Adaptive Cubatures on Triangle How to implement them

Radu T. Trîmbițaș
"Babeş-Bolyai" University

ROGER 2007, Königswinter

Outline

(1) Introduction
(2) A Meta Algorithm for Adaptive Integration
(3) Our Approach

4 MATLAB Implementation
(5) Examples and Tests

Problem

- Our problem: calculate the definite integral

$$
\text { If }:=\int_{B} f(x) d x
$$

$f: B \subseteq \mathbb{R}^{n} \longrightarrow \mathbb{R}$, given integrand, B given region.

Problem

- Our problem: calculate the definite integral

$$
\text { If }:=\int_{B} f(x) d x
$$

$$
f: B \subseteq \mathbb{R}^{n} \longrightarrow \mathbb{R}, \text { given integrand, } B \text { given region. }
$$

- The aim of constructing integration algorithm is to approximate If with a given error tolerance ε and as few function evaluations as possible.

What is an adaptive integration algorithm

- Adaptive algorithms decide dynamically how many function evaluations are needed. The information for such decisions is derived from numerical experiments based on integrand. In general, no a priori information about the decision process is available. The efficiency and reliability of such algorithms depends upon the subdivision strategy.
- The decision as to whether or not a subregion has to be further subdivided is based on either local and global knowledge. This leads to local and global subdivision strategy respectively.
- Local knowledge is based only on the considered subregion.
- Global knowledge is based on knowledge about all subregions of the integration region.
- In any case, the depth of the subdivision process is determined dynamically.

Notes

- For the 1D case the basic idea is as follows: Let $[a, b]$ be a bounded interval. In order to compute

$$
I=\int_{a}^{b} f(x) \mathrm{d} x
$$

we integrate f using two methods which provide us the approximations I_{1} and I_{2}. If the difference of this two approximations is less than a given tolerance, we accept the better of them, say I_{2}, as approximate value of integral. Otherwise, we divide $[a, b]$ into two (or three) congruent parts; then proceed recursively on each part.

Notes

- For the 1D case the basic idea is as follows: Let $[a, b]$ be a bounded interval. In order to compute

$$
I=\int_{a}^{b} f(x) \mathrm{d} x
$$

we integrate f using two methods which provide us the approximations I_{1} and I_{2}. If the difference of this two approximations is less than a given tolerance, we accept the better of them, say I_{2}, as approximate value of integral. Otherwise, we divide $[a, b]$ into two (or three) congruent parts; then proceed recursively on each part.

- The idea is credited to Huygens, but in this form appear in [Davis, Rabinowitz 1984].

Negative results

- [deBoor 1971] it is impossible to construct a correct program that integrates each given function.
- Moreover, for a given program, it is possible to find a function f, which is not correctly integrated ([Kahan 1980]).
- Hence, the task of each implementer is to code programs which function correctly for a class of function as large as possible.

The Rice's meta algorithm

- The Rice's meta algorithm 2 [Rice 1975] is an abstract description of the mechanisms involved in adaptive integration.
- It can be used as a starting point for the development of adaptive integration algorithms based on a given formula Q_{N} with an error estimator E.
- We reproduced it here in the form given in [Überhuber 1995]

The Rice's meta algorithm

Meta algorithm for adaptive integration
Input: $f, B, \varepsilon, Q_{N}, E$.
Output: The approximate integral value q and the error estimation e.
$q:=Q(f ; B) ; e:=E(f, B)$;
insert (B, q, e) into the data structure;
while $e>\varepsilon$ do
choose an element of the data structure (with index s;)
Subdivide B_{s} into subregions $B_{\ell}, \ell=1,2, \ldots, L$;
Calculate approximations for integrals over B_{1}, \ldots, B_{L}

$$
q_{\ell}:=Q_{N}\left(f ; B_{\ell}\right), \quad \ell=1,2, \ldots, L ;
$$

Calculate corresponding error estimates;

$$
e_{\ell}:=E\left(f ; B_{\ell}\right), \quad \ell=1,2, \ldots, L ;
$$

remove old data $\left(B_{s}, q_{s}, E_{s}\right)$ from the data structure; Insert $\left(B_{1}, q_{1}, e_{1}\right), \ldots\left(B_{L}, q_{L}, e_{L}\right)$ into the data structure; $q:=\sum_{i} q_{i} ; \quad e:=\sum_{i} e_{i} ;$
end while

The case of triangle

- As in the case of
[Laurie 1982, Berntsen, Espelid 1992, Cools et al. 1997] our region B will be a collection of triangles.
- This allow:
- A larger degree of generality
- To restart the algorithm for refinement, performing the continuation of previous work.

