Verification and Validation of Simulation Models

Radu Trîmbiţaş

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Model Output

Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data

Summarv

References

Verification and Validation of Simulation Models

Impressive slide presentations

Radu Trîmbițaș

Faculty of Math and CS - UBB

1st Semester 2010-2011

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Purpose and Overview

The goal of the validation process is:

- To produce a model that represents true behavior closely enough for decision-making purposes
- To increase the model's credibility to an acceptable level
- Validation is an integral part of model development:
 - Verification: building the model correctly, correctly implemented with good input and structure
 - Validation: building the correct model, an accurate representation of the real system
- Most methods are informal subjective comparisons while a few are formal statistical procedures

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview

Modeling-Building, Verification and Validation Verification Examination of Model Output

Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data

Summar

Modeling-Building, Verification and Validation

Steps in Model-Building

- Observing the real system and the interactions among their various components and of collecting data on their behavior.
- Construction of a conceptual model
- Implementation of an operational model

References

Verification and

Validation of Simulation Models

Verification

- Purpose: ensure the conceptual model is reflected accurately in the computerized representation.
- Many common-sense suggestions, for example:
 - Have someone else check the model.
 - Make a flow diagram that includes each logically possible action a system can take when an event occurs.
 - Closely examine the model output for reasonableness under a variety of input parameter settings.
 - Print the input parameters at the end of the simulation, make sure they have not been changed inadvertently.
 - Make the operational model as self-documenting as possible.
 - If the operational model is animated, verify that what is seen in the animation imitates the actual system.
 - Use the debugger.
 - If possible use a graphical representation of the model.

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation

Verification

Examination of Model Output Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summar

Examination of Model Output for Reasonableness I

- Two statistics that give a quick indication of model reasonableness are *current contents* and *total counts*
 - Current content: The number of items in each component of the system at a given time.
 - Total counts: Total number of items that have entered each component of the system by a given time.
- Compute certain long-run measures of performance, e.g. compute the long-run server utilization and compare to simulation results.
- A model of a complex network of queues consisting of many service centers.
 - If the current content grows in a more or less linear fashion as the simulation run time increases, it is likely that a queue is unstable

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation

Examination of Model Output

Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summar

References

Examination of Model Output for Reasonableness II

- If the total count for some subsystem is zero, indicates no items entered that subsystem, a highly suspect occurrence
- If the total and current count are equal to one, can indicate that an entity has captured a resource but never freed that resource.

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation

Examination of Model Output

Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformations Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summary

Other Important Tools

Documentation

- A means of clarifying the logic of a model and verifying its completeness.
- Comment the operational model, definition of all variables and parameters.
- Use of a trace
 - A detailed printout of the state of the simulation model over time.
 - Can be very labor intensive if the programming language does not support statistic collection.
 - Labor can be reduced by a centralized tracing mechanism
 - In object-oriented simulation framework, trace support can be integrated into class hierarchy. New classes need only to add little for the trace support.

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Model Output

Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summar

Trace - Example

- Simple queue Lecture 2
- Trace over a time interval [0, 16]
- Allows the test of the results by pen-and-paper method

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Model Output

Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summary

References

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ― 臣 … のへ(

Calibration and Validation

- Validation: the overall process of comparing the model and its behavior to the real system.
- Calibration: the iterative process of comparing the model to the real system and making adjustments.

- Subjective tests
 - People who are knowledgeable about the system
- Objective tests
 - Requires data on the real system's behavior and the output of the model

Verification and Validation of Simulation Models

Radu Trîmbiţaş

Validation

Purpose and Overviet Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summary

References

Calibration and Validation

- Danger during the calibration phase
 - Typically few data sets are available, in the worst case only one, and the model is only validated for these.
 - Solution: If possible collect new data sets
- No model is ever a perfect representation of the system
 - The modeler must weigh the possible, but not guaranteed, increase in model accuracy versus the cost of increased validation effort.
- Three-step approach for validation:
 - 1. Build a model that has high face validity.
 - 2. Validate model assumptions.
 - 3. Compare the model input-output transformations with the real system's data.

