the horseshoe map H is to describe its dynamics on the attractor:

Λ = {X ∈ S : Hn(X) ∈ S for all n ∈ Z}.
To facilitate our task, we first consider the set

Λ+ = {X : Hn(X) ∈ S for all n ∈ Z
+}.

Note that in order for the positive orbit of X , O+(X), to be in S, X must
belong to either V0 or V1. Now if H2(X) ∈ S, then clearly H(X) ∈ V0 ∪V1 or
X ∈ H−1(V0)∪H−1(V1). Since h preserves horizontal and vertical rectangles
H−1(V0) consists of two vertical rectangles V00 and V01, each of width δ.
Similarly, H−1(V1) consists of two smaller vertical rectangles V11 and V10
each of width δ. Note that X ∈ Vij if X ∈ Vi and H(X) ∈ Vj . We conclude
that Λ+ is the product of a Cantor set with a vertical interval.

Next, we consider the set

Λ− = {X : Hn(X) ∈ S for all n ∈ Z
−}.

Observe first that in order for the negative orbit of X , O−(X), to be in S, u
must belong to either E0 = H(V0) or E1 = H(V1). Now, ifH−1(X) ∈ E0∪E1,
then X ∈ H(E0) ∪H(E1).
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FIGURE 5.12
The construction of the horseshoe map H = H2 ◦H1.

Notice that H(E0)∩S consists of two horizontal strips of width δ2. Analo-
gously, H(E1)∩S consists of two horizontal strips of width δ2 (see Fig. 5.13).
One may conclude from this that Λ− is the product of a Cantor set with a
horizontal interval. Moreover, Λ = Λ+ ∩ Λ−.

For each X ∈ Λ+ we associate the forward sequence x0x1x2 . . ., where

xn =
{
0 if Hn(X) ∈ V0
1 if Hn(X) ∈ V1 .

Note that each forward sequence corresponds to a whole vertical line in T (see
Fig. 5.14).

Similarly, we assign the backward sequence . . . x−3x−2x−1 to each X ∈ Λ−,
where

x−n =
{
0 if H−n(X) ∈ E0
1 if H−n(X) ∈ E1 .

Analogously, each backward sequence corresponds to a whole horizontal line
in S (see Fig. 5.14). Now, combining the forward and backward sequences, we
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FIGURE 5.13
The graph of H2(S).

FIGURE 5.14
H−1(V0) consists of two vertical rectangles V00 and V01;H−1(V1) consists of
two vertical rectangles V11 and V10.
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obtain the two-sided sequence . . . x−3x−2x−1.x0x1x2 . . . which is a unique se-
quence in the sequence space

∑
2. By this we have already defined a conjugacy

g : Λ → ∑
2. We are now going to show that g is in fact a homeomorphism

as we will demonstrate in the sequel.

THEOREM 5.8
g : Λ→ ∑

2 is a homeomorphism.

PROOF We first show that g is one to one. So let X1, Y2 ∈ Λ with
g(X1) = g(Y2). This implies that X1 and Y2 have the same forward and
backward sequence representation, and consequently they must be on the
same vertical and horizontal line. Hence, X1 = Y2 and g is one to one. Next,
we show that g is onto. Let x = . . . x−3x−2x−1.x0x1x2 . . . be a sequence in∑

2. We need to produce a point U ∈ Λ such that g(U) = x. To accomplish
this task, we define for each n ∈ Z the set

An = {v ∈ V0 ∪ V1 : g(v) = . . . y−3y−2y−1.y0y1y2 . . .

with
y0y1y2 . . . yn = x0x1x2 . . . xn}.

Note that each set An is closed. Moreover,
⋂

n≥0
An is a vertical line in S and

⋂

n<0

An is a horizontal line in S. Hence,
⋂

n∈Z

An is a single point U for which

g(U) = x. Thus, g is onto. We leave it to the reader to show that both g and
g−1 are continuous (Problem 1).

COROLLARY 5.1
The Horseshoe map H is chaotic on Λ.

PROOF We observe that the map g establishes a topological conju-
gacy between the horseshoe map H and the shift map σ (Fig. 5.15). For if
g(U) = . . . x−3x−2x−1.x0x1x2 . . ., then g(H(U)) = . . . x−2x−1x0.x1x2x3 . . . =
σ(g(U)). Since σ is chaotic on

∑
2 (Theorem 3.8), it follows by Theorem 3.9

that H is chaotic on Λ.

REMARK 5.3 Observe that since H is a contraction on D1, it follows by
the contraction mapping principle (Theorem 6.1) that H has a unique fixed
point W ∈ D1. Moreover, limn→∞Hn(U) = W for all U ∈ D1. Now, since
H(D2) ⊂ D1, limn→∞Hn(U) = W for all U ∈ D2. Moreover, if Hn(U) /∈ S
for some U ∈ S, then limn→∞Hn(U) =W .
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FIGURE 5.15
Topological conjugacy σ ◦ g = g ◦H .

5.5.1 The Hénon Map

Example 5.6
(The Hénon Map). Consider the Hénon map

Hab

(
x
y

)

=
(
1− ax2 + y

bx

)

.

As we have seen in Chapter 4, the Hénon map has two fixed points if a >
− 1

4 (1− b)2. These fixed points are

u∗1 =
(

1
2a

(b − 1 +
√
(1− b)2 + 4a),

b

2a
(b − 1 +

√
(1− b)2 + 4a)

)T

,

u∗2 =
(

1
2a

(b − 1−
√
(1− b)2 + 4a),

b

2a
(b − 1−

√
(1− b)2 + 4a)

)T

.

Recall that for |b| < 1 and a ∈ (− 1
4 (1− b)2, 34 (1− b)2) = I, the fixed point u∗1

is asymptotically stable while u∗2 is a saddle. Now at the left end point a1 =
− 1

4 (1− b)2 of the parameter interval I, we have u∗2 = u∗1 =
(

−(1−b)
2a , −b(1−b)

2a

)
.

Moreover, the Jacobian matrix J = DuH(u∗1, a1) =
(
1− b 1
b 0

)

has an eigen-

value equal to +1. Hence, by the center manifold theorem, there is a saddle
node bifurcation at u∗1.

On the other hand, at the right end point a2 = 3
4 (1 − b)2 of I, we have

u∗1 =
(
(1−b)
2a , b(1−b)

2a

)T

. Furthermore, the Jacobian matrix J = DuH(u∗1, a2) =
(−(1− b) 1

b 0

)

has an eigenvalue equal to -1. Again, by the center manifold
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theorem, we have a period-doubling bifurcation. For a fixed b, we may plot a
bifurcation diagram showing the x components of an orbit and the parameter
a on the x axis. Figure 5.16 shows the bifurcation diagram of the Hénon map
for a ∈ [0, 1.4], and b = 0.3. We see a 4-cycle going to a chaotic region and
then when a = 2 we have two pieces of a chaotic attractor [2].

FIGURE 5.16
The bifurcation diagram of the Henon map for a fixed b = 0.3.

In this section, we turn our attention to the existence of a horseshoe for the
Hénon map. The main result, due to Devaney and Nitecki [27], asserts the
existence of a horseshoe for large values of a.

THEOREM 5.9

Assume that a ≥ (5 + 2
√
5)(1 + |b|2)/4, b = 0 and let C = 1

2 [1 + |b| + ((1 +
|b|)2 + 4a)

1
2 ] be the side length of a square S = {(x, y) : |x| ≤ C, |y| ≤ C}.
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Define Λ :=
∞⋂

i=−∞
Hi(S). Then, the following hold true:

1. Λ is a cantor set.

2. H has a hyperbolic structure on Λ.

3. H|Λ is topologically conjugate to the two-sided shift
∑

2. Thus, H has
an embedded horseshoe.

PROOF The interested reader may find the proof of this theorem in [27].

REMARK 5.4 In 1995, Brown [14] discussed the existence of a horseshoe
in the Hénon map for the case when b = −1, i.e., when

H

(
x
y

)

=
(
1− ax2 + y

−x
)

.

In this case, H is area preserving and orientation preserving as well. However,
before introducing his results, we need to introduce the notion of transverse
homoclinic points. Let x∗ be a fixed point saddle of a map f . Then a point
p is said to be a transverse homoclinic point for x∗ if p ∈ W s(x∗) ∩Wu(x∗)
and W s(X∗) and Wu(x∗) cross-transversally, i.e., the two manifolds intersect
with a positive angle between them, whereW s(x∗) andW s(x∗) are as defined
in (5.27). In other words, the angle between the lines tangent to the two
manifolds at the point of crossing is nonzero (see Fig. 5.17).

We are now ready to state a remarkable result by Steven Smale [98].

THEOREM 5.10
Let f be a diffeomorphism (C1 homeomorphism) on the plane and x∗ be a
fixed point saddle. If f has a transverse homoclinic point p for x∗, then there
is a horseshoe for f .

Using the above result of Smale, Brown was able to establish the following
interesting result.

THEOREM 5.11
If a > 0 and b = −1, then H has an embedded horseshoe.

The main idea in the proof is to show the existence of a transverse homo-
clinic point for the Hénon map H . Then the result follows immediately by
Smale’s theorem.
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FIGURE 5.17
P1 is a transverse homoclinic point, while P2 is not a transverse homoclinic
point since the angle between W s(P2) and Wu(P2) is zero.

Exercises - (5.5)

1. Complete the proof of Theorem 5.8 by showing that both g and g−1 are
continuous maps.

2. Show that homoclinic points map to homoclinic points under f and its
inversef−1.

3. Construct the period table for the Hénon map H for periods up to six
as follows:

Period k Number of Number of Number of
fixed points fixed points cycles of

of Hk of Hk due to period k
lower period

orbits

4. [40] Let the region D in the plane be made up of three disks, A,B,
and C, and two strings, S1 and S2, connecting them as in Fig. 5.18.
The map F takes D inside itself. The disks A,B, and C are permuted
with F (A) ⊂ B, F (B) ⊂ C, F (C) ⊂ A. The map F on these sets is a
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FIGURE 5.18
Exercise 4.

contraction and there is a unique attracting cycle of period 3, {x1, x2, x3}
with x1 ∈ A, x2 ∈ B, and x3 ∈ C. The strip S1 is stretched across S1,
B, and S2 with a contraction in the vertical direction. The strip S2 is

stretched across S1 (see Fig. 5.18). Let Λ =
∞⋂

i=−∞
F i(S1 ∪ S2). Prove

that F |Λ is conjugate to the two sided subshift of finite type
∑

A for
the transition matrix

A =
(
1 1
1 0

)

.

5. Consider the map defined on a region D as in Fig. 5.19, where F con-
tracts vertical lengths and expands horizontal lengths in the square S
as in the case of the Smale horseshoe. Let

Λ = {x ∈ D : Fn(x) ∈ S for all n ∈ Z}.

Show that F is (topologically) conjugate to a two-sided subshift of finite
type generated by a 3× 3 matrix A. What is A?

6. Rework Problem 5 with the map defined geometrically in Fig. 5.20.

In Problems 7–9, use the following information:
Let f be a C1 map on R2 and Jn = Dfn(x0). Let B = B1(x0) be the unit

disk around x0. Then JnB is an ellipse with orthogonal axes of length rn1 and
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FIGURE 5.19
Exercise 5.

FIGURE 5.20
Exercise 6.

FIGURE 5.21
Exercises 7–10. A disc is mapped under Jn into an ellipse.
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rn2 (see Fig. 5.21). Let rnk be the length of the kth longest orthogonal axis of
the ellipse JnB.

DEFINITION 5.3 The kth Liapunov number of x0 is defined by

Lk = lim
n→∞(rnk )

1
n

if the limit exists. The kth Liapunov exponent of x0 is defined by

hk = lnLk.

DEFINITION 5.4 Let {x0, x1, x2, . . .} be the orbit of x0 ∈ R, which is
assumed to be bounded. Then the orbit is said to be chaotic [2] if

a) No Liapunov number is exactly 1

b) h1(x0) > 0

c) The orbit does not converge to a periodic orbit, i.e., it is not asymptotically
periodic.

7. Show that the horseshoe map has chaotic orbits.

8. Show that the set of chaotic orbits of the horseshoe map is uncountable.

9. Show that the horseshoe map has a dense chaotic orbit.

10. Consider the map f(r, θ) = (r2, 2θ) in polar coordinates [f(z) = z2 in
the complex domain]. Show that f has chaotic orbits.

5.6 A Case Study: The Extinction and Sustainability in
Ancient Civilizations

The following discrete population model was developed in [7] to investigate
the population dynamics of Easter Island

P (n+ 1) = P (n) + aP (n)
(

1− P (n)
R(n)

)

(5.28)

R(n+ 1) = R(n) + cR(n)
(

1− R(n)
K

)

− hP (n)

where P (n) is the size of the population in year n, and R(n) is the amount of
resource, say trees, animals, or crops, present in year n. The parameters a, c,
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K, and h represent, respectively, the intrinsic growth rate of the population,
the intrinsic growth rate of the resource, the resource carrying capacity, and
the harvesting rate. It follows that a, c, h, K > 0. The following assumptions
have been made in this model.

(a) The resource is governed by a logistic equation in the absence of people.

(b) The per capita consumption of the resource by people does not depend
on the amount of the resource. Hence instead of having −hP (n)R(n) in
the second equation, we have −hP (n) for the harvesting effect. This is
more appropriate if the population has easy access to resources.

(c) The population is governed by a logistic equation with the resources
R(n) comprising the carrying capacity of the population.

Using estimations from archeology, the initial population in 400 A.D., P0 =
50 and the number of trees then, R0 = 70, 000. Moreover, the parameters are
a = 0.044, c = 0.001, h = 0.018, and K = 70, 000. With these values of the
parameters and initial data, model (5.28) is successful as illustrated in Fig.
5.22 which depicts the population predicted by model (5.28) together with
data points estimated from archeology.

400 800 1200 1600 1800 2000
0

population

10,000

years*

*
*

*

*

FIGURE 5.22
The graph of population versus time (time-series) using model (5.28). Each
“*” is a data point approximated through archeological evidence.

To simplify our notation, we let K = 1, which is the same as taking the
units of P as percentage of total sustainable population. Hence our model
can be written as a two-dimensional map

F

(
P
R

)

=
(

P + aP
(
1− P

R

)

R+ cR(1−R)− hP
)

. (5.29)
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Local stability and trace-determinant analysis

The map F has three fixed points (P ∗
1 , R

∗
1) = (0, 0), (P ∗

2 , R
∗
2) = (0, 1) and

(P ∗
3 , R

∗
3) =

(
1− h

c , 1− h
c

)
. Now the Jacobian matrix of F at a fixed point

(P ∗, R∗)

J = DF

(
P ∗

R∗

)

=







1 + a− 2aP∗
R∗

... 2aP∗
R∗

. . . . . . . . .

−h ... 1 + c− 2cR∗





 .

(i) The fixed point (P ∗
1 , R

∗
1) = (0, 0). Notice that the fixed point (0, 0) is

a singularity of the matrix J since we have the term 0/0 appearing in
its entries. Thus we need a different type of analysis that does not rely
on the properties of J . Notice that when P = 0 (in the absence of
population), Equation (5.28) reduces to

F

(
0
R

)

=
(

0
R+ cR(1−R)

)

,

which is the one-dimensional map f(R) = R + cR(1 − R) defined on
the y-axis. Since f ′(0) = 1 + c > 0, it follows by Theorem 1.3 that the
fixed point 0 is unstable. Hence, the fixed point (0, 0) is unstable. This
makes sense, since in the absence of a human population, the resource
does not go extinct.

(ii) The fixed point

(P ∗
2 , R

∗
2) = (0, 1) : J |(0,1) =

(
1 + a 0
−h 1− c

)

.

The eigenvalues of J are λ1 = 1 + a and λ2 = 1 − c. Since λ1 > 1
and 0 < λ2 < 1, the fixed point (P ∗

2 , R
∗
2) is an unstable “saddle.” The

interpretation of this is that when settles, first arrive on the island, their
small colony has a chance to grow. Their arrival on the island may be
viewed as a perturbation from the fixed point (P ∗

2 , R
∗
2).

(iii) The fixed point

(P ∗
3 , R

∗
3) =

(

1− h

c
, 1− h

c

)

: J |(P∗
3 ,R∗

3)
=

(
1− a a
−h −c+ 2h+ 1

)

.

Now tr J = 2 − a− c+ 2h, and det J = h(2 − a)− c(1 − a) + 1 − a =
h(2− a) + (1− a)(1− c).

Using Fig. 5.3, we make the following conclusions.

(a) The upper side of the stability triangle which corresponds to a Neimark-
Sacker bifurcation is given by det A < 1. Hence

h(2− a) + (1− a)(1 − c) < 1. (5.30)
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(b) The right side of the stability triangle which corresponds to a saddle-
node (fold) bifurcation is given by det A > tr A− 1. Hence

2− a− c+ 2h− 1 < h(2− a) + (1− a)(1− c). (5.31)

(c) The left side of the stability triangle which corresponds to a period-
doubling (flip) bifurcation is given by det A > −tr A− 1. Hence

−(2− a− c+ 2h) < h(2− a) + (1− a)(1− c). (5.32)

Inequalities (5.30), (5.31), and (5.32) simplify to

h(2− a) + (1 − a)(1− c) < 1 (5.30′)
h < c (5.31′)

(2− a)(c− h− 2) < 2h. (5.32′)

Notice condition (5.31)′ has to be assumed in order to have the fixed point,
(P ∗

3 , R
∗
3) =

(
1− h

c , 1− h
c

)
positive. Now combining (5.30)′ and (5.32)′ yields

(a− 2)(c− a)
a− 4

< h <
1− (1− a)(1− c)

2− a . (5.33)

Using (5.33) and (5.31)′ we drew Fig 5.23, which shows the stability zone in
the c − h plane for (i) a = 0.0045, (ii) a = 0.3, and (iii) a = 1. In (i) for
a = 0.0045, we have the stability zone defined by c

2 − 1 < h < c
2 . In (ii) for

a = 0.3, we have the stability zone defined by 17
37c− 51

370 < h <
7
17c+

3
17 . And

in (iii) for a = 1, we have the stability zone defined by c
3 − 1

3 < h < 1.
The Neimark-Sacker bifurcation occurs when det J = 1, det J > tr J − 1

and det J < −tr J − 1. These conditions reduce to

det J = 1, and − 2 < tr j < 2. (5.34)

Thus we have h(2− a) + (1− a)(1 − c) = 1, and consequently,

h =
a+ c− ac

2− a . (5.35)

From the second part of (5.34) we have

−2 < 2− a− c+ 2h < 2. (5.36)

Substituting (5.37) into (5.36) yields

a+ c
2

− 2 <
a+ c− ac

2− a <
a+ c
2
.

This may be simplified further to

a < c < a− 4 +
8
a
. (5.37)
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FIGURE 5.24
The shaded area is the region at which Neimark-Sacker bifurcation occurs.
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FIGURE 5.25
The Niemark-Sacker invariant closed curves for a = 0.0045, c = 3, and h =
1.495, h = 1.498, h = 1.499.

Figure 5.23 illustrates the occurrence of the Neimark-Sacker bifurcation in the
a− c plane.

The archeological estimation for a in the Easter Island is a ≈ 0.0045. This
leaves a fairly wide window for c at which the Neimark-Sacker bifurcation can
be present.

Notice that the fixed point (R∗
3, P

∗
3 ) =

(
1− h

c , 1− h
c

)
loses its stability

as long as h = a+c−ac
2−a and inequality (5.37) holds. By Theorem 5.4 we

have a closed invariant curve around (R∗
3, P

∗
3 ). Figure 5.25 illustrates the

phenomenon for a = 0.0045, c = 3, and with the parameter values of h =
1.495, h = 1.498, and h = 1.499.

CONCLUDING REMARKS

Notice that as h increases (and thus the increase in harvesting), the positive
fixed point looses it stability. This makes sense as too much harvesting of the
resources in the island would definitely destabilize the population. The only
surprise, if any, is that destabilization occurs if the growth rate c increases.
Such increase in c may occur through new improved farming techniques, for
instance, leading to period-doubling (flip) bifurcation. For resource growth
rate c greater than the population growth rate a, increasing the harvesting
rate h pushes the positive fixed point to a Neimark-Sacker bifurcation.

Research Projects for Graduate and Undergraduate Students

Project A

Consider the Neimark-Sacker bifurcation depicted in Fig. 5.25.

1. Increase the value of h until the closed invariant curve develops cusps.

2. Keep increasing the value of h and observe that a periodic orbit in-
side the invariant closed curve undergoes a secondary Neimark-Sacker
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bifurcation.

3. Show that beyond a certain parameter value h, a chaotic region appears.

4. Simulate the attractors for the following parameter values:

(i) a = 0.3, c = 3, h = 0.17

(ii) a = 0.3, c = 3, h = 1.53

(iii) a = 0.3, c = 3, h = 1.5335

(iv) a = 0.3, c = 3.5, h = 1.27, 1.278

(v) a = 0.3, c = 3.5, h = 1.5

5. Provide a mathematical analysis for the phenomena that occurred in
your simulations.

Project B

Study the stability and bifurcation of the predator-prey model

x(n+ 1) = αx(n)(1 − x(n)) − x(n)y(n) (5.38)

y(n+ 1) =
1
β
x(n)y(n)

where x(n) is the population size of the prey and y(n) is the population size
of the prey in generation n. This model is obtained from Maynard Smith [99]

u(n+ 1) = Ru(n)− (R− 1)u2(n)/u∗ − cu(n)v(n) (5.39)
v(n+ 1) = ru(n)v(n)/u∗

where u(n) and v(n) are the sizes of the prey and predator populations in
year n whose maximum reproductive rates are R and r, respectively, and u∗

is the fixed point of u(n) in the absence of v(n). System (5.38) is obtained
from (5.39) by letting x(n) = (R − 1)u(n)/Ru∗ and y(n) = cv(n).

