Review of Probability and Statistics Prob. for DES

Radu T. Trîmbițaș

UBB
1st Semester 2010-2011

Purpose and Overview

- The world the model-builder sees is probabilistic rather than deterministic.
- Some statistical model might well describe the variations.
- An appropriate model can be developed by sampling the phenomenon of interest:
- Select a known distribution through educated guesses
- Make estimate of the parameter(s)
- Test for goodness of fit
- Intention:
- Review several important probability distributions
- Present some typical application of these models

Sample Space and Events

- trial or experiment: term to describe any process or oucome whose outcome is not known in advance (i.e. it has a random behaviour)
- A sample space, S, is the set of all possible outcomes of an experiment
- $x \in S=$ elementary event.
- $A \subseteq S$ event
- if $A \cap B=\varnothing$, events are called mutually exclusive

Sigma-field

- A collection \mathcal{K} of events from S is a σ-field (σ-algebra)
(1) $\mathcal{K} \neq \varnothing$
(2) $A \in \mathcal{K} \Longrightarrow \bar{A} \in \mathcal{K}$
(3) $A_{n} \in \mathcal{K}, \forall n \in \mathbb{N} \Longrightarrow \bigcup_{n=1}^{\infty} A_{n} \in \mathcal{K}$
- $(S, \mathcal{K}), \mathcal{K} \sigma$-field in the sample space S is called measurable space
- $\left(A_{i}\right)_{i \in I}, A_{i} \in \mathcal{K}$ partition of S if $A_{i} \cap A_{j}=\varnothing$ and $\bigcup_{i \in I} A_{i}=S$

Probability

Definition

$\mathcal{K} \sigma$-field in $S, P: \mathcal{K} \rightarrow \mathbb{R}$ probability if
(1) $P(S)=1$
(2) $P(A) \geq 0$, for every $A \in \mathcal{K}$
(3) for any sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of mutually exclusive events from \mathcal{K}

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right) \quad(\sigma \text {-additive })
$$

(S, \mathcal{K}, P) where (S, \mathcal{K}) measurable space, P probability - probability space

Conditional Probability

- (S, \mathcal{K}, P) probability space, $A, B \in \mathcal{K}$; the conditional probability of A given B is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

provided $P(B)>0$.

- (S, \mathcal{K}, P) probability space s. t. $P(B)>0$. Then $(S, \mathcal{K}, P(. \mid B))$ is a probability space
- (Bayes' formula) (S, \mathcal{K}, P) probability space, $\left(A_{i}\right)_{i \in I}$ a partition of S, $P\left(A_{i}\right)>0, i \in I, A \in \mathcal{K}$, s.t. $P(A)>0$

$$
P\left(A_{j} \mid A\right)=\frac{P\left(A_{j}\right) P\left(A \mid A_{j}\right)}{\sum_{i \in I} P\left(A_{i}\right) P\left(A \mid A_{i}\right)}, \forall j \in I
$$

Independence

- A is independent of B if

$$
P(A \cap B)=P(A) P(B)
$$

- $\left(A_{n}\right)_{n \in \mathbb{N}}, A_{n} \in \mathcal{K}$ is a sequence of independent events if

$$
P\left(A_{i_{1}} \cap \cdots \cap A_{i_{n}}\right)=P\left(A_{i_{1}}\right) \cdots P\left(A_{i_{n}}\right)
$$

for each finite subset $\left\{i_{1}, \ldots, i_{n}\right\} \subset \mathbb{N}$

- $\left(A_{n}\right)_{n \in \mathbb{N}}, A_{n} \in \mathcal{K}$ is a sequence of pairwise independent events if

$$
P\left(A_{i} \cap A_{j}\right)=P\left(A_{i}\right) \cap P\left(A_{j}\right), \quad i \neq j
$$

- (S, \mathcal{K}, P) probability space, $A, B \in \mathcal{K} A, B$ independent $\Longleftrightarrow \bar{A}, B$ independent $\Longleftrightarrow A, \bar{B}$ independent $\Longleftrightarrow \bar{A}, \bar{B}$ independent

Random Variables

- $(\mathbb{R}, \mathcal{B})\left(\left(\mathbb{R}^{n}, \mathcal{B}^{n}\right)\right)$ the measurable space $\mathbb{R}\left(\mathbb{R}^{n}\right)$ endowed with the σ-field generated by open sets

Definition

$(\Omega, \mathcal{K}),(E, \mathcal{E})$ measurable spaces $F: \Omega \rightarrow E \mathcal{K} / \mathcal{E}$-measurable if

$$
F^{-1}(B)=\{\omega \in \Omega: F(\omega) \in B\} \in \mathcal{K} \forall B \in \mathcal{E}
$$

Definitions

$X: \Omega \rightarrow \mathbb{R}$ random variable if it is $\mathcal{K} / \mathcal{B}$-measurable, i.e.

