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Introduction

All the randomness required by the model is simulated by a random
number generator (RNG)

The output of a RNG is assumed to be a sequence of i.i.d. r.v.
U(0, 1)

These random numbers are transformed as needed to simulate r.v.
from different probability distributions

The validity of transformation methods depend strongly on i.i.d.
U(0,1) assumption

This assumption is false, since RNG are simple deterministic programs
trying to fool the users by producing a deterministic sequence that
looks random
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Properties of Random Numbers

Two important statistical properties:

Uniformity
Independence.

Random Number, Ri , must be independently drawn from a uniform
distribution with pdf and cdf:

f (x) =

{
1, 0 ≤ x ≤ 1
0, otherwise

F (x) =


0, x < 0
x , 0 ≤ x ≤ 1
1, x > 1

E (X ) =
1

2
, V (X ) =

1

12
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Properties

Consequences of the uniformity and independence properties:

1 if [0, 1] is divided into n clases of equal length, the expected number
of observations in each interval is N/n, where N is the total number
of observations

2 The probability of observing a value in a particular interval is
independent of the previous value drawn

Radu Tr̂ımbiţaş (Faculty of Math. and CS) Random Number Generation 1st Semester 2010-2011 4 / 45



Generation of Pseudo-Random Numbers

“Pseudo”, because generating numbers using a known method
removes the potential for true randomness.

Goal: To produce a sequence of numbers in [0,1] that simulates, or
imitates, the ideal properties of random numbers (RN).

Problems or errors (departure from ideal randomness)

1 generated numbers may not be u.d.
2 discrete instead of continuous values
3 mean and/or variance too high or too low
4 dependence

1 autocorrelation
2 number successively higher or lower than adjacent numbers
3 several numbers above the mean followed by several numbers below the

mean
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Generation of Pseudo-Random Numbers II

Important considerations in RN routines:

1 fast - a large number of RN is required - total cost maintained
reasonable

2 portable - to different computers, OS, and programming languages

3 have sufficiently long period - period must be longer than the
numbers of events to be generated

4 replicable - given the starting point (or conditions) it should be
possible to generate the same set of random numbers, independent of
the system to be simulated; useful for debugging and comparison

5 Closely approximate the ideal statistical properties of uniformity and
independence.
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Techniques for Generating Random Numbers

Inventing techniques that seems to generate RN is easy

Inventing techniques that really do produces sequences that appear to
be independent, u.d. RN is incredibly difficult

Techniques:

1 Linear Congruential Method (LCM).
2 Combined Linear Congruential Generators (CLCG).
3 Feedback Shift Register Generators (FSRG)
4 Random-Number Streams.

Radu Tr̂ımbiţaş (Faculty of Math. and CS) Random Number Generation 1st Semester 2010-2011 7 / 45



Linear Congruential Method

To produce a sequence of integers, X1, X2, . . . between 0 and m− 1
by following a recursive relationship:

Xi+1 = (aXi + c)mod m, i = 0, 1, . . . (1)

a multiplier, c increment, m modulus, X0 seed, called Linear
Congruential Generator (LCG)

c = 0 Multiplicative Congruential Generator (MCG)

The selection of the values for a, c , m, and X0 drastically affects the
statistical properties and the cycle length.

The random integers are being generated [0, m− 1], and to convert
the integers to random numbers:

Ri =
Xi

m
, i = 1, 2, . . .
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Example

Use X 0 = 27, a = 17, c = 43, and m = 100.

The Xi and Ri values are:

X 1 = (17 · 27 + 43)mod 100 = 502 mod 100 = 2, R1 = 0.02;

X 2 = (17 · 2 + 32)mod 100 = 77, R2 = 0.77;

X 3 = (17 · 77 + 32)mod 100 = 52, R3 = 0.52;

· · ·
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Characteristics of a Good Generator

Maximum Density

Such that the values assumed by Ri , i = 1, 2, . . ., leave no large gaps
on [0, 1]
Problem: Instead of continuous, each Ri is discrete
Solution: a very large integer for modulus m
Approximation appears to be of little consequence

Maximum Period

To achieve maximum density and avoid cycling.
Achieved by: proper choice of a, c , m, and X0.