Project C

Triangular Maps. A map F : I2 → I2 on I2 = [0, 1]×[0, 1] is called a triangular
map if it is of the form F (x, y) = (f(x), g(x, y)). Such maps have applications
to neural networks. The main question here is which of the properties of f
holds also for F .

(a) Prove that if F is continuous and (x, y) is a periodic point of F , then
x is a periodic point of f . Moreover, if x is a periodic point of f , then
there exists y ∈ I such that (x, y) is a periodic point of F .

(b) Show that if an orbit of (x, y) under F is dense in I2, then the orbit of
x under f is dense in I.
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(c) Consider the map F (x, y) = (T (x), g(x, y)) on I2, where T is our old
friend, the tent map,

T (x) =

{
2x for x ≤ 1

2

2(1− x) for x > 1
2

and

g(x, y) =

{(
1
2 + x

)
y for x ≤ 1

2(
3
2 − x

)
y +

(
x− 1

2

)
for x > 1

2 .

Show that F is chaotic on I2 by showing that F is transitive and the
set of periodic points is dense in I2.

Appendix: Topologial Transitivity of the Toral Automor-
phism

Consider a 2× 2 matrix A that satisfies the hypotheses in Definition 5.1. Let
λs be the eigenvalue of A with |λs| < 1, and λu be the eigenvalue of A with
|λu| > 1. If Vs and Vu are the corresponding eigenvectors of A, respectively,
then the stable W s(0) and unstable Wu(0) subspaces of A are straight lines
through the origin in R2. Explicitly,

W s(0) = {tVs : t ∈ R}, Wu(0) = {tVu : t ∈ R}.
Now, for [x, y] ∈ T, let Cs and Cu be lines in R2 that intersect at (x, y)

and are parallel to W s(0) and Wu(0), respectively. We define two subspaces
W s[x, y] and Wu[x, y] of the torus T as the projection of these lines in T , i.e.:

W s[x, y] = π(Cs), Wu[x, y] = π(Cu).

In the next lemma, we will show that these two subspaces are indeed the
stable and unstable sets of LA, respectively. In other words, we will show that

W s[x, y] = {[x̃, ỹ] : d(Ln
A[x̃, ỹ], L

n
A[x, y])→ 0 as n→∞}

Wu[x, y] = {[x̃, ỹ] : d(L−n
A [x̃, ỹ], L−n

A [x, y])→ 0 as n→∞}
where d is the distance in T induced by the Euclidean distance in R2.

Now let [x, y] ∈ T be a periodic point under LA. We say that a point
p = [x, y] is homoclinic to [x, y] if p ∈ W s[x, y] ∩ Wu[x, y]. If, in addi-
tion, W s[x, y] and Wu[x, y] meet at a nonzero angle, then p is said to be a
transverse homoclinic point.



286 Discrete Chaos

Since this is the case for LA, all homoclinic points here are transverse. It
follows from Lemma 5.1 that the set of transverse homoclinic points is dense
in T .

LEMMA 5.5
The following statements hold.

1. For each [x, y] ∈ T, W s[x, y] is the stable set of LA associated to [x, y]
and Wu[x, y] is the unstable set of LA, associated to [x, y].

2. For each [x, y] ∈ T , the sets W s[x, y] and Wu[x, y] are dense in T .

3. Transverse homoclinic points are dense in T .

PROOF

1. Let (x, y) and (x̃, ỹ) be two points on a line parallel to W s in R2. Let

the distance between these two points be Euclidean. Then |An

(
x
y

)

−

An

(
x̃
ỹ

)

| = |λn
s | → 0 as n→∞. This implies that |Ln

A[x, y]−Ln
A[x̃, ỹ]|

→ 0 as n → ∞. The proof that Wu[x, y] is the unstable set of LA is
similar and will be omitted.

2. We claim that W s(0) is a line with an irrational slope. For if not, then
W s(0) must pass through a point (k, C), whose coordinates are integers.

But, then An

(
k
C

)

would have integer coordinates which contradicts

the fact that An

(
k
C

)

→ 0 as n→∞.

Let xj be the x coordinate of the intersection of the line y = j and
W s(0), j = 1, 2, 3, . . ..

Since the slope of W s(0) = 1
x1

is irrational, it follows that x1 is irrational.
Moreover, xn = nx1 is also irrational. Note that π(xj , j) = [αj , 0], 0 ≤ αj <
1. Now the line y = 0 defines a circle in T and the αj ’s are the successive
images of [0] under an irrational translation of this circle. Hence these points
are dense in the circle from which the proof easily follows.

PROOF OF LEMMA 5.2 Let U and V be two open sets in T . Let
[r] ∈ U and [s] ∈ V be two points in T that are homoclinic to [0]. Let ε > 0.
Choose an open interval Iu of length δ > 0 in Wu[0] and containing [r] and Is
of length δ > 0 in W s[0] containing [s]. Choose n sufficiently large such that
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FIGURE 5.26
Wu(0) is parallel to Ln

A(Iu),W
s(0) is parallel to L−1

A (Is).

1. d(Ln
A[r], [0]) < ε/2

2. d(L−n
A [s], [0]) < ε/2

3. |λu|nδ > ε

Since Ln
A(Iu) and L

−n
A (Is) are parallel to Wu[0] and W s[0], respectively,

Ln
A(Iu) ∩ L−n

A (Is) = φ (see Fig. 5.26). Let [q] ∈ Ln
A(Iu) ∩ L−n

A (Is). Then
[p] = L−n

A [q] ∈ U and Ln
A[q] ∈ V . Hence L2nA [p] ∈ V , which completes the

proof.
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Fractals

Fractal geometry will make you see everything differently. There
is danger in reading further. You risk the loss of your childhood
vision of clouds, forests, galaxies, leaves, feathers, flowers, rocks,
mountains, torrents of water, carpets, bricks, and much else be-
sides. Never again will your interpretation of these things be quite
the same.

Michael Barnsley

6.1 Examples of Fractals

The word fractal was coined from the Latin adjective fractus by Benoit Man-
delbrot in 1977 [67]. The corresponding Latin verb frangere means “to break,”
to create irregular fragments.

Before delving into the mathematical foundation of fractals, we will intro-
duce, as a warm-up, some of the more popular examples of fractals. Intuitively,
a fractal is a geometrical figure that consists of an identical motif repeating
itself on ever-reducing scales, i.e., self-similar. A more specific definition re-
quires more mathematical vocabulary and will be given in later sections.

Example 6.1
(The Sierpinski Triangle or Gasket). Our first example of a fractal is due
to the Polish mathematician Waclaw Sierpinski (1882–1969) who introduced
it in 1916 [95]. The construction goes as follows: we start with an equilateral
triangle with sides of unit length (for simplicity), thought of as a solid object.
By connecting the midpoints of the three sides of the triangle, we obtain
four smaller equilateral triangles, then remove the middle one. This leaves
three smaller equilateral triangles whose sides are of length 1

2 . In the next
step, we repeat the same procedure with the three remaining triangles to
obtain 9 equilateral triangles with sides of length (12 )

2. If we continue this
construction, then at the nth stage we will have 3n equilateral triangles with
sides of length (12 )

n. Fig. 6.1 illustrates our construction for n = 1, 2, 3.

289
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FIGURE 6.1
Construction of the Sierpinski triangle.
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Basic Construction of the Sierpinski Triangle

If we carry out this process indefinitely, then we obtain, as the limit, the
Sierpinski triangle or gasket. Note that the Sierpinski gasket is self-similar
since every part of it is similar to the whole.

Moreover, the sum of the areas of the parts removed in the construction
of the Sierpinski triangle is equal to the area of the original triangle. Let A
be the area of the original triangle, the initiator. In the first step, we remove
1
4A, and in the next step we remove three triangles each of area

(
1
4

)2
A, etc.

Hence, the sum of the areas removed is

1
4
A+ 3

(
1
4

)2

A+ 32
(
1
4

)3

A+ · · · = A.

Thus, the remaining set, the Sierpinski gasket, has a zero area.
It is worthwhile to mention that the Sierpinski gasket can be produced in

many different ways. One such construction is shown in Fig. 6.2. Following
[37], the figure in step 0 will be called the initiator and the figure in step 1
will be called the generator.

Example 6.2
(The Koch Curve). The second popular fractal was introduced by the
Swedish mathematician Helge Von Koch in 1904 [105] and is named after
him. The initiator of the Koch curve is a straight line. The generator is
obtained by partitioning the initiator into three equal segments. Then, we
remove the middle third and replace it with an equilateral triangle as shown
in Fig. 6.3.

If the initiator has length 1, then the generator will consist of four line
segments, each of length 1

3 . Hence, the total length of the generator is 4
3 . In

the second step, each one of the four line segments will act as an initiator and
is replaced by the corresponding scaled-down generator. The resulting curve
will have 16 line segments, each of length (13 )

2. Furthermore, the length of
the whole curve is

(
4
3

)2. If we repeat this process indefinitely, the limiting
curve is called the Koch curve. It is worth mentioning that the Koch curve
was the first example of a curve that is not differentiable anywhere, i.e., a
curve without a tangent anywhere. In addition, the length of the Koch curve
is ∞ since the length of the curve at the nth stage is

(
4
3

)n
, which clearly goes

to ∞ when n→∞. Moreover, it is undoubtedly self-similar since every part,
however small, is, itself, a miniature of the whole.

An interesting variation of the Koch curve is the Koch snowflake or island.
The initiator this time is an equilateral triangle, where each side represents
the initiator in the Koch curve construction (Fig. 6.4). One may show, as in
the Koch curve, that the encompassing curve is of infinite length. The Koch
snowflake is an example of a finite area encompassed by a curve of infinite
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FIGURE 6.2
Another construction of the Sierpinski triangle.
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FIGURE 6.3
Construction of the Koch curve.

length. This means that we can paint the inside of the Koch island, but we
can never wrap a length of string around its boundary. In Problem 17 you
will be asked to find the exact area enclosed by the Koch island.

Example 6.3
(The Pythagorean Tree). A beautiful fractal, called the Pythagorean tree,
was discovered in 1957 by the German mathematician A. E. Bosman (1891–
1961). We start with a square as our initiator. To the top side, we attach an
isosceles right triangle. The generator is obtained by attaching two squares
along the free sides of the triangle, and so forth (Fig. 6.5).

Let us number the squares as in Fig. 6.5 where a square of index n supports
two smaller squares; the one on the left has index 2n and the one on the
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FIGURE 6.4
Construction of the Koch snowflake.



Fractals 295

FIGURE 6.5
Construction of the Pythagorean tree.
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FIGURE 6.6
Construction of Pythagorean pine tree.

FIGURE 6.7
A pine tree generated as a fractal in 50 steps.
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right has index 2n+1. Using this numbering system, the position of a square
depends on the index divisibility by 2. If we write n = arar−1 . . . a1 in the
binary system, where ai = 0 or 1, taking 1 to represent right square and 0
to represent left square, we may locate easily the square with index n. For
example, 26 = 1 × 24 + 1 × 23 + 0 × 22 + 1 × 2 + 0 = (1 1 0 1 0)2 in the
binary system. Reading from left to right (the first number 1 represents the
first square, the initiator)

1(right), 0(left), 1(right), 0(left).

Many variations of the Pythagorean tree may be easily constructed. The
Pythagorean pine tree (Fig. 6.6) is constructed by following the squares alter-
nately by a scalene triangle and its mirror image (i.e., we flip the orientation
of the triangle after each step).

A Mathematical Curiosity: The Pascal Triangle

Pascal’s triangle may be constructed as follows:
The top row is 1 and will be labeled as row 0.
The next row is 1 1 and will be labeled as row 1.
Now each entry in the next row is the sum of the two entries above it (i.e.,

the one above it and to the right, and the one above and to the left). If there
is no number to the left or to the right above the entry, you place a zero there.

Figure 6.8 shows all rows of the Pascal triangle from row 0 to row 12.
Pascal’s triangle has always seemed to pop up in the strangest places: num-

ber theory, probability theory, and polynomial expansion. We will treat the
latter, the expansion of (1 + x)n.

(1 + x)0 = 1
(1 + x)1 = 1 + x
(1 + x)2 = 1 + 2x + x2

(1 + x)3 = 1 + 3x + 3x2 + x3

(1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4

(1 + x)5 = 1 + 5x + 10x2 + 10x3 + 5x4 + x5

A quick glance at the coefficients of the polynomials, one recognizes at once
the Pascal’s triangle. And because of this connection, the entries in Pascal’s
traingle are called the binomial coefficients. Notice that in row 5 [(x + 1)5],
the coefficients are

(
5
0

)

= 1,
(
5
1

)

= 5,
(
5
2

)

= 10,
(
5
3

)

= 10,
(
5
4

)

= 5,
(
5
5

)

= 1

where
(
n
k

)

= n!
k!(n−k)! .

Let us go back to the Pascal’s traingle in Fig. 6.8. Draw a grid square
around each integer in the Pascal triangle. Color the grid black if it contains
an odd number and leave it uncolored if it contains an even number. The
result is what you see in Fig. 6.9, the beginning of Sierpinski’s triangle.
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FIGURE 6.8
The first 13 rows of Pascal’s triangle.
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FIGURE 6.9
The beginning of Sierpinski’s triangle.
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6.2 L-system

In 1968, Aristid Lindenmayer [83] introduced the concept of L-systems. He
was trying to describe the growth process of living organisms such as branching
pattern of plants. The graphical implementation of L-systems is based on
“turtle” graphics. The following code words are used in the movement of the
turtle.

F : move one step forward (of a certain fixed length L),
drawing the path of motion

f : the same as F but do not draw the path of motion
+ : turn left (counterclockwise) by a fixed angle of θ
− : turn right (clockwise) by the angle of θ

The size of the step length L and the angle θ must be specified before
implementing an L-system. In addition, as in IFS, we need to specify an
initiator, called axiom here, which is the initial figure that we start with.
Moreover, the generator in IFS will be called here as the Production Rule.
Our first example is the classical Koch curve.

Example 6.4
(The Construction of the Koch Curve by an L-system) .
The following specifications of the basic elements of our construction are as

follows.

• θ = π
3

• L = 1
3

• Axiom: F a line segment of a unit length

• Production Rule: F + F −−F + F

What the Production Rule is saying is to replace every line (or every F ) with
the following sequence F + F − −F + F . Here is a graphical description of
the Production Rule.

F
3

1

F + F 60

F + F −−F
120

F + F −−F + F 60
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TABLE 6.1

The construction process of the Koch curve.
Iteration Fractal Image Describing String and Rules
Axiom

1
F ; θ = 60◦, L = 1

3

First Iteration F + F − −F + F

Second Iteration F + F − −F + F
︸ ︷︷ ︸

+

F + F − −F + F
︸ ︷︷ ︸

−−
F + F − −F + F
︸ ︷︷ ︸

+

F + F − −F + F︸ ︷︷ ︸

Table 6.1 shows the iteration process of the L-system of the Koch curve.

Example 6.5
(The Peano Curve). Table 6.2 summerizes the construction of the Peano
curve.

Our last example requires a little more sophistication in our coding. The
new codes are:

1. Left square bracket “[” which indicates a branch point.

2. Right square bracket “]” which indicates a point at which the branch is
complete.

Example 6.6
(A Simple Bush).
Table 6.3 describes the construction of a bush.

6.3 The Dimension of a Fractal

In this section we address the question of defining a fractal. In Sec. 6.1,
we have seen that self-similarity is an important feature of fractals. But
such a property is shared by nonfractals such as lines, squares, cubes, etc.
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TABLE 6.2

The construction of the Peano curve.
Iteration Fractal Image Describing String and Rules

Axiom
1

F ; θ = 90◦, L = 1
2

First Iteration
0 .5 1 1.5

FF + F + F + FF + F + F − F

Second Iteration FF + F + F + FF + F + F − F︸ ︷︷ ︸+

FF + F + F + FF + F + F − F
︸ ︷︷ ︸

+ . . .

Third Iteration FF + F + F + FF + F + F − F
︸ ︷︷ ︸

+

FF + F + F + FF + F + F − F︸ ︷︷ ︸+ . . .

Moreover, there are fractals that do not possess the property of self-similarity
(see Example 6.8). Hence, we need to find another characteristic of fractals
that is not shared by nonfractals. This leads us to Mandelbrot’s definition of a
fractal. According to Mandelbrot, a fractal is a set whose fractal dimension is
strictly greater than its topological dimension. So, we need to know what those
dimensions are. In general, a topological dimension of a set agrees with our
intuition about dimension of known sets: a smooth curve is one-dimensional,
a disc in the plane is two-dimensional, a solid cube is three-dimensional, etc.
The formal definition is done inductively as follows.

DEFINITION 6.1 A set A has a topological dimension 0 if every
point in A has an arbitrarily small neighborhood whose boundary does not in-
tersect A. A set A has a topological dimension k > 0 denoted by Dt(A),
if every point in A has an arbitrarily small neighborhood whose boundary in-
tersects A in a set of topological dimension k − 1, and k is the least positive
integer for which this holds.

Sets of topological dimension 0 are in abundance. The most famous set of
topological dimension 0 is the Cantor set. Clearly, the set of integers, the set
of rational numbers, and the set of irrational numbers are all of topological
dimension 0. In the plane, any set that consists of scattered isolated points is
of topological dimension 0 (see Fig. 6.10).

Note that a line is of topological dimension 1; so is the circle. The boundary
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TABLE 6.3

The construction of a bush.
Iteration Fractal Image Describing String and Rules

Axiom

1

F ; θ = 25◦, L = 1
2

First Iteration

50

25

25

50

25

25

1

FF + [+F − F − F ]−
[−F + F + F ]

Tenth Iteration · · ·
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FIGURE 6.10
A set of topological dimension 0.

of a neighborhood of points in either the line or the circle intersects either set
in a set of two points that is of topological dimension zero (Fig. 6.11). Now,
what about the topological dimension of the Koch snowflake? Is it 2 or 1
(Fig. 6.12)?

FIGURE 6.11
Two sets of topological dimension 1.

Examples of sets of topological dimension 2 include regions in the plane
such as discs, solid squares, etc. (see Fig. 6.13).

Next, we introduce the notion of fractal dimension. This concept of a
fractal dimension was introduced in 1977 by Mandelbrot [67]. It corresponds
to the notion of “capacity” used in 1958 by Kolmogrov [57].

Suppose that a line segment of length 1 is divided into N equal subsegments
with a scaling ratio h. Then, we have Nh = 1. On the other hand, if a square
region is divided into N equal subsquares with a scaling ratio h, then the
relation is Nh2 = 1. Similarly, if a cube is divided into N equal subcubes by
having its sides scaled by a factor h, then Nh3 = 1. Hence, it is reasonable
to use the exponent d in the formula Nhd = 1 as the similarity dimension Ds

(see Fig. 6.14).

Note that since Nhd = 1, d = lnN
ln(1/h) . Thus, for self-similar sets we adopt
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FIGURE 6.12
The snowflake is of topological dimension 1.

FIGURE 6.13
A set of topological dimension 2.

the following definition for the similarity dimension Ds(A) of a set A:

Ds(A) =
lnN

ln (1/h)
. (6.1)

where N is the number of pieces and 1/h is the magnification factor.

Example 6.7
Find the similarity dimension of (a) the Koch snowflakeH and (b) the Cantor
set K.

SOLUTION

1. The generator of the Koch snowflake H is made up of four equal line
segments scaled down by a factor of 1

3 (see Fig. 6.15). Hence, N = 4,
h = 1

3 .
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FIGURE 6.14
The division of a cube into N equal subcubes.

It follows from Eq. (6.1) that

Ds(H) =
ln 4
ln 3

≈ 1.26.

2. The generator of the Cantor set C is made up of two equal line segments
scaled down by a factor of 1

3 (see Fig. 6.16). Hence, N = 2, h = 1
3 .

It follows from Eq. (6.1) that

Ds(C) =
ln 2
ln 3

≈ 0.63.

REMARK 6.1 It may be shown, as in Example 6.1, that the length of
the Cantor set is zero. In other words, the sum of the lengths of the removed
intervals is equal to 1 (Problem 16).

Box Dimension

When a set is not self-similar, then our definition of a fractal dimension is not
adequate anymore; hence the need for a more general definition of dimension.
This new definition is realized by the use of special sets commonly known
as k-dimensional boxes. A k-dimensional box is a subset of Rk defined as
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FIGURE 6.15
The similarity dimension of the Koch snowflake.