Basic Elements

- A collection of triangles organized in a heap; M is the current number of triangles
- A quadrature rule Q to produce a local estimate to the integral over each triangle of the collection
- A procedure for error estimation E
- A strategy for picking the next triangle to be processed - in our case the triangle on the top of the heap
- A subdivision strategy

The algorithm

Initialize the triangle collection; $M:=m$;
Compute \hat{Q}_{i} and $\hat{E}_{i}, i=1,2, \ldots, m$
$\hat{Q}=\sum_{i=1}^{m} \hat{Q}_{i} ; \hat{E}=\sum_{i=1}^{n} \hat{E}_{i}$;
while $\hat{E}>\varepsilon$ do
\{Control\}
Pick the triangle T_{k} on top of heap;
\{Subdivision\}
Divide T_{k} in p parts;
\{Process triangles\}
Compute $\hat{Q}_{k}^{(i)}, \hat{E}_{k}^{(i)}, i=1, \ldots, p$;
\{Update\}
$\hat{Q}:=\hat{Q}+\sum_{i=1}^{p} \hat{Q}_{k}^{(i)}-\hat{Q}_{k} ; \hat{E}:=\hat{E}+\sum_{i=1}^{p} \hat{E}_{k}^{(i)}-\hat{E}_{k} ;$
Replace triangle T_{k} by p new triangles;

$$
M:=M+p-1 ;
$$

end while

Data structures

- A collection of triangles Tri, organized as an array of triangles. Information for each triangle:
- V1, V2, V3 - pointers to vertices (see Vertex bellow)
- VI - approximate of the integral
- EE - error estimation
- A collection of vertices, Vertex, organized as a matrix with two columns (coordinates)
- A heap of pointers to triangles, Heap. Ordered by EE. Triangle with maximum EE on top.

Cubature rules

- The user may choose the cubature rule. A procedures that initializes the nodes and the coefficients is specified at invocation.
- The rule must be given in fully symmetric form, as in [Stroud 71] or in Ronald Cools' Encyclopedia of cubature formula [Encyclopedia].
- A procedure evaluates the cubature formula given in fully symmetric form.
- Supported: a 37 point PI rule of degree 13 [Berntsen, Espelid 1990] and a seven point PI rule of degree 5, due to Radon

Error estimation

- Two methods:

Error estimation

- Two methods:
- Embedded cubature formulas.

Error estimation

- Two methods:
- Embedded cubature formulas.
- Null rules.

Embedded cubature formulas

- We shall use two cubature formulas

$$
Q_{j}[f]=\sum_{i=1}^{N_{j}} f\left(x_{i j}, y_{i j}\right), \quad j \in\{1,2\}
$$

with degree of exactness $d_{j}, d_{1}<d_{2}$, where N_{j} is the number of nodes for Q_{j}.

- In order to reduce the number of function evaluation (and so the amount of work) one tries to choose Q_{1} and Q_{2} such that

$$
\left\{\left(x_{i 1}, y_{i 1}: i=1, \ldots, N_{1}\right\} \subset\left\{x_{i 2}, y_{i 2}: i=1, \ldots, N_{2}\right\} .\right.
$$

A pair $\left(Q_{1}, Q_{2}\right)$ having this property is called an embedded pair.

- The difference $\left|Q_{1}[f]-Q_{2}[f]\right|$ is used as an error estimation for Q_{1}.

