Random Variate Generation

Non-uniform RV

Radu Trîmbițaș

Faculty of Math and CS-UBB

1st Semester 2010-2011

Topics I

- General principles
- Inverse Transform Method
- Acceptance-Rejection Method
- Composition Method
- Translation and Other Simple Transforms
- Continuous Distributions
- Inverse Transform by Numerical Solution
- Specific Continuous Distribution
- Discrete Distribution
- Look-up Tables
- Alias Method
- Empirical Distribution
- Specific Discrete Distributions
- Multivariate Distribution

Topics II

- General Methods
- Special Distributions
- Stochastic Processes
- Point Processes
- Time-Series Models and Gaussian Processes

Introduction

- The basic problem is to generate a random variable X, whose distribution is completely known and nonuniform
- RV generators use as starting point random numbers distributed $U[0,1]$ - so we need a good RN generator
- Assume RN generates a sequence $\left\{U_{1}, U_{2}, \ldots\right\}$ IID
- For a given distribution there exists more than one method
- Assumption: a uniform RNG is available, and a call $\operatorname{RN}(0,1)$ produce a uniform r.n., independent of all variates generated by previous calls

Choice Criteria

(1) Exactness - a generator is exact if the distribution of variates has the exact form desired; the opposite approximative generator
(2) Mathematical validity - does it give what it is supposed to?
(3) Speed - initial setup time + variable generation time the relative contribution of these factors depends on application
(1) Space - computer memory requirements of the generator; short algorithms, but some of them make use of extensive tables, important when if different tables need to be held simultaneously in memory
(6) Simplicity, both algorithmic and implementational
(0) Parametric stability - is it uniformly fast for all input parameters (e.g. will it take longer to generate PP as rate increases?)

Inverse Transform Method (Continuous Case)

X, F cdf of X, f pdf of X
Let $U:=R N(0,1)$
return $X:=F^{-1}(U)$

Example - Exponential distribution

$X \sim \operatorname{Exp}(a)$

$$
F(x)=\left\{\begin{array}{cc}
1-\exp \left(\frac{x}{a}\right), & x>0 \tag{1}\\
0, & \text { otherwise }
\end{array}\right.
$$

Solving $u=F(x)$ for x yields

$$
\begin{equation*}
x=F^{-1}(u)=-a \ln (1-u) \tag{2}
\end{equation*}
$$

Generate u rv $U[0,1]$, then apply (2) to obtain X having $\operatorname{cdf}(1)$.

Example

Consider the case $a=1$ (see Figure 2). The cdf for $x>0$ is $F(x)=1-\exp (-x)$. Two random variates has been generated using (2). The first r.n. generated is $u_{1}=0.7505$ and the corresponding x is $x_{1}=-\ln (1-0.7505)=1.3883$. Similarly, the random number $u_{2}=0.1449$ generates the exponential variate $x_{2}=-\ln (1-0.1449)=$ 0.15654 .

Figure: Inverse transform for exponential distribution

Inverse Transform Method (Discrete Case) I

- Suppose X has the distribution $\binom{x_{i}}{p_{i}}$. The cdf is

$$
F(x)=P(X \leq x)=\sum_{i: x_{i} \leq x} p_{i}
$$

- We "define" the inverse by

$$
F^{-1}(u)=\min \{x: u \leq F(x)\}
$$

- The method still works despite the discontinuities of F (see Figure 3) $U:=R N(0,1) ; \quad i:=1 ;$ while $\left(F\left(x_{i}\right)<U\right)\{i:=i+1\}$ return $X=x_{i}$
- Because the method uses a linear search, it can be ineficient if n is large. More efficient methods are required.

Inverse Transform Method (Discrete Case) II

- If a table of x_{i} values with the corresponding $F\left(x_{i}\right)$ values are stored, the method is called table look-up method. The method compares U with each $F\left(x_{i}\right)$, returning, as X, the first x_{i} encountered for which $F\left(x_{i}\right) \geq U$.

Inverse Transform Method (Discrete Case)

Figure: Inverse transform method - $\operatorname{Bin}(4,0.25)$

Example - Binomial Distribution

Example

$X \sim \operatorname{Bin}(4,0.25)$. The possible values of X are $x_{i}=i, i=0, \ldots, 4$, and the values of F are given in Table 1. Suppose $U=0.6122$ is a given random number. Looking along the rows of $F\left(x_{i}\right)$ values, we see that $F\left(x_{0}\right)=0.3164<U=0.6122<F\left(x_{1}\right)=0.7383$. Thus x_{1} is the first x_{i} such that $U \leq F\left(x_{i}\right)$; therefore $X=1$. (see Figure 3).

i	0	1	2	3	4
p_{i}	0.3164	0.4219	0.2109	0.0469	0.0039
$F\left(x_{i}\right)$	0.3164	0.7383	0.9492	0.9961	1.0000

Table: Distribution of $\operatorname{Bin}(4,0.25)$

Inverse Transform Method - Correctness

Constructive proof:

Theorem

If $U \sim U[0,1]$, then the random variable $X=F^{-}(U)$ has the distribution function F, where F^{-}is the inverse function of F defined as

$$
F^{-}(p)=\inf \{x: F(x) \geq p\}, \quad 0<p<1 .
$$

Proof.