{x = (x1, x2, . . . , xk) : 0 ≤ xi ≤ C for all 1 ≤ i ≤ k, for some C > 0}. A box of
dimension 1 is a closed interval, of dimension 2 a solid square, of dimension 3
a solid cube. Let N(h) be the smallest number of k-dimensional boxes of side
length h required to cover G. Then, the box dimension of G is defined to be

Db(G) = lim
h→0

lnN(h)
ln( 1h )

. (6.2)

Example 6.8
(A Non-Self-Similar Fractal). (see Fig. 6.17) This fractal is constructed
as follows: divide a square region into nine equal squares and then delete
one of them at random. Repeat this process on each of the remaining eight
squares. The limiting set A is a fractal that is not self-similar. Now

Db(A) = lim
h→0

lnN(h)
ln( 1h )

= lim
n→∞

ln 8n

ln 3n
=

ln 8
ln 3

≈ 1.89.

We now define the fractal dimension Df (A) of a set A whether it is self-
similar or not as either its similarity dimension Ds(A) or its box dimension
Db(A). This occurs despite the fact that the box dimension is more general
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FIGURE 6.16
The construction of a Cantor set.

FIGURE 6.17
A non-self similar fractal.

than the similarity dimension; the fractal dimension of most of the fractals
in the book can be computed using the similarity dimension. It is generally
true that for any set A in Rk, Dt(A) ≤ Df (A). The equality Dt(A) = Df (A)
is attained only for Euclidean figures such as lines, squares, discs, cubes, etc.
As we mentioned earlier, if Dt(A) < Df(A), then A is a fractal.

REMARK 6.2 There are some pitfalls of the box dimension. For example,
the box dimension of the set

A = {0, 1
2
,
1
3
, . . . ,

1
n
, . . .}

is 1
2 . To show this, observe that the difference between two consecutive num-

bers in A is 1
k−1 − 1

k = 1
k(k−1) . Choose k such that 1

k(k−1) ≤ h < 1
(k−1)(k−2) .

To cover the subset {1, 12 , . . . , 1
k−1} we need (k− 1) intervals of length 2h and

centered at these points. The remaining points { 1k , 1
k+1 , . . . , 0} can be covered

by 1
2kh intervals of length 2h. Hence, the total number of intervals of length

2h needed to cover the set A is given by N(2h) = (k− 1)+ 1
2kh . A first-order

approximation of h is 1
k2 . Hence we may approximate (k− 1) by 1√

h
and 1

2kh
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by 1
2
√

h
. Then N(2h) = 3

2
√

h
. It follows from Formula (6.2) that

Db(A) = lim
h→0

ln 3
2
√

h

ln
(
1
2h

) =
1
2
.

Another striking example is the set of rational numbers G between 0 and 1.
It can be shown that Db(G) = 1 (Problem 22).

Exercises - (6.1, 6.2 and 6.3)

In Problems 1–9 the initiator and the generator of a fractal are provided.

a) Use five iterations to generate the shown picture.

b) Find the topological dimension of the fractal.

c) Find the similarity dimension of the fractal.

1.
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2.

3.
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4.

5.
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6.
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7. The Menger sponge is obtained from a unit cube by boring out the mid-
dle ninth of the cube in each direction and then continuing the process
indefinitely on the remaining subcubes.
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8.

9.

In Problems 10–13

(a) Find the second iteration.

(b) Draw its graphical representation of first and second iterations.

(c) Use the computer to generate the tenth iteration.
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10. Axiom: F + F + F + F , F is a line segment of length 1
Production Rule: F + F − F − FF + F + F + F − F , θ = 90◦, L = 1

3

11. Axiom: F ++F ++F , F is a line segment of length 1
Production Rule: F − F ++F − F , θ = π

2 , L = 1
2

12. Axiom: F , a line segment of length 1
Production Rule: F [+F ]F [−F ]F , θ = π

7 , L = 1
2

13. Axiom: F , a line segment of length 1
Production Rule: −F + F [+F − F−]− [−F + F + F ], θ = π

8 , L = 1
2

14. Axiom: F , is a line segment of length 1
Production Rule: F + F − F − FFF + F + F − F , θ = π

2 , L = 1
2

15. Axiom: F + F + F + F , F is a line segment of length 1
Production Rule: F → F +f −F −FFF +F +f−F , f → fff , θ = π

2 ,
L = 1

2

16. Show that the length of the Cantor middle-third set is zero.

17.* Find the area enclosed by the Koch island if the initiator is an equilateral
of side length 1.

18. Assume that Df(A) and Df(B) exist and that A ⊂ B. Show that
Df (A) ≤ Df (B).

19. Let C5 be the Cantor set in [0, 1] obtained by deleting the middle fifth
segment of each remaining line segment and continuing the process in-
definitely. Find Dt(C5) and Df(C5).

20. Generalize the previous problem to find Dt(C2k+1) and Df (C2k+1), for
k > 2.

21. Divide the interval [0,1) into five equal pieces, delete the second and
fourth subintervals, and then repeat the process indefinitely to obtain
the “even-fifth” Cantor set C̃s. Find Dt(C̃s) and Df (C̃s).

22. Show that the box dimension of the set of rational numbers between 0
and 1 is 1.

6.4 Iterated Function System

In this section, we lay the mathematical foundation of the construction of
fractals. There are two types of algorithms to generate fractals, deterministic
and random. Our focus will be mainly on deterministic iterated function
systems (IFS). They will be explored in detail in this section.
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6.4.1 Deterministic IFS

Let us begin by recalling the definition of a linear transformation on the plane.
A map F : R2 → R2 is a linear transformation if

1. F (p1 + p2) = F (p1) + F (p2), for any two points p1, p2 ∈ R2.

2. F (αp) = αF (p), for α ∈ R, p ∈ R2.

A linear transformation f may be represented by a matrix

A =
(
a b
c d

)

, i.e.,

F

(
x
y

)

=
(
a b
c d

) (
x
y

)

=
(
ax + by
cx + dy

)

. (6.3)

(Note that F and A are indistinguishable for a given coordinate system.)

Given a point
(
x
y

)

∈ R2, we would like to determine the location of the

point F
(
x
y

)

. To facilitate this task, we may write the matrix A in the

following convenient form.

A =
(
r cos θ −s sinφ
r sin θ s cosφ

)

(6.4)

where

r =
√
a2 + c2, cos θ = a/

√
a2 + c2

s =
√
b2 + d2, cos(π − φ) = b/

√
b2 + d2.

FIGURE 6.18
A rotation by an angle θ.

We now list some important special cases for A.
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1. s = r = 1, θ = φ. Here we have

A =
(
cos θ − sin θ
sin θ cos θ

)

(
x(1)
y(1)

)

= F

(
x0
y0

)

=
(
x0 cos θ − y0 sin θ
x0 sin θ + y0 cos θ

)

From Fig. 6.18 we have

x(1) = cos(θ + α)
= cosα cos θ − sin θ sinα
= x0 cos θ − y0 sin θ

y(1) = sin(θ + α)
= x0 sin θ + y0 cos θ

The point
(
x(1)
y(1)

)

= F

(
x0
y0

)

is thus obtained by rotating clockwise by

an angle θ. As an example, let A =

(
1√
2

−1√
2

1√
2

1√
2

)

. Then, r = s = 1, θ =

φ = π
4 , and the transformation rotates every point in the plane by an

angle π
4 .

2. r = s > 0, θ = φ defines a transformation given by rotating by an angle
θ and scaling by a factor r; 0 < r < 1 gives a contraction, and r > 1
gives a dilation [see Fig. 6.19(a) and (b)].

FIGURE 6.19
(a) A rotation and a contraction, (b) a rotation and an expansion.
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3. r = s > 0, θ = φ = 0. This occurs if b = c = 0 and a = d, i.e.,

A =
(
a 0
0 a

)

, F

(
x0
y0

)

=
(
ax0
ay0

)

.

This transformation produces a contraction if 0 < a < 1 or a dilation if
a > 1.

4. r = a, s = b, 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, φ = θ = 0. The transformation is
thus given by

A =
(
a 0
0 b

)

, F

(
x0
y0

)

=
(
ax0
by0

)

.

This transformation reduces by a factor of a in the x direction and by
a factor of b in the y direction (see Fig. 6.20).

FIGURE 6.20
A reduction by a factor of a in the x-direction and by a factor of b in the
y-direction.

5. s = r, 0 ≤ r ≤ 1, θ = π, φ = 0 gives

A =
(−r 0
0 r

)

, F

(
x0
y0

)

= r

(−x0
y0

)

.

This transformation reduces x0, y0 by a factor r, which simultaneously
reflects around the y axis (Fig. 6.21).

Next we define an affine linear transformation as a map F : R2 → R2,
which can be represented by

F

(
x0
y0

)

= A

(
x0
y0

)

+
(
e
f

)

, (6.5)
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FIGURE 6.21
A reduction by a factor of r followed by a reflection around the y-axis.

or in vector notation F (z0) = Az0 + t, where z0 = (x0, y0)T , t = (e, f)T , A =(
a b
c d

)

, e, f ∈ R. Explicitly,

(
x(1)
y(1)

)

=
(
x0
y0

)

=
(
ax0 + by0 + e
cx0 + dy0 + f

)

. (6.6)

Note that an affine linear transformation involves a translation by the vector(
e
f

)

.

Recall that a map F : S → S is said to be a contraction if for some
0 < α < 1:

||F (z1)− F (z2)|| ≤ α||z1 − z2|| for all z1, z2 ∈ S. (6.7)

The constant α is called the contraction factor of f .
For the affine transformation defined by (6.3),

||F (z1)− F (z2)|| = ||Az1 −Az2|| ≤ ||A||||z1 − z2||. (6.8)

It follows from (6.7) that f is a contraction of R2 if ||A|| < 1 or if the eigen-
values λ1, λ2 of A satisfy |λ1| < 1, |λ2| < 1 (see Chapter 4). This is the case
if the matrix A is given in the form

A =
(
r cos θ −r sin θ
r sin θ r cos θ

)

, |r| < 1.

Here the eigenvalues of A are given by λ1,2 = r cos θ±ir sin θ and thus |λ1,2| =
|r| < 1.

So, if F
(
x
y

)

= A

(
x
y

)

=
(
r cos θ −r sin θ
r sin θ r cos θ

) (
x
y

)

, then the effect of F

will be a rotation of the given figure by an angle θ counterclockwise and the
reduction of distance by a factor of r (Fig. 6.22).
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FIGURE 6.22
A rotation by an angle θ followed by a reduction by a factor r.

θ =
π

2
, r =

1
2

We now turn our attention to the notion of iterated function system. Let
H be the collection of all closed and bounded subsets of R

2. Let F1, F2, . . . , FN

be a family of contraction of R2. Let the function F be defined by

F (S) = F1(S) ∪ F2(S) ∪ . . . ∪ FN (S) (6.9)

for S ∈ H .
We call F the union of the functions F1, F2, . . . , FN and it is commonly

known as the Hutchinson operator [51]. If F1(S), F2(S), . . . , FN (S) are dis-
joint (except possibly for boundaries), and S = F (S), then S is said to be
self-similar. In the sequel, we will show that all fractals enjoy the property
of self-similarity.

Finally, we define the notion of an iterated function system (IFS), which
will provide us with codes necessary to build up fractals new and old.

DEFINITION 6.2 Let F1, F2, . . . , FN be a family of contractions on Rk

and S a closed bounded subset of Rk. Then the system {S : F = ∪N
i=1Fi} is

called an iterated function system (IFS).

It will be shown later that the union map F is also a contraction (The-
orem 6.2). Furthermore, the sequence of iterations {Fn(S) : n ∈ Z+} con-
verges to a closed and bounded set AF (see Theorem 6.3) which is called
the attractor for F . This attractor set AF is what we call a fractal. Since
Fn+1(S)→ AF , too, F (AF ) = AF , i.e., AF is an invariant set.

We now give some examples to illustrate the concept of IFS. The first
example will be our familiar Sierpinski gasket.
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Example 6.9
Let S = ) be a solid equilateral triangle along with the family of contractions.

F1

(
x
y

)

=
(

1
2 0
0 1

2

) (
x
y

)

,

F2

(
x
y

)

=
(

1
2 0
0 1

2

) (
x
y

)

+
(

1
2
0

)

,

F3

(
x
y

)

=
(

1
2 0
0 1

2

) (
x
y

)

+
( 1

4√
3
4

)

,

then {S : F = ∪3i=1Fi} is an IFS. Note that ||Fi(u)− Fi(v)|| = 1
2 ||u − v|| for

i = 1, 2, 3. Now F1(S) = S1, F2(S) = S2, F3(S) = S3, and thus F (S) is the
union of the three sets S1, S2, S3 as shown in Fig. 6.23(b). Moreover, repeating
this process again we get F1(S1) = S11, F2(S1) = S21, F3(S1) = S31;F1(S2) =
S12, F2(S2) = S22, F3(S2) = S32;F1(S3) = S13, F2(S3) = S23, F3(S3) = S33
[Fig. 6.23(c)].

FIGURE 6.23
Construction of the Sierpinski triangle using the maps

a b c d e f
F1

1
2 0 0 1

2 0 0

F2
1
2 0 0 1

2
1
2 0

F3
1
2 0 0 1

2
1
4

√
3
4 .

The sequence {Fn(S)}∞n=1 converges to the Sierpinski gasketG = lim
n→∞F

n(S).

If we write the code of the transformation given in Eq. (6.6) as

a b c d e f,
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then the code of the Sierpinski gasket is
a b c d e f

F1
1
2 0 0 1

2 0 0

F2
1
2 0 0 1

2
1
2 0

F3
1
2 0 0 1

2
1
4

√
3
4 .

Example 6.10

(The Koch Curve). Find the IFS that generates the Koch curve K as its
attractor.

SOLUTION The initiator is the interval I = [0, 1], and the generator [see
Fig. 6.24(b)] consists of four line segments K1,K2,K3,K4 each of length 1

3 .

FIGURE 6.24
Construction of the Koch curve using the maps F1, F2, F3, F4.

Hence, we need four contractions F1, F2, F3, F4 to produce these line seg-
ments. We now give descriptions of these contractions [see Fig. 6.24(b)].
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1. To obtain K1, we shrink the line segment [0, 1] by a factor 1
3 . Thus,

F1

(
x
y

)

=
(

1
3 0
0 1

3

) (
x
y

)

.

2. To obtain K2, we contract the initiator [0, 1] by a factor of 1
3 , rotate

counterclockwise by an angle π
3 , and then translate by the vector

(
1
3
0

)

.

Thus,

F2

(
x
y

)

=
(
1/3 cosπ/3 −1/3 sinπ/3
1/3 sinπ/3 1/3 cosπ/3

) (
x
y

)

+
(
1/3
0

)

=

(
1
6 −

√
3
6√

3
6

1
6

)(
x
y

)

+
(
1/3
0

)

.

3. To obtain K3, contract by a factor of 1
3 , rotate clockwise by π

3

and translate by the vector
(
1/2√
3
6

)

. Thus,

F3

(
x
y

)

=
(

1
3 cos−π

3 − 1
3 sin−π

3
1
3 sin−π

3
1
3 cos−π

3

) (
x
y

)

+
(
1/2√
3
6

)

=

(
1
6

√
3
6

−
√
3
6

1
6

) (
x
y

)

+
(
1/2√
3
6

)

.

4. To generate K4, contract by a factor of 1
3 and then translate by the

vector
(
2/3
0

)

. Thus,

F4

(
x
y

)

=
(
1/3 0
0 1/3

) (
x
y

)

+
(
2/3
0

)

.

We conclude this step by giving the code of this IFS:
a b c d e f

F1 1/3 0 0 1/3 0 0
F2 1/6 −√

3
6

√
3
6 1/6 1/3 0

F3 1/6
√
3
6

−√
3

6 1/6 1/2
√
3
6

F4 1/3 0 0 1/3 2/3 0

Fig. 6.24(c) is obtained by iterating, i.e., by applying the transforma-
tions Fi on the new sets Kj . For example, Fi(Kj) = Kij , 1 ≤ i, j ≤ 4.
We observe that the Koch curve K is obtained as the attractor of the
set I, i.e., the limit of the sequence {Fn(I)}, where F is the union of
contractions F1, F2, F3, and F4.
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It is often more convenient to write an affine transformation

F

(
x
y

)

=
(
a b
c d

) (
x
y

)

+
(
e
f

)

or

a b c d e f

in the polar coordinate form given in (6.4) as

F

(
x
y

)

=
(
r cos θ −s sinφ
r sin θ s cosφ

) (
x
y

)

+
(
e
f

)

.

Figure 6.25 illustrates the effect of applying the affine transformation
defined below on a square.

r s θ φ e f
1/4 1/2 π/6 π/3 0.5 0.5

FIGURE 6.25
The effect of applying the affine transformation 1

4 ,
1
2 , π/6, π/3, 0.5, 0.5.

We now use the above representation to give our last example in this section,
namely, the Barnsley’s fern.

Example 6.11
(The Barnsley’s Fern). Barnsley [5] was able to generate the fern, one of
the most celebrated fractals, using only four transformations given below:

r s θ φ e f
F1 .85 .85 −2.5◦ −2.5◦ 0 1.6
F2 .3 .34 49◦ 49◦ 0 1.6
F3 .3 .37 120◦ −50◦ 0 .44
F4 0 .16 0 0 0 0
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The initiator S is chosen as a rectangle [see Fig. 6.26(a)].

FIGURE 6.26
The construction of Barnsley’s fern.

Note that F1(S) = region 1 (R1), F2(S) = region 2 (R2), F3(S) =
region 3 (R3), F4(S) = region 4 (R4), (the vertical line) [see Fig. 6.26(b)].
Furthermore, Barnsley’s fern [see Fig. 6.26(c)] can be grouped into four parts
[see Fig. 6.26(b)]: R1, R2, R3, R4. This may help us to the conclusion that we
need four transformations to generate Barnsley’s fern [Fig. 6.26(d)].
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X
1

P  (0,0)
1

P  (1,0)

P  (1/2,  3 /2)

2

3

X
4

X
0

X
2

X
3

FIGURE 6.27
Illustration of the chaos game.

6.4.2 The Random Iterated Function System and the Chaos
Game.

Thus far, we have only discussed the “deterministic” iterated function system
(DIFS). The random iterated function system (RIFS) is often used for com-
puters having the capability of displaying graphic images one pixel at a time
on screen. Let us first describe the chaos game which generates the Sierpin-
ski triangle using RIFS. Let P1 = (0, 0), P2 = (0, 1), P3 =

(
1
2 ,

√
3
2

)
. Pick a

starting point X0 (preferably inside the triangle P1P2P3). Now we roll a die,
if 1 or 2 shows we move halfway toward P1, if 3 or 4 shows we move halfway
toward P2, and if 5 or 6 shows we move halfway toward P3. Call the new
point X1. By repeating this process indefinitely, we generate a sequence X0,
X1, X2, . . . . If we discard the first 100 transient points in the sequence, the
remaining points consistutes the Sierpinski triangle (Fig. 6.27).
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Exercises - (6.4)

1. Find an affine transformation F on the triangle S such that F (S) is the
given triangle.

(a)

(b)

(c)

2. Find an affine transformation F on the square S such that F (S) is the
given figure.

(a)
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(b)

(c)

(d)

3. Find an IFS for the following initiator and generator.

In Problems 4–7 find an IFS for the given initiators and generators.

4.
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5.

6.

7.

In Problems 8–11 use the computer program IFS, available at CRC’s website
www.crcpress.com/, to generate the attractor of the given system.

8.
a b c d e f

F1 0.5 0 0 0.5 0 0
F2 0.5 0 0 0.5 0.5 0
F3 0.5 0 0 0.5 0.25 0.5
Sierpinski triangle

9.
a b c d e f

F1 0 −0.5 0.5 0 0.5 0
F2 0 0.5 −0.5 0 0.5 0.5
F3 0.5 0 0 0.5 0.25 0.5
Twin Christmas tree

10.
a b c d e f

F1 0 0.577 −0.577 0 0.0951 0.5893
F2 0 0.577 −0.577 0 0.4413 0.7893
F3 0.5 0.577 −0.577 0 0.0952 0.9893
Dragon
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11.

a b c d e f
F1 0.195 −0.488 0.344 0.443 0.4431 0.2452
F2 0.462 0.414 −0.252 0.361 0.2511 0.5692
F3 −0.058 −0.070 0.453 −0.111 0.5976 0.0969
F4 −0.035 −0.070 0.469 −0.022 0.4884 0.5069
F5 −0.637 0 0 0.501 0.8562 0.2513
Tree

In Problems 12–15 determine an IFS whose attractor is the given figure. In
all the problems, the initiator is a unit square with an inscribed letter L as
shown below.

12.

13.
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14.

15.

6.5 Mathematical Foundation of Fractals

In this section, we restrict our presentation to R2. The results obtained are
easily extended to Rk or metric spaces with minor modifications. The object
is H , the set of all closed and bounded subsets of R2. We would like to define
a norm || || or a metric D on H that measures the distance between two sets
in H . Such a norm would enable us to precisely make the statement that a
sequence of iterates {Fn(S)} in H converges to a set E in H . Let A,B ∈ H .
Then, the distance between a point a ∈ A and B is given by

d(a,B) = inf{||a− b|| : b ∈ B}.
The distance between the set A and the set B is given by

d(A,B) = sup{d(a,B) : a ∈ A}.
The main problem with this definition of the distance between the sets A and
B is that d(A,B) = d(B,A) as may be seen from the following example.
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Example 6.12
Find d(A,B), d(B,A) for the sets A = {(x, y) : (x + 1)2 + y2 ≤ 1}, B =
{(x, y) : (x− 3)2 + y2 ≤ 4} (see Fig. 6.28).

