Review of Probability and Statistics Prob. for DES

Radu T. Trîmbițaș

UBB

1st Semester 2010-2011

Radu T. Trîmbiţaş (UBB)

Review of Probability and Statistics

1st Semester 2010-2011

- The world the model-builder sees is probabilistic rather than deterministic.
 - Some statistical model might well describe the variations.
- An appropriate model can be developed by sampling the phenomenon of interest:
 - Select a known distribution through educated guesses
 - Make estimate of the parameter(s)
 - Test for goodness of fit
- Intention:
 - Review several important probability distributions
 - Present some typical application of these models

2 / 21

- *trial* or *experiment*: term to describe any process or oucome whose outcome is not known in advance (i.e. it has a random behaviour)
- A *sample space*, *S*, is the set of all possible outcomes of an experiment
- $x \in S = elementary event$.
- $A \subseteq S$ event
- if $A \cap B = \emptyset$, events are called *mutually exclusive*

• A collection \mathcal{K} of events from S is a σ -field (σ -algebra)

•
$$\mathcal{K} \neq \emptyset$$

• $A \in \mathcal{K} \Longrightarrow \overline{A} \in \mathcal{K}$
• $A_n \in \mathcal{K}, \forall n \in \mathbb{N} \Longrightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{K}$

- (S, \mathcal{K}), \mathcal{K} σ -field in the sample space S is called *measurable space*
- $(A_i)_{i \in I}$, $A_i \in \mathcal{K}$ partition of S if $A_i \cap A_j = \emptyset$ and $\bigcup_{i \in I} A_i = S$

Definition

 $\mathcal{K} \ \sigma$ -field in $S, \ P : \mathcal{K} \rightarrow \mathbb{R}$ probability if

•
$$P(S) = 1$$

2
$$P(A) \ge 0$$
, for every $A \in \mathcal{K}$

◎ for any sequence $(A_n)_{n \in \mathbb{N}}$ of mutually exclusive events from \mathcal{K}

$$P\left(\bigcup_{n=1}^{\infty}A_n\right) = \sum_{n=1}^{\infty}P(A_n)$$
 (σ -additive)

 (S, \mathcal{K}, P) where (S, \mathcal{K}) measurable space, P probability - probability space

Conditional Probability

 (S, K, P) probability space, A, B ∈ K; the conditional probability of A given B is

$$P(A|B) = rac{P(A \cap B)}{P(B)},$$

provided P(B) > 0.

- (S, \mathcal{K}, P) probability space s. t. P(B) > 0. Then $(S, \mathcal{K}, P(.|B))$ is a probability space
- (Bayes' formula) (S, \mathcal{K}, P) probability space, $(A_i)_{i \in I}$ a partition of S, $P(A_i) > 0$, $i \in I$, $A \in \mathcal{K}$, s.t. P(A) > 0

$$P(A_j|A) = \frac{P(A_j) P(A|A_j)}{\sum\limits_{i \in I} P(A_i) P(A|A_i)}, \ \forall j \in I$$

• A is *independent* of B if

$$P(A \cap B) = P(A)P(B)$$

• $(A_n)_{n\in\mathbb{N}}$, $A_n\in\mathcal{K}$ is a sequence of independent events if

$$P(A_{i_1}\cap\cdots\cap A_{i_n})=P(A_{i_1})\cdots P(A_{i_n})$$

for each finite subset $\{i_1, \ldots, i_n\} \subset \mathbb{N}$

• $(A_n)_{n\in\mathbb{N}}$, $A_n\in\mathcal{K}$ is a sequence of pairwise independent events if

$$P(A_i \cap A_j) = P(A_i) \cap P(A_j), \quad i \neq j$$

• (S, \mathcal{K}, P) probability space, $A, B \in \mathcal{K}$ A, B independent $\iff \overline{A}, B$ independent $\iff A, \overline{B}$ independent $\iff \overline{A}, \overline{B}$ independent

Random Variables

• $(\mathbb{R}, \mathcal{B})$ $((\mathbb{R}^n, \mathcal{B}^n))$ the measurable space \mathbb{R} (\mathbb{R}^n) endowed with the σ -field generated by open sets