First, we have $F^{-}(F(x)) \leq x$ for $x \in \mathbb{R}$ and $F\left(F^{-}(u)\right) \geq u$ for $0<u<1$. Thus

$$
P(X \leq x)=P\left(F^{-}(U) \leq x\right)=P(U \leq F(x))=F(x) .
$$

Acceptance-Rejection Method

- X has density $f(x)$ with bounded support
- If F is hard (or impossible) to invert, too messy ... what to do?
- Generate Y from a more manageable distribution and accept as coming from f with a certain probability

Acceptance-Rejection Intuition

Density $f(x)$ is really ugly ... Say, Orange!

M^{\prime} is a "Nice" Majorizing function..., Say Uniform

Acceptance-Rejection Intuition

Throw darts at rectangle under M^{\prime} until hit f

$\operatorname{Prob}\{$ Accept $X\}$ is proportional to height of $f(X)$ - called trial ratio

Acceptance-Rejection Correctness

The basic idea comes from the observation that if f is the target density, we have

$$
f(x)=\int_{0}^{f(x)} 1 d u
$$

Thus, f can be thought as the marginal density of the joint distribution

$$
(X, U) \sim \operatorname{Unif}\{(x, u): 0<u<f(x)\}
$$

where U is called an auxiliary variable.

Theorem

Let $X \sim f(x)$ and let $g(y)$ be a density function that satisfies $f(x) \leq M g(x)$ for some constant $M \geq 1$. To generate a random variable $X \sim f(x):(1)$ Generate $Y \sim g(y)$ and $U \sim U n i f[0,1]$ independently; (2) If $U \leq f(Y) / M g(Y)$ set $X=Y$; otherwise return to step (1).

Acceptance-Rejection Proof

Proof.

The generated random variable X has distribution

$$
\begin{aligned}
P(X & \leq x)=P(Y \leq x \mid U \leq f(Y) / M g(Y)) \\
& =\frac{P(Y \leq x, U \leq f(Y) / M g(Y))}{P(U \leq f(Y) / M g(Y))} \\
& =\frac{\int_{-\infty}^{x} \int_{0}^{f(y) / M g(y)} 1 \cdot d u \cdot g(y) d y}{\int_{-\infty}^{\infty} \int_{0}^{f(y) / M g(y)} 1 \cdot d u \cdot g(y) d y} \\
& =\int_{-\infty}^{x} f(y) d y
\end{aligned}
$$

which is the desired distribution.

Example - Gamma distribution

Example

We want to generate $\gamma(b, 1)$, for $b>1$ (see [Fishman, 1996]). The pdf is

$$
f(x)=x^{b-1} \exp (x) / \Gamma(b), x>0
$$

The majorizing function is $e(x)=K \exp (-x / b) / b$. If

$$
K=\frac{b^{b} \exp (1-b)}{\Gamma(b)}
$$

then $e(x) \geq f(x)$ for $x \geq 0$. The method is convenient for b not too large. Figure 4 illustrates the generation.

Example - Gamma distribution

Composition Method I

- Can be used when m can be expressed as a convex combination of other distributions F_{i}, where we hope to be able to sample from F_{i} more easily than from F directly.

$$
F(x)=\sum_{i=1}^{\infty} p_{i} F_{i}(x) \text { and } f(x)=\sum_{i=1}^{\infty} p_{i} f_{i}(x)
$$

- p_{i} is the probability of generating from F_{i}
- Algorithm
(1) Generate positive random integer J such that

$$
P\{J=j\}=p_{j}, \text { for } j=1,2, \ldots
$$

(2) Return X with distribution function F_{j}

Composition Method II

- Think of Step 1 as generating J with mass function p_{J}

$$
P(X \leq x)=\sum_{j=1}^{\infty} P(X \leq x \mid J=j) P(J=j)=\sum_{j=1}^{\infty} F_{j}(x) p_{j}=F(x)
$$

Example

The double exponential (or Laplace) distribution has density $f(x)=\frac{1}{2} e^{-|x|}, x \in \mathbb{R}$ (Figure 5), We can express the density as

$$
f(x)=0.5 e^{x} I_{(-\infty, 0)}+0.5 e^{-x} I_{(0, \infty)}
$$

I_{A} indicator of A. f convex combination of $f_{1}(x)=e^{x} I_{(-\infty, 0)}$ and $f_{2}(x)=e^{-x} I_{(0, \infty)}$. We can generate X with density f by composition.
First generate $U_{1}, U_{2} \sim U[0,1]$. If $U_{1} \leq 0.5$, return $X=\ln U_{2}$, else return $X=-\ln U_{2}$.

Composition Method III

Figure: Double-exponential density

Convolution

- Suppose $Y_{i}, i=1, \ldots, n$ IID rv and $X=Y_{1}+Y_{2}+\cdots+Y_{n}$
- Algorithm $Y_{i}, i=1, \ldots, n$ IID rv with $\operatorname{cdf} G$
(1) Generate
(2) Return $X=Y_{1}+Y_{2}+\cdots+Y_{n}$
- The distribution of X is the m-fold convolution of G
- In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions

$$
(f * g)(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) \mathrm{d} \tau
$$

Convolution- Examples

Examples

(1) $Y_{i}, i=1, \ldots, n$ IID $\chi^{2}(1,1) ; X=Y_{1}+Y_{2}+\cdots+Y_{n}$ is distributed $\chi^{2}(n, 1)$
(2) The m-Erlang $r v$ with mean β is the sum of m IID exponential rvs with common mean β / m. Thus we generate first Y_{1}, \ldots, Y_{m} IID $\operatorname{Exp}(\beta / m)$, then return $X=Y_{1}+Y_{2}+\cdots+Y_{n}$
(3) If X_{i} has a $\Gamma\left(a_{i}, \lambda\right)$ distribution for $i=1,2, \ldots, n$, i.r.v., then

$$
\sum_{i=1}^{n} X_{i} \sim \Gamma\left(\sum_{i=1}^{n} a_{i}, \lambda\right)
$$

Translation and Other Simple Transforms

- Often a random variable can be obtained by some elementary transformation of another
- lognormal variable is an exponential of a normal variable
- $\chi^{2}(1)$ is a standard normal variable squared
- More elementary, location-scale models - if X is a crv with pdf f then $Y=a X+b, a>0, b \in \mathbb{R}$, then Y has the density

$$
g(y)=a^{-1} f\left(\frac{y-b}{a}\right)
$$

Continuous Distributions

Inverse Transform by Numerical Solution

- Solve the equation $F(X)=U$, or equivalently $\varphi(X):=F(X)-U=0$, numerically for X
- Methods: bisection, false position, secant, Newton
- Problem: find starting values

Bisection

$a:=-1$;
while $F(a)>U$ do

$$
\begin{gathered}
a:=2 * a \\
b:=1 ;
\end{gathered}
$$

$$
\text { while } F(b)<U \text { do }
$$

$$
b:=2 * b
$$

while $b-a>\delta$ do

$$
X:=(a+b) / 2
$$

if $F(x) \leq u$ then

$$
a:=\bar{X}
$$

else

$$
b:=X
$$

Newton

For unimodal densities with known mode, X_{m} the following alternative is quicker

$$
\begin{aligned}
& Y_{m}:=F\left(X_{m}\right) ; U:=R N(0,1) \\
& X:=X_{m} ; Y:=Y_{m} ; h:=Y-U
\end{aligned}
$$

while $|h|>\delta$ do
$X:=X-h / f(X)$;
$h:=F(X)-U$;
return X

- Convergence is guaranted for unimodal densities because $F(x)$ is convex for $x \in\left(-\infty, X_{m}\right)$ and concave for $x \in\left(X_{m}, \infty\right)$
- The tolerance criterion guaranteed that guarantees that $F(X)$ is close to U (within δ), but it does not guarantee that X is close to the exact solution of $F(X)=U$

Uniform $\mathrm{U}(\mathrm{a}, \mathrm{b}), \mathrm{a}<\mathrm{b}$

- pdf

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{b-a}, & x \in(a, b) \\
0, & \text { otherwise }
\end{array}\right.
$$

- cdf

$$
F(x)=\left\{\begin{array}{cc}
0, & x \leq a \\
\frac{x-a}{b-a}, & a<x<b \\
1, & x \geq b
\end{array}\right.
$$

- generator: inverse transform method
$U:=R N(0,1)$;
return $X:=a+(b-a) U$

Exponential $\operatorname{Exp}(a), a>0$

- pdf

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{a} \exp \left(-\frac{x}{a}\right), & x>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

- cdf

$$
F(x)=\left\{\begin{array}{cc}
1-\exp \left(-\frac{x}{a}\right), & x>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

- generator: inverse transform method

$$
\begin{aligned}
& U:=R N(0,1) ; \\
& \text { return } X:=-a \ln (1-U) ;
\end{aligned}
$$

Weibull Weib(a,b), a,b>0

- pdf

$$
f(x)=\left\{\begin{array}{cc}
b a^{-b} x^{b-1} \exp \left[-\left(\frac{x}{a}\right)^{b}\right], & x>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

- cdf

$$
f(x)=\left\{\begin{array}{cc}
1-\exp \left[-\left(\frac{x}{a}\right)^{b}\right], & x>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

- generator: inverse transform method
$U:=R N(0,1)$;
return $X:=a[-\ln (1-U)]^{1 / b}$
- Notes:
(1) Some references replace $1-U$ by U since $1-U \sim U(0,1)$; this is not recommended
(2) for $b=1$ exponential distribution
(3) $X \sim \operatorname{Weib}(a, b) \Longrightarrow X^{b} \sim \operatorname{Exp}\left(a^{b}\right)$;
$E \sim \operatorname{Exp}\left(a^{b}\right) \Longrightarrow E^{1 / b} \sim \operatorname{Weib}(a, b)$

Extreme Value EXTREME(mu,sigma)

- pdf

$$
f(x)=\sigma^{-1} \exp \left(-\frac{x-\mu}{\sigma}\right) \exp \left[-\exp \left(-\frac{x-\mu}{\sigma}\right)\right], x \in \mathbb{R}
$$

- cdf

$$
F(x)=\exp \left[-\exp \left(-\frac{x-\mu}{\sigma}\right)\right], x \in \mathbb{R}
$$

- generator: inverse transform method
$U:=R N(0,1)$;
return $X:=-\sigma \ln [-\ln (U)]+\mu$