Null rules

Definition

[Lyness 1965]A rule

$$
\begin{equation*}
N[f]=\sum_{i=0}^{n} u_{i} f\left(x_{i}\right) \tag{1}
\end{equation*}
$$

is a null rule iff it has at least one nonzero weight, and in addition $\sum_{i=0}^{n} u_{i}=0$. A null rule has the degree d if it integrates to zero all basic monomials of degree $\leq d$ and fail to do so for a monomial of degree $d+1$.

- A null rule of the form (1) has the degree at most $n-1$.
- Null rules may be used as estimations of error.
- An estimation based on a single null rule is sometimes unreliable; in practice one uses combination of null rules of various degrees.[Berntsen, Espelid 1991]

Error estimation using null rules

\{Compute\}
$e_{j}:=N_{j}[f], j=1, \ldots, 2 k ;$
$E_{j}:=\left(e_{2 j-1}^{2}+e_{2 j}^{2}\right)^{1 / 2}, j=1, \ldots, k ;$
$r_{j}:=E_{j} / E_{j+1}, j=1, \ldots, k-1 ;$
if $r>1$ then
$\hat{E}=10 \max _{j} E_{j}\{$ Nonasymptotic $\}$
else if $1 / 2 \leq r$ then
$\hat{E}:=10 r^{1} E_{1}$ \{Weakly-asymptotic\}
else

$$
E=10 \cdot 4 r^{3} E_{1}\{\text { Strongly-asymptotic }\}
$$

end if

- Since cubature rules and null rules are based on the same set of nodes, they are evaluated simultaneously.
- Embedded cubatures are considered combination of a cubature rule Q_{1} and a null rule $Q_{1}-Q_{2}$.

Subdivision

- The simplest subdivision is in four congruent triangles, determined by vertices and midpoints of edges
- A more flexible method
- Use subdivision directions parallel to the sides of the triangle
- 4th differences parallel to the sides are computed
- Let e be a unit vector along one side of triangle T_{k}, h the length of the side, C the barycenter. Define the measure of variation of f in direction e :

$$
\begin{gather*}
D(e)=h^{q} \left\lvert\, f\left(C-\frac{4}{15} h e\right)-4 f\left(C-\frac{2}{15} h e\right)+6 f(C)-\right. \tag{2}\\
\left.4 f\left(C+\frac{2}{15} h e\right)+f\left(C-\frac{4}{15} h e\right) \right\rvert\,
\end{gather*}
$$

- Three heuristic constants q, ρ_{1}, ρ_{2} are involved

Subdivision

- Define $D_{a}=D(a /\|a\|)$, $D_{b}=\ldots$ using (2)
- The triangle is divided into four or three triangles according to magnitude of
 D_{a}, D_{b}, D_{c}
- Requires 13 new function evaluations

Subdivision types

Algorithm - Choice of subdivision

(1) Compute estimates D_{a}, D_{b}, D_{c} for sides a, b, c
(2) Relabel the sides so that $D_{a} \geq D_{b} \geq D_{c}$
(3) If $D_{c} \geq D_{a} / \rho_{1}$ then choose S_{1};
else if $D_{b} \geq D_{a} / \rho_{2}$ and $D_{c} \geq D_{a} / \rho_{2}$ then choose S_{2}; else if $D_{b} \geq D_{a} / \rho_{2}$ and $D_{c}<D_{a} / \rho_{2}$ then choose S_{3};
else choose S_{4} end if

MATLAB implementation - main function

- We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is
[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)
- Parameters:

F - function to be integrated

MATLAB implementation - main function

- We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is
[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)
- Parameters:

Tri - collection of triangles

MATLAB implementation - main function

- We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is
[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)
- Parameters:

Vertex - collection of vertices

MATLAB implementation - main function

- We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is
[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)
- Parameters:

VI - value of integral for a triangle

MATLAB implementation - main function

- We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is
[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)
- Parameters:

EE - error estimation for a triangle

MATLAB implementation - main function

- We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is
[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)
- Parameters:
opt - options: errabs, errel, restart, initf, trace, nfev -

MATLAB implementation - main function

- We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is
$[$ result, ee, stat, Tri, Vertex, VI, EE] $=$ CubatureTriang(F, Tri, \ldots
Vertex, VI, EE, opt, varargin)
- Parameters:
initf - initialization function; return cubature parameters:
weights, nodes, null rulles type;
call: $[W, G, m, p]=i n i t f$

MATLAB implementation - main function

- We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is
[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)
- Parameters:
result - approximate of integral

MATLAB implementation - main function

- We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is
[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)
- Parameters:
ee - error estimation

MATLAB implementation - main function

- We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is
$[$ result, ee, stat, Tri, Vertex, VI, EE $]=$ CubatureTriang(F, Tri, \ldots Vertex, VI, EE, opt, varargin)
- Parameters:
stat - statistics: number of function evaluations, number of triangles, success/failure.

MATLAB implementation - cubature and null rules

- Cubature rule and null rules are given in fully symmetric form.
- The function fselcub approximate the integral and the error on the current triangle.
- The selection of cubature and null rules is performed via the initf parameter of CubatTri. Implemented:
- Berntsen \& Espelid 13 degree formula with eight null rules, function BerntsenEspelid
- embedded 5-7 degree cubature formula, function ecf57 [Cools, Haegemans 1988].
- embedded 5-7 degree cubature formula, function ecf58 [Laurie 1982].
- The user can code his own function if he/she obeys the call syntax.

MATLAB implementation - Data structures management

- Function NewVertex inserts a new vertex into the Vertex matrix
- Function NewTriangle inserts a triple of pointers (indices) to the vertices of triangle into the array Tri
- Function InsertIntoHeap takes a pointer to the current triangle and its error estimation and insert the pointer into heap at an appropriate place, udating the heap
- Function ExtractMaxFromHeap extract the top triangle from heap and update the data structures.

Examples and tests - Test families

Test family
$1 \quad f_{1}(x, y)=\left(\left|x-\beta_{1}\right|+y\right)^{d 1}$
$2 f_{2}(x, y)=\left\{\begin{array}{cc}1 & \sqrt{\left(x-\beta_{1}\right)^{2}+\left(y-\beta_{2}\right)^{2}}<d 2 \\ 0 & \text { otherwise }\end{array}\right.$
$3 f_{3}(x, y)=\exp \left(-\alpha_{1}\left|x-\beta_{1}\right|-\alpha_{2}\left|y-\beta_{2}\right|\right)$
$4 f_{4}(x, y)=\exp \left(-\alpha_{1}^{2}\left(x-\beta_{1}\right)^{2}-\alpha_{2}^{2}\left(y-\beta_{2}\right)^{2}\right)$
$5 \quad f_{5}(x, y)=\left(\alpha_{1}^{-2}+\left(x-\beta_{1}\right)^{2}\right)^{-1}\left(\alpha_{2}^{-2}+y^{2}\right)^{-1}$
$6 \quad f_{6}(x, y)=\left(\alpha_{1}^{-2}+\left(x-\beta_{1}\right)^{2}\right)^{-1}\left(\alpha_{2}^{-2}+\left(y-\beta_{2}\right)^{2}\right)^{-1}$
$7 f_{7}(x, y)=\cos \left(2 \pi \beta_{1}+\alpha_{1} x+\alpha_{2} y\right)$

Attributes
X-axis singularit
Discontinuous
C_{0} function
Gaussian
X-axis peak
Internal peak
Oscillatory

- d_{j} - difficulty parameters, $j=1, \ldots, 7$
- $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ - random parameters uniformly distributed on $[0,1]$.
- α_{1}, α_{2} scaled such that $\alpha_{1}+\alpha_{2}=d_{j}$

Test - family 1

Figure: Test for family 1

Test - family 2

Figure: Test for family 2

Test - family 3

Figure: Test for family 3

Test - family 4

Figure: Test for family 4

Test - family 5

Figure: Test for family 5

Test - family 6

(a) Graph of f_{6}

(b) Evaluation points

Figure: Test for family 6

Test - family 7

Figure: Test for family 7

Test with restart

Family 7, first call for errabs $=1 \mathrm{e}-6$, then restart with errabs $=1 \mathrm{e}-8$.

Figure: Test for family 7 with restart

Number of function evaluation - family 4

$\varepsilon=10^{-2}, 10^{-4}, \ldots, 10^{-10}, 500$ samples for each error

Number of failures - family 4

$\varepsilon=10^{-2}, 10^{-4}, \ldots, 10^{-10}, 500$ samples for each error

Number of correct digits - family 4

$\varepsilon=10^{-2}, 10^{-4}, \ldots, 10^{-10}, 500$ samples for each error

Number of function evaluation - family 7

$\varepsilon=10^{-2}, 10^{-4}, \ldots, 10^{-10}, 500$ samples for each error

Number of failures - family 7

$\varepsilon=10^{-2}, 10^{-4}, \ldots, 10^{-10}, 500$ samples for each error

Number of correct digits - family 7

$\varepsilon=10^{-2}, 10^{-4}, \ldots, 10^{-10}, 500$ samples for each error

References I

J. Berntsen, T. O. Espelid:

Algorithm 706: DCUTRI: An algorithm for Adaptive Cubature Over a
Collection of Triangles, ACM TOMS, vol. 18, No. 3, 1992, pp. 329-342.
(1) J. Berntsen, T. O. Espelid:

Error Estimation in Automatic Quadrature Routines, ACM TOMS, vol. 17, No. 2, 1991, pp. 233-252.

雷 J. Berntsen, T. O. Espelid:
Degree 13 Symmetric Quadrature Rules for the Triangle, Report No. 44, Bergen University, Norway, 1990.

References II

T. O. Espelid, A. Genz:

On the Subdivison Strategy in Adaptive Cubature Algorithms for Triangular Regions,
Report No. 44, Bergen University, Norway, 1990.
Carl de Boor:
On writing automatic integration algorithm, in: Mathematical Software, John R. Rice ed., Academic Press, New York, pp. 201-209, 1971.

R R. Cools, A. Haegemans:
An embedded pair of cubature formulae of degree 5 and 7 for the triangle,
BIT 28, 1988, pp. 357-359.

References III

R R. Cools, D. P. Laurie, L. Pluym:
Cubpack++: A C++ package for Authomatic Two-dimensional Cubature, ACM TOMS, vol. 23, No. 1, 1997, pp. 1-15.

Q Philip J. Davis, Philip Rabinowitz:
Methods of Numerical Integration, 2nd edition,
Academic Press, Orlando, 1984.
William M. Kahan:
Handheld calculator evaluates integrals, Hewlett-Packard Journal 31(8), 23-32, 1980.
(D. P. Laurie:
Algorithm 584: CUBTRI: Automatic Cubature over a triangle, ACM TOMS, vol. 8, No. 2, 1982, pp. 210-218.

References IV

嗇 J．Rice：
A metaalgorithm for adaptive quadrature， JACM，22（1975），pp．61－82．

目 I．Somogyi，R．Trîmbițas：
The study of an adaptive algorithm for some cubature formulas on triangle，
Studia UBB．
目 I．Somogyi，R．Trîmbițas：
On an adaptive algorithm based on embedded cubature formulas on triangle，
MACS6，Pécs， 2006.
A．H．Stroud：
Approximate Calculation of Multiple Integrals， Englewood Cliffs，N．J．Prentice－Hall，Inc． 1971.

References V

Δ Cr. Überhuber,
Computer Numerik, Band II, Springer, 1995.
嗇 Ronald Cools:
Encyclopedia of Cubature Formulae
www.cs.kuleuven.be/cwis/research/nines/research/ecf
目 J. Nievergelt, H. Hinterberger, K. C. Sevcik:
The grid file: An adaptable, symmetric, multikey file structure, ACM Trans. on DB Syst. 9(1), 1984.
H. Samet:

The Design and Analysis of Spatial Data Structure, Addison -Wesley, Reading, Ma., 1991.

References VI

葍 M. G. Trîmbiţaş, R. T. Trîmbiţaṣ:
Adaptive cubatures on triangle and spatial data structures, Proceedings NAAT 2006, pp. 401-409.
(J. N. Lyness:
Symmetric integration rules for hypercubes III. Construction of integration rules using null rules.
Math. Comput. 19, 1965, pp. 625-637.