$$
X^{-1}(B)=\{\omega \in \Omega: F(\omega) \in B\} \in \mathcal{K} \forall B \in \mathcal{B}
$$

$X: \Omega \rightarrow \mathbb{R}$ random vector if it is $\mathcal{K} / \mathcal{B}^{n}$-measurable, i.e.

$$
X^{-1}(B)=\{\omega \in \Omega: F(\omega) \in B\} \in \mathcal{K} \forall B \in \mathcal{B}^{n}
$$

Random Variables II

Definitions

the indicator of $A \in \mathcal{K}, I_{A}: \Omega \rightarrow \mathbb{R}$

$$
I_{A}(\omega)= \begin{cases}1 & \text { if } \omega \in A \\ 0 & \text { if } \omega \notin A\end{cases}
$$

X r.v. is a discrete r.v. if

$$
X(\omega)=\sum_{i \in I} x_{i} I_{A_{i}}(\omega), \quad \forall \omega \in \Omega
$$

where $I \subseteq \mathbb{N},\left(A_{i}\right)_{i \in I}$ partition of $\Omega, A_{i} \in \mathcal{K}, x_{i} \in \mathbb{R}$. If I is a finite set X - simple r.v.

(Cumulative) Distribution Function

Definition

distribution function or cumulative distribution function of $X, F: \mathbb{R} \rightarrow \mathbb{R}$

$$
F(x)=P(X \leq x)
$$

(1) F nondecreasing
(2) F right continuous
(3) $\lim _{x \rightarrow-\infty} F(x)=0, \lim _{x \rightarrow \infty} F(x)=1$.
(1) $P(a<X \leq b)=F(b)-F(a)$
(9) $P(a \leq X)=1-F(a-0)$

Density Function

Definitions

X r.v., $F: \mathbb{R} \rightarrow \mathbb{R}$ its distribution function. If there exists $f: \mathbb{R} \rightarrow \mathbb{R}$ s. t.

$$
F(x)=\int_{-\infty}^{x} f(t) d t, \quad \forall x \in \mathbb{R}
$$

f is called (probability) density function of $X . X$ admits a density function X is called a continuous r.v.
X c.r.v, F cdf, f pdf
(1) F absolute continuous $F^{\prime}(x)=f(x)$ for a.e $x \in \mathbb{R}$
(2) $f(x) \geq 0$ for a.e $x \in \mathbb{R}$
(3) $\int_{\mathbb{R}} f(t) d t=1$
(9) $P(X=b)=0$,

$$
\begin{aligned}
& P(a<X<b)=P(a \leq X<b)=P(a<X \leq b) \\
& \quad=P(a \leq X \leq b)=\int_{a}^{b} f(t) d t
\end{aligned}
$$

Mass Probability Function

- X discrete r.v.

$$
p(x)=P(X=x)
$$

p mass probability function

- X discrete r.v. with values x_{1}, x_{2}, \ldots

$$
\sum_{i=1}^{\infty} p\left(x_{i}\right)=1
$$

- X discrete r.v. with values x_{1}, x_{2}, \ldots The table

$$
\binom{x_{i}}{p_{i}}_{i \in I}
$$

where $p_{i}=p\left(x_{i}\right)$ the distribution of X

Joint Distribution and Joint Density

- $F: \mathbb{R}^{n} \rightarrow R, F\left(x_{1}, x_{2}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right)$ joint distribution function of random vector $\left(X_{1}, X_{2}\right)$
- $P\left(a_{1}<X_{1} \leq b_{1}, a_{2}<X_{2} \leq b_{2}\right)=$
$F\left(b_{1}, b_{2}\right)-F\left(a_{2}, b_{1}\right)-F\left(a_{1}, b_{2}\right)+F\left(a_{1}, a_{2}\right)$
- $\left(X_{1}, X_{2}\right)$

$$
F\left(x_{1}, x_{2}\right)=\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} f\left(t_{1}, t_{2}\right) d t_{1} d t_{2}
$$

f joint density function $\left(X_{1}, X_{2}\right)$ continuous random vector

- $f\left(x_{1}, x_{2}\right)=\frac{\partial^{2} F\left(x_{1}, x_{2}\right)}{\partial x_{1} \partial x_{2}}$

Independence

- Marginal cdf

$$
\begin{aligned}
& F_{X}(x)=\lim _{y \rightarrow \infty} F(x, y) \\
& F_{Y}(x)=\lim _{x \rightarrow \infty} F(x, y)
\end{aligned}
$$

- marginal pdf

$$
\begin{aligned}
& f_{X}(x)=\int_{\mathbb{R}} f(x, y) d y \\
& f_{Y}(x)=\int_{\mathbb{R}} f(x, y) d x
\end{aligned}
$$

- $X, Y \operatorname{drv} X, Y$ independent if

$$
P(X=x, Y=y)=P(X=x) P(Y=y)
$$

- $X, Y \operatorname{crv} X, Y$ independent if

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

Expectation

- X r.v. F cdf - expectation (mean value or expected value)

$$
E(X)=\int_{-\infty}^{\infty} x d F(x)
$$

(if the integral is absolutely convergent!)