FIGURE 6.28
d(A,B) = d(B,A).

SOLUTION From Fig. 6.28, it is clear that d(A,B) = max{d(a,B) : a ∈
A} = 3, d(B,A) = max{d(b, A) : b ∈ B} = 5. Hence, d(A,B) = d(B,A).

From the above example, we conclude that the above notion of distance
between sets is not suitable since it is not symmetrical and thus does not fit
our intuition about distances. Hence, we are led to the introduction of the
Hausdorff distance.

DEFINITION 6.3 Let A,B ∈ H. Then, the Hausdorff distance be-
tween A and B is defined as

D(A,B) = max{d(A,B), d(B,A)}.

Note that in Example 6.12, D(A,B) = max{3, 5} = 5. For the convenience
of the reader, we present a more geometrical perspective for defining the
Hausdorff distance. First, we define the ε-neighborhood Nε(A) of a set A (see
Fig. 6.29) as

Nε(A) = {x ∈ R
2 : d(x, a) ≤ ε for some a ∈ A}. (6.10)

Note that for two sets A,B ∈ H , we have (see Fig. 6.30)

d(A,B) = inf{ε > 0 : A ⊂ Nε(B)}.
d(B,A) = inf{ε > 0 : B ⊂ Nε(A)}.

It can be shown that the pair (H,D) is a metric space (see Section 3.5)
(Problem 4).
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FIGURE 6.29
A set A and its neighborhood Nε(A).

The most important property of (H,D) is that it is a complete metric space,
i.e., every Cauchy sequence1 in H converges to an element in H (for a proof,
see Dugundji [30]). This completeness property is what is needed to apply
the contractions mapping principle stated below.

THEOREM 6.1
The contraction mapping principle.
Let F : X → X be a contraction mapping, with a contraction factor α, on

a complete metric space X. Then, F has a unique fixed point x* ∈ X, which
is a global attractor, i.e., for every x ∈ X,Fn(x)→ x* as n→∞.

PROOF Let x be an arbitrary point in X . Then for m < n,

d(Fm(x), Fn(x)) = d(Fm(x), Fm(Fn−m(x)))
≤ αmd(x, Fn−m(x))
≤ αm[d(x, F (x)) + d(F (x), F 2(x)) + · · ·

+ d(Fn−m−1(x), Fn−m(x))
≤ αmd(x, F (x))[1 + α+ . . .+ αn−m−1]

<
αmd(x, F (x))

1− α (6.11)

Since α < 1, it is evident from (6.11) that {Fn(x)} is a Cauchy sequence,
and by the completeness of X, lim

n→∞F
n(x) = x∗, for some x∗ ∈ X . We now

use the continuity of F to infer that x∗ is a fixed point.

F (x∗) = F (limFn(x)) = lim
n→∞F

n+1(x) = x∗.

We leave it to the reader to show that x∗ is the only fixed point of F
(Problem 9).

1A sequence {xn} in a metric space X is said to be Cauchy if for every ε > 0 there exists
a positive integer N such that d(xn, xm) < ε for every n,m ≥ N .
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FIGURE 6.30
d(A,B) and d(B,A).

To complete our program, we need to prove two results. First, we need to
show that a contraction on R2 is also a contraction on H . Second, the union
of contraction is also a contraction.

LEMMA 6.1

If F is a contraction on R2, then it is also a contraction on H.

PROOF Let A,B ∈ H . Claim that for a ∈ A there exists b ∈ B such that
||a−b|| = d(a,B). To prove this, we note that the set G = {d(a, x) : x ∈ B} is
bounded below by 0. Hence, by the well-ordering principle2 it has a greatest

2Well-ordering principle: If a subset of the real numbers is bounded below, then it has a
greatest lower bound.
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lower bound δ ≥ 0. Thus, d(a,B) = δ. Furthermore, there is a sequence {bn}
in B such that d(a, bn)→ δ as n→∞.

Since B is closed and bounded, there is a subsequence {bni} of {bn}, which
converges to b ∈ B.

Now,
d(a, b) ≤ d(a, bni) + d(bni , b).

Since d(a, bni) → δ, d(bni , b) → 0, we have d(a, b) ≤ δ. But by the definition
of δ, d(a, b) ≥ δ.

Hence, d(a, b) = δ = d(a,B). Let F be a contraction on R2 with a contrac-
tion factor α. Then

||F (a)− F (b)|| ≤ α||a− b|| = αd(a,B) ≤ αD(A,B).

Hence, d(F (a), F (b)) ≤ αD(A,B) and consequently,D(F (A), F (B)) ≤ αD(A,B).

LEMMA 6.2

If F1, F2, . . . , FN are contractions, with contraction factors αi, 1 ≤ i ≤ N , on
H, then so is their union F = ∪N

i=1Fi, with a contraction factor α = max{αi :
1 ≤ i ≤ N}.

PROOF We note first that if A,B ∈ H , thenD{(F1(A)∪F2(A)), (F1(B)∪
F2(B))} ≤ max{D(F1(A), F1(B)), D(F2(A), F2(B))} (see Problems 2 and 3).
Hence,

D(F1(A) ∪ F2(A), F1(B) ∪ F2(B)) ≤ αD(A,B)

where α = max{α1, α2}.
We now use mathematical induction on N to complete the proof of the

lemma. Suppose that for N = k,∪k
i=1Fi is a contraction, i.e.,

D
(∪k

i=1Fi(A),∪k
i=1Fi(B)

) ≤ α(k)D(A,B),

where α(k) = max{α1, α2, . . . , αk}, then,

D
(∪k+1

i=1 Fi(A),∪k+1
i=1 Fi(B)

)
= D

(∪k
i=1Fi(A) ∪ Fk+1(A),

∪k
i=1Fi(B) ∪ Fk+1(B)

)

≤ α(k + 1)D(A,B) (6.12)

where α(k + 1) = max{α(k), αk+1}.
Hence, F = ∪N

i=1Fi is a contraction for all N . Finally we are able to apply
the contraction mapping principle to establish the main result in this section.
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THEOREM 6.2

If F1, F2, . . . , FN are contractions on R2, then there exists a unique global
attractor A ∈ H for the union map F = ∪N

i=1Fi. Explicitly, for every B ∈
H,Fn(B) converges to A in the Hausdorff metric.

PROOF The proof is left to the reader as Problem 5.

Exercises - (6.5)

1. Find the Hausdorff distance between the sets A and B shown in the
figures.

a.

b.
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c.

d.

e.

2. Let A,B,C ∈ H . Show that D(A ∪B,C) ≤ max{D(A,C), D(B,C)}.
3. Let A,B,C,E ∈ H . Show that D(A ∪ B,C ∪ E) ≤ max{D(A,C),
D(B,E)}.

4. Prove that the Hausdorff distance is a metric onH , that is, for A,B,C ∈
H we have:

(a) D(A,B) ≥ 0, D(A,B) = 0 if and only if A = B.

(b) D(A,B) = D(B,A).



Fractals 337

(c) D(A,B) ≤ D(A,C) +D(C,B).

5. Prove Theorem 6.2.

6. Prove that the attractor set A in Theorem 6.2 is invariant, i.e.,
F (A) = A.

7. Let F : X → X be a contraction with a contraction factor α ∈ (0, 1),
on a complete metric space X and x* be the unique fixed point of F .
Show that

d(Fn(x), x∗) ≤ αn

1− αd(x, x
∗).

8. Let F : X → X be a contraction with a contraction factor α ∈ (0, 1),
on a complete metric space X . Prove that for any x ∈ X,n ∈ Z+,

d(x, Fn(x)) ≤ 1− αn

1− α d(x, F (x)).

9. Complete the proof of Theorem 6.1 by showing that the fixed point x∗

of F is unique.

10. Let A be a closed and bounded subset of R2 and ε > 0. Prove that the
set Nε(A) defined in (6.10) is also closed and bounded.

(Hint: Use the Bolzano-Weierstrass theorem: every bounded sequence
in R2 has a convergent subsequence.)

11. Prove that in a metric space X every convergent sequence is Cauchy.

In Problems 12–15, let {An}∞n=1 be a Cauchy sequence in H . Define A =
{x ∈ R2 : there is a Cauchy sequence {an} in R2, with an ∈ An and an → X
as n→∞}.

12. Suppose that {ank
} is a Cauchy sequence in R2 with ank

∈ Ank
for

every k. Prove that {ank
} is a subsequence of a Cauchy sequence {an}

in R
2 with an ∈ An for every n.

13. Prove that A = φ.

14. Prove that A is closed and bounded.

15. Prove that limn→∞D(An, A) = 0 and conclude that H is a complete
metric space.
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6.6 The Collage Theorem and Image Compression

In Sec. 6.4, we have seen how an iterated function system IFS: {S : F =
∪N

i=1Fi} generated a fractal. In this section, we are interested in the inverse
problem. Here, we are given a figure G, such as a tree or a fern, and the
question is to find an IFS that will generate a figure as close as we wish from
G. The importance of this process is evident in the field of image compression.
Suppose we are interested in sending the Barnsley’s fern in Example 6.11 on a
512× 512 screen via a high-definition television (HDTV) signals. This would
then require sending 262,144 pieces of data where each pixel is represented
by either a 0 or a 1. However, using the IFS: {S : F = F1 ∪ F2 ∪ F3 ∪ F4}
used in the above-mentioned example, we only need the 24 coefficients in F ; 6
coefficients for each affine transformation Fi, 1 ≤ i ≤ 4. Then, using our IFS,
one can construct the Barnsley’s fern at the other end of the transmission.
The compression ratio is then 262,144 to 24 or approximately 10,922 to 1. In
practice, the situation is much more involved since the IFS of a given figure
is unknown for most of the figures we are interested in.

However, Barnsley and Hurd [6] have developed a patented algorithm called
the IFS compression, which is an interactive image modeling method based
on the following theorem commonly known as the collage theorem.

THEOREM 6.3 (The Collage Theorem)
Let {S : ∪N

i=1Fi} be an IFS, with contraction factors

α1, α2, . . . , αN , α = max {αi : 1 ≤ i ≤ n},
for which A is the attractor. If for any ε > 0,

H(S,∪N
i=1Fi(S)) < ε,

then
H(S,A) < ε

1−α .

PROOF Let F = ∪N
i=1Fi. Then lim

k→∞
F k(S) = A. Hence,

D(S,A) = D(S, lim
k→∞

F k(S))

= lim
k→∞

D(S, F k(S))

≤ lim
k→∞

[D(S, F (S)) +D(F (S), F 2(S)) + · · ·D(F k−1(S), F k(S)]

≤ lim
k→∞

D(S, F (S))[1 + α+ α2 + · · ·+ αN−1]

≤ ε

1− α
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FIGURE 6.31
Steps of Barnsley’s IFS compression algorithm.

We now give a brief description of Barnsley’s IFS compression algorithm [6].
Initially, we begin with a target image S, which may be either a digitized im-
age or a polygonalized approximation of a given configuration. Second, the
set S is rendered on a computer graphics monitor. Then it is acted on by a
contraction F1 defined as

F1

(
x
y

)

=
(
a1 b1
c1 d1

) (
x
y

)

+
(
e1
f1

)

with a1 = b1 = c1 = d1 = 0.25. The image F1(S) is then displayed on the
monitor, but with a different color from S. Now, we interactively adjust the
coefficients by the use of a mouse so that F1(S) is translated, rotated, or
sheared on the screen in such a way that F1(S) lies over a part of S. Once
this is done, we record the new coefficient of F1. In a similar fashion, we
introduce another contraction F2 such that F2(S) covers another part of S
with little or no overlap with F1(S). We continue this process until we find a
set of contracting affine transformations F1, F2, . . . , Fn such that the set

SN = ∪N
i=1Fi(S)

is visually close to S, that is, H(S, SN ) is quite small. The collage theorem
asserts that the attractor A, which is determined by IFS : {S : ∪N

i=1Fi(S)},
will be visually close to S.

An application of Barnsley’s IFS compression algorithm is illustrated in
Fig. 6.31.

For more details, interested readers may consult Barnsley and Hurd [6].
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The Julia and Mandelbrot Sets

A manifesto: There is a fractal face to the geometry of nature.

Benoit Mandelbrot

7.1 Introduction

You may have already seen beautiful and facinating pictures of the Julia
set and the Mandelbrot set. These pictures become even more intriguing if
we zoom in at finer scales. Images of Julia sets and Mandelbrot sets can be
found on posters, book covers, T-shirts, carpets, screen savers, and web pages.
Moreover, these images have captured the imagination of mathematicians
and the public at large alike. The mathematics behind the beauty of these
pictures is part of a branch of mathematics called complex dynamics (see
for example [15] for a readable account). Remarkable progress on iterating
complex functions, not just real functions, was made by Gaston Julia [52] and
Pierre Fatou [38]. This is indeed a remarkable feat considering that all this
was done before computer graphics were available to them.

The subject stayed moribund, however, until Benoit Mandelbrot made it
popular after the appearance of his seminal book “The Fractal Geometry of
Nature” in 1982. Taking advantage of the availability of computer graphics,
Mandelbrot has created some of the most facinating pictures ever produced
mathematically. More importantly, he was able to lay down the foundation of
his new objects “Mandelbrot sets” and to give a great impetus to an otherwise
dormant subject.

In this chapter we will take you on a short tour to explore this remarkable
field of mathematics and unveil the mystery behind the beauty of “complex”

341



342 Discrete Chaos

fractals.

7.2 Mapping by Functions on the Complex Domain

Let z = x + iy be a complex number and let C denote the set of complex
numbers. Then x is called the real part of z,*(z), and y is called the imaginary
part of z,+(z). Note that both x and y are real numbers. If we let the x axis
to be the real axis and the y axis to be the imaginary axis, then the complex
number z = x+ iy is represented by the point (x, y) in this complex plane (see
Fig. 7.1). The modulus |z| of z is defined as |z| =

√
x2 + y2; it is the distance

between z and the origin. A complex number z = x+ iy may be represented
in polar coordinates. Let r = |z|, and θ = tan−1( y

x). Then θ is called the
argument of z, denoted by arg(z). Moreover, z = reiθ. It is noteworthy to
observe that |z| = r|eiθ | = r, since |eiθ| = | cos θ + i sin θ| = 1.

FIGURE 7.1
The modulus of a complex number |z| and its argument θ.

The triangle inequality that we encountered in the real number system still
holds for complex numbers.

Triangle Inequality for Complex Numbers

Let z1, z2 ∈ C. Then

(a) |z1 + z2| ≤ |z1|+ |z2|
(b) |z1 + z2| ≥ |z1| − |z2|
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Consider a linear map f : C → C, where C is the set of complex numbers,
of the form f(z) = αz, where α = a+ ib, and z = x+ iy.

Now, α and z may be written in the following exponential forms:

α = seiβ , with s =
√
a2 + b2, and β = tan−1

(
b

a

)

z = reiθ , with r =
√
x2 + y2, and θ = tan−1

(y

x

)

We may write f(z) as f(z) = srei(θ+β).
Note also that f2(z) = s2rei(θ+2β), and generally

fn(z) = snrei(θ+nβ). (7.1)

Clearly, we have three cases to consider:

1. s < 1: In this case, it follows from Equation (7.1) that the orbit of
z will spiral toward the origin. We may say, then, that the origin is
asymptotically stable.

2. s > 1: From Equation (7.1) we conclude that the orbit of z spirals
further away from the origin and thus the origin is unstable.

3. s = 1: In this case the orbit of z stays on the circle of radius r0 and
the map is a rotation on the circle. Recall that we have discussed this
map in Chapter 3. It was shown that if β is rational, then every point
on a circle of radius r0 is periodic, and if β is irrational, then the map
on each circle of radius r0 is transitive, with the set of periodic points
dense but not chaotic.

Next, we consider more complicated nonlinear maps.

Example 7.1

Consider the squaring map Q0(z) = z2. Then for z = reiθ , Q0(z) = r2ei2θ.
Note that this function maps the upper half plane r ≥ 0, 0 ≤ θ ≤ π onto the
entire complex plane (Fig. 7.3).

Now, if we let z = x+ iy and w = Q0(z) = u+ iv, then u+ iv = x2− y2+
i2xy. Thus,

u = x2 − y2, v = 2xy. (7.2)

Hence, each branch of the hyperbola x2 − y2 = a, (a > 0) is mapped in a
one-to-one manner onto the vertical line u = a. To see this, we note from
the first part of Equation (7.2) that u = a if (x, y) is a point on one of the
two branches of the hyperbola. When in particular it lies on the right-hand
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FIGURE 7.2
Iteration of a point z = reiθ under the map f(z) = αz, α = a + ib, s =√
a2 + b2. (a) s < 1 : origin is asymptotically stable, (b) s > 1 : origin is

unstable, (c) c = 1 : origin is stable.
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FIGURE 7.3
The map Q0(z) = z2 maps the upper half plane onto the entire complex plane.

branch, the second part of Equation (7.2) tells us that v = 2y
√
y2 + a. Thus,

the image of the right-hand branch can be expressed parametrically as

u = a, v = 2y
√
y2 + a, −∞ < y <∞

and is evident that the image of a point (x, y) on that branch moves upward
along the entire line as (x, y) traces out the branch in the upward direction
(Fig. 7.4).

Similarly,

u = a, v = −2y
√
y2 + a

furnishes a parametric representation for the image of the left-hand branch of
the hyperbola. Thus, the left-hand branch of the hyperbola is mapped to the
line u = a.

Let us now turn our attention to the analysis of the dynamics of the map
Q0. Clearly, Qn

0 (z) = r2
n

ei 2
nθ. Furthermore, |Qn

0 (z)| = r2
n

. Consequently,
we conclude that (see Fig. 7.5)

1. |Qn
0 (z)| → 0 as n→∞ if r < 1 or (|z| < 1).

2. |Qn
0 (z)| → ∞ as n→∞ if r > 1 or (|z| > 1).

3. |Qn
0 (z)| = 1 if r = 1 or (|z| = 1).

Next we consider the square root map.
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FIGURE 7.4
Q0 maps a hyperbola to the line u = a.

FIGURE 7.5
Orbits of the points 0.8e

iπ
4 , e

iπ
4 ,and 1.2e

iπ
4 under iteration of Q0(z) = z2.



The Julia and Mandelbrot Sets 347

FIGURE 7.6
z = reiθ and its two square roots z1 and z2.

Example 7.2
Consider the function f(z) = z1/2.
If z = r eiθ (r > 0, −π < θ ≤ π), then

z1/2 =
√
r ei

(θ+2kπ)
2 , k = 0, 1. (7.3)

The principal branch of the double-valued function z1/2 is given by f0(z) =√
r ei θ/2, −π < θ ≤ π, r > 0. Note that the origin and the ray θ = π form

the branch cut for f0, and the origin is the branch point.
From Equation (7.3) the two square roots of z are

z1 =
√
r (cos(θ/2) + i sin(θ/2))

z2 =
√
r

(

cos
(
θ

2
+ π

)

+ i sin
(
θ

2
+ π

))

= −√r (cos(θ/2) + i sin(θ/2))

(see Fig. 7.6).
If S1 is a circle of radius r and center at the origin, then f(S1) is another

circle of radius
√
r centered at the origin [Fig. 7.7a(a)].

The situation is entirely different when the circle S1 does not contain the
origin. Here the circle lies in a wedge θ1 ≤ θ ≤ θ2. Hence, the argument of
each point in f(S1) lies in the wedge θ1/2 ≤ θ ≤ θ2/2 and its reflection with
respect to the origin. Hence, f(S) is the union of two closed curves as shown
in Fig. 7.7a(b). Observe that when the circle S1 touches the origin, f(S1)
looks like figure eight [Fig. 7.7c(c)]. Finally, when S1 encircles the origin,
f(S1) looks like a peanut shell [Fig. 7.7(d)].

A set D in the complex plane C is called a domain if it is open and
connected.
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FIGURE 7.7a
(a) The image of S1 when it is centered at the origin.

FIGURE 7.7b
(b) The image of S1 when it is not centered at the origin.
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FIGURE 7.7c
(c) The image of S1 when it passes through the origin.

FIGURE 7.7d
(d) The image of S1 when it encircles the origin.
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DEFINITION 7.1 A function f is said to be analytic in a domain D if
it has a derivative at every point in D.

We now state the main stability theorem for complex functions.

THEOREM 7.1
Let z∗ be a fixed point of an analytic complex function f . Then, the following
statements hold:

1. If |f ′(z∗)| < 1, then z∗ is asymptotically stable.

2. If |f ′(z∗)| > 1, then z∗ is unstable.

PROOF The proof is similar to that of Theorem 1.3 in Chapter 1 and
will be left to the reader as Problem 10.

As an immediate consequence of Theorem 7.1, we have the following result:

COROLLARY 7.1
Let z be a k-periodic point of an analytic function f . Then the following
statements hold:

1. If |f ′(z)f ′(f(z)) . . . f ′(fk−1(z))| < 1, then z is asymptotically stable.

2. If |f ′(z)f ′(f(z)) . . . f ′(fk−1(z))| > 1, then z is unstable.

Example 7.3
Consider the map f(z) = z3, z ∈ C.

