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What is a Monte Carlo Method?

I In a Monte-Carlo method, the desired answer is
formulated as a quantity in a stochastic model and
estimated by random sampling of the model.

I Applications
I computing integrals
I optimization
I counting
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Two basic principles
I There is an important di¤erence between

I Monte Carlo methods, which estimate quantities by
random sampling, and

I pseudo-Monte Carlo methods, which use samples that
are more systematically chosen.

I In some sense, all practical computational methods are
pseudo-Monte Carlo, since random number generators
implemented on machines are generally not truly
random. So the distinction between the methods is a
bit fuzzy. But we�ll use the term Monte Carlo for
samples that are generated using pseudorandom
numbers generated by a computer program

I Monte Carlo methods are (at least in some sense)
methods of last resort. They are generally quite
expensive and only applied to problems that are too
di¢ cult to handle by deterministic (non-stochastic)
methods.
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A motivating example I

I Suppose we are asked to estimate the value

I =
Z 1

0
. . .
Z 1

0
f (x1, . . . , x10)p(x1, . . . , x10)dx1 . . . dx10

=
Z

Ω
f (x)p(x)dx

I Notation

I x = [x1, . . . , x10 ].
I Ω = [0, 1]� � � � � [0, 1] is the region of integration, the
unit hypercube in R10. It can actually be any region,
but this will do �ne as an example.

I Usually p(x) is a constant, equal to 1 divided by the
volume of Ω, but we�ll use more general functions p
later.
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A motivating example II

I We just need p(x) to be a probability density function,
so it should be nonnegative withZ

Ω
p(x)dx = 1

I How might we approach the problem of computing I?
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Option 1: Interpolation
I Fit a polynomial (or your favorite type of function) to
f (x)p(x) using sample values of the function, and then
integrate the polynomial analytically.

I For example, a polynomial of degree 2 in each variable
would have terms of the form

x []1 x
[]
2 x

[]
3 x

[]
4 x

[]
5 x

[]
6 x

[]
7 x

[]
8 x

[]
9 x

[]
10

where the number in each box is 0, 1, or 2. So it has
310 = 59, 049 coe¢ cients, and we would need 59,049
function values to determine these.

I But recall from NA Course that usually you need to
divide the region into small boxes so that a polynomial
is a good approximation within each box.

I If we divide the interval [0, 1] into 5 pieces, we make
510 boxes, with 59,049 function evaluations in each, in
total 510 � 310 = 576 650 390 625!

I Clearly, this method is expensive!
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Option 2: product rules

I Some functions f (x)p(x) can be well approximated by a
separable function

f (x)p(x) � f1(x1)f2(x2) . . . f10(x10)

I In that case we can approximate our integral by

I �
Z 1

0
f1(x1)dx1 . . .

Z 1

0
f10(x10)dx10

I If this works, it is great, but we aren�t often that lucky.
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Option 3: Use your favorite 1-d method

I If we have a function quad that integrates functions of
a single variable, then we can use quad to computeZ 1

0
g(x1)dx1

where

g(z) =
Z 1

0
. . .
Z 1

0
f (z , . . . , x10)p(z , . . . , x10)dx2 . . . dx10

as long as we can evaluate g(z)!
I But g(z) is just an integration, so we can evaluate it
using quad, too!

I We end up with 10 nested calls to quad. Again, this is
very expensive!
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How to Use Nested Quadrature in MATLAB

Example
Suppose that we want to compute the volume of a half
sphere with radius 1.

I =
Z 1

0

Z p1�y 2

�
p
1�y 2

p
1� x2 � y2dxdy

We can accomplish this with nested calls to MATLAB�s
function quad using the following function de�nitions
nestedintegration.html

nestedintegration.html
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Solution

I We need another option! The methods we have
discussed are either too expensive or very
special-purpose.

I If the function has many variables and is not
well-approximated by a separable function, we need a
method of last resort: Monte Carlo integration.
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Idea

I Generate n points fz (i )g that are randomly distributed
with probability density function p

I For our example integration problem, if p(x) is
constant, this requires generating 10n random numbers,
uniformly distributed in [0, 1].

I Then

µn =
1
n

n

∑
i=1
f
�
z (i )
�

is an approximation to the mean value of f in the
region (an absolute correct estimator), and therefore
the value of the integral is

I � µn

Z
Ω
p(x)dx1 . . . dx10 = µn
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Error estimate

I The expected value of this estimate is the true value of
the integral; very nice!

I In fact, for large n, the estimates have a distribution of
σ/
p
n times a normal distribution (with mean 0,

variance 1), where

σ2 =
Z

Ω
(f (x)� I )2 p(x)dx

where Ω is the domain of the integral we are estimating
and Z

Ω
f (x)p(x)dx = I

Note that the variance is a constant independent of the
dimension d of the integration!
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Example

I Estimation of Z p
0.8

0

p
0.8� x2dx

by testing whether points in unit square are inside or
outside this region. challenge1.html
MonteCarlo1d.html

I Note that the error, multiplied by the square root of the
number of points, is approximately constant.

I The expected value of our estimate is equal to the value
we are looking for.

I There is a non-zero variance to our estimate; we aren�t
likely to get the exact value of the integral. But most of
the time, the value will be close, if n is big enough.

I If we could reduce the variance of our estimate, then we
could get by with a smaller n: less work!

challenge1.html
MonteCarlo1d.html
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Variance-reduction methods I

I Suppose that we want to estimate

I =
Z

Ω
f (x)dx

where Ω is a region in Rn with volume equal to one.
I Method 1: Our Monte Carlo estimate of this integral
involves taking uniformly distributed samples from Ω
and taking the average value of f (x) at these samples.