Most digital computers use a binary representation of numbers

Speed and efficiency are aided by a modulus, m, to be (or close to) a
power of 2.
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Maximum period I

Theorem (Hull and Dobell,1962)

The LCG defined by (1) has the full period iff the following three
conditions hold:

(a) (m, c) = 1

(b) q prime, q|m =⇒ q|a− 1

(c) 4|m =⇒ 4|a− 1

Corollary

Xi+1 = (aXi + c)mod 2n (c , n > 1) has the full period if c is odd and
a = 4k + 1 for some k.

Theorem

Xi+1 = aXi mod 2n had period at most 2n−2. This can be achieved when
X0 is odd and a = 8k + 3 or a = 8k + 5 for some k.
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Maximum period II

For m = 2b, and c 6= 0, maximum period is P = m = 2b – achieved
when (c, m) = 1, a = 4k + 1, k integer

For m = 2b, and c = 0, maximum period is P = m/4 = 2b−2 –
achieved when X0 odd and a = 8k + 3 or a = 8k + 5, k natural

For m prime and c = 0, P = m− 1 – achieved when
min{k : m|ak − 1} = m− 1
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Combined Linear Congruential Generators

Reason: Longer period generator is needed because of the increasing
complexity of stimulated systems.

Approach: Combine two or more multiplicative congruential
generators.

Let Xi ,1, Xi ,2, . . . , Xi ,k , be the ith output from k different
multiplicative congruential generators.

The jth generator:
Has prime modulus mj and multiplier aj and period is mj − 1
Produces integers Xi ,j is approx ˜Uniform on integers in [1, m− 1]

Wi ,j = Xi ,j − 1 is approx ˜Uniform on integers in [1,m− 2]
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Combined Linear Congruential Generators II

Suggested form Xi ,1, Xi ,2, . . . , Xi ,k be k MCG with modulus mi ,
multiplier ai and period mi − 1:

Xi =

(
k

∑
j=1

(−1)j−1Xi ,j

)
mod m1 − 1

with

Ri =

{
Xi
m , Xi > 0

m1−1
m , Xi = 0

the maximum period is

P =
(m1 − 1)(m2 − 1) . . . (mk − 1)

2k−1
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Example

For 32-bit computers, L’Ecuyer [1988] suggests combining k = 2
generators with m1 = 2, 147, 483, 563, a1 = 40, 014,
m2 = 2, 147, 483, 399 and a2 = 20, 692. The algorithm becomes:

Step 1 X1,0 in the range [1; 2, 147, 483, 562] for the 1st
generator, X2,0 in the range[1; 2, 147, 483, 398] for the
2nd generator. Set j = 0

Step 2 For each individual generator

X1,j+1 = 40, 014X1,j mod 2, 147, 483, 563

X2,j+1 = 40, 692X1,j mod 2, 147, 483, 399

Step 3 Xj+1 = (X1,j+1 − X2,j+1)mod 2, 147, 483, 562.
Step 4 Return

Rj+1 =


Xj+1

2, 147, 483, 563
Xj+1 > 0

2, 147, 483, 562

2, 147, 483, 563
Xj+1 = 0
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Feedback Shift Register Generators

Tausworthe, 1965

Define a sequence of binary digits by

bi = (c1bi−1 + c2bi−2 + · · ·+ cqbi−q)mod 2, ci ∈ {0, 1}, cq = 1
(2)

in practice, only two cj coefficients are nonzero

bi = (bi−r + bi−q)mod 2, 0 < r < q (3)

addition modulo 2 is equivalent to xor ⊕
b1, . . . , bq must be given
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Feedback Shift Register Generators II

To form a sequence of binary integers W1, W2, . . . we group `
consecutive bi ’s and consider this as a number in base 2

W1 = b1b2 · · · b`
Wi = b(i−1)`+1b(i−1)`+2 · · · bi`, i = 2, 3, . . .