(a) Find the fixed points of f and determine their stability.

(b) Find the 2-cycles of f and determine their stability.

SOLUTION

(a) Fixed points: z3 − z = z(z2 − 1) = 0. Hence, the fixed points are: z∗1 =
0, z∗2 = 1, z∗3 = −1. Since |f ′(z∗1)| = 0, |f ′(z∗2)| = 3, and |f ′(z3)| =
3, it follows from Theorem 7.1, that 0 is asymptotically stable, while
1 and− 1 are unstable.

(b) To find the 2-cycles, we solve the equation f2(z) = z. Hence, z9 − z =
z(z8−1) = 0. Since 0 is a fixed point, we have z8 = 1. Thus, the 2-cycles
of f(z) are the eighth roots of 1, excluding 1 and −1 since they are fixed
points of f . The eighth roots of 1 are w, w2, w3, w5, w6, w7, where
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FIGURE 7.8
The Riemann Sphere: Stereographic projection from S2 into C.

w = cos π
4 + i sin π

4 =
√
2
2 + i

√
2
2 . Note that w4 = −1 is excluded from

this list. Hence, the 2-cycles are {w,w3}, {w2, w6}, and {w5, w7}. It
follows from Corollary 7.1 that all 2-cycles are unstable.

7.3 The Riemann Sphere

To simplify the study of the dynamics of analytic maps, it is beneficial to
consider the extended complex plane C ∪ {∞}. To describe the topology
of this space, we introduce a special representation of the complex plane.
Consider the sphere S2 with radius 1

2 and center (0, 0, 12 ) that is tangent to
the complex plane C at the origin (0, 0, 0). The pointN(0, 0, 1) will be referred
to as the north pole of S2 (see Fig. 7.8). We now introduce the stereographic
projection S.

Let P (a, b, c)εS2\{N}. The line joining N to P will pierce C at the point
Q(a/(1− c), b/(1− c), 0), which corresponds to the complex number z = (a+
ib)/(1− c) (Problem 6). Conversely, any point Q(x, y, 0) in C corresponding
to the complex number z = x+ iy lies on a line passing through the point N
and intersecting the sphere S2 at a point P (α, β, γ) with

α =
x

x2 + y2 + 1
, β =

y

x2 + y2 + 1
, γ =

x2 + y2

x2 + y2 + 1

(see Problem 11).
Note that this gives a correspondenceW from C onto S2\{N}. We then let

W (∞) = N . Hence, the extended complex plane C = C ∪ {∞} is identified
with the sphere S2, and either one will be called a Riemann sphere.
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For any z0 = ∞, we define an open ball Bε(z0) as Bε(z0) = {zεC : |z −
z0| < ε}. We define open balls around ∞ as follows: For any ε > 0, we
let Bε(∞) = {zεC : |z| > 1

ε}. Note that the W takes Bε(∞) to an open
neighborhood of the north pole N(0, 0, 1). The above description of open
balls determines a metric on the extended complex place C.

Linear Fractional Transformation (Möbius Transformation)

The transformation T (z) = az+b
cz+d , ad − bc = 0, where a, b, c, d are complex

constants, is called a linear fractional transformation (or Möbius transfor-
mation). The map T may be extended to C by letting T (∞) = a/c, and
T (z0) =∞ when cz0 + d = 0. An important property of the map T is that it
maps circles in C to circles. Note that a line in the complex plane C becomes
a circle through ∞ in the extended complex place C. Hence, T maps lines
and circles in C to lines and circles in C.

Exercises - (7.2 and 7.3)

1. If z = x + iy, then we may write z = r(cos θ + i sin θ), where r =√
x2 + y2, θ = arctan(y/x). The two square roots of z are given by

±√r(cos(θ/2) + i sin(θ/2)).

Find the square roots and draw them on the complex plane.

(a) i

(b) −1 + i
(c) −1 +√3i

(d) 1 + i

(e) −2 + 2i

(f) −6

2. Plot the orbit of z = 0 under the following maps:

(a) g(z) = z − 1

(b) f(z) = z + 2

3. Let f(z) = az + b, a, b ∈ C.

(a) Under what conditions does f have fixed points? Find the fixed
points of f if they exist.
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(b) Show that if a = 1, then f is topologically conjugate to a map of
the form z → cz.

4. Let g(z) = az, with a = 4
5e

πi/3.

(a) Show that the orbit of 1 under g looks like a spiral. Then find the
equation of this spiral.

(b) Show that if z1 and z2 are two points on the spiral that lie on the
same ray extending from the origin, then there exists k ∈ Z+ such
that gk(z1) = z2 or gk(z2) = z1.

5. Consider the map Q1/4(z) = z2 + 1/4.

(a) Show that Q1/4(z) has a single fixed point and determine its sta-
bility.

(b) Find the repelling 2-cycles of Q1/4.

6. Show that Qc(z) = z2+c has an attracting 2-cycle inside the circle with
radius 1/4 and center (−1, 0).

7. Let f(z) = eiθz.

(a) Show that if θ is a rational multiple of π, then every point in C is
periodic.

(b) Show that if θ is not a rational multiple of π, then the orbit of
z ∈ C is dense in the circle with radius |z| and center at the origin.

8. Let Q0 : C → C be defined by Q0(z) = z2. If S is the circle of radius 1
and center (−1, 0), find and draw Q−1

0 (S) and Q−2
0 (S).

9. Consider Q2(z) = z2 + 2 and the unit circle S = {z : |z| = 1}. Sketch
Q−1
2 (S) and Q−2

2 (S).

10. Prove Theorem 7.1.

11. (a) Show that the stereographic projection takes a point (a, b, c) ∈
S2\{N} to the point z = (a+ ib)/(1− c) in the complex plane.

(b) Show the converse, i.e., that a stereographic projection takes a point
z = x+ iy in the complex plane to the point

(
x

x2 + y2 + 1
,

y

x2 + y2 + 1
,
x2 + y2

x2 + y2 + 1

)

.

12. Show that the map T (z) = (1+2i)z+1
(1−2i)z+1 maps the real axis in the complex

plane to the unit circle.
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13. Show that the map g(z) = a2z
2+2a1z+a0, with a2 = 0 is topologically

conjugate to the map Qc(z) = z2+c through the conjugacy map h(z) =
a2z + a1, provided that c = −a21 + a1 + a2a0.

14. Prove that any Möbius transformation may be written as a composition
of translations (of the form z → z + a), inversions (of the form z → 1

z ),
and homothetic transformations (of the form z → bz).

15. Assume that (a−d)2+4bc = 0 in the Möbius transformation T = az+b
cz+d .

(a) Show that T has a unique fixed point z∗ = a− d.
(b) Show that T is (analytically) conjugate to a translation of the form

z → z + a.

16. Show that if the Möbius map T has two fixed points, then it is (analyt-
ically) conjugate to a unique linear map of the form z → bz.

7.4 The Julia Set

In this section, our goal is to study the Julia set, one of the most fasci-
nating and extensively studied objects in the theory of dynamical systems.
This famous set was introduced by the French mathematician Gaston Julia
(1893–1978) in his masterpiece paper, Mémoire sur l’iteration des fonctions
rationelles (J. Math. Pure Appl., 4, 1918, 47–245). It is interesting to note
that Julia was only 25 years old when he published this monumental work of
199 pages.

We begin our exposition by defining two sets: the Julia set and the filled
Julia set.

DEFINITION 7.2 Let f : C → C. Then the filled Julia set K(f) of
the map f is defined as

K(f) = {z ∈ C : O(z) is bounded }.

The Julia set J(f) of the map f is defined as the boundary of the filled
Julia set K(f). Equivalently, one may define J as the boundary of the escape
set

E = {z ∈ C : |fn(z)| → ∞ as n→∞} .
Our main focus in this section will be on the quadratic map Qc(z) = z2+ c,

where c is a complex constant. The corresponding filled Julia set, and the
Julia set are denoted, respectively, by Kc and Jc.
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A natural question that arises here is why restrict to polynomials of the form
Qc(z) = z2 + c. The reason is simple: every quadratic map is topologically
conjugate to Qc for some real number c. In Example 3.11 we have shown that
every quadratic real function of the form P (x) = ax2 + bx+ c is conjugate to
the logistic map Fµ(x) = µx(1 − x). Analogously, one may show that every
quadratic complex function P (z) = αz2+βz+γ is conjugate to the quadratic
complex map Qc for some c ∈ C. If α = 0, β, γ ∈ C, the conjugacy map
h between Qc and P is given by h(z) = αz + β/2. It is easy to show that
h ◦ P = Qc ◦ h, where c = αγ ++β/2− β2/4.

Example 7.4

1. Find K0, and J0.

2. Find K−2, and J−2.

SOLUTION

1. From our previous analysis of Q0(z) = z2, it is easy to see that K0 is
the closed unit disk and J0 is the unit circle.

2. To findK−2 and J−2, we will use a conjugacy argument from Chapter 3.
Consider the conjugacy map h(z) = z + 1

z defined on the complement
of the closed unit disk; A = {z ∈ C : |z| > 1}. We are going to show
that the map h is a homeomorphism from A onto B = C\[−2, 2]. First,
h is one-to-one. For if not, then for some points z1, z2 ∈ A, h(z1) =
h(z2). Hence, z1 + 1

z1
= z2 + 1

z2
, or (z2 − z1)(z1z2 − 1) = 0. So, either

z1 = z2 or z1z2 = |z1||z2| = 1. The latter statement is impossible since
|z1| > 1 and |z2| > 1. To show that h is onto, let w = h(z) for some
z ∈ A. Then, z2−wz +1 = 0 has two solutions z1,2 = 1

2w± 1
2

√
w2 − 4.

Thus, if −2 < w < 2, then z1,2 = 1
2w ± 1

2 i
√
4− w2. This implies that

|z1,2| = 1 and consequently z1,2 /∈ A. On the other hand, if w = ±2, then
z1,2 = ±1 and thus z1,2 /∈ A also. Hence, h is onto. It is easy to check
that h and h−1 are continuous maps and that h is a homeomorphism.
Moreover, h(Q0(z)) = Q−2(h(z)) for all z ∈ C. Consequently, Q0 on A
is conjugate to Q−2 on B (see Fig. 7.9).

Since Qn
0 (z) → ∞ as n → ∞ for all z ∈ A, it can be shown that

Qn
−2(z)→∞ for all z ∈ B (Problem 8).

Furthermore, since the unit circle is mapped under h to the closed in-
terval [−2, 2], it follows that J−2 = K−2 = [−2, 2] (see Fig. 7.10).

In the previous two examples, the filled Julia sets are simple and not inter-
esting. The question now is what happens for the filled Julia set of Qc when
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FIGURE 7.9
Conjugacy diagram : h ◦Q0 = Q−2 ◦ h.

FIGURE 7.10
The map h maps lines emanating from the circle to hyperbolas with vertices
on [−2, 2].
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FIGURE 7.11
(a) The filled Julia set K0. (b) The filled Julia set K−0.3.

c varies from 0 to − 2, i.e., how does the Julia set evolve from a unit circle
to the closed interval [−2, 2]? Figs. 7.11a–7.11f show graphs of the filled Julia
set Kc for real values of c. Observe that as c decreases from 0 to − 2, Kc

becomes more and more pinched together, until it becomes the closed interval
[−2, 2], when c = −2.

More spectacular pictures of filled Julia sets Kc are obtained when c is a
complex number. But, before doing so, we will discuss some theoretical as-
pects that will enhance our understanding of both sets Kc and Jc. Moreover,
we will develop an algorithm to generate the filled Julia set Kc, which is based
on the escape criterion as stated below.
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FIGURE 7.11
(c) The filled Julia set K−1. (d) The filled Julia set K−1.3.
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FIGURE 7.11
(e) The filled Julia set K−1.6. (f) The filled Julia set K−2.

THEOREM 7.2 (The Escape Criterion)
Suppose that

|z| > max{2, |c|}, then |Qn
c (z)| → ∞ as n→∞.

PROOF Assume that for z ∈ C, |z| > max{2, |c|}. Then,
|Qc(z)| = |z2 + c| ≥ |z2| − |c|

≥ |z|2 − |c|
> |z|2 − |z| ( since |z| > |c|)
= |z| (|z| − 1) (7.4)

Noting that |z| > 2, we have |z| − 1 = 1 + η, for some η > 0. Using this
information in Inequality (7.4) yields

|Qc(z)| > (1 + η)|z|. (7.5)

By mathematical induction on n it can be shown that

|Qn
c (z)| > (1 + η)n|z|

and implies that |Qn
c (z)| → ∞ as n→∞.
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Algorithm for the Filled Julia Set

Set r(c) = max{|c|, 2}. Then, r(c) is called the threshold radius of Qc.
Observe that from Theorem 7.2, if for any z ∈ C, |Qk(z)| > r(c), for some
k ∈ Z+, then the orbit of z escapes to ∞ and consequently z /∈ Kc. Based on
the above remark, we now introduce an algorithm to generate Kc.

Picture a square grid centered at the origin with side of length r(c). We
fix the maximum number of allowed iterations to be N . Then, for each z in
the grid

1. If |Qk
c (z)| > r(c), for some k ≤ N , color the point z white.

2. If |Qk
c (z)| ≤ r(c), for all k ≤ N , color the point z black.

The black points provide an approximation of the filled Julia set Kc

(see Fig. 7.11).

Backward Iteration Algorithm (Encirclement of the Filled Julia Set)

Let r(c) = max(|c|, 2) be the threshold radius of Qc. Define L0 = {z ∈ C :
|z| ≤ r(c)}. Let L−1 = Q−1

c (L0) = {z ∈ C : Qc(z) ∈ L0}. Claim that L−1 ⊂
L0. For if not then there exists w ∈ L−1\L0 with |w| > r(c). By the escape
criterion (Theorem7.2), it follows that |Qc(w)| > |w| > r(c), a contradiction
since Qc(w) ∈ L0. Define L−2 = Q−1

c (L−1), L−3 = Q−1
c (L−2), . . . , L−n−1 =

Q−1
c (L−n). Then, each L−n is nonempty since it contains the two fixed points

of Qc (those are the roots of z2 − z + c = 0, z1,2 = 1
2 ± 1

2

√
1− 4c ∈ L0). It is

also easy to verify that

L0 ⊃ L−1 ⊃ L−2 . . . ⊃ L−n ⊃ . . .

and that each L−n is closed and bounded. Furthermore,

Kc =
∞⋂

n=0

L−n (7.6)

= lim
n→∞L−n (in the Hausdorff metric)

(see Problem 3).
Observe that Q−1

c (Kc) = Kc since L−n−1 = Q−1
c (L−n). Moreover, since

Qc is onto, Qc (Kc) = Kc. Thus, Kc is positively and negatively invariant,
i.e., invariant. Similarly, one may show that the Julia set Jc is a nonempty,
closed, and invariant bounded subset of C (Problem 2).

We now summarize our findings in the following theorem.

THEOREM 7.3
The sets Kc and Jc are nonempty, closed, bounded, and invariant subsets
of C.
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FIGURE 7.12a
(a) : c = −0.1 + 0.8i. The Douady Rabbit.

FIGURE 7.12b
(b) c = −0.39− 0.58i. The Siegel disk.



362 Discrete Chaos

FIGURE 7.13
c = −0.5 + 0.5i. Encirclement in alternating colors; in black: Q0

c , Q−2
c , Q−4

c ,
Q−20

c in white: Q−1
c , Q−3

c , Q−5
c , Q−21

c .

You may use different colors to shade the encirclements L−n. In Fig. 7.13
we color L−2n black while L−2n−1 is colored white, for n = 0, 1, 2, . . .

Next, we further analyze the structure of the sets Kn. The following lemma
sheds more light on Kn.

LEMMA 7.1
Let Γ be a smooth, simple, closed curve in C. Then,

Q−1
c (Γ) = {w ∈ C : Qc(w) ∈ Γ}

has the following properties:

1. If c is in the interior of Γ, then Q−1
c (Γ) is also a smooth, simple, and

closed curve. The interior of Q−1
c (Γ) corresponds one-to-one with the

interior of Γ (see Fig. 7.14a).

2. If c lies on Γ, then Q−1
c (Γ) is a smooth, figure eight curve. The interior

of each one of the two leaves corresponds one-to-one with the interior of
Γ (see Fig. 7.14b).

3. If c is in the exterior of Γ, then Q−1
c (Γ) consists of two closed smooth

curves, the interior of each corresponds one-to-one with the interior of
Γ (see Fig. 7.14c).
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FIGURE 7.14a
Q−1

c (Γ) when c is an interior point.

PROOF (Sketch).1 The general proof is very technical and requires more
background in complex analysis. We will provide a proof for the case when
Γ is a circle.2 Let z ∈ Γ and z − c = |z − c| eiθ. Then, w = ±√z − c =
±√|z − c| eiθ/2.

1. If c is in the interior of Γ, then the map z − c moves the center of the
circle from the origin to a point inside Γ. Hence, Q−1

c (Γ) will look like
the set in Fig. 7.14a.

2. If c is on Γ, then the map z − c moves the center of the circle from
the origin to a point on the circle, namely, −c, and we get a circle Γ̃
that passes through the origin. Thus, Q−1

c (Γ) will look like the set in
Fig. 7.14b.

3. If c is in the exterior of Γ, then the map z− c moves Γ to a circle Γ̃ that
has the origin in its exterior. In this case, Q−1

c (Γ) will look like the set
in Fig. 7.14c.

1The proof is optional.
2By virtue of the Riemann mapping theorem [1], this assumption is not restrictive. The
Reimann mapping Theorem states that for any simply connected region (a region with no
holes) R �= C, there exists an analytic function mapping R one to one onto the disk |z| < 1
in C. Now if Γ is a simple closed curve, then it encloses a region R �= C which is mapped
one to one onto |z| < 1. Hence the boundary of R, the curve Γ, is mapped analytically one
to one onto the circle |z| = 1.



364 Discrete Chaos

FIGURE 7.14b
Q−1

c (Γ) when c is on Γ.

7.5 Topological Properties of the Julia Set

In this section, we further analyze the structure of the Julia set and examine
its topological properties. We start with the notion of connectedness.

DEFINITION 7.3 A subset B of C is said to be pathwise connected,
if for any two points z1 and z2 in B, there is a continuous function f : I =
[a, b]→ B such that f(a) = z1, f(b) = z2. Such a function f (as well as f(I))
is called a path from z1 to z2.

We remark here that in many books about complex analysis, this definition
is given for connected sets. But, here a setB is connected if it is not the union
of two disjoint, nonempty open subsets of C. While it is true that a pathwise
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FIGURE 7.14c
Q−1

c (Γ) when c is in the exterior of Γ.
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connected set is necessarily connected, the converse is false (see [108], p. 198).
However, if the set B is open, then connectedness and pathwise connectedness
are equivalent.

THEOREM 7.4
The following statements hold [20]:

1. If 0 ∈ Kc, then the Julia set Jc is pathwise connected.

2. If 0 /∈ Kc, then the Julia set Jc is totally disconnected and is actually a
Cantor set.

PROOF (Sketch)3

1. Suppose O(0) is bounded. Let Γ0 be a circle that enclosesO(0) such that
points outside Γ0 escape to ∞. Since Qc(0) = c, then c is in the interior
of Γ0. By Lemma 7.1, Γ−1 = Q−1

c (Γ0) is a simple closed curve that
lies entirely inside Γ0. Moreover, by Lemma 7.1, Qc maps the interior
of Γ−1 onto the interior of Γ0. Observe that Qc(c) = Q2

c(0) ∈ Γ0 by
assumption. Hence, c = Q−1

c Qc(c) ∈ Q−1
c (Γ0) = Γ−1, and c is in the

interior of Γ−1. Thus, Γ−2 = Q−1
c (Γ−1) is a simple closed curve that

lies inside Γ−1. Continuing this process, we create a sequence {Γn} of
simple closed curves, where Γ−n−1 lies inside Γ−n and c ∈ Γ−n for all
n ∈ Z+. Let L−n be the closed region bounded by Γ−n. Then, each
L−n is closed, bounded, and pathwise connected. It is easy to show that

Kc =
∞⋂

n=0

L−n is the filled Julia set of Qc.

FromWillard [108], it follows thatKc is pathwise connected (see Fig. 7.15).

2. Suppose that the orbit O(0) of 0 is unbounded. Let Γ0 be a circle
such that Γ−1 = Q−1

c (Γ0) lies entirely inside Γ0 and such that points
outside Γ−1 escape to ∞. Furthermore, there exists N ∈ Z+ such that
QN

c (0) ∈ Γ0, Qr
c(0) is inside Γ0 for 0 ≤ r < N and Qr

c(0) is outside Γ0
for r > N .

As in part 1, we let Γ−n−1 = Q−1
c (Γ−n). Now, for n < n0, c is in the

interior of Γ−n+1 and thus Γ−n is a simple closed curve inside Γ−n+1. When
n = n0, c ∈ Γ−n0+1 and thus by Lemma 7.1, Γ−n0 is a figure eight. Now, the
Julia set is divided into two subsets each of which is contained in one region
of the Fig. 7.8. Hence J(f) is disconnected (see Fig. 7.16). To prove that

3The proof is optional.
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J(f) is, in fact, a Cantor set is beyond the scope of this book. The interested
reader may consult [25].

Julia Sets and the Repelling Periodic Points

Next, we show that the Julia set contains all repelling periodic points of Qc.
However, before establishing this result, we need the following inequality from
complex analysis [1].

LEMMA 7.2 (Cauchy’s Inequality)
Let Γ be a circle with center at z0 and radius r, and let f be analytic in an

open set U containing Γ and its interior. Then,

|f (n)(z0)| ≤ Mn!
rn

, n = 0, 1, 2, 3, . . . .

where M = sup{|f(z)| : z ∈ Γ} and f (n) is the nth derivative of f .

Note that the map Qc is analytic everywhere. A k-periodic point z0 is called
repelling if |(Qk

c )
′(z0)| > 1.

THEOREM 7.5
The following statements hold true:

1. If z0 is a repelling periodic point of Qc, then z0 ∈ Jc. Furthermore, the
set of repelling periodic points of Qc is dense in Jc.

2. If z0 ∈ Jc, then Jc is the closure of ∪∞
n=1Q

−n
c (z0).

PROOF Suppose there exists a repelling N -periodic point z0 such that
z0 /∈ Jc. Since O(z0) is finite, it is bounded and thus z0 ∈ Kc\Jc. Hence, z0 is
an interior point of Kc and consequently there exists an open disc Bδ(z0) ⊂
Kc. Let Γ be a circle centered at z0 with radius r such that Γ ⊂ Bδ(z0).

Then, by Lemma 7.2,

|(QkN
c )′(z0)| ≤ M

r
, for all k ∈ Z+. (7.7)

Since z0 is a repelling periodic point, we have

|(QN
c )′(z0)| = η > 1

and by the chain rule, we obtain

|(QkN
c )′(z0)| = ηk. (7.8)
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FIGURE 7.15
A connected Julia set. c = 0.377− 0.248i.

FIGURE 7.16
A disconnected Julia set. c = −1.2i.



The Julia and Mandelbrot Sets 369

Hence, |(QkN
c )′(z0)| → ∞ as k →∞, which contradicts inequality (7.7).

This completes the proof of the first part of the theorem. The proofs of the
second part of 1, and part 2 are beyond the scope of this book. The interested
reader may consult [25].

Chaos on the Julia Set

We have seen two instances in which the Julia set is simple: J0 = S1, and
J−2 = [−2, 2]. Let us examine closely the dynamics of the map Q0(z) = z2

on its Julia set, the unit circle S1. Let z = eiθ ∈ S1. Then, Q0(z) = e2iθ,
which is reminiscent of our old friend, the double-angle map, encountered in
Chapter 3. As in Chapter 3, one may prove that Q0 is chaotic on S1. Since
Q0 and Q−2 are topologically conjugate, it follows by Theorem 3.9 that Q−2
is also chaotic on its Julia set [−2, 2].

In the next result, we extend the above observations to the general quadratic
map Qc.

THEOREM 7.6

The quadratic map Qc(z) = z2 + c is chaotic on its Julia set Jc, for every
c ∈ C.

PROOF Theorem 7.4 tells us that the set of periodic points in Jc is
dense in Jc. To prove transitivity of Qc on Jc, let U and V be two nonempty
subsets of C that intersect Jc. Let z0 ∈ V ∩ Jc. Then, by Theorem 7.5,
Jc = ∪∞

n=1Q
−n
c (z0). Thus, for some m ≥ 1, Q−m

c (z0) ∩ U = φ. Thus, if
u ∈ Q−m

c (z0)∩U , then Q−m
c (u) = z0 and consequently, Qm

c (U)∩V = φ. This
implies that Qc is chaotic on Jc.

Summary Our exposition may be extended to polynomials P (z) = a0 +
a1z + · · ·+ anz

n of degree n, where P : C → C, n ≥ 2. And indeed it can be
extended further to rational functions f(z) = u(z)/v(z), where u(z) and v(z)
are polynomials on the extended complex plan C∪ {∞}. One may show that
the following properties hold for the Julia set J(P )

(i) J(P ) is the closure of the repelling periodic points.

(ii) J(P ) is an uncountable compact set containing no isolated points and
is invariant under P and P−1.

(iii) If z ∈ J(P ), then J(P ) = the closure of the set ∪∞
k=1P

−1(z).

(iv) J(P ) is the boundary of the basin of attraction of each attracting fixed
point of P , including ∞, and J(P ) = J(Pn), for each positive
integer n.
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Exercises - (7.4 and 7.5)

1. Generate the graphs of the filled Julia sets, in Figs. 7.11a–7.11f, using
the program “Julia.”

2. Describe the filled Julia set for f(z) = z3.

3. Prove Equation (7.6).

4. Consider the map Qi(z) = z2 + i.

(a) Prove that 0 is an eventually periodic point.
(b) Describe the filled Julia set Ki.

5. Show that for any c ∈ C, Jc and Kc are closed and bounded invariant
sets.

6. Prove that if |z| > |c| + 1, then the orbit O(z) of z, under Qc, is un-
bounded.

7. Let Fµ(z) = µz(1− z) be the logistic map on the complex plane.

(a) Show that if |z| > 1
|µ| + 1, then |Fµ(z)| > |z|.

(b) Use part (a) to develop an escape criterion for Fµ.

8. Let B = C\[−2, 2]. Show that for every z ∈ B,
Qn

−2(z)→∞ as n→∞.
9. Show that for Qc = z2 + c we have

(a) Qn
c (z)→ 0 if |z| < 1

2 +
√

1
4 − |c|.

(b) Qn
c (z)→∞ if |z| > 1

2 +
√

1
4 + |c| as n→∞.

10. Let f(z) = z3 + c. Show that if |z| ≥ |c| and |z|2 > 2, then |fn(z)| →
∞ as n→∞.

11.* Let f(z) = zk + c, k > 3. Show that if |z| ≥ |c| and |z|k−1 > 2, then
|fn(z)| → ∞ as n→∞.

12. Let f(z) = z3 + az + b. Show that if |z| > max{|b|,√|a|+ 2}, then
|fn(z)| → ∞ as n→∞.

13. (Project) Develop an escape criterion for the map Eλ = λez, where
ez = ex+iy = ex(cos y + i sin y). Then sketch the filled Julia set for
λ = 1, λ = πi, λ = −2 + i, λ = 1 + 0.4i.

14. (Project) Develop an escape criterion for the map Sλ(z) = λ sin z. Then
sketch the filled Julia set for λ = 0.8, λ = 1, λ = 1.1.
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7.6 Newton’s Method in the Complex Plane

In Chapter 1, we briefly discussed Newton’s method on the real line. Recall
that to find a real zero of a function f(x), we start with an initial guess
x(0) = x0 and use the difference equation

x(n+ 1) = x(n)− f(x(n))
f ′(x(n))

, n = 0, 1, 2, . . . (7.9)

which is equivalent to the following map:

Nf (x) = x− f(x)
f ′(x)

. (7.10)

The map Nf is commonly called the Newton map. It was shown (see Exam-
ple 1.10) that zeros of f(x) correspond to fixed points of Nf(x). Furthermore,
fixed points of Nf (x) are (locally) asymptotically stable. Hence, the proce-
dure (7.9) converges to an actual root of f(x). The main goal of this section is
to extend Newton’s method to complex functions f(z) on the complex plane
C. In this case, Formula (7.10) reads as

Nf (z) = z − f(z)
f ′(z)

.

One may show, using Corollary 7.1, that the fixed points of Nf (z) are
asymptotically stable (Problem 1).

Furthermore, a point z∗ is a zero of f(z) if and only if it is a fixed point of
Nf (z).

In 1879, Sir Authur Cayley [17] considered the convergence of Newton’s
method for complex quadratic polynomials. Let us start our exposition with
the following interesting example.

Example 7.5

Let Q−1(z) = z2 − 1. Then N(z) = z2+1
2z , whose fixed points are z∗1 =

1 and z∗2 = −1. Now,

|N ′(z∗i )| = |
1
2
− 1

2z∗2i

| = 0, 1 ≤ i ≤ 2.

Hence, by Corollary 7.1, both z∗1 and z∗2 are asymptotically stable. Since
the dynamics of N(z) can be well understood if one can show that the maps
Q0 and N are topologically conjugate on the extended complex plane C. We
use a Möbius transformation T (z) = az+b

cz+d as our conjugacy map. Note that
T must take the attracting fixed points of N{1,−1} to the attracting fixed
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points of Q0{0,∞} and the repelling fixed point∞ of N to the repelling fixed
point 1 of Q0. Thus, T (∞) = 1, which implies that a = c = 1. Moreover,
T (1) = 0 and T (−1) = ∞, which implies that b = −1 and d = −1. Hence,
T (z) = z−1

z+1 .

It is easy to verify that T ◦N = Q0 ◦T and that T is a homeomorphism on
C. Since T maps the imaginary axis to the unit circle (Problem 2), it follows
that N is chaotic on the imaginary axis. Next, we show that T maps the
right half plane to the interior of the unit circle and the left half plane to the
exterior of the unit circle. But, this is self-evident since for z = a+ ib we have

|T (z)| = |a+ ib− 1
a+ ib+ 1

| = | (a− 1)2 + b2

(a+ 1)2 + b2
|
{
< 1 if a > 0
> 1 if a < 0.

Thus, the basin of attraction of z∗1 = 1 is given by

W s(1) = T−1[W s(0)] = T−1(I) = {z = a+ ib : a > 0},
where I is the interior of the unit circle. Similarly, the basin of attraction of
z∗2 = −1 is given by

W s(−1) = T−1[W s(∞)] = T−1(E)
= {z = a+ ib : a < 0, }

where E is the exterior of the unit circle.
Sir Authur Cayley [17] gave the following result which generalizes the above

observations.

THEOREM 7.7
The following statements hold:
(a) If a complex quadratic polynomial Q(z) = az2 + bz + c has two distinct

zeros, then NQ(z) is chaotic on the perpendicular bisector of the line joining
the two zeros. Moreover, the basin of attraction of each root under NQ(z)
is the set of points that lie on the same side of the bisector as a root (see
Fig. 7.17).
(b) If Q(z) has one repeated root r, then the basin of attraction of r under

NQ is the entire complex plane.

Cayley posed the question of whether or not Theorem 7.7 remains valid
for complex cubic polynomials. It turns out that Cayley’s problem is rather
complicated and its solution is surprising. Due to the limited scope of this
book, we are only going to address this problem via the following example.

Example 7.6

Consider the complex cubic map f(z) = z3 − 1. Then Nf (z) = z − z3−1
3z2 =

2z3+1
3z2 has three attracting fixed points: z∗1 = 1, z∗2 = e

2πi
3 , and z∗3 = e

4πi
3 .
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FIGURE 7.17
The roots of Q(z) = az2 + bz + c are r1 and r2. The basin of attraction of
r1 under NQ(z) is in gray. On the perpendicular bisector L, NQ(z) is chaotic.
The remaining points are in the basin of attraction of r2.

Using computer graphics (see Fig. 7.18), we see that W s(z∗1) is the black
region,W s(z∗2) is the gray region, andW s(z∗3) is the white region. This can be
accomplished via a simple algorithm. Select a grid of points in the square, say
200×200, with vertices z1 = 2+2i, z2 = 2−2i, z3 = −2−2i, and z4 = −2+2i
(in the complex domain). For each point z in the grid, compute N200

f (z). If
(a) |N200

f (z)− z∗1 | < 0.1, then color the point black, (b) |N200
f (z)− z∗2 | < 0.1,

then color the point gray. The rest of the points are assumed to be in W s(z∗3)
and will have the white color.

In [79], it was shown that ∂W s(z∗1) = ∂W s(z∗2) = ∂W s(z∗3) = J(Nf ). In
other words, the Julia set of the map Nf (z) = z − z3−1

3z2 is the boundary of
the basins of attractions for the three attracting fixed points z∗1 , z

∗
2 , and z

∗
3 .

Exercises - (7.6)

1. Let Nf(z) be the Newton map of a complex function f(z).

(a) Show that r is a zero of f(z) if and only if r is a fixed point of
Nf (z).

(b) Show that the iterative Newtons’s procedure converges to a zero of
f(z).
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FIGURE 7.18
For f(z) = z3 − 1, Nf (z) = 2z3+1

3z2 . There are three attracting fixed points:
1, e2πi/3, e4πi/3. Grey: Basin of attraction of e2πi/3; White: Basin of attrac-
tion of e4πi/3; Black: Basin of attraction of 1.



The Julia and Mandelbrot Sets 375

2. Let T (z) = 1−z
1+z be defined on the extended complex plane C. Show

that T maps the imaginary axis onto the unit circle.

3. Prove Theorem 7.7 (a).

4. Prove Theorem 7.7 (b).

5. Describe the dynamics of Newton’s function Nf for f(z) = z3.

6. Describe the dynamics of Newton’s function for any cubic polynomial
with one zero of multiplicity three.

7. Show that the function H(z) = z−i
z+i gives a conjugacy between the

Newton map NQ1(z) and Q0(z).

8. Describe the dynamics of Newton function Nf for f(z) = z3 − z2.
9. Describe the dynamics of Newton function Nf for f(z) = z3 − z.

10.* Let f(z) = z3 − cz + 1.

(a) Show that an iterate of Nf is conjugate to Q−2(z) = z2 − 2 for
some c.

(b) Find a parameter value c for which Nf is chaotic on an open subset
of C.

(c) Is there an open set of parameters c for which Nf is chaotic on a
subset of C?

7.7 The Mandelbrot Set

7.7.1 Topological Properties

The Mandelbrot set is considered by far the most complicated, yet the most
fascinating fractal. It was discovered by the mathematician Benoit Mandel-
brot in late 1970s [67]. For the quadratic family of maps Qc, the Mandelbrot
set, denoted by M, is located in the parameter space and is defined as

M = {c ∈ C : O(0) is bounded under Qc}.
In other words, the Mandelbrot set M consists of all those c values for

which the corresponding orbit of 0 under Qc does not escape to infinity. A
natural question may now be raised: why would anyone care about the fate of
the orbit of 0? The answer to this question will be given later by Theorem 7.8.

As an immediate consequence of Theorem 7.4, we state the following prin-
ciple of dichotomy.
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COROLLARY 7.2
(Principle of Dichotomy). For the quadratic map Qc, we have either:

1. c ∈M and the corresponding Julia set Jc is (pathwise) connected.

2. c /∈ M and the corresponding Julia set Jc is totally disconnected (in
fact, it is a Cantor set).

PROOF

1. Observe that if c ∈ M, then O(0) is bounded and thus 0 ∈ Kc. Hence,
Theorem 7.4 is applicable.

2. The proof of the second part is analogous and will be omitted.

The above corollary provides a useful characterization of the Mandelbrot
set M. It simply says that

M = {c : Jc is (pathwise) connected}.
You may wonder whether or not the Mandelbrot set itself is connected. We

will postpone answering this question until we generate a few pictures of the
Mandelbrot set.

We now give a criterion under which a parameter value c belongs to M.
In order to accomplish this task, we need to introduce the complex version
of Singer’s theorem; for a proof, see [25]. Recall that a point z0 is a critical
point of a map f if f ′(z0) = 0. Note that 0 is the only critical point of the
quadratic map Qc(z).

THEOREM 7.8
If z0 is an attracting point of a complex map f , then z0 attracts at least one
critical point of f .

COROLLARY 7.3
If Qc has an attracting periodic point, then c ∈ M.

PROOF This is left to the reader as Problem 1.

Our next task is to develop an algorithm to draw the Mandelbrot set and
to acquire an understanding of its fascinating graph. We start our program
with the following important result.

THEOREM 7.9
The Mandelbrot set M is contained in the closed disk of radius 2, i.e.:

M⊂ {c : |c| ≤ 2}.
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PROOF Suppose that |c| > 2. Then if |z| ≥ |c| we have

|Qc(z)| = |z2 + c| = |z|
∣
∣
∣z +

c

z

∣
∣
∣ ≥ |z|

(

|z| − |c||z|
)

≥ |z|(|c| − 1) = η|z|,

where η = |c| − 1 > 1.
Now, Qc(0) = c, |Q2

c(0)| = |Qc(c)| ≥ |c|η. We will show by mathematical
induction that |Qn+1

c (0)| ≥ |c|ηn. So, assume that |Qn
c (0)| ≥ |c|ηn−1. Then,

|Qn+1
c (0)| = |QcQ

n
c (0)| ≥ |Qn

c (0)|η
≥ |c|ηn.

It follows that |Qn+1
c (0)| ≥ |c|ηn → ∞ as n → ∞. Consequently, c /∈ M,

and the proof is now complete.

The question arises as to how to sketch the Mandelbrot set and what al-
gorithm can be used to draw a computer-generated M? Well, we simply use
Theorem 7.9 to write down such an algorithm.

The Pixel Algorithm for the Mandelbrot Set M
1. Choose the number of iterations allowed N .

2. Choose a grid (in the complex plane) contained inside the square of
vertices:
(−2, 2), (2,−2), (2, 2), (−2,−2).

3. For each c in the grid, compute the first N points:
{Qc(0), Q2

c(0), . . . , Q
N
c (0)}.

4. If at any iteration k ≤ N,Qk
c (0) leaves our square, stop the process and

color c white; otherwise color it black.

The black region corresponding to the Mandelbrot set is seen in Figure 7.19.

7.7.2 Rays and Bulbs

We are now going to analyze the Mandelbrot set in Fig. 7.20 more closely. Let
us begin with the big cardioid on the right side of the picture. The interior
of this cardioid corresponds to all c for which Qc(z) has an attracting fixed
point. To show this, let z∗ be an attracting fixed point of Qc(z). Then, by
Corollary 7.3, c ∈ M. Furthermore,

Qc(z) = z2 + c = z (7.11)

and
|Q′

c(z)| = |2z| < 1.
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FIGURE 7.19
The Mandelbrot set M.

FIGURE 7.20
Periods of the primary bulbs in M.
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The boundary of such points is |z| = 1
2 or z = 1

2e
iθ, 0 ≤ θ ≤ 2π. Substitut-

ing into Equation (7.11) yields

c =
1
2
eiθ − 1

4
e2iθ (7.12)

which traces a cardioid as θ ranges from 0 to 2π. (This corresponds to r =
1
2 − 1

4 cos θ, 0 ≤ θ ≤ 2π, in real polar coordinates.) In summary, all the
parameter values c for which Qc(z) has an attracting fixed point lie inside a
cardioid that interests the x axis at c = 1

4 (when θ = 0) and c = − 3
4 (when

θ = π).
Note that from Equation (7.11), the fixed points are

z∗1 =
1−√1− 4c

2
, and z∗2 =

1 +
√
1− 4c
2

.

Hence,
Q

′
c(z

∗
1) = 1−√1− 4c, and Q

′
c(z

∗
2) = 1 +

√
1− 4c.

Thus, z∗2 is always unstable, and z∗1 is asymptotically stable for all c for
which |1 − √1− 4c| < 1. This implies that for real c,− 3

4 < c < 1
4 . Hence,

at c = 1
4 , we witness a saddle node bifurcation. This corresponds perfectly

to the bifurcation diagram of the real map Qc(x) = x2 + c,− 3
4 < c < 1

4 ,
where we have a single branch (see Fig. 7.21). The scenario continues as
in Chapter 1, and z∗1 loses its stability for c < − 3

4 and an asymptotically
stable 2-cycle is born. To find the boundary of all the attracting 2-cycles of
Qc(z), we find the fixed points of Q2

c(z). This yields (z2 + c)2 + c = z or
(z2 + z + 1 + c)(z2 + c− z) = 0.

Note that z2+c−z = 0 produces the fixed points z∗1 and z∗2 of Qc(z), while

z2 + z + 1 + c = 0 (7.13)

yields the 2-periodic points z̃1 and z̃2. Since z̃1 and z̃2 are attracting, |Q′
c(z̃1)

Qc(z̃2)| < 1; thus,
|4z̃1z̃2| < 1. (7.14)

But, from Equation (7.13), z̃1z̃2 = 1 + c. Substituting this into Inequal-
ity (7.14) yields |1 + c| < 1

4 .
Therefore, the parameter values c for which Qc(z) has an attracting 2-cycle

lie entirely inside the circle |1 + c| = 1
4 , whose center is (−1, 0) and radius is

1
4 . In Fig. 7.21, each bulb in the Mandelbrot set corresponds to c values for
which Qc(z) admits an attracting periodic orbit of some period k.

As we have seen above, the main bulb is the cardioid, which contains all
values of c for which Qc(z) has an attracting fixed point. This main bulb
(decoration) has infinitely many smaller bulbs (decorations) and antennas.
Each of these antennas, in turn, consists of a number of spokes that varies
from one bulb (decoration) to another. Let us call any bulb (decoration)
attached to the main cardioid as a primary bulb (decoration). For every c
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that lies in the interior of a primary bulb, the orbit of zero is attracted to a
certain k-cycle, where the period k is fixed for all such c. For those values of
c that lie inside the other smaller bulbs (decorations) attached to the primary
bulb, the orbit of zero is attracted to a cycle whose period is a multiple of
k. Using the algorithm, given below, to determine the periods of the bulbs,
one may check the following table which determines in which bulb in M, the
given value c is located.

−0.12 + 0.75i 3
−0.5 + 0.55i 5
0.28 + 0.54i 4
0.38 + 0.333i 5
−0.62 + 0.43i 7
−0.36 + 0.62i 8
−0.67 + 0.34i 9
0.39 + 0.22i 6

Note that the number of spokes in the largest antenna attached to a primary
bulb (decoration) is equal to the period of that bulb (decoration), provided
that we count the spoke emanating from the primary bulb (decoration) to the
main junction point (see Figs. 7.21 to 7.24).

In the next figure (Fig. 7.25), we have imposed the bifurcation diagram for
Qc and the Mandelbrot set. The real c values that form the horizontal axis
in the bifurcation diagram lie directly below the corresponding real c values
in the Mandelbrot set. Note that each bifurcation corresponds to a new bulb
that intersects the x axis and the period is the number of branches of the
bifurcation diagram there.

An Algorithm to Determine the Period of a Bulb

The complex analogue of Singer’s theorem states that if z̃ is a periodic point
of a polynomial complex map, then it must attract a critical value. Now for
our map Qc(z), 0 is the only critical value. Pick a bulb in the Mandelbrot
set and an approximate center c̃. The orbit {Qn

c̃ (0)} will be asymptotic to a
certain k-cycle, which may be determined computationally.

7.7.3 Rotation Numbers and Farey Addition

Recall that the main cardiod of the Mandelbrot set is given by c = 1
2e

iθ− 1
4e

2iθ.
Let us call a “decoration” that is directly attached to the main cardiodM a
primary bulb; all other decorations will be called secondary bulbs.

Now a primary bulb attaches to the main cardiod at an internal angle φ =
2π(m/n). The number m/n is called the rotation number of the bulb. The
main cardiod will be called bulb (0/1) (φ = 2π · 0/1 = 0). The main primary
bulb is the circle |1+ c| = 1

4 centered at (−1, 0) which is attached at the angle
φ = π = 2π(1/2) and hence this bulb will be called bulb (1/2). It is worth
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FIGURE 7.21
A bulb of period 3.

FIGURE 7.22
A bulb of period 4.
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FIGURE 7.23
A bulb of period 5.

FIGURE 7.24
A bulb of period 7.
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FIGURE 7.25
The bifurcation diagram of Qc(x) = x2 + c in comparison to the Mandlebrot
set M. (This figure is a second generation computer image.)
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FIGURE 7.26
The primary bulbs.

noticing that the denominator n of the rotation number m/n is the period of
the attracting periodic cycle in the bulb (m/n) (Figure 7.28).

To find the rotation number m/n for the largest bulb between the (0/1)
and (1/2) bulbs, we use the Farey addition: a/b + c/d = (a + c)/(b + d).
Hence bulb (1/3) is the largest bulb between (0/1) and (1/2) bulbs. Since
the Mandelbrot set is symmetric (why?), there will be a pair of bulb (1/3),
one above the real axis and one below it. One of these bulbs will be located
at an angle θ = 2π/3 and the other at an angle θ = 4π/3. Moreover, both
will contain an attracting 3-periodic cycle. Now the largest bulb between the
(1/2) and (1/3) bulbs is the bulb (2/5); the bulb (2/5) is smaller than the
(1/2) and (1/3) bulbs. Next primary bulb sequences are given by

1
2
+

1
3
=

2
5
+

1
2
=

3
7
+

1
2
=

4
9
+ . . . and

1
2
+

1
3
=

2
5
+

1
3
=

3
8
+

1
3
=

4
11

+ . . . and

1
2
+

0
1
=

1
3
+

0
1
=

1
4
+

0
1
=

1
5
+ . . .

Secondary bulbs. Now we turn our attention to the secondary bulbs. Every
primary bulb (m1/n1) has decorations (bulbs) similar to the main bulb. Hence
the rotation number of a secondary bulb will be an ordered pair (m1/n1,m2/n2),
where (m1/n1) is the rotation number of the primary bulb and (m2/n2) is
the rotation number of the attached secondary bulb. Moreover, the period of
the secondary bulb is n1 × n2.
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FIGURE 7.27
The primary bulbs.

The largest secondary bulb between (m1/n1,m2/n2) and (m1/n1,m3/n3)
bulbs is bulb

(
m1
n1
, m2+m3

n2+n+3

)
. Figure 7.27 illustrates this procedure and shows

few secondary bulbs in the primary bulb (1/3).

7.7.4 Accuracy of Pictures

In his article [36], John Ewing questioned the accuracies of the pictures of the
Mandlebrot set. He cited two reasons for his skeptisism; computers make mis-
takes, and so do people. By examining pictures of tiny sections of the bound-
ary, we see disconnected pieces ofM, often resembling miniature copies of the
whole set, floating nearby. One might easily conclude thatM is not connected
and that it consists of a main body with an infinite number of islands nearby.
Douady and Hubbard [29] proved that the pictures are misleading and that
the Mandelbrot set M is indeed connected.

THEOREM 7.10

The Mandelbrot set is connected.

PROOF The proof is based on the idea that the Mandelbrot set may be
viewed as a subset of the Riemann aphere C using steriographic projection
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FIGURE 7.28
Mapping the disk to the outside ofM.

(see Section 7.3). Now the Mandelbrot set is connected simply when its com-
plement (in C) is “simply connected,” that is, when its complement has no
holes. The famous riemann mapping theorem says that such a set which is
not the entire complex plane is homeomorphic to the unit disk.

Hubbard and Douady turned the Riemann mapping theorem around; they
showed that there must exist such a map from the unit disk ∆ = {z : |z| ≤ 1}
to the complement of M (in the sphere), and hence the complement of M is
simply connected. They used the map

Ψ : ∆→ C defined as

Ψ(z) =
1
z
+ b0 + b1z + b2z2 + . . .

when δ is the unit disk.

The map Ψ gives us a new way to draw pictures of M, different from the
Pixel method. The first part of the map Ψ, z '−→ 1

z maps the interior of a
disk ∆ onto the exterior, reversing orientation and sending the origin to ∞.
The power series terms b0 + b1z + b2z2 + . . . add a small distortion to make
the image of Ψ the exterior of M rather than the exterior of ∆. The image
under Ψ of a circle |z| = r, r < 1, is a simple closed curve bounding a region
Mr, which contains M as indicated in Figure 7.28.

John Ewing computed the area of the Mandelbrot set using the pixel
method by subdividing a region of the plane containingM into pixels and cal-
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cualted the fraction that are inside M. Using this method he found that the
area of M is approximately 1.52. However, Ewing was not content with his
finding. He used Green’s Theorem to calcualte the area of M by integrating
around its boundary. The map Ψ provides a change of variable that converts
the problem of integrating around M to the problem of integrating around
a circle (for more details see J. Ewing [36]). The estimate of the area of M
using this method is 1.72. A challenging problem is to determine which one
of these two area 1.52, 1.72 is the correct answer. It is a fascinating problem
that I hope the reader will get interested in solving it.

Exercises - (7.7.1)

1. Show that if the quadratic map Qc has an attracting periodic point,
then c ∈M.

2. Generate the graph of the Mandelbrot set for Q0.5, Qi, Q0.4+0.1i using
the program “Mandelbrot.”

3. Show that if c ∈M, then c̄ ∈M.

4. Show that the Mandelbrot setM ofQc contains all c such that |c| ≤ 1/4.
(Use mathematical induction.)

5. Consider the complex logistic map Fµ = µ z(1− z), where µ, z ∈ C.

(a) Find all fixed points of Fµ.

(b) Find all µ for which Fµ has an attracting fixed point.

6. Let M̃ be the set of all complex numbers µ such that O+(1/2) under
Fµ is bounded. Modify the program “Mandelbrot” to obtain a graph
of M̃.

7. Let z∗1 and z∗2 be the fixed points of Qc(z). Prove:

(a) if c < −2, then Qn(0) ≥ 2 + n|c+ 2|, for n ≥ 2;

(b) if −2 ≤ c < 0, then Qc maps [−z∗1 , z∗1 ] into itself;

(c) if 0 ≤ c ≤ 1
4 , then Qc maps [0, z∗2 ] into itself;

(d) if c > 1
4 , then Q

n
c (0) ≥ n(c− 1

4 ).

(e) Conclude from the above that the intersection of the Mandelbrot
set M with the real axis is the interval [−2, 14 ].

8. Show that i ∈ M.
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9. Draw a graph of the Mandelbrot set for fc(z) = z3+c. Then, show that
if |c| > 2, then fn

c (z)→∞ as n→∞.

10. For the map Qc(z) = z2 + c, show that the set {z : Qn
c (z) → ∞} is an

open set.

In problems 11–14 find the secondary bulbs and graph them for the
indicated primary bulb.

11. Primary Bulb (1/2).

12. Primary Bulb (3/7).

13. Primary Bulb (2/5).

14. Primary Bulb (3/8).
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Answers to Selected Problems

Exercises - (1.2–1.4)

1. x(n) = 4 +
(
1
2

)n (c− 4)

2. x(n) = 1

5. x(n) = sin2(2n sin−1
√
x0)

7. (a) a(n+ 1) = 9
8a(n)

(b) a(1) = 9, a(2) = 1125

9. (a) a(n+ 1) = rq(1 −m)a(n)− 2

11. (a) y(n+ 1) = 3
4y(n) +

1
4

(b)

1.75.5h = .25

n
4321

.75

.5

.25

y(n)

∆ E

DE

(c) y(t) = 1− e−t

DE
t 0 .25 .5 .75 1
y(t) 0 .22 .39 .53 .63

∆E
n 0 1 2 3 4
y(n) 0 .25 .44 .5 .63

397



398 Answers

Exercises - (1.5 and 1.6)

1. (a)

*x

x

f(x)

y = x

x∗ = 1
2 is a fixed point

(b) The eventually fixed points are ±3
2
, ±5

2
, ±2k + 1

2
, . . .

3. (a) Let f(x) = 2x(x− 1)(x− 2)(x+ 1) + x. Then f has four unstable
fixed points x∗1 = 0, x∗2 = 1, x∗3 = 2, x∗4 = −1.

(b) f(x) = x2 + 1 has no fixed points

(c) Let f(x) = x2 − 1
2
. The fixed point x∗1 =

1 +
√
3

2
, x∗2 =

1−√3
2

is
asymptotically stable.

5. (a) x∗ =
α− 1
β

11. There are three fixed points.

x∗1 =
1
2

: asymptotically stable

x∗2 = −1
2

: asymptotically stable

x∗3 = 0 : unstable

13. (a) x∗1 = 0 is unstable
(b) x∗2 = ln 2 is asymptotically stable

Exercises - (1.7)

1. Fixed Points: x∗1 = 0, x∗2 = 1
x∗1 is asymptotically stable, x∗2 is unstable
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3. x∗1 = 0 is unstable

x∗2 =
2
3
is asymptotically stable

5. x∗1 = 0 is unstable
x∗2 = 1 is asymptotically stable

7. x∗1 = 0 is unstable

9. x∗1 = 0 is unstable

x∗2 =
α− 1
β

is asymptotically stable

13. x∗1 = 0 is asymptotically stable if −2 ≤ α < 0
x∗1 = 0 is unstable
x∗2 = 1 is asymptotically stable if 0 < α ≤ 2

19. x∗1 = 0 is semiasymptotically stable from the right
x∗2 is unstable

Exercises - (1.8)

1. x1 =
−1 +√.4

2
≈ −.1838

x̄2 =
−1−√.4

2
≈ −.8162 The 2-cycle is stable.

3. There are no 2-periodic cycles.

5. Every point is a 2-periodic cycle under h, since h2(x) = x. Moreover,
every point is stable but not asymptotically stable.

7. (b) The periodic 2-cycle is asymptotically stable.

9. (a) x1 =
1
3
, x =

2
3
is a 2-cycle

The 2-cycle is unstable.

(b) There are (2k) k-periodic points.

11. x(n) =
1
2µ

[
µ+ 1 + (−1)n√

(µ+ 1)(µ− 3)
]
, if µ > 3

13. If α = −1, then c1 = 0 which leads to the fixed point x(n) = c0. In this
case the equation has no nontrivial 2-periodic solution.
If α = −1, then we have two cases:

(i) If β = 0, then c0 = 0 and x(n) = (−1)nc1, c1 arbitrary, is a 2-cycle.
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(ii) If β = 0, then c21 =
c0(2 + βc0)

β
.

For any c0 for which c1 is real, the solution is

x(n) = c0 + (−1)n
√
c0(2 + βc0)

β
. (15)

If β < 0, there is a family of 2-periodic solutions: for any c0 < 0 or any
c0 > − 2

β . However, for β > 0 there is a family of 2-periodic solutions:
for any c0 > 0 or any c0 < − 2

β . The solution is given by equation (15).

Exercises - (1.9)

3. (a) x∗1 =
1 +

√
1− 4µ
2

, x∗2 =
1−√1− 4µ

2
, x∗1 is unstable, x

∗
2 is asymp-

totically stable if −3
4
< µ < 0.

(b)
{

x1 =
−1 +√−3− 4µ

2
, x2 =

−1−√−3− 4µ
2

}

is a 2-cycle which

is asymptotically stable if −5
4
< µ < −3

4
.

10. k = 2m, k = 4, m = 2
4-periodic points are given by

x(n) = c0 + (−1)nc2 + c1 cos
(nπ

2

)
+ d1 sin

(nπ

2

)

n = 0, x(0) = c0 + c2 + c1
n = 1, x(1) = c0 − c2 + d1
n = 2, x(2) = c0 + c2 − c1
n = 3, x(3) = c0 − c2 − d1

since x(4) = x(0), we get by substitution in the equation

x(4) = x(0) = µx(3)[1 − x(3)]
c0 + c2 + c1 = µ(c0 − c2 − d1)[1 − c0 + c2 + d1] (16)
x(5) = x(1) = µx(4)[1 − x(4)] = µx0(1− x0)
c0 − c2 + d1 = µ(c0 + c2 + c1)[1− c0 − c2 − c1] (17)
c0 + c2 − c1 = µ(c0 − c2 + d1)[1 − c0 + c2 − d1] (18)
c0 − c2 − d1 = µ(c0 + c2 − c1)[1− c0 − c2 + c1]. (19)

We have 4 equations in 4 unknowns; using Maple we obtain c0, c1, c2, d1.
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Exercise - (2.4)

3. Consider the function f(x) = 2 cot−1 x. There are two asymptoti-
cally stable fixed points x∗1 ≈ −1.8, x∗2 ≈ 1.8 where 2 cot−1 x∗1 = x∗1,
µ cot−1 x∗2 = x∗2.

x

2 cot      x−1

L′
µ(x) =

−2
1 + x2

|L′
µ(x)| =

2
1 + x2

< 1⇒ 1 < x2 ⇒ either x > 1 or x < −1.

So we have two attracting fixed points with basins of attraction (−∞,−1)
and (1,∞), respectively. Another example: f(x) = 2 sinx on [−π, π].

Exercise - (2.6)

1. 0.0010111010

5. f : [1, 7] → [1, 7], f(1) = 4, f(2) = 7, f(3) = 6, f(4) = 5, f(5) = 3,
f(6) = 2, f(7) = 1.

6. Consider the map f : [1, 9] → [1, 9] defined by f(1) = 5, f(2) = 9
f(3) = 8, f(4) = 7, f(5) = 6, f(6) = 4, f(7) = 3, f(8) = 2, f(9) = 1.
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1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

7. Let f : [1, 2k + 1]→ [1, 2k + 1] be defined as follows:

f(1) = k+1, f(2) = 2k+1, f(3) = 2k, . . . , f(k+1) = k+2, f(k+2) = k,
f(k + 3) = k − 1, f(k + 4) = k − 2, . . . , f(2k) = 2, f(2k + 1) = 1.

Then connect the points in the graph linearly.

9. f̃(x) =

{
f(x) + 12, 1 ≤ x ≤ 7
x− 12, 13 ≤ x ≤ 19

12. To construct a map with a prime period 8 but no points of prime period
16, we start with the map f : [1, 4]→ [1, 4] defined as follows:

f(1) = 3, f(2) = 4, f(3) = 2, f(4) = 1,

and on each interval [n, n+ 1] we assume f to be linear.

1 2 3 4

1

2

3

4

Now we use the double map

f̃(x) =

{
f(x) + 6 for 1 ≤ x ≤ 4,
x− 6 for 7 ≤ x ≤ 10

f̃ : [1, 10]→ [1, 10]

Then f̃ has points of period 8 but no points of period 16.
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1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10

10

16. Let f : I → I defined as follows: f(1) = 1, f(x) = fk(x) if x ∈
Ik =

[
1− 1

3k , 1− 2
3k+1

]
, k ∈ Z+, where f0(x) :

[
0, 13

] → [
0, 13

]
defined

by f0(x) = x, f1(x) =
[
2
3 ,

7
9

] → [
2
3 ,

7
9

]
defined by f1(x) = −x + 13

9 ;
f2(x) =

[
8
9 ,

25
27

] → [
8
9 ,

25
27

]
defined by f2(x) = −x + 49

27 for x ∈ [
8
9 ,

73
81

]
,

f2(x) = x − 2
81 for x ∈ [

74
81 ,

25
27

]
and then connect linearly. In general,

we have fk(x) = −x + 2(3k+1)−5
3k+1 for x ∈ [

1− 1
3k , 1− 1

3k + 1
3k+2

]
and

fk(x) = x− 2
3k+2 and then connect linearly.

Exercises - (3.4)

1. (a) n = 5, f5(0.1 + 0.01) = f5(0.11) = 0.97, f5(0.1) = 0.59
λ(0.1) ≈ 1

5 ln
(
0.97−0.59

0.01

) ≈ 0.73
(b) n = 6, f6(0.11) = 0.12, f6(0.1) = 0.97

λ(0.1) ≈ 1
6 ln

∣
∣ 0.12−0.97

0.01

∣
∣ = 0.74

(c) n = 7, f7(0.11) = 0.42, f7(0.1) = 0.11
λ(0.1) ≈ 1

7 ln
(
0.42−0.11

0.01

)
= 0.49

3. (a) n = 5, |f5(0.31)− f5(0.3)| = 0.0080057346, λ(x0) ≈ −0.044
(b) n = 6, λ(x0) = −0.044
(c) n = 7, λ(x0) ≈ −0.043

5. f(x) =






3x, 0 ≤ x ≤ 1
3

2− 3x, 1
3 < x ≤ 2

3

3− 3x, 2
3 < x ≤ 1

|f ′(x)| = 3

(a) log 3 ≈ 1.0986
(b) f possesses sensitive dependence on initial conditions.
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Exercises - (3.5)

7. f(x) =

{
3
2x, 0 ≤ x ≤ 1

2
3
2 (1− x), 1

2 < x ≤ 3
4

on
[
0, 34

]

(a) f(x) =

{
3
4 − 3

2

(
1
2 − x

)
= 3

2x if 0 ≤ x ≤ 1
2

3
4 − 3

2

(
x− 1

2

)
= 3

2 (1− x) if 1
2 < x ≤ 1

(b)

|f ′(x)| = 3
2

λ(x) = lim
n→∞

1
n

n−1∑

k=0

log
3
2

= lim
n→∞

1
n
· n log 3

2

= log
3
2
> 0

Hence f possesses sensitive dependence on initial conditions.

.75.5

.75

.5

.25

.25

Let x ∈ (
0, 38

)
. Then there exists r > 0 such that f r(x) ≥ 1

2 .
Claim that if z ≥ 1

2 , then f(z) ≥ 3
8 . Assume the contrary, that is,

3
2 (1− z) < 3

8 . Then
3
2 − 3

2z <
3
8 which implies that z > 3

4 , which is
not possible since f

[
0, 34

]
=

[
0, 34

]
. Hence f has no periodic points

in the interval
(
0, 38

)
.

Exercises - (3.6 and 3.7)

1. (a) x∗1 = 0, x∗2 = 3
4 = .75

(b) x∗1 = 0.0 x∗2 = 0.2020



Answers 405

2.
(
1
9
,
2
9

)
h→

(
1
3
,
2
3

)
h→

(

1,
3
2

)
h→

(

−3
2
, 0

)
h→

(

−9
2
, 0

)

. . . (−∞, 0)

3. (a) Let x = ·x1x2x3 · · · ∈ E be in a ternary expansion. If x ∈ K, then
for some i, xi = 1. Case (i): x1 = 2. Then

h(x) = 3−
[
x1 +

x2
3

+
x3
32

+ · · ·+ xi

3i−1 + . . .
]

= ·2̄− ·x2x3x4 . . .
= ·y1y2y3 . . .

where xi = yi−1 = 1.

4. Perfect. Let p ∈ ∧. Then p ∈ An for each n. Hence p ∈ [an−1, bn−1] ⊂
An, with bn−1 − an−1 < 1

(1+ε)n . It follows that |an−1 − p| < 1
(1+ε)n .

Thus lim
n→∞ |an−1 − p| = 0 which implies that lim

n→∞ an = p.

5. (i) Clearly K̃ = ∩∞
n=1S̃n is closed, being the intersection of closed sets.

(ii) Totally disconnected. Notice that the length of each subinterval in
Sn is

(
2
5

)n. If K̃ contains an interval of length d, then d >
(
2
5

)n

for all large n, which is absurd.
(iii) Perfect. Assume that p ∈ K̃. Then p ∈ S̃n for all n. Hence

p ∈ [an, bn] ⊂ S̃n, with bn − an =
(
2
5

)n. Thus |an − p| <
(
2
5

)n. For

ε > 0, let N be large enough such that
(
2
5

)N
< ε. Then for n > N ,

|an − p| < ε. This implies that an → p as n→∞.