I Method 2: Let�s choose a function p(x) satisfying
p(x) > 0 for all x 2 Ω, normalized so thatZ

Ω
p(x)dx = 1.

Then

I =
Z

Ω

f (x)
p(x)

p(x)dx
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Variance-reduction methods II

I We can get a Monte Carlo estimate of this integral by
taking samples from the distribution with probability
density p(x) and taking the average value of f (x )p(x ) at
these samples.

I When will Method 2 be better than Method 1?
I Recall that the variance of our estimate is proportional
to

σ2 =
Z

Ω

�
f (x)
p(x)

� I
�2
p(x)dx

so if we chose p so that f (x)/p(x) is close to constant,
then is close to zero!

I Note that this requires that f (x) should be close to
having a constant sign.

I Intuitively, why does importance sampling work?
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Variance-reduction methods III

I In regions where f (x) is big, p(x) will also be big, so
there is a high probability that we will sample from
these regions.

I In regions where f (x) is small, the p(x) will also be
small, so we won�t waste time sampling from regions
that don�t contribute much to the integral.
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Algorithm - MC by Importance Sampling
I The big question: how to get a good choice for p(x)?
I Requirement f (x) > 0
I Take a �few� samples of f (x), and let bp(x) be an
approximation to f (x) constructed from these samples.
(For example, bp(x) might be a piecewise constant
approximation.)

I Let p(x) = bp(x)/Ip , where
Ip =

Z
Ω
bp(x)dx

I Generate points z(i) 2 Ω, i = 1, . . . , n, distributed
according to probability density function p(x).

I Then the average value of f /p in the region Ω is
approximated by

µn =
1
n

n

∑
i=1

f
�
z (i )
�

p
�
z (i )
� � I
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Example

Monte Carlo Integration by Importance Sampling

Z p
0.8

0

p
0.8� x2dx

challenge3.html

challenge3.html
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Summary of importance sampling

I Importance sampling is very good for decreasing the
variance of the Monte Carlo estimates.

I In order to use it e¤ectively,
I we need to be able to choose p(x) appropriately.
I we need to be able to sample e¢ ciently from the
distribution with density p(x).



Monte Carlo
Methods

Radu T. Trimbiţaş
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Complex Examples

Example
Compute Z 1

0

�Z 1

x

�Z 2

xy
cos xy exp(z)dz

�
dy
�
dx

See a rough variant of MATLAB code intcomplex1.html

Example
For the object given by xyz � 1 and �5 � x � 5,
�5 � y � 5, �5 � z � 5, (see Figure 1) compute the
volume and the massZ Z Z

VOLUME
ρ(x , y , z)dxdydz

where ρ(x , y , z) = e0.5z .

intcomplex1.html
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Monte Carlo method
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Quasi-Random Numbers I

I In general, simulation might require that the numbers
be as independent of each other as possible, but in
Monte Carlo integration, it is most important that the
proportion of points in any region be proportional to the
volume of that region.

I correlated points - quasi-random numbers
I van der Corput sequence generates the kth coordinate
of the pth quasi-random number wp in a very simple
way.

I Let bk be the kth prime number, so, for example,
b1 = 2, b2 = 3, and b5 = 11

I Write out the base-bk representation of p

p = ∑
i
aib

i
k
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Quasi-Random Numbers II

I Set the coordinate to

wpk = ∑
i
aib

�i�1
k

I You might think that a regular mesh of points also has
a uniform covering property, but it is easy to see (by
drawing the picture) that large boxes are left with no
samples at all if we choose a mesh.

I The van der Corput sequence, however, gives a
sequence that rather uniformly covers the unit
hypercube with samples, as we demonstrate
experimentally. quasirand.pdfchallenge4.html

quasirand.pdf
challenge4.html
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Quasi Monte-Carlo Methods

I How e¤ective are quasi-random points in approximating
integrals?

I For random points, the expected value of the error is
proportional to n�1/2 times the square root of the
variance in f ; for quasi-random points, the error is
proportional to V [f ](logn)dn�1, where V [f ] is a
measure of the variation of f , evaluated by integrating
the absolute value of the dth partial derivative of f with
respect to each of its variables, and adding on a
boundary term.

I Therefore, if d is not too big and f is not too wild, then
the result of Monte Carlo integration using
quasi-random points probably has smaller error than
using pseudorandom points. challenge5.html

challenge5.html
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Summary

I Monte Carlo methods are methods of last resort, used
when standard methods fail or when analysis is
inadequate.

I Success depends on the pseudorandom number
generator having appropriate properties.

I These methods are used in integration, minimization,
simulation, and counting.
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Monte Carlo
Methods
What is Monte Carlo
Method?
Two basic principles

Monte Carlo
methods for
numerical
integration
A motivating example
Idea
Error estimate
Example

Variace Reduction
Variance-reduction
methods
Algorithm
Example

Quasi Monte-Carlo
Quasi-Random
Numbers
Quasi Monte-Carlo
Methods

Summary

References

References

Diane P. O�Leary, Scienti�c Computing with Case
Studies, SIAM, 2009

G. S. Fishman, Monte Carlo. Concepts, Algorithms and
Applications, Springer, 1996

J. E. Gentle, Random Number Generation and Monte
Carlo Methods, 2nd edition, Springer, 2003


	Monte Carlo Methods
	What is Monte Carlo Method?
	Two basic principles

	Monte Carlo methods for numerical integration
	A motivating example
	Idea
	Error estimate
	Example

	Variace Reduction Techniques
	Variance-reduction methods
	Algorithm
	Example

	Quasi Monte-Carlo
	Quasi-Random Numbers
	Quasi Monte-Carlo Methods

	Summary
	References