The recurrence is
Wi = Wi−r ⊕Wi−q

finally

Ui =
Wi

2`

if (`, 2q − 1) = 1 the period is 2q − 1
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Feedback Shift Register Generators III

Figure: A LFSR for (3) with r = 3 and q = 5

The name comes from a switching circuit linear feedback shift register
LFSR
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Feedback Shift Register Generators IV

generalized feedback shift register GFSR (Lewis and Payne, 1973)

to obtain a sequence of `-bit binary integer Y1, Y2, . . . the sequence
produced by (3) is used to fill the first leftmost bit of the integers
beeing formed

That is b1, b2, ... are used for the first position, b1+d , b2+d , . . . will fill
the second position, ..., b1+(`−1)d , b2+(`−1)d , . . . will fill the `-th
position

The recurrence
Yi = Yi−r ⊕ Yi−q

period 2q − 1 if Y1, Y2, . . . , Yq are linear independent with
coefficients in Z2.
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Feedback Shift Register Generators IV I

twisted GFSR (TGSFR) (Matsumoto and Kurita, 1992, 1994)

Yi = Yi−r ⊕ AYi−q

Ui = TYi

where Yi ’s are `× 1 vectors and A and T are `× ` matrices (with
binary elements)

period 2q` − 1 (q` = 800)

if A = I` GFSR

Mersenne twister (Matsumoto, Nishimura 1998) a TGSFR with
period 2q`−p − 1 (q`− p = 19937, the period is a Mersenne prime,
i.e. a prime of the form 2p − 1, for some p)

Yi = Yi−r ⊕ A
(

Y
(`−p)
i−q |Y

(p)
i−q+1

)
Ui = TYi
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Random-Numbers Streams

The seed for a linear congruential random-number generator:

Is the integer value X0 that initializes the random-number sequence.
Any value in the sequence can be used to “seed” the generator.

A random-number stream:

Refers to a starting seed taken from the sequence X0, X1, . . . , XP .
If the streams are b values apart, then stream i could defined by
starting seed:

Si = Xb(i−1)

Older generators: b = 105; Newer generators: b = 1037.

A single random-number generator with k streams can act like k
distinct virtual random-number generators

To compare two or more alternative systems.

Advantageous to dedicate portions of the pseudo-random number
sequence to the same purpose in each of the simulated systems.
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Tests for Random Numbers

Two categories:

Testing for uniformity:

H0 : Ri ∼ U [0, 1]

H1 : Ri � U [0, 1]

Failure to reject the null hypothesis, H0, means that evidence of
non-uniformity has not been detected.
Testing for independence:

H0 : Ri independent

H1 : Ri¬independent

Failure to reject the null hypothesis, H0, means that evidence of
dependence has not been detected.

Level of significance α, the probability of rejecting H0 when it is true:

α = P (reject H0|H0 is true)
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Tests for Random Numbers II

When to use these tests:

If a well-known simulation languages or random-number generators is
used, it is probably unnecessary to test
If the generator is not explicitly known or documented, e.g.,
spreadsheet programs, symbolic/numerical calculators, tests should be
applied to many sample numbers.

Types of tests:

Theoretical tests: evaluate the choices of m, a, and c without actually
generating any numbers
Empirical tests: applied to actual sequences of numbers produced. Our
emphasis.
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Frequency Tests

Test of uniformity

Two different methods:

Kolmogorov-Smirnov test
Chi-square test
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Kolmogorov-Smirnov test I

Let X be a continuous characteristic and F its theoretical cdf. We wish to
test the null hypothesis H0 : F = F0 versus one of the alternative
1. Ha : F 6= F0 (two-tailed test)
2. Ha : F > F0 (upper-tailed test)
3. Ha : F < F0 (lower-tailed test)
Test statistics

Dn = sup
x∈R

{|F n(x)− F0(x)|}

D+
n = sup

x∈R

{F n(x)− F0(x)}

D−n = sup
x∈R

{F0(x)− F n(x)}

where F n is the empirical cdf.
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Kolmogorov-Smirnov test II

Kolmogorov’s theorem ⇒

lim
n→∞

P(
√

nDn ≤ x |H0) = K (x) =
+∞

∑
k=−∞

(−1)ke−2k2x2
, x > 0.

Also,

lim
n→∞

P(
√

nD+
n ≤ x) = lim

n→∞
(
√

nD−n ≤ x) = K±(x) = 1− e−2x2
, x > 0

K± is called χ-law (not χ2) with 2 degrees of freedom. So, for α ∈ (0, 1)
fixed we compute the quantiles k1−α and k±1−α such that

P(
√

nDn ≤ k1−α) = 1− α, i.e. K (k1−α) = 1− α,

for a two-tailed test, and

P(
√

nD+
n ≤ k±1−α) = 1− α and P(

√
nD−n ≤ k±1−α) = 1− α
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Kolmogorov-Smirnov test III

that is K±(k±1−α) = 1− α for one-tailed tests.
As a conclusion, H0 should not be rejected when

√
ndn < k1−α for Ha : F = F0

√
nd+

n < k±1−α for Ha : F > F0
√

nd−n < k±1−α for Ha : F < F0

For a practical implementation we follow a probability based approach.
It is a good practice to sort the sample values in ascending order:

x1 < x2 < · · · < xn.