Gamma Gam(a,b), a,b>0 I

- pdf

$$
f(x)=\left\{\begin{array}{cc}
\frac{(x / b)^{a-1}}{b \Gamma(a)} \exp \left(-\frac{x}{b}\right), & x>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

- cdf - improper integral
- generator: no single method satisfactory for all values of a. Generators cover different ranges of a
- Generator 1 (Ahrens\&Dieter) acceptance-rejection, requires $a \in(0,1)$

Gamma Gam(a,b), a,b>0 II

Setup : $\beta:=(e+a) / e$;
while(true) $\{$
$U:=R N(0,1) ; W:=\beta U ;$
if $(W<1)\{$

$$
Y:=W^{1 / a} ; \quad V=R N(0,1)
$$

$$
\text { if } \left.\left(V \leq e^{-Y}\right) \text { return } X=b Y ;\right\}
$$

else \{
$Y:=-\ln ((\beta-W) / a) ; \quad V:=R N(0,1) ;$
if $\left(V \leq Y^{b-1}\right)$ return $\left.X:=b Y\right\}$
\}

- Generator 2: (Cheng) acceptance-rejection; requires a >1

Gamma Gam(a,b), a,b>0 III

Setup : $\alpha:=(2 a-1)^{-1 / 2} ; \beta:=a-\ln 4 ; \gamma:=a+\alpha^{-1} ; \delta:=1+\ln 4.5$; while (true) \{

$$
U_{1}:=R N(0,1) ; U_{2}:=R N(0,1)
$$

$$
V:=\alpha \ln \left(U_{1} /\left(1-U_{1}\right)\right) ; Y:=a e^{v}
$$

$$
Z:=U_{1}^{2} U_{2} ; W:=\beta+\gamma V-Y
$$

if $(W+\delta-4.5 Z \geq 0)$
return $X:=b Y$;
else\{
if $(W \geq \ln Z)$ return $X:=b Y ;\}$
\}

Gamma Gam(a,b), a,b>0 IV

- Generator 3 (Fishman) acceptance-rejection; requires $a>1$ and it is simple and efficient for values of $a<5$.
while (true) \{
$U_{1}:=R N(0,1) ; U_{2}:=R N(0,1) ; V_{1}:=-\ln U_{1} ; V_{2}:=-\ln U_{2} ;$ if $\left(V_{2}>(a-1)\left(V_{1}-\ln V_{1}-1\right)\right)$ return $X:=b V_{1}$;

Erlang ERL($m, k), m>0, k$ natural

- pdf - same as $\operatorname{GAM}(k, m / k)$
- cdf - improper integral
- generator 1 . If $X \sim \operatorname{ERL}(m, k)$, it is the sum of k i.r.v. $\operatorname{Exp}(m / k)$ $U_{1}:=R N(0,1) ; U_{2}:=R N(0,1) ; \ldots ; U_{k}:=R N(0,1) ;$ return $X:=-(m / k) \ln \left(\left(1-U_{1}\right)\left(1-U_{2}\right) \ldots\left(1-U_{k}\right)\right)$
- generator 2. generates $\operatorname{GAM}(k, m / k)$
- generator 1 efficient for $k<10$. For larger values of k, generator 2 is faster and not affected by error caused by multiplication of quantities <1.

Normal I

- pdf

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right], x \in \mathbb{R}
$$

- cdf improper integral
- generator 1. Box-Muller
$U_{1}:=R N(0,1) ; U_{2}:=R N(0,1)$;
return $X_{1}:=\sqrt{-2 \ln U_{1}} \cos U_{2}$ and $X_{2}:=\sqrt{-2 \ln U_{1}} \sin U_{2}$
- If $X_{1}, X_{2} \sim N(0,1)$, then

$$
D^{2}=X_{1}^{2}+X_{2}^{2} \sim \chi^{2}(2) \equiv \operatorname{Exp}(2) \Longrightarrow D=\sqrt{-2 \ln U}
$$

- $X_{1}=D \cos \omega, X 2=D \sin \omega, \omega=2 \pi U_{2}$;
- generator 2. Polar Method

Normal II

```
while(true){
    U1:=RN(0,1); U U := RN (0,1);
    V
    if (W<1){
    Y:= [(-2 ln W)/W] 1/2;
    return }\mp@subsup{X}{1}{}:=\mu+\sigma\mp@subsup{V}{1}{}Y\mathrm{ and }\mp@subsup{X}{1}{}:=\mu+\sigma\mp@subsup{V}{1}{}
    }
}
```


Beta BETA(p,q) I

- pdf

$$
f(x)=\left\{\begin{array}{cl}
\frac{x^{p-1}(1-x)^{q-1}}{B(p, q)}, & x \in(0,1) \\
0, & \text { otherwise }
\end{array}\right.
$$

- cdf - improper integral
- generator 1. If $G_{1} \sim \operatorname{GAM}(p, a), G_{2} \sim \operatorname{GAM}(q, a)$, independent, then $X=G_{1} /\left(G_{1}+G_{2}\right) \sim \operatorname{BETA}(p, q)$
- generator 2. (Cheng) acceptance-rejection, for $p, q>1$
setup : $\alpha:=p+q ; \beta:=\sqrt{(\alpha-2) /(2 p q-\alpha)} ; \gamma:=p+\beta^{-1}$; do\{

$$
\begin{aligned}
& U_{1}:=R N(0,1) ; U_{2}:=R N(0,1) ; \\
& V:=\beta \ln \left(U_{1} /\left(1-U_{1}\right)\right) ; W:=p e^{v}
\end{aligned}
$$