Exercises - (3.8)

3. (a) h

(√
5− 1
2
√
5

)

= 010

(b) h

(√
5 + 1
2
√
5

)

= 110

7. (a) h(x) =
µ

λ
x− µ

2λ
, c =

µ2 − 2µ
4λ

= 1, λ = µ2−2µ
4

(b) Now λ = 2 corresponds to µ = 4. Since F4 ≈ Q2 and F4 is chaotic
on [0, 1], Q2 is chaotic on [−1, 1].

9. T (x) =

{
2x, 0 ≤ x ≤ 1

2

2(1− x), 1
2 < x ≤ 1

(a) Let h(x) = sin2
(πx

2

)
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Exercises - (4.1 and 4.2)

1. eigenvector
(
1
3
2

)

is associated with λ1 = 3,
(
1
1

)

is associated with

λ2 = 1
2 , A

n =
(−2 · 3n + 3

2n 2 · 3n − 1
2n−1

−3n+1 + 3
2n 3n+1 − 1

2n−1

)

3. λ1 = λ2 = 2

V1 =
(

1
−2

)

V2 =
(
1
1

)

An =

(
2n(n+3)

3
n·2n−1

3

−n2n+1

3
2n(3n−1)

3

)

5. λ1 = −1+√
3i

2 , λ2 = −1−√
3i

2

v =

(
−3
2
+

√
3
2 i

1

)

An =

(
−√3 sin 2nπ

3 + cos 2nπ
3 −2√3 sin 2nπ

3
2
√
3

3 sin 2nπ
3 cos 2nπ

3 +
√
3 sin 2nπ

3

)

7. X(n) =
(
2n−1(n+ 2)
2n(1− n)

)

9. fn

(
0
1

)

= An

(
0
1

)

=
( −2√3 sin 2nπ

3

cos 2nπ
3 +

√
3 sin 2nπ

3

)

Exercises - (4.3 and 4.4)

1. X(n) = 1
3

(
(−1)n + 2n+1

2n+1

)

3. X(n) ==
(
k12n + k23n

k12n + 2k23n

)

5. X(n) ==
(
3nx1(0) + 3n−1x2(0)

3nx2(0)

)

7. X(n) = k1 cosnθ + k2 sinnθ where θ = tan−1(4) ≈ 76◦
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15. Y (n) ==
(
2n + n2n−1 − 3

4n
2n − 1

)

Exercises - (4.5 – 4.7)

1. The origin is asymptotically stable since ρ(A) = 1
2 < 1 (Theorem 4.13).

x

y

λ1 = λ2 = 1
2

Phase portrait: origin is asymptotically stable.

3. Since ρ(A) = 2 > 1, it follows by Theorem 4.13 that the origin is asymp-
totically stable.

x

y

λ1 = λ2 = 2
Phase portrait: origin is unstable.
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5. Eigenvalues of A are λ1 = 1
2 + 1

4 i, λ2 =
1
2 − 1

4 i.

|λ1| = |λ2|+
√

1
4
+

1
16

=
√
5
4
< 1

Hence by Theorem 4.12, the origin is asymptotically stable.

y

x

λ1 = 1
2 +

1
4 i, λ2 = 1

2 − 1
4 i

A stable focus.

7. The eigenvalues ofA are λ1 = 2, λ2 = 3. The corresponding eigenvectors

are V1 =
(

4
−5

)

, V2 =
(

2
−3

)

, straight-line solutions are

Y1 =
(

4
−5

)

2n, Y2 =
(

2
−3

)

3n.

The origin is unstable since ρ(A) = 3 > 1.

Y
1

y

x

Y
2

λ1 = 2, λ2 = 3
Unstable node.
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9. The eigenvalues of A are λ1 = i, λ2 = −i. The origin is stable but not
asymptotically stable.

x

y

λ1 = i, λ2 = −i
A stable center.

Exercises - 4.8

1. (i) a > 4 : oscillatory source

(ii) a = 4 : unstable origin (bifurcation value)

(iii) a < 4 : a saddle

(iv) a = −4
3
: unstable origin

(v) a < −4
3
: spiral sources

3. Bifurcation value: a = −3
a < −3 : a saddle
a = −3 : unstable oscillatory

5. (i) a >= −7
6
where the eigenvalues are λ2 = −1 and λ1 = − detA =

2
3

and we have an “oscillatory” stable origin, for a < −7
6
, we have an

oscillatory saddle.

(ii) a = −1, the eigenvalues are λ1 = λ2 = 0 and every point is a fixed

point, for −7
6
< a < −1, we have a sink, and for −1 < a < 0, we

have a spiral sink.
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(iii) a = 0, where the eigenvalues are λ1 = 1, λ2 = 1, where we have
eigher a stable or unstable origin, for a > 0, we have a saddle.

7. Region 5: a < b and 3a+ 6 > b
Region 6: a < b and 3a+ 6 < b
Region 7: a > b and 3a+ 6 < b

Region 1: b > −1
4
(a− 1)2

Region 8: b < 3a+ 6 and b < 2a+ 1

Region 4: b < a and b > −1
4
(a− 1)2 and b < 2a+ 1

Exercises - (4.9)

1. Let V (x1, x2) = x∗1 + x∗2.

3. Let V = x1x2.

5. Let V (x, y) = x2 + 4y2.

7. Let V (x, y) = x2 + y2.

11. Let V (x, y) = xy.

Exercises - (4.10 and 4.11)

3. |α| < 1

5. αβ < 1

6. (a) X∗
1 =

(
0
0

)

is asymptotically stable

(b) X∗
2 =

(
6
3

)

is unstable

7. |b| < 1− a < 2
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Exercises - (4.12)

1. A = Df

(
x∗1
x∗2

)



1− b1 − a1

(
1−γ1γ2
1+γ2

)
a1 − a1

(
1−γ1γ2
1+γ2

)

a2 − a2
(
1−γ1γ2
1+γ2

)
1− b2 − a2

(
1−γ1γ2
1+γ2

)





0 < ai < 1, 0 < bi < 1, i = 1, 2

3. (a) N∗ =
r

a(r − 1)
ln r, r > 1, a > 0

(b) N∗ is asymptotically stable

5. (c)
tr A1 = 1− b−

√
(1 − b)2 + 4a, detA1 = −b

1− 1 + b+
√
(1− b)2 + 4a− b > 0

1 + 1− b−
√
(1 − b)2 + 4a− b = 2(1− b)−

√
(1− b)2 + 4a > 0

4(1− b)2 > (1− b)2 + 4a

7. Use the Liapunov function V (p, q) = (1 − α)−1[p − p∗ − p∗ ln
(

p
p∗

)
] +

(c(1− β))−1[q − q∗ − q∗ ln
(

q
q∗

)
]

Exercises - (6.1, 6.2 and 6.3)

1. (b) Dt = 1

(c) Df = lim
h→0

lnN(h)
ln

(
1
h

) = lim
n→0

ln 8n

ln 4n
= 1.5

3. (b) Dt = 1

(c) Df = lim
h→0

ln 5n

ln 3n
=

ln 5
ln 3

5. (b) Dt = 1

(c) Df = lim
n→∞

ln(3n+1)
ln(2n)

=
ln 3
ln 2

7. (b) Dt = 2

(c) Df = lim
n→∞

ln 20n

ln 3n
=

ln 20
ln 3

≈ 2.73

9. (b) Dt = 1
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19. Dt(C5) = 0, Df (C5) = lim
n→∞

ln 2n

ln
(
5
2

)n =
ln 2

ln
(
5
2

)

20. D5(C2n+1) = 0, Df (C2n+1) =
ln 2

ln
(
2n+1

n

)

Exercises - (6.4)

1. (a) F
(
x
y

)

=
(−x
y

)

(b) F
(
x
y

)

=
(− 1

2x
2y

)

(c) F
(
x
y

)

=

(√
2
2 − 1

2√
2
2

√
3
2

) (
x
y

)

3.

F1

(
x
y

)

=
(
1
3 0
0 1

3

) (
x
y

)

F2

(
x
y

)

=
(
1
3 0
0 1

3

) (
x
y

)

+
(
0
2
3

)

F3

(
x
y

)

=
(
1
3 0
0 1

3

) (
x
y

)

+
(
1
3
1
3

)

F4

(
x
y

)

=
(
1
3 0
0 1

3

) (
x
y

)

+
(
2
3
0

)

F5

(
x
y

)

=
(
1
3 0
0 1

3

) (
x
y

)

+
(
2
3
2
3

)

5.

F1

(
x
y

)

=
(
1
3 0
0 1

3

) (
x
y

)

F2

(
x
y

)

=
(
1
3 0
0 1

3

) (
x
y

)

+
(
2
3
0

)
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7.

F1

(
x
y

)

=
(
1
2 0
0 1

2

) (
x
y

)

F2

(
x
y

)

=
(
1
2 0
0 1

2

) (
x
y

)

+
(
1
2
0

)

F2

(
x
y

)

=
(
1
2 0
0 1

2

) (
x
y

)

+
(
0
1
2

)

Exercises - (6.5)

1. (a) D(A,B) =
√
5

(b) D(A,B) = 2

5. By Lemma 8.16, F1, F2, . . . , FN are contractions on H . This implies
by Lemma 8.17 that F = ∪N

i=1Fi is also a contraction on H . The
conclusion now follows by applying the contraction mapping principle
(Theorem 8.15).

7. Let F : X → X be a contraction with a contraction factor α ∈ (0, 1).
Now

d(x(n+ 1), x(n)) = d(F (x(n)), F (x(n − 1))
≤ αd(x(n), x(n − 1))
...
≤ αnd(x(1), x(0)).
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22-periodic cycle, 46
2-periodic cycle, 38, 44
3-periodic cycle, 38
4-periodic cycle, 38

affine linear transformation, 317
affine map, 10
algorithm for the filled Julia set, 360
algorithm for the Mandelbrot set, 377
algorithm to determine the period of

a bulb, 380
An, 172
applications, 228
asymptotically stable, 19, 195, 343
attracting, 195
attraction, 61
attractive, 19
attractor, 230, 319

backward iteration algorithm, 360
Baker map, 42, 135
Barnsley’s fern fractal, 323
Barnsley’s IFS compression algorithm,

339
basic construction of the Sierpinski

triangle, 291
basin of attraction, 372
beyond µ∞, 50
bifurcation, 61, 81, 248

diagram, 82, 380
direction of, 86
double period, 81
Hopf, 250
Neimark-Sacker, 242, 250
period-doubling, 89
phenomenon, 81
pitchfork, 88

saddle-node, 81, 82, 86, 379
Sharkovsky’s theorem and, 94
tangent, 81, 86, 89
transcritical, 88

bifurcation diagram, 48
Bolzano-Weierstrass theorem, 337
box dimension, 305
branch point, 347
butterfly effect, 119, 129

Cantor middle-third set, 144
Cantor set, 152, 269, 376
Cantor set definition, 145
cantor sets, 144
Carvalho’s lemma, 42
cat map, 258
Cauchy’s inequality, 367
center manifolds, 241
center manifolds depending on pa-

rameters, 247
chaos

definition of, 137
in two dimensions, 241
on the Julia set, 369
one dimension, 119
period-doubling route to, 43
transitivity implies, 139

chaotic, 271
chaotic orbit of a map, 134
chaoticity, 151
characteristic polynomial, 172
chasken, 119
Chebyshev polynomials, 183
cobweb diagram, 21
collage theorem and image compres-

sion, 338
complex analysis, 367

414
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complex cubic map, 372
complex domain, 342
complex numbers, 342
complex plane, 371
computing An, 172
conjugacy, 154
connectedness, 364
construction of fractals, 314
continuity, 151
continuous map, 140
contraction, 318
contraction factor, 318
contraction mapping principle, 332
converse of Sharkovsky’s theorem, 99
criteria for stability, 25

defining a fractal, 300
definition of chaos, 137
definition of sensitivity, 129
density-dependent, 3
dichotomy principle, 376
difference equation, 2

Fibonacci, 265
first-order, 2
first-order linear, 3, 14
linear maps, 9
second-order, 181

dimension of a fractal, 300
discrete epidemic model for gonor-

rhea, 233
domain, 347
double angle map, 158
double of f , 101
dyadic rationals, 18

economic systems, 119
eigenvalues, 172
Elaydi-Yakubu theorem, 62, 67
encirclement of the filled Julia set,

360
entropy, 162
epidemic model for gonorrhea, 233
epidemiology, 2
equilibrium points, 15
error in the initial data, 129

error magnification, 131
escape criterion, 359
Euler algorithm, 4
eventually fixed points of a map, 15
eventually periodic point, 36
example of a chaotic map, 268
examples of fractals, 289
expansive map, 135

Feigenbaum number, 47
Feigenbaum’s number, 50
Fibonacci difference equation, 265
Fibonacci sequence, 183
filled Julia set, 354
fixed equilibrium points, 14
fixed points, 15, 43
fractal, 289

Barnsley’s fern, 323
construction of, 314
defining, 300
dimension, 303
dimension of, 300
examples of, 289
mathematical foundation of, 330
not self-similar, 306

fundamental set of solutions, 179

generator, 291, 293
globally asymptotically stable, 19, 195
globally attracting, 195
gonorrhea, 233
graphical iteration and stability, 19

Hartman-Grobman theorem, 224
Hausdorff distance, 331
HDTV, 338
heartbeat, 119
Hénon map, 230, 272
high-definition television signals, 338
homeomorphism, 152, 154, 263, 271
Hopf bifurcation, 250
horseshoe and Hénon maps, 268
horseshoe map, 271
hyperbolic, 25
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hyperbolic Anosov toral automorphism,
257

hyperbolic fixed points, 25
hyperbolic toral automorphism, 257,

259

IFS, 314, 319
IFS compression, 338
immediate basin of attraction, 62
implicit function theorem, 86
initiator, 291, 293
intermediate value theorem, 18, 96
intermittency, 81, 82
intermittent bouts of chaos, 82
invariance principle, 213
irrational rotation of the circle, 140
irreducible, 265
iterated function system, 314, 319
itinerary, 157

Jordan form, 175, 198
Julia and Mandelbrot sets, 342
Julia set, 354

algorithm for the filled, 360
and Mandelbrot sets, 342
and the repelling periodic points,

367
chaos on the, 369
encirclement of the filled, 360
filled, 354
topological properties of the, 364

kicked rotator and the Hénon map,
228

Koch curve, 291, 321
Koch snowflake, 291

L’Hopital’s rule, 93
LaSalle’s invariance principle, 213
laser, 82
L’Hopital’s rule, 35
Li-Yorke theorem, 94, 96, 105
Liapunov exponent λ, 130
Liapunov exponents, 132
Liapunov functions for nonlinear maps,

207

Liapunov number, 278
Liapunov stability theorem, 209
linear fractional transformation, 352
linear map, 3, 9
linear maps/difference equations, 9
linear maps vs. linear systems, 171
linear system, 179
linear systems revisited, 215
linearization, 219
linearly conjugate, 156
logistic delay equation, 222
logistic map, 3, 43, 81
Lorenz map, 105, 107
Lorenz system, 230

magnification of error, 131
Mandelbrot set, 375
Mandelbrot sets, 342
manifold theory, 242
map

affine, 10
Baker, 42, 135
cat, 258
chaotic orbit of a, 134
complex cubic, 372
continuous, 140
double angle, 158
example of a chaotic, 268
expansive, 135
Hénon, 230, 272
horseshoe, 271
horseshoe and Hénon, 268
identity, 9
kicked rotator and the Hénon,

228
Liapunov functions for nonlin-

ear, 207
linear, 3, 9, 171
logistic, 3, 43, 81
Lorenz, 105, 107
nonlinear, 343
piecewise linear, 17
quadratic, 21, 26
Smale’s horseshoe, 268
square root, 345
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stability of one dimensional, 1
stability of two-dimensional, 171
tent, 17, 21, 40, 107, 121, 123,

129
topologically transitive, 261
vs. difference equations, 2
vs. differential equations, 4

mapping by functions on the com-
plex domain, 342

mathematical foundation of fractals,
330

mean value theorem, 26
Menger sponge, 312
minimal period, 36
Möbius transformation, 352
model for gonorrhea, 233
µ∞, 50
mystery of period 3, 94

Neimark-Sacker bifurcation, 242, 250
Newton’s algorithm, 27
Newton’s function, 27
Newton’s method, 24
Newton’s method in the complex plane,

371
nonhyperbolic, 25
nonhyperbolic fixed points, 28
nonlinear, 3
nonlinear maps, 343
nonwandering, 261
not self-similar fractal, 306
numerical scheme to compute Liapunov

exponents, 132

odd periods, 99
open balls, 352
orbit of a point, 2
oscillatory, 9

pathwise connected, 364
perennial grass, 236
period 3-window, 50
period doubling, 81
period-doubling route to chaos, 43
period of a bulb, 380

Period-Doubling in the Real World,
108

periodic point, 36
periodic points and their stability, 36
periodic windows, 50
periods

2nx, 99, 100
odd, 99
powers of 2, 99, 102

permutation, 267
phase space diagrams, 184
physics, plasma, 119
piecewise linear map, 17
Pielou logistic delay equation, 222
Pielou’s logistic equation, 23
pinball machine, 120
pitchfork bifurcation, 88
point

and their stability, periodic, 36
asymptotically stable, 195
attracting, 195
branch, 347
equilibrium, 15
eventually periodic, 36
fixed, 15, 43
fixed equilibrium, 14
globally asymptotically stable, 195
globally attracting, 195
hyperbolic fixed, 25
nonhyperbolic fixed, 28
nonwandering, 261
of a map, eventually fixed, 15
orbit of, 2
periodic, 36, 123, 224
repelling periodic, 367
set of periodic, 259
stable, 195
superattracting fixed points and

periodic, 53
transverse homoclinic, 274
unstable, 195

population biology, 2
population dynamics, 119
positively invariant, 63
principle of dichotomy, 375
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pythagorean tree, 293

q curve, 54
quadratic map, 21, 26

Raphson-Newton’s method, 27
reducible, 265
Ricker map, 68, 92
Riemann sphere, 351
Rössler attractor, 113, 163

saddle-node, 81
saddle node bifurcation, 379
Saturn’s Rings, 167
Schwarzian derivative, 30
second-order difference equations, 181
self-similar, 319
semiconjugacy, 157
semiconjugate, 157
semistability definition, 35
sensitive dependence, 129
sensitivity, 129
sequence space, 149, 151, 154
set

algorithm for the filled Julia, 360
algorithm for the Mandelbrot, 377
Cantor, 152, 269
Cantor middle-third, 144
chaos on the Julia, 369
connected, 364
encirclement of the filled Julia,

360
filled Julia, 354
Julia, 354
Julia and Mandelbrot, 342
Mandelbrot, 375
of measure zero, 146
of periodic points, 123, 259
of solutions, 179
topological properties of the Ju-

lia, 364
uncountable, 146

Sharkovsky’s theorem, 95, 115
Sharkovsky’s theorem and bifurcation,

94

Sierpinski gasket, 319
Sierpinski triangle or gasket, 289
similar matrices, 173
Singer’s theorem, 380
sink, 19
6-periodic cycle, attracting, 77
Smale’s horseshoe map, 268
solution, 3
spectral radius, 195
square root map, 345
stability

criteria for, 25
graphical iteration and, 19
notions, 192
of hyperbolic fixed points, 224
of linear systems, 197
of one-dimensional maps, 1
of two-dimensional maps, 171
periodic points and their, 36
theorem for complex functions,

350
theorem, Liapunov, 209
theory, 19
via linearization, 219

stable, 19, 195
asymptotically, 19, 25, 343
globally asymptotically, 19
manifold theorem, 225
subspace, 192

steady states, 15
step size, 4
strange attractor, 107, 233
subshift of finite type, 263∑+

2 , 149
superattracing root theorem, 54
superattracting fixed points and pe-

riodic points, 53
symbolic dynamics, 149, 262

tangent bifurcation, 81
tent map, 17, 21, 40, 107, 121, 129
ternary representation of k, 145
theorem

Bolzano-Weierstrass, 337
collage, 338
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converse of Sharkovsky’s, 99
Elaydi-Yakubu, 62, 67
Hartman-Grobman, 224
implicit function, 86
intermediate value, 18, 96
Li-Yorke, 94, 96
Liapunov stability, 209
main stability, 350
mean value, 26
Neimark-Sacker, 254
remarks about Singer’s, 75
Sharkovsky’s, 94, 95
Singer’s, 380
stable manifold, 225
superattracing root, 54

theory of dynamical systems, 354
3-periodic cycle, attracting, 77
threshold radius, 360
topological dimension, 301
topologically transitive, 259
trace-determinant analysis, 280
trace determinant plane, 200, 204
transcritical bifurcation, 88
transition matrix, 264, 265, 267
transitivity, 124, 139
transitivity implies chaos, 139
transverse homoclinic point, 274
triangle inequality for complex num-

bers, 342
turbulent flow of fluids, 119

uncountable set, 146
unimodal, 47
union, 319
unstable, 19, 25, 195
unstable subspace, 192

weather forecasting, 119
well-ordering principle, 333
window 3, 77
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