In this case, for the value of test statistics one gets

d+
n = max

k=1,n
{F n(xk)− F0(xk)} = max

k=1,n

{
k

n
− F0(xk)

}
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Kolmogorov-Smirnov test IV

d−n = {F0(xk)− F n(xk − 0)} = max
k=1,n

{
F0(xk)−

k − 1

n

}
dn = max

k=1,n
{|F n(xk)− F0(xk)|} = max{d+

n , d−n }

For grouped data we can employ the test using class limits.
In our case F0(x) = x for x ∈ [0, 1].
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Example

Example: Suppose 5 generated numbers are 0.44, 0.81, 0.14,0.05,
0.93.

Sort them: 0.05, 0.14, 0.44, 0.81, 0.93

k/N: 0.20, 0.40, 0.60, 0.80, 1.00

k/N − Rk : 0.15, 0.26, 0.16, 0, 0.07

Rk − (k − 1)/N: 0.05, 0, 0.04, 0.21, 0.13

d+ = 0.26, d− = 0.21, dN = max(d+, d−) = 0.26

K (0.26) = .326508528e − 4 < 1− α, fail to reject H0
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Chi-square test I

Chi-square test uses the sample statistic:

X 2
0 =

n

∑
i=0

(Oi − Ei )2

Ei

Ei # of expected in the ith class, Oi # of observed in the ith class

Approximately the chi-square distribution with n− 1 degrees of
freedom χ2(n− 1)

For the uniform distribution, Ei , the expected number in the each
class is:

Ei =
N

n

where N is the total # of observation

Valid only for large samples, e.g. N ≥ 50, at least 5 observations in a
class
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Chi-square test II

For large values of k we can use the approximation

χ2
k−1,1−α ≈ (k − 1)

[
1− 2

9(k − 1)
+ z1−α

√
2

9(k − 1)

]

Serial test - tests if the nonoverlapping d-tuples
U1 = (U1, U2, . . . , Ud ), U2 = (Ud+1, Ud+2, . . . , U2d ), . . . are IID
uniform random vectors on [0, 1]d

Divide [0, 1] into k subintervals of equal length and generate
U1, . . . ,Un (nd Ui ’s)

The test statistics is

X 2(d) =
kd

n

d

∑
j1=1

d

∑
j2=1

· · ·
d

∑
jd=1

(
fj1j2...jd −

n

kd

)2
,

where fj1j2...jd is the frequency of class Ij1j2 ...jd
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Chi-square test III

X 2(d) is assymptotic chi-square distributed with kd − 1 degrees of
freedom χ2(kd − 1)
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Tests for Autocorrelation

Testing the autocorrelation between every m numbers (m is a.k.a. the
lag), starting with the ith number

The autocorrelation ρim between numbers: Ri , Ri+m, Ri+2m, . . . ,
Ri+(M+1)m

M is the largest integer such that i + (M + 1)m ≤ N

Hypothesis:

H0 : ρim = 0

H1 : ρim 6= 0

If the values are uncorrelated:

For large values of M, the distribution of the estimator of ρim, denoted
ρ̂im is approximately normal.
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Tests for Autocorrelation

Test statistics is:

Z0 =
ρ̂im
σ̂

Z0 is distributed normally with mean = 0 and variance = 1, and:

ρ̂im =
1

M + 1

[
m

∑
k=0

Ri+kmRi+(k+1)m

]
− 0.25

σ̂ =

√
13M + 7

12 (M + 1)

If ρim > 0, the subsequence has positive autocorrelation – High
random numbers tend to be followed by high ones, and vice versa.