$\}$ while $\left(\alpha \ln [\alpha /(q+W)]+\gamma V-\ln 4<\ln \left(U_{1}^{2} U_{2}\right)\right)$ return $X:=W /(q+W)$;

$\operatorname{Beta} \operatorname{BETA}(p, q)$ II

- generator 3. (Jöhnk) acceptance-rejection for $p, q<1$

```
do {
    U:=RN(0,1); V := RN(0,1);
    Y:= U 1/p; Z:= V }\mp@subsup{}{}{1/q}
} while(Y+Z>1)
return }X:=Y/(Y+Z
```


Discrete Distributions

Look-up Tables I

- General methods work for discrete distributions, but with modifications
- look-up table method and alias method
- Suppose distribution has the form

$$
p_{i}=P\left(X=X_{i}\right), \quad P_{i}=\sum_{j=1}^{i} p j=P\left(X \leq x_{i}\right), i=1, \ldots, n
$$

- If the table is large, look-up procedure is slow, to find i we need i steps
- Acceleration: binary search, hasing, etc.
- When the number of points is infinite we need an appropriate cutoff, for example

$$
P_{n}>1-\delta=1-10^{c}
$$

c must be selected carefully

Look-up Tables II

- Look-up by binary search

```
\[
U:=R N(0,1) ; A:=0 ; B:=n ;
\]
\[
\text { while }(A<B-1)\{
\]
\[
i:=\operatorname{trunc}((A+B) / 2)
\]
\[
\text { if }\left(U>P_{i}\right) A:=i
\]
\[
\text { else } B=i \text {; }
\]
\[
\}
\]
\[
\text { return } X:=X_{i}
\]
```

- An alternative is to make a table of starting points aproximately every (n / m) th entry, in the same way that the letters of the alphabet form convenient starting points for search in a dictionary

Look-up Tables III

- Look-up by indexed search -setup

```
i:= 0;
for (j:=0 to m-1){
while ( }\mp@subsup{P}{i}{}<j/m){i:=i+1
Qj:= i;
}
```

- search
$U:=R N(0,1) ; j:=\operatorname{trunc}(m U) ; i:=Q_{j} ;$ while $\left(U \geq P_{i}\right) i:=i+1$;
return $X:=X_{i}$

Alias Method I

- X has the range $S_{n}=\{0,1, \ldots, n\}$
- From the given $p(i)$'s we compute two arrays of length $n+1$
(1) cutoff values $F_{i}, i=0,1, \ldots, n$
(2) aliases $L_{i} \in S_{n}$ for $i=0,1, \ldots, n$
- Setup for the alias method Walker (1977)
(1) Set $L_{i}=i, F_{i}=0, b_{i}=p_{i}-1 /(n+1)$, for $i=0,1, \ldots, n$
(2) For $i=0,1, \ldots, n$ do the following steps
(1) Let $c=\min \left\{b_{0}, b_{1}, \ldots, b_{n}\right\}$ and k be the index of this minimal b_{j}.
(Ties can be broken arbitrarily)
(2) Let $d=\max \left\{b_{0}, b_{1}, \ldots, b_{n}\right\}$ and m be the index of this maximal b_{j}.
(Ties can be broken arbitrarily)
(3) If $\sum_{j=0}^{n}\left|b_{j}\right|<\varepsilon$, stop the algorithm.
(4) Let $L_{k}=m, F_{k}=1+c(n+1), b_{k}=0$, and $b_{m}=c+d$.
- Setup for the alias method Kronmal and Peterson (1979)
(1) Set $F_{i}=(n+1) p(i)$ for $i=0,1, \ldots, n$

Alias Method II

(2) Define the sets $G=\left\{i: F_{i} \geq 1\right\}$ and $S=\left\{i: F_{i}<1\right\}$
(3) Do the following steps until S becomes empty:
(1) Remove an element k from G and remove an element m from S
(2) Set $L_{m}=k$ and replace F_{k} by $F_{k}-1+F_{m}$
(3) If $F_{k}<1$, put k into S; otherwise, put k back into G

- The cuttof and the aliases are not unique
- The alias method
(1) Generate $I \sim D U(0, n)$ and $U \sim(0,1)$ independent of I
(2) If $U \leq F_{i}$ return $X=I$, else return $X=L_{l}$.

Alias Method - Example I

- Consider the RV; the range is S_{3}

$$
X:\left(\begin{array}{cccc}
0 & 1 & 2 & 3 \\
0.1 & 0.4 & 0.2 & 0.3
\end{array}\right)
$$

- The first setup algorithm leads to

i	0	1	2	3
$p(i)$	0.1	0.4	0.2	0.3
F_{i}	0.4	0.0	0.8	0.0
L_{i}	1	1	3	3

- If step 1 of the algorithm produces $I=2$, the probability is $F_{2}=0.8$; we would keep $X=I=2$, and with probability $1-F_{2}=0.2$ we would return $X=L_{2}=3$ instead.

Alias Method - Example II

- Since 2 is not the alias of anything, the algorithm returns $X=2$ if and only if $I=2$ in step 1 and $U \leq 0.8$ in step 2

$$
\begin{aligned}
P(X & =2)=P(I=2 \wedge U \leq 0.8)= \\
& =P(I=2) P(U \leq 0.8)=0.25 \cdot 0.8=0.2
\end{aligned}
$$

- $X=3$ is returned when
- if $I=2$, since $F_{3}=0$, we return $X=L_{3}=3$
- if $I=2$, we return $X=L_{2}=3$ with probability $1-F_{2}=0.2$.

$$
\begin{aligned}
P(X & =3)=P(I=3)+P\left(I=2 \wedge U>F_{2}\right) \\
& =0.25+) .25 \cdot 0.2=0.3
\end{aligned}
$$

Alias Method - Infinite Case

- In this case can be combine with composition method
- If $X \in \mathbb{N}$, we find an n such that $q=\sum_{i=0}^{n} p(i)$ is close to 1 , and $P\left(X \in S_{n}\right)$ is hight.
- Since

$$
p(i)=q\left[\frac{p(i)}{q} I_{S_{n}}(i)\right]+(1-q)\left[\frac{p(i)}{1-q}\left(1-I_{S_{n}}(i)\right)\right]
$$

we obtain the following algorithm
(1) Generate $U \sim U(0,1)$. If $U \leq q$ go to step2, otherwise go to step 3;
(2) Use the alias method to return X on S_{n} with probability mass function $p(i) / q$ for $i=0,1, \ldots, n$.
(3) Use any other method to return X on $\{n+1, n+2, \ldots\}$ with probability mass function $p(i) /(1-q)$ for $i=n+1, n+2, \ldots$

Empirical Distribution

- $x_{1}, x_{2}, \ldots, x_{n}$ is a sample of size n. Assume that each value has the same probability of occuring

$$
P\left(X=x_{i}\right)=\frac{1}{n} \quad i=1,2, \ldots, n
$$

- We generate variates from this distribution using
$U:=R N(0,1) ; i:=\operatorname{trunc}(n U)+1$;
return $X=x_{i}$

Sampling without replacement ; Permutations

- The next algorithm samples $m \leq n$ items from the random sample $x_{1}, x_{2}, \ldots, x_{n}$ of size n., without replacement
for $(j=1$ to $m)\{$
$U:=R N(0,1) ; i:=\operatorname{trunc}[(n-j+1) U]+j$ $\left.a:=a_{j} ; a_{j}:=a_{i} ; a_{i}:=a ;\right\}$
return $a_{1}, a_{2}, \ldots, a_{m}$
- The routine swaps each entry with one drawn from the remaining list; at the end of the call the entries of the first m positions (i.e. $a_{1}, a_{2}, \ldots, a_{m}$) contains the elements sampled without replacement
- For $m=n$ we generate random permutations of the initial sample

Bernoulli BER(p)

- $\operatorname{pmf}\left(\begin{array}{cc}0 & 1 \\ q=1-p & p\end{array}\right)$
- generator elementary look-up table
$U:=R N(0,1)$;
if $(U \leq p)$ then return $X=1$ else return $X=0$

Discrete uniform DU(i, j)

- $i, j \in \mathbb{N} ; \mathrm{pmf}$

$$
p(x)=\left\{\begin{array}{cc}
\frac{1}{j-i+1}, & x \in\{i, i+1, \ldots, j\} \\
0, & \text { otherwise }
\end{array}\right.
$$

- generator: inverse transform method
$U:=R N(0,1)$;
return $X=i+\lfloor(j-i+1) U\rfloor$

Binomial BIN(n,p)

- $n \in \mathbb{N}, p \in(0,1)$
- pmf

$$
p(x)=\left\{\begin{array}{cc}
\binom{n}{x} p^{x} q^{n-x} & x=0,1, \ldots, n \\
0, & \text { otherwise }
\end{array}\right.
$$

- Generator: special property $X \sim \operatorname{BIN}(n, p)$ is the sum of n independent $\operatorname{BER}(p)$. The generation time increases linearly with n. For large $n(>20)$ use general methods.
$X:=0$;
for $(i=1$ to $n)\{$

$$
B:=B E R(p) ; X:=X+B ;\}
$$

return X

Geometric GEOM(p)

- $p \in(0,1)$
- pmf

$$
p(x)=\left\{\begin{array}{cc}
p(1-p)^{x}, & x \in \mathbb{N} \\
0, & \text { otherwise }
\end{array}\right.
$$

- generator: the cdf is invertible

Setup : $a:=1 / \ln (1-p)$;
$U:=R N(0,1)$;
return $X=\operatorname{trunc}(a \ln U)$;

Negative binomial NEGBIN(n,p)

- $n \in \mathbb{N}, p \in(0,1)$
- pmf

$$
p(x)=\left\{\begin{array}{cc}
\binom{n+x-1}{x} p^{n}(1-p)^{x}, & x \in \mathbb{N} \\
0, & \text { otherwise }
\end{array}\right.
$$

- generator: X is the sum of n independent $\operatorname{GEOM}(p)$ variables

$$
X:=0
$$

$$
\text { for }(i=1 \text { to } n)\{
$$

$$
Y:=\operatorname{GEOM}(p) ; X:=X+Y ;\}
$$

return X

- Time increase linearly witm n. One of the general method will be preferable for large n (>10 say).

Hypergeometric HYP(a,b)

- $a, b \in \mathbb{N}^{*}$
- pmf

$$
p(x)=\left\{\begin{array}{cc}
\frac{\binom{a}{x}\binom{b}{n-x}}{\binom{a+b}{n}}, & x=0,1, \ldots, n \\
0, & \text { otherwise }
\end{array}\right.
$$

- generator: inverse transform method [Fishman, 1996]

Setup : $\alpha:=p_{0}=[b!(a+b-n)!] /[(b-n)!(a+b)!]$;
$A:=\alpha ; B:=\alpha ; X:=0$;
$U:=R N(0,1)$;
while $(U>A)\{$ $X:=X+1 ; B:=$
$B(a-X)(n-X) /[(X+1)(b-n+X+1)] ; A:=A+B ;$
\}
return X

Poisson I

- POIS $(\lambda), \lambda>0$
- pmf

$$
p(x)=\left\{\begin{array}{cc}
\frac{\lambda^{x} e^{-\lambda}}{x!}, & x \in \mathbb{N} \\
0, & \text { otherwise }
\end{array}\right.
$$

- Generator 1: The direct method is to count the number of events in an appropriate time period as indicated above:
Setup : $a:=e^{-\lambda}$;
$p:=1 ; \quad X=-1$;
while $(p>a)\{$
$U:=R N(0,1) ; p:=p U ; X:=X+1 ;\}$
return X
- Generator 2:

Poisson II

```
Setup : \(a:=\pi \sqrt{\lambda / 3} ; b:=a / \lambda ; c:=0.767-3.36 / \lambda ; d:=\)
\(\ln c-\ln b-\lambda\);
do \(\{\)
    do \(\{\)
        \(U:=R N(0,1) ; Y:=[a-\ln ((1-U) / U)] / b ;\)
\}while \((Y \leq 1 / 2)\)
\(X:=\operatorname{trunc}(Y+1 / 2) ; \quad V:=R N(0,1)\);
\(\}\) while \(\left(a+b Y+\ln \left[V /\left(1+e^{a-b Y}\right)^{2}\right]>d+X \ln \lambda-\ln X!\right)\)
return \(X\)
```

- Generator 3: For large $\lambda, \lambda^{-1 / 2}(X-\lambda)$ tends to the standard normal. For large $\lambda(>20)$ we have the following:
Setup : $a:=\lambda^{1 / 2}$;
$Z:=N(0,1)$;
$X:=\max [0, \operatorname{trunc}(0.5+\lambda+a Z)]$
return X

General Methods

- Not as well developed as univariate methods.
- Key requirement: to ensure an appropriate correlation structure among the components of the multivariate vector.
- Conditional sampling: $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$ random vector with joint distribution $F\left(x_{1}, \ldots, x_{n}\right)$.
- Suppose distribution of X_{j} given that $X_{i}=x_{i}$, for $i=1,2, \ldots, j-1$, is known for each j.
- X can be built one component at a time, with each component obtained by sampling from an univariate distribution
Generate x_{1} from the distribution $F_{1}(x)$
Generate x_{2} from the distribution $F_{2}\left(x \mid X_{1}=x_{1}\right)$

Generate x_{n}
from the distribution $F_{n}\left(x \mid X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n-1}=x_{n-1}\right)$

Multivariate Normal

- $X \sim \operatorname{MVN}(\mu, \Sigma), \mu n \times 1$ vector, $\Sigma n \times n$ positive definite matrix

$$
f(x)=(2 \pi|\Sigma|)^{-n / 2} \exp \left[-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right], x_{i} \in \mathbb{R}, i=1, \ldots
$$

- Generator: compute first the Choleski decomposition of $\Sigma, \Sigma=L L^{T}$ then generate $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{T}, \mathbf{X}=L \mathbf{Z}+\mu, Z_{i} \sim N(0,1)$
for $(i=1$ to $n) Z_{i}:=N(0,1)$;

$$
\begin{aligned}
& \text { for }(i=1 \text { to } n)\{ \\
& \quad X_{i}:=\mu_{i} ; \\
& \quad \text { for }(j=1 \text { to } i) X_{i}:=X_{i}+L_{i j} Z_{j} \\
& \} \\
& \text { return } X=\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}
$$

Uniform Distribution on the n -Dimensional Sphere

- Components of $\operatorname{MVN}(0, I)$ are treated as equally likely directions in \mathbb{R}^{n}
- Generator:

```
\(S:=0\);
for \((i=1\) to \(n)\{\)
    \(Z_{i}:=N(0,1) ; S:=S+Z_{i}^{2} ;\)
\}
\(S:=\sqrt{S}\)
for \((i:=1\) to \(n) X_{i}:=Z_{i} / S\);
return \(\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)\)
```


Order Statistics I

- Sample $X_{1}, X_{2}, \ldots, X_{n}$ arranged in ascending order

$$
X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}
$$

- Generation and reordering, time $O(n \log n)$
- If X generated by $X=F^{-1}(U)$, the sample can be generated in order from the order statistics of the uniform sample

$$
U_{(1)} \leq U_{(2)} \leq \cdots \leq U_{(n)}
$$

- Based on
(1) $U_{(n)}$ has an invertible distribution
(2) $U_{(1)}, U_{(2)}, \ldots, U_{(i)}$ are the order statistics of a sample of size i drawn from the distribution $U\left(0, U_{(i+1)}\right)$.