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overvie Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation

Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summar

References

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

High Face Validity

- Ensure a high degree of realism:
 - Potential users should be involved in model construction from its conceptualization to its implementation.
- Sensitivity analysis can also be used to check a model's face validity.
 - Example: In most queueing systems, if the arrival rate of customers were to increase, it would be expected that server utilization, queue length and delays would tend to increase.
 - For large-scale simulation models, there are many input variables and thus possibly many sensitity tests.
 - Sometimes not possible to perform all of theses tests, select the most critical ones.

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overviet Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation

Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summar

Validate Model Assumptions

- General classes of model assumptions:
 - Structural assumptions: how the system operates.
 - Data assumptions: reliability of data and its statistical analysis.
- Bank example: customer queueing and service facility in a bank.
 - Structural assumptions
 - Customer waiting in one line versus many lines
 - Customers are served according FCFS versus priority
 - Data assumptions, e.g., interarrival time of customers, service times for commercial accounts.
 - Verify data reliability with bank managers
 - Test correlation and goodness of fit for data

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overviet Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation

Validate Model Assumptions

Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summar

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Validate Input-Output Transformation

- Goal: Validate the model's ability to predict future behavior
 - The only objective test of the model.
 - The structure of the model should be accurate enough to make good predictions for the range of input data sets of interest.
- One possible approach: use historical data that have been reserved for validation purposes only.
- Criteria: use the main responses of interest.

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overvie Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation

Face Validity

Validate Model Assumptions

Validate Input-Output Transformation

Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summary

Bank Example

- Example: One drive-in window serviced by one teller, only one or two transactions are allowed.
 - Data collection: 90 customers during 11 am to 1 pm.
 - Observed service times {Si, i = 1, 2, ..., 90}.
 - Observed interarrival times {Ai, i = 1,2, ..., 90}.
 - Data analysis let to the conclusion that:
- Interarrival times: exp. distr. with rate $\lambda=45$
- Service times: $N(1.1, 0.22^2)$

Input vars

- 日本 - 1 日本 - 日本 - 日本 - 日本

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overvie Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation

Face Validity

Validate Model Assumptions

Validate Input-Output Transformation

Bank Example

Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summary

Bank Example – The Black Box

- A model was developed in close consultation with bank management and employees
- Model assumptions were validated
- Resulting model is now viewed as a "black box":

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model

. Validate Input-Output Transformation

Bank Example

Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summar

References

Comparison with Real System Data

- Real system data are necessary for validation.
 - System responses should have been collected during the same time period (from 11am to 1pm on the same day.)
- Compare the average delay from the model Y₂ with the actual delay Z₂:
 - Average delay observed, Z₂ = 4.3 minutes, consider this to be the true mean value µ₀ = 4.3.
 - ▶ When the model is run with generated random variates X_{1n} and X_{2n}, Y₂ should be close to Z₂.

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation

Validate Model Assumptions

Validate Input-Output Transformation

Bank Example

Comparison with Real System Data

Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summar

Comparison with Real System Data

 Six statistically independent replications of the model, each of 2-hour duration, are run.

Replication	Y ₄ Arrivals/Hour	Y _s Service Time [Minutes]	Y ₂ Average Delay [Minutes]
1	51	1.07	2.79
2	40	1.12	1.12
3	45.5	1.06	2.24
4	50.5	1.10	3.45
5	53	1.09	3.13
6	49	1.07	2.38
Sample mean			2.51
Standard deviation			0.82

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Out

Transformation Bank Example

Comparison with Real System Data

Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summary

References

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - の久

Hypothesis Testing I

- Compare the average delay from the model Y₂ with the actual delay Z₂
- Null hypothesis testing: evaluate whether the simulation and the real system are the same (w.r.t. output measures):

 $H_0: E(Y_2) = 4.3 \text{ min}$ $H_1: E(Y_2) \neq 4.3 \text{ min}$

- If H₀ is not rejected, then, there is no reason to consider the model invalid
- If H₀ is rejected, the current version of the model is rejected, and the modeler needs to improve the model
- Conduct the t test:
- ► Chose level of significance (α = 0.5) and sample size (n = 6).