- X d.r.v., p mass function

$$
E(X)=\sum_{i \in I} x_{i} P\left(X=x_{i}\right)=\sum_{i \in I} x_{i} p\left(x_{i}\right)
$$

(if the series is absolutely convergent)

- X c.r.v., f pdf

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

Expectation - Properties

(1) $h: \mathbb{R} \rightarrow \mathbb{R} \mathcal{B} / \mathcal{B}$ measurable

$$
E(h(x))=\int_{-\infty}^{\infty} h(x) d F(x)
$$

(2)

$$
E(a X+b)=a E(X)+b
$$

©

$$
E(X+Y)=E(X)+E(Y)
$$

(9) X, Y independent r.v.

$$
E(X \cdot Y)=E(X) E(Y)
$$

©

$$
X(\omega) \leq Y(\omega), \omega \in \Omega \Longrightarrow E(X) \leq E(Y)
$$

Variance

- X r.v. with expectation $E(X)$ - variance (dispersion) of X

$$
V(X)=E(X-E(X))^{2}
$$

(if $E(X-E(X))^{2}$ exists) $\sqrt{V(X)}-$ standard deviation

$$
\begin{gathered}
V(X)=E\left(X^{2}\right)-E(X)^{2} \\
V(a X+b)=a^{2} V(X)
\end{gathered}
$$

- X, Y i.r.v.

$$
\begin{aligned}
V(X+Y) & =V(X)+V(Y) \\
V(X \cdot Y) & =V(X) V(Y)+E(X)^{2} V(Y)+E(Y)^{2} V(X)
\end{aligned}
$$

Covariance and Correlation

X, Y r.v. covariance of X and Y

$$
\operatorname{cov}(X, Y)=E(X-E(X)) E(Y-E(Y))
$$

correlation coefficient of X and Y

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{V(X) V(Y)}}
$$

Properties

(1) $\operatorname{cov}(X, X)=V(X)$
(2)

$$
\operatorname{cov}(X, Y)=E(X \cdot Y)-E(X) E(Y)
$$

(3) X, Y independent $\operatorname{cov}(X, Y)=\rho(X, Y)=0$; the converse is false
©

$$
V(a X+b Y)=a^{2} V(X)+b^{2} V(Y)+2 a b c o v(X, Y), \quad a, b \in \mathbb{R}
$$

©

$$
\operatorname{cov}(X+Y, Z)=\operatorname{cov}(X, Z)+\operatorname{cov}(Y, Z)
$$

©

$$
\begin{aligned}
-1 & \leq \rho(X, Y) \leq 1 \\
\rho(X, Y) & = \pm 1 \Longleftrightarrow \exists a, b \in \mathbb{R}: Y=a X+b
\end{aligned}
$$

Moments

Definitions

$k \in \mathbb{N}, X$ r.v.
(1) $E\left(X^{k}\right)$ (if exists) the moment of order k of X
(2) $E|X|^{k}$ (if exists) the absolute moment of order k of X
(3) $E(X-E(X))^{k}$ (if exists) the central moment of order k of X
(9) a quantile of order α of (the distribution of) $X(\alpha \in(0,1))$ is the number q_{α} s.t.

$$
P\left(X \leq q_{\alpha}\right) \leq \alpha \leq P\left(X<q_{\alpha}\right)
$$

(6) $\alpha=\frac{1}{2}$ median, $\alpha=\frac{1}{4}$ quartiles, $\alpha=\frac{1}{100}$ percentiles
q_{α} quantile of order α iff $F\left(q_{\alpha}-0\right) \leq \alpha \leq F\left(q_{\alpha}\right)$
X continuous q_{α} quantile of order α iff $F\left(q_{\alpha}\right)=\alpha$

Inequalities

- Markov's inequality: If X r.v with expectation $E(x)$ and $a>0$, then

$$
P(|X| \geq a) \leq \frac{E(X)}{a}
$$

- Cebyshev's inequality

$$
P(|X-E(X)| \geq a) \leq \frac{1}{a^{2}} V(X)
$$

- Weak law of large numbers (WLLN) - $\left(X_{n}\right)_{n \in \mathbb{N}}$ sequence of r.v. such that $E(X)<\infty$ for all n obeys the weak law of large numbers if

$$
\frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-E\left(X_{k}\right)\right){ }_{\rightarrow}^{p} 0
$$

- If $\left(X_{n}\right)_{n \in \mathbb{N}}$ sequence of pairwise i.r.v. s.t. $V\left(X_{n}\right) \leq L<\infty$, for all N, where L constant. Then $\left(X_{n}\right)_{n \in \mathbb{N}}$ obeys WLLN.