If ρim < 0, the subsequence has negative autocorrelation – Low
random numbers tend to be followed by high ones, and vice versa.
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Example

Test whether the 3rd, 8th, 13th, and so on, for the following output

0.12 0.01 0.23 0.28 0.89 0.64 0.28 0.83 0.75 0.93
0.99 0.15 0.33 0.35 0.91 0.60 0.27 0.75 0.83 0.88
0.68 0.49 0.05 0.43 0.95 0.19 0.36 0.69 0.69 0.87

Hence, α = 0.05, i = 3, m = 5, N = 30, and M = 4

ρ̂35 = −0.1945

σ̂ = 0.128

Z0 = −1.516 < z0.025 = 1.96

fail to reject
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Runs Tests for Independence I

Consider H0: R1, R2, . . . , Rn are independent.

Runs Tests. Consider some examples of coin tossing:

A) H, T, H, T, H, T, H, T, H, T,. . . (negative correlation)
B) H, H, H, H, H, T, T, T, T, T,. . . (positive correlation)
C) H, H, H, T, T, H, T, T, H, T,. . . (“just right”)

A run is a series of similar observations.

In A above, the runs are: “H”, “T”, “H”, “T”,. . . . (many runs)

In B, the runs are: “HHHHH”, “TTTTT”, . . . . (very few runs)

In C: “HHH”, “TT”, “H”, “TT”,. . . . (medium number of runs)

A runs test will reject the null hypothesis of independence if there are
“too many” or “too few” runs, whatever that means.
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Runs Tests for Independence II

Runs Test “Up and Down”. Consider the following sequence of
uniforms.

.41, .68, .89, .84, .74, .91, .55, .71, .36, .30, .09...

If the uniform increases, put a +; if it decreases, put a - (like H’s and
T’s). Get the sequence + + - - + - + - - - . . .

Here are the associated runs: ++, –, +, -, +, - - -, . . .

So do we have too many or two few runs?
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Runs Tests for Independence III

Let A denote the total number of runs “up and down” out of n
observations. (A = 6 in the above example.)

Amazing Fact: If n is large (at least 20) and the Rj ’s are actually
independent, then

A ∼ N

(
2n− 1

3
,

16n− 29

90

)
So if n = 100, we would expect around 67 runs!

We’ll reject the null hypothesis if A is too big or small. The
standardized test statistic is

Z0 =
A− E (A)√

V (A)

Thus, we reject H0 if |Z0| > zα/2. E.g., if α = 0.05, we reject if
|Z0| > 1.96
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Example

Suppose that n = 100. Then

A ∼ N

(
199

3
,

1571

90

)
So we could expect to see 66.7± 1.96

√
17.5 ≈ [58.5, 74.9] runs.

If we see anything out of that range, we’ll reject.
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Theoretical tests I

Theoretical tests do not require generation, they indicate how well a
generator can perform by looking at its structure and defining
constants - global tests (empirical tests are local).

for a full period LCG the average of Ui ’s over an entire cycle is
1
2 −

1
2m and the variance is 1

12 −
1

12m2 .

Marsaglia ”random numbers fall mainly in the planes” i.e. if U1, U2,
. . . is the sequence generated by a LCG, the overlaping d-tuples
(U1, U2, . . . , Ud ), (U2, U3, . . . , Ud+1), . . . fall in a relative small
number of (d − 1)-dimensional hyperplane passing through [0, 1]d .

Generation 100 pairs for two full period LCGs (Figure 3) and 2000
triples and plotting of lattice structure (Figure 2).
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Theoretical tests II

The following geometric quantities are of interest.

Minimum number of hyperplanes (in all directions). Find the
multiplier that maximizes this number.

Maximum distance between parallel hyperplanes. Find the multiplier
that minimizes this number.

Minimum Euclidean distance between adjacent k-tuples. Find the
multiplier that maximizes this number
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2D lattice structure for LCG
with m = 101 and a = 18

2D lattice structure for LCG
with m = 101 and a = 18
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Figure: 3D lattice structure for LCG RANDU with m = 231 and a = 65539
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Shortcomings

The test is not very sensitive for small values of M, particularly when
the numbers being tests are on the low side.

Problem when “fishing” for autocorrelation by performing numerous
tests:

If α = 0.05, there is a probability of 0.05 of rejecting a true hypothesis.
If 10 independent sequences are examined,

The probability of finding no significant autocorrelation, by chance
alone, is 0.9510 = 0.60.
Hence, the probability of detecting significant autocorrelation when it
does not exist = 40%
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