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data

Hypothesis Testing

Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summar

Hypothesis Testing II

Compute the same mean and sample standard deviation over the n replications:

$$\overline{Y}_2 = \frac{1}{n} \sum_{i=1}^n Y_{2i} = 2.51 \, \text{min} \qquad S = \sqrt{\frac{\sum_{i=1}^n (Y_{2i} - \overline{Y}_2)}{n-1}}$$

Compute test statistics (two-sided test):

$$|t_0| = \left|\frac{Y_2 - \mu_0}{\frac{S}{\sqrt{n}}}\right| = \left|\frac{2.51 - 4.3}{0.82\sqrt{6}}\right| = 5.36 > t_{crit} = 2.571$$

- ► Hence, reject H₀. Conclude that the model is inadequate.
- Check: the assumptions justifying a t test, that the observations (Y_{2i}) are normally and independently distributed.

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overvie Modeling-Building, Verification and Validation Examination of Mod Output Other Important Tools Calibration and Validation

> Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using Historical Input Data

Summar

Hypothesis Testing III

Similarly, compare the model output with the observed output for other measures: $Y_4 \leftrightarrow Z_4$, $Y_5 \leftrightarrow Z_5$, and $Y_6 \leftrightarrow Z_6$

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overvie Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real

Hypothesis Testing

Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summar

References

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 ○ の � !

Type II Error I

- For validation, the power of the test is:
 - Probability[detecting an invalid model] = 1β
 - β = P(Type II error) = P(failing to reject H₀|H₁ is true)
 - Consider failure to reject H₀ as a strong conclusion, the modeler would want β to be small.
 - Value of β depends on:
 - Sample size, n
 - The true difference, δ , between E(Y) and μ :

$$\delta = \frac{|E(Y) - \mu}{\sigma}$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- In general, the best approach to control β error is:
 - Specify the critical difference, δ .
 - Choose a sample size, n, by making use of the operating characteristics curve (OC curve).

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing **Tyoe II Error**

Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summary

Type II Error II

 Operating characteristics curve (OC curve) is the graph of the probability of a type II error β(δ) versus δ for a given sample size n

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Model Output

Other Important Tools

Calibration and Validation

Calibration and Validation

Face Validity

Assumptions

Validate Input-Output Transformation

Bank Example

Comparison with Real System Data Hypothesis Testing

Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summary

References

(ロ) (部) (E) (E) (E) (の)

Type I and II Error

- Type I error (α) :
 - Error of rejecting a valid model.
 - Controlled by specifying a small level of significance α .
- Type II error (β):
 - Error of accepting a model as valid when it is invalid.
 - Controlled by specifying critical difference and find the n.
- For a fixed sample size *n*, increasing α will decrease β .

Statistical Terminology	Modeling Terminology	Associated Risk
Type I: rejecting H_0 when H_0 is true	Rejecting a valid model	α
Type II: failure to reject ${\rm H_0}$ when ${\rm H_1}$ is true	Failure to reject an invalid model	β

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing **Tyoe II Error**

Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summary

References

Confidence Interval Testing I

- Confidence interval testing: evaluate whether the simulation and the real system performance measures are close enough.
- If Y is the simulation output, and $\mu = E(Y)$
- ▶ The confidence interval (CI) for µ is:

$$\overline{Y} \pm t_{\alpha/2,n-1} \frac{S}{\sqrt{n}}$$

- Validating the model ɛ is a difference value chosen by the analyst, that is small enough to allow valid decisions to be based on simulations:
 - Suppose the CI does not contain µ₀:
 - If the best-case error is $> \varepsilon$, model needs to be refined.
 - If the worst-case error is $\leq \varepsilon$, accept the model.
 - ► If best-case error is ≤ *ε*, additional replications are necessary.