Definition

 $(\Omega, \mathcal{K}), (E, \mathcal{E})$ measurable spaces $F : \Omega \to E \mathcal{K}/\mathcal{E}$ -measurable if

$$F^{-1}(B) = \{\omega \in \Omega : F(\omega) \in B\} \in \mathcal{K} \ \forall B \in \mathcal{E}\}$$

Definitions

 $X: \Omega \to \mathbb{R}$ random variable if it is \mathcal{K}/\mathcal{B} -measurable, i.e.

$$X^{-1}(B) = \{\omega \in \Omega : F(\omega) \in B\} \in \mathcal{K} \ \forall B \in \mathcal{B}$$

 $X: \Omega \to \mathbb{R}$ random vector if it is $\mathcal{K}/\mathcal{B}^n$ -measurable, i.e.

 $X^{-1}(B) = \{ \omega \in \Omega : F(\omega) \in B \} \in \mathcal{K} \ \forall B \in \mathcal{B}^n$

8 / 21

Definitions

the *indicator* of $A \in \mathcal{K}$, $I_A : \Omega \to \mathbb{R}$

$$I_A(\omega) = \left\{ egin{array}{cc} 1 & ext{if } \omega \in A \ 0 & ext{if } \omega \notin A \end{array}
ight.$$

X r.v. is a *discrete r.v.* if

$$X(\omega) = \sum_{i \in I} x_i I_{A_i}(\omega), \qquad \forall \omega \in \Omega$$

where $I \subseteq \mathbb{N}$, $(A_i)_{i \in I}$ partition of Ω , $A_i \in \mathcal{K}$, $x_i \in \mathbb{R}$. If I is a finite set X - simple r.v.

Definition

distribution function or cumulative distribution function of X, $F : \mathbb{R} \to \mathbb{R}$

$$F(x) = P(X \le x)$$

- F nondecreasing
- *F* right continuous
- $Iim_{x\to -\infty} F(x) = 0, Iim_{x\to \infty} F(x) = 1.$

•
$$P(a < X \le b) = F(b) - F(a)$$

o
$$P(a \le X) = 1 - F(a - 0)$$

Density Function

Definitions

X r.v., $F : \mathbb{R} \to \mathbb{R}$ its distribution function. If there exists $f : \mathbb{R} \to \mathbb{R}$ s. t.

$$F(x) = \int_{-\infty}^{x} f(t) dt, \quad \forall x \in \mathbb{R}$$

f is called (probability) density function of X. X admits a density function X is called a *continuous* r.v.

X c.r.v, F cdf, f pdf

a F absolute continuous F'(x) = f(x) for a.e $x \in \mathbb{R}$ **a** $f(x) \ge 0$ for a.e $x \in \mathbb{R}$ **b** $\int_{\mathbb{R}} f(t) dt = 1$ **b** P(X = b) = 0, $P(a < X < b) = P(a \le X < b) = P(a < X \le b)$ $= P(a \le X \le b) = \int_{a}^{b} f(t) dt$ **b** f(t) dt **c** f(t) = 0

X discrete r.v.

$$p(x) = P(X = x)$$

p mass probability function

• X discrete r.v. with values x_1, x_2, \ldots

$$\sum_{i=1}^{\infty} p(x_i) = 1$$

• X discrete r.v. with values x_1, x_2, \ldots The table

$$\begin{pmatrix} x_i \\ p_i \end{pmatrix}_{i \in I}$$

where $p_i = p(x_i)$ the *distribution* of *X*

Joint Distribution and Joint Density

- $F : \mathbb{R}^n \to R$, $F(x_1, x_2) = P(X_1 \le x_1, X_2 \le x_2)$ joint distribution function of random vector (X_1, X_2)
- $P(a_1 < X_1 \le b_1, a_2 < X_2 \le b_2) = F(b_1, b_2) F(a_2, b_1) F(a_1, b_2) + F(a_1, a_2)$

• (X_1, X_2) $F(x_1, x_2) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} f(t_1, t_2) dt_1 dt_2$

f joint density function (X_1, X_2) continuous random vector

• $f(x_1, x_2) = \frac{\partial^2 F(x_1, x_2)}{\partial x_1 \partial x_2}$

Independence

• Marginal cdf

$$F_X(x) = \lim_{y \to \infty} F(x, y)$$
$$F_Y(x) = \lim_{x \to \infty} F(x, y)$$

• marginal pdf

$$f_X(x) = \int_{\mathbb{R}} f(x, y) dy$$

$$f_Y(x) = \int_{\mathbb{R}} f(x, y) dx$$

• X, Y drv X, Y independent if

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

• X, Y crv X, Y independent if

$$f(x,y) = f_X(x)f_Y(y)$$

Expectation

• X r.v. F cdf — expectation (mean value or expected value)

$$E(X) = \int_{-\infty}^{\infty} x dF(x)$$

(if the integral is absolutely convergent!)

• X d.r.v., p mass function

$$E(X) = \sum_{i \in I} x_i P(X = x_i) = \sum_{i \in I} x_i p(x_i)$$

(if the series is absolutely convergent)

• X c.r.v., f pdf

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

Expectation – Properties

$$E(h(x)) = \int_{-\infty}^{\infty} h(x) dF(x)$$

$$E(aX+b) = aE(X) + b$$

5

2

$$E(X+Y) = E(X) + E(Y)$$

 \bigcirc X, Y independent r.v.

$$E(X \cdot Y) = E(X)E(Y)$$

$$X(\omega) \leq Y(\omega), \ \omega \in \Omega \Longrightarrow E(X) \leq E(Y)$$

э

Variance

• X r.v. with expectation E(X) - variance (dispersion) of X $V(X) = E (X - E(X))^{2}$ (if $E (X - E(X))^{2}$ exists) $\sqrt{V(X)}$ - standard deviation • $V(X) = E(X^{2}) - E(X)^{2}$ • $V(aX + b) = a^{2}V(X)$

• X, Y i.r.v.

$$V(X + Y) = V(X) + V(Y)$$

$$V(X \cdot Y) = V(X)V(Y) + E(X)^2V(Y) + E(Y)^2V(X)$$

X, Y r.v. covariance of X and Y

$$cov(X, Y) = E(X - E(X))E(Y - E(Y))$$

correlation coefficient of X and Y

$$\rho(X, Y) = \frac{cov(X, Y)}{\sqrt{V(X)V(Y)}}$$

Radu T. Trîmbițaș (UBB)

18 / 21

Properties

6

$$cov(X + Y, Z) = cov(X, Z) + cov(Y, Z)$$

$$-1 \leq
ho(X,Y) \leq 1$$
 $ho(X,Y) = \pm 1 \Longleftrightarrow \exists a, b \in \mathbb{R} : Y = aX + b$

3

<ロ> (日) (日) (日) (日) (日)

Moments

Definitions

 $k \in \mathbb{N}$, X r.v.

- $E(X^k)$ (if exists) the moment of order k of X
- **2** $E|X|^k$ (if exists) the absolute moment of order k of X
- $E(X E(X))^k$ (if exists) the central moment of order k of X
- a *quantile* of order α of (the distribution of) X ($\alpha \in (0, 1)$) is the number q_{α} s.t.

$$P(X \leq q_{\alpha}) \leq \alpha \leq P(X < q_{\alpha})$$

() $\alpha = \frac{1}{2}$ median, $\alpha = \frac{1}{4}$ quartiles, $\alpha = \frac{1}{100}$ percentiles

 q_{α} quantile of order α iff $F(q_{\alpha} - 0) \leq \alpha \leq F(q_{\alpha})$ X continuous q_{α} quantile of order α iff $F(q_{\alpha}) = \alpha$ • Markov's inequality: If X r.v with expectation E(x) and a > 0, then

$$P\left(|X| \ge a
ight) \le rac{E(X)}{a}$$

• Cebyshev's inequality

$$P\left(|X - E(X)| \ge a\right) \le \frac{1}{a^2}V(X)$$

Weak law of large numbers (WLLN) - (X_n)_{n∈ℕ} sequence of r.v. such that E(X) < ∞ for all n obeys the weak law of large numbers if

$$\frac{1}{n}\sum_{k=1}^{n}\left(X_{k}-E\left(X_{k}\right)\right)\overset{p}{\rightarrow}0$$

• If $(X_n)_{n \in \mathbb{N}}$ sequence of pairwise i.r.v. s.t. $V(X_n) \leq L < \infty$, for all N, where L constant. Then $(X_n)_{n \in \mathbb{N}}$ obeys WLLN.