Order Statistics II

$$
\begin{aligned}
& U:=R N(0,1) ; U_{(n)}=U^{1 / n} ; \\
& \text { for }(i=n-1 \text { downto } 1)\{ \\
& \quad U:=R N(0,1) ; \\
& \quad U_{(i)}:=U_{(i+1)} U^{1 / i} ; \\
& \text { Alternative way: } \\
& E_{1}:=\operatorname{EXP}(1) ; S_{1}:=E_{1} ; \\
& \text { for }(i=2 \text { to } n+1)\{ \\
& \quad E_{i}:=\operatorname{EXP}(1) ; S_{i}:=S_{i-1}+E_{i} ; \\
& \} \quad \text { for }(i=1 \text { to } n) U_{(i)}:=S_{i} / S_{n+1}
\end{aligned}
$$

Point Processes

- Point process $=$ a sequence of points $t_{0}=0, t_{1}, \ldots$ in time
- the time intervals $x_{i}=t_{i}-t_{i-1}$ are usually random

Examples

(1) t_{i} are arrival times of customers, x_{i} are interarrival times;
(2) t_{i} moments at breakdowns, x_{i} lifetimes

Poisson Processes

- x_{i} independent $\operatorname{EXP}(1 / \lambda)$ variables $\Longrightarrow\left(t_{i}\right)$ Poisson process with rate λ
- to generate next time point t_{i} assuming that t_{i-1} has already been generated
$U:=R N(0,1)$;
return $t_{i}:=t_{i-1}-\lambda^{-1} \ln U$

Nonstationary Poisson Processes

- The rate $\lambda=\lambda(t)$ varies with time.
- Suppose the cummulative rate

$$
\Lambda(t)=\int_{0}^{t} \lambda(u) \mathrm{d} u
$$

is invertible with inverse $\Lambda^{-1}($.

- assume that previous moment s_{i-1} has been already generated; next moment t_{i} given by
$U:=R N(0,1) ; s_{i}:=s_{i-1}-\ln U ;$
return $t_{i}=\Lambda^{-1}\left(s_{i}\right)$

Nonstationary Poisson Processes - Thinning

- Analog to acceptance-rejection method
- $\lambda_{M}=\max _{t} \lambda(t)$

$$
t:=t_{i-1}
$$

do $\{$
$U:=R N(0,1) ; t:=t-\lambda_{M}^{-1} \ln U ; V=R N(0,1) ;$
\}while $\left(V>\lambda(t) / \lambda_{M}\right)$
return $t_{i}=t$

Markov Processes

- Discrete-time Markov chain: $t=0,1,2, \ldots$, states set $X \in\{1,2, \ldots, n\}$
- Given $X_{t}=i$, the next state X_{i+1} is selected according to

$$
P\left(X_{t+1}=j \mid X_{t}=i\right)=p_{i j}, \quad j=1, \ldots, n
$$

- Continuous-time Markov chain: assume system has just entered state i at time t_{k}. Then the next change of state occurs at $t_{k+1}=t_{k}+\operatorname{EXP}\left(1 / \lambda_{i}\right)$. The state entered is j with probability $p_{i j}$, $j=1,2, \ldots, n$

Time-Series Models and Gaussian Processes

- Gaussian process $=$ stochastic process $X(t)$ all of whose joint distribution are multivariate normal (i.e. $X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{r}}$ is multivariate normal for any given set of times $t_{1}, t_{2}, \ldots, t_{r}$)
- A moving average process X_{t} is defined by

$$
X_{t}=Z_{t}+\beta_{1} Z_{t-1}+\cdots+\beta_{q} Z_{t-q}, \quad t=1,2,3, \ldots,
$$

where $Z^{\prime} \mathrm{s}$ are independent $N\left(0, \sigma^{2}\right)$ normal variates and the β^{\prime} s are user-prescribed coefficients. The X 's can be generated directly from this definition.

Autoregressive Processes

- defined by

$$
X_{t}=\alpha_{1} X_{t-1}+\cdots+\alpha_{p} X_{t-p}+Z_{t}, \quad t=1,2,3, \ldots
$$

where Z 's are independent $N(0,1)$ r.v.and α 's are user-prescribed coefficients

- The X 's can be generated from definition; the initial values X_{0}, X_{-1}, \ldots, X_{1-p} need to be obtained

$$
\left(X_{0}, X_{-1}, \ldots, X_{1-p}\right) \sim \operatorname{MVN}(0, \Sigma)
$$

where Σ satisfies

$$
\begin{equation*}
\Sigma=A \Sigma A^{T}+B \tag{3}
\end{equation*}
$$

with

References

Q Luc Devroye, Non-uniform Random Variate Generation, Springer, 1986
Averill M. Law, Simulation Modeling and Analysis, McGraw-Hill, 2007
© J. Banks, J. S. Carson II, B. L. Nelson, D. M. Nicol, Discrete-Event System Simulation, Prentice Hall, 2005
© J. Banks (ed), Handbook of Simulation, Wiley, 1998, Chapter 5
G G. S. Fishman, Monte Carlo. Concepts, Algorithms and Applications, Springer, 1996

Kromal \& Peterson, Statistical Computing 33.4, pp.214-218