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval

Testing Using Historical Input Data Using a Turing Test

Summar

Confidence Interval Testing II

- Suppose the CI contains µ₀:
 - If either the best-case or worst-case error is > ε, additional replications are necessary.
 - If the worst-case error is $\leq \varepsilon$, accept the model.

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error **Confidence Interval Testing**

Using Historical Input Data Using a Turing Test

Summary

Confidence Interval Testing – Bank example

- μ₀ = 4.3, and "close enough" is ε = 1 minute of expected customer delay.
- A 95% confidence interval, based on the 6 replications is [1.65, 3.37] because:

$$\overline{Y} \pm t_{0.025,5} \frac{S}{\sqrt{n}} = 2.51 \pm 2.571 \cdot \frac{0.82}{\sqrt{6}}$$

• $\mu_0 = 4.3$ falls outside the confidence interval,

- the best case |3.37 4.3| = 0.93 < 1, but
- - the worst case |1.65 4.3| = 2.65 > 1
- Additional replications are needed to reach a decision.

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing

Using Historical Input Data Using a Turing Test

Summary

Using Historical Input Data

An alternative to generating input data:

- Use the actual historical record.
- Drive the simulation model with the historical record and then compare model output to system data.
- In the bank example, use the recorded interarrival and service times for the customers

$$\{(A_n, S_n), n = 1, 2, \ldots\}$$

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

 Procedure and validation process: similar to the approach used for system generated input data.

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test Summary

Using a Turing Test I

- Use in addition to statistical test, or when no statistical test is readily applicable.
- Turing Test
 - Described by Alan Turing in 1950. A human jugde is involved in a natural language conversation with a human and a machine. If the judge cannot reliably tell which of the partners is the machine, then the machine has passed the test.
- Utilize persons' knowledge about the system.
- For example:
 - Present 10 system performance reports to a manager of the system.
- Five of them are from the real system and the rest are "fake" reports based on simulation output data.

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Model Output Other Important

Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data

Summar

Using a Turing Test II

- If the person identifies a substantial number of the fake reports, interview the person to get information for model improvement.
- If the person cannot distinguish between fake and real reports with consistency, conclude that the test gives no evidence of model inadequacy.

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Model Output Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Using a Turing Test Summary

Summary

- Model validation is essential:
 - Model verification
 - Calibration and validation
 - Conceptual validation
- Best to compare system data to model data, and make comparison using a wide variety of techniques.
- Some techniques that we covered:
 - Insure high face validity by consulting knowledgeable persons.
 - Conduct simple statistical tests on assumed distributional forms.
 - Conduct a Turing test.
 - Compare model output to system output by statistical tests.

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overviet Modeling-Building, Verification and Validation Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summary

References

(ロ) (部) (E) (E) (E) (の)

References

Averill M. Law, Simulation Modeling and Analysis, McGraw-Hill, 2007

J. Banks, J. S. Carson II, B. L. Nelson, D. M. Nicol, Discrete-Event System Simulation, Prentice Hall, 2005

J. Banks (ed), Handbook of Simulation, Wiley, 1998, Chapter 9

Verification and Validation of Simulation Models

Radu Trîmbițaș

Validation

Purpose and Overview Modeling-Building, Verification and Validation Verification Examination of Mode Output Other Important Tools

Calibration and Validation

Calibration and Validation Face Validity Validate Model Assumptions Validate Input-Output Transformation Bank Example Comparison with Real System Data Hypothesis Testing Type II Error Confidence Interval Testing Using Historical Input Data Using a Turing Test

Summar

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへ(