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Introduction Problem

Problem

Our problem: calculate the definite integral

If :=
∫
B

f (x)dx

f : B ⊆ Rn −→ R, given integrand, B given region.

The aim of constructing integration algorithm is to approximate If
with a given error tolerance ε and as few function evaluations as
possible.
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Introduction Problem

What is an adaptive integration algorithm

Adaptive algorithms decide dynamically how many function
evaluations are needed. The information for such decisions is derived
from numerical experiments based on integrand. In general, no a priori
information about the decision process is available. The efficiency and
reliability of such algorithms depends upon the subdivision strategy.

The decision as to whether or not a subregion has to be further
subdivided is based on either local and global knowledge. This leads to
local and global subdivision strategy respectively.
Local knowledge is based only on the considered subregion.
Global knowledge is based on knowledge about all subregions of the
integration region.
In any case, the depth of the subdivision process is determined
dynamically.
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Introduction Notes

Notes

For the 1D case the basic idea is as follows: Let [a, b] be a bounded
interval. In order to compute

I =
∫ b

a
f (x) dx

we integrate f using two methods which provide us the
approximations I1 and I2. If the difference of this two approximations
is less than a given tolerance, we accept the better of them, say I2, as
approximate value of integral. Otherwise, we divide [a, b] into two (or
three) congruent parts; then proceed recursively on each part.

The idea is credited to Huygens, but in this form appear in
[Davis, Rabinowitz 1984].
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Introduction Negative results

Negative results

[deBoor 1971] it is impossible to construct a correct program that
integrates each given function.

Moreover, for a given program, it is possible to find a function f ,
which is not correctly integrated ( [Kahan 1980]).

Hence, the task of each implementer is to code programs which
function correctly for a class of function as large as possible.
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A Meta Algorithm for Adaptive Integration The General Case

The Rice’s meta algorithm

The Rice’s meta algorithm 2 [Rice 1975] is an abstract description of
the mechanisms involved in adaptive integration.

It can be used as a starting point for the development of adaptive
integration algorithms based on a given formula QN with an error
estimator E .

We reproduced it here in the form given in [Überhuber 1995]
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A Meta Algorithm for Adaptive Integration The General Case

The Rice’s meta algorithm

Meta algorithm for adaptive integration

Input: f , B, ε, QN , E .
Output: The approximate integral value q and the error estimation e.

q := Q(f ; B); e := E (f , B);
insert (B, q, e) into the data structure;
while e > ε do

choose an element of the data structure (with index s;)
Subdivide Bs into subregions B`, ` = 1, 2, . . . , L;
Calculate approximations for integrals over B1, . . . , BL

q` := QN(f ; B`), ` = 1, 2, . . . , L;
Calculate corresponding error estimates;

e` := E (f ; B`), ` = 1, 2, . . . , L;
remove old data (Bs , qs , Es) from the data structure;
Insert (B1, q1, e1), . . . (BL, qL, eL) into the data structure;
q := ∑i qi ; e := ∑i ei ;

end while
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A Meta Algorithm for Adaptive Integration The case of triangle

The case of triangle

As in the case of
[Laurie 1982, Berntsen, Espelid 1992, Cools et al. 1997] our region B
will be a collection of triangles.

This allow:

A larger degree of generality
To restart the algorithm for refinement, performing the continuation of
previous work.
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Our Approach Basic elements

Basic Elements

A collection of triangles organized in a heap; M is the current number
of triangles

A quadrature rule Q to produce a local estimate to the integral over
each triangle of the collection

A procedure for error estimation E

A strategy for picking the next triangle to be processed — in our case
the triangle on the top of the heap

A subdivision strategy
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Our Approach The algorithm

The algorithm

Initialize the triangle collection; M := m;
Compute Q̂i and Êi , i = 1, 2, . . . , m
Q̂ = ∑m

i=1 Q̂i ; Ê = ∑n
i=1 Êi ;

while Ê > ε do
{Control}
Pick the triangle Tk on top of heap;
{Subdivision}
Divide Tk in p parts;
{Process triangles}
Compute Q̂

(i)
k , Ê

(i)
k , i = 1, . . . , p;

{Update}
Q̂ := Q̂ + ∑p

i=1 Q̂
(i)
k − Q̂k ; Ê := Ê + ∑p

i=1 Ê
(i)
k − Êk ;

Replace triangle Tk by p new triangles;
M := M + p − 1;

end while
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Our Approach Data structures

Data structures

A collection of triangles Tri, organized as an array of triangles.
Information for each triangle:

V1, V2, V3 - pointers to vertices (see Vertex bellow)
VI - approximate of the integral
EE - error estimation

A collection of vertices, Vertex, organized as a matrix with two
columns (coordinates)

A heap of pointers to triangles, Heap. Ordered by EE. Triangle with
maximum EE on top.
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Our Approach Cubature rules

Cubature rules

The user may choose the cubature rule. A procedures that initializes
the nodes and the coefficients is specified at invocation.

The rule must be given in fully symmetric form, as in [Stroud 71] or
in Ronald Cools’ Encyclopedia of cubature formula [Encyclopedia].

A procedure evaluates the cubature formula given in fully symmetric
form.

Supported: a 37 point PI rule of degree 13 [Berntsen, Espelid 1990]
and a seven point PI rule of degree 5, due to Radon
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Our Approach Error estimation

Error estimation

Two methods:

Embedded cubature formulas.

Null rules.
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Our Approach Embedded cubature formulas

Embedded cubature formulas

We shall use two cubature formulas

Qj [f ] =
Nj

∑
i=1

f (xij , yij ), j ∈ {1, 2},

with degree of exactness dj , d1 < d2, where Nj is the number of
nodes for Qj .

In order to reduce the number of function evaluation (and so the
amount of work) one tries to choose Q1 and Q2 such that

{(xi1, yi1 : i = 1, . . . , N1} ⊂ {xi2, yi2 : i = 1, . . . , N2}.

A pair (Q1, Q2) having this property is called an embedded pair.

The difference |Q1[f ]−Q2[f ]| is used as an error estimation for Q1.
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Our Approach Null rules

Null rules

Definition

[Lyness 1965]A rule

N [f ] =
n

∑
i=0

ui f (xi ) (1)

is a null rule iff it has at least one nonzero weight, and in addition

∑n
i=0 ui = 0. A null rule has the degree d if it integrates to zero all basic

monomials of degree ≤ d and fail to do so for a monomial of degree d + 1.

A null rule of the form (1) has the degree at most n− 1.

Null rules may be used as estimations of error.

An estimation based on a single null rule is sometimes unreliable; in
practice one uses combination of null rules of various
degrees.[Berntsen, Espelid 1991]
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Our Approach Error estimation using null rules

Error estimation using null rules

{Compute}
ej := Nj [f ], j = 1, . . . , 2k;
Ej := (e2

2j−1 + e2
2j )

1/2, j = 1, . . . , k;
rj := Ej/Ej+1, j = 1, . . . , k − 1;
if r > 1 then

Ê = 10 maxj Ej {Nonasymptotic}
else if 1/2 ≤ r then

Ê := 10r1E1 {Weakly-asymptotic}
else

E = 10 · 4r3E1 {Strongly-asymptotic}
end if

Since cubature rules and null rules are based on the same set of
nodes, they are evaluated simultaneously.

Embedded cubatures are considered combination of a cubature rule
Q1 and a null rule Q1 −Q2.
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Our Approach Subdivision

Subdivision

The simplest subdivision is in four congruent triangles, determined by
vertices and midpoints of edges

A more flexible method

Use subdivision directions parallel to the sides of the triangle

4th differences parallel to the sides are computed

Let e be a unit vector along one side of triangle Tk , h the length of
the side, C the barycenter. Define the measure of variation of f in
direction e:

D(e) = hq

∣∣∣∣f (C − 4

15
he

)
− 4f

(
C − 2

15
he

)
+ 6f (C )−

4f

(
C +

2

15
he

)
+ f

(
C − 4

15
he

)∣∣∣∣ (2)

Three heuristic constants q, ρ1, ρ2 are involved
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Our Approach Subdivision

Subdivision

Define Da = D(a/ ‖a‖),
Db = . . . using (2)

The triangle is divided
into four or three triangles
according to magnitude of
Da, Db, Dc

Requires 13 new function
evaluations
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Our Approach Subdivision

Subdivision types
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Our Approach Subdivision algorithm

Algorithm — Choice of subdivision

1 Compute estimates Da, Db, Dc for sides a, b, c

2 Relabel the sides so that Da ≥ Db ≥ Dc

3 If Dc ≥ Da/ρ1 then choose S1;

else if Db ≥ Da/ρ2 and Dc ≥ Da/ρ2 then choose S2;

else if Db ≥ Da/ρ2 and Dc < Da/ρ2 then choose S3;

else choose S4

end if
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MATLAB Implementation Main function

MATLAB implementation - main function

We code a flexible set of functions which allow to select the cubature
formula and null rules. There exists also a restart facility that allows
the refinement of previous result. The syntax of main function,
CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE]= CubatureTriang(F, Tri, ...

Vertex, VI, EE, opt, varargin)

Parameters:
F - function to be integrated
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MATLAB Implementation Main function

MATLAB implementation - main function

We code a flexible set of functions which allow to select the cubature
formula and null rules. There exists also a restart facility that allows
the refinement of previous result. The syntax of main function,
CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE]= CubatureTriang(F, Tri, ...

Vertex, VI, EE, opt, varargin)

Parameters:
Tri - collection of triangles
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MATLAB Implementation Main function

MATLAB implementation - main function

We code a flexible set of functions which allow to select the cubature
formula and null rules. There exists also a restart facility that allows
the refinement of previous result. The syntax of main function,
CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE]= CubatureTriang(F, Tri, ...

Vertex, VI, EE, opt, varargin)

Parameters:
VI - value of integral for a triangle
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MATLAB Implementation Main function

MATLAB implementation - main function

We code a flexible set of functions which allow to select the cubature
formula and null rules. There exists also a restart facility that allows
the refinement of previous result. The syntax of main function,
CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE]= CubatureTriang(F, Tri, ...

Vertex, VI, EE, opt, varargin)

Parameters:
EE - error estimation for a triangle
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MATLAB Implementation Main function

MATLAB implementation - main function

We code a flexible set of functions which allow to select the cubature
formula and null rules. There exists also a restart facility that allows
the refinement of previous result. The syntax of main function,
CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE]= CubatureTriang(F, Tri, ...

Vertex, VI, EE, opt, varargin)

Parameters:
opt - options: errabs, errel, restart, initf, trace, nfev -
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MATLAB Implementation Main function

MATLAB implementation - main function

We code a flexible set of functions which allow to select the cubature
formula and null rules. There exists also a restart facility that allows
the refinement of previous result. The syntax of main function,
CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE]= CubatureTriang(F, Tri, ...

Vertex, VI, EE, opt, varargin)

Parameters:
initf - initialization function; return cubature parameters:
weights, nodes, null rulles type;
call: [W,G,m,p]=initf
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MATLAB Implementation Main function

MATLAB implementation - main function

We code a flexible set of functions which allow to select the cubature
formula and null rules. There exists also a restart facility that allows
the refinement of previous result. The syntax of main function,
CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE]= CubatureTriang(F, Tri, ...

Vertex, VI, EE, opt, varargin)

Parameters:
result - approximate of integral
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MATLAB Implementation Main function

MATLAB implementation - main function

We code a flexible set of functions which allow to select the cubature
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Radu Tr̂ımbiţaş (“Babeş-Bolyai” University) Adaptive Cubatures on Triangle ROGER 2007, Königswinter 22 / 45



MATLAB Implementation Main function

MATLAB implementation - main function

We code a flexible set of functions which allow to select the cubature
formula and null rules. There exists also a restart facility that allows
the refinement of previous result. The syntax of main function,
CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE]= CubatureTriang(F, Tri, ...

Vertex, VI, EE, opt, varargin)

Parameters:
stat - statistics: number of function evaluations, number of
triangles, success/failure.
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MATLAB Implementation Cubature and null rules

MATLAB implementation - cubature and null rules

Cubature rule and null rules are given in fully symmetric form.

The function fselcub approximate the integral and the error on the
current triangle.

The selection of cubature and null rules is performed via the initf
parameter of CubatTri. Implemented:

Berntsen & Espelid 13 degree formula with eight null rules, function
BerntsenEspelid
embedded 5-7 degree cubature formula, function ecf57
[Cools, Haegemans 1988].
embedded 5-7 degree cubature formula, function ecf58 [Laurie 1982].

The user can code his own function if he/she obeys the call syntax.
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MATLAB Implementation DS Management

MATLAB implementation - Data structures management

Function NewVertex inserts a new vertex into the Vertex matrix

Function NewTriangle inserts a triple of pointers (indices) to the
vertices of triangle into the array Tri

Function InsertIntoHeap takes a pointer to the current triangle and
its error estimation and insert the pointer into heap at an appropriate
place, udating the heap

Function ExtractMaxFromHeap extract the top triangle from heap
and update the data structures.
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Examples and Tests Test families

Examples and tests - Test families

Test family Attributes
1 f1(x , y) = (|x − β1|+ y)d1 X-axis singularity

2 f2(x , y) =
{

1
√

(x − β1)2 + (y − β2)2 < d2
0 otherwise

Discontinuous

3 f3(x , y) = exp(−α1|x − β1| − α2|y − β2|) C0 function
4 f4(x , y) = exp(−α2

1(x − β1)2 − α2
2(y − β2)2) Gaussian

5 f5(x , y) = (α−2
1 + (x − β1)2)−1(α−2

2 + y2)−1 X-axis peak
6 f6(x , y) = (α−2

1 + (x − β1)2)−1(α−2
2 + (y − β2)2)−1 Internal peak

7 f7(x , y) = cos(2πβ1 + α1x + α2y) Oscillatory

dj - difficulty parameters, j = 1, . . . , 7

α1, α2, β1, β2 - random parameters uniformly distributed on [0, 1].
α1, α2 scaled such that α1 + α2 = dj
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Examples and Tests Family 1

Test - family 1

(a) Graph of f1 (b) Evaluation points

Figure: Test for family 1

Radu Tr̂ımbiţaş (“Babeş-Bolyai” University) Adaptive Cubatures on Triangle ROGER 2007, Königswinter 26 / 45



Examples and Tests Family 2

Test - family 2

(a) Graph of f2 (b) Evaluation points

Figure: Test for family 2
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Examples and Tests Family 3

Test - family 3

(a) Graph of f3 (b) Evaluation points

Figure: Test for family 3
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Examples and Tests Family 4

Test - family 4

(a) Graph of f4 (b) Evaluation points

Figure: Test for family 4
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Examples and Tests Family 5

Test - family 5

(a) Graph of f5 (b) Evaluation points

Figure: Test for family 5
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Examples and Tests Family 6

Test - family 6

(a) Graph of f6 (b) Evaluation points

Figure: Test for family 6
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Examples and Tests Family 7

Test - family 7

(a) Graph of f7 (b) Evaluation points

Figure: Test for family 7
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Examples and Tests Restart

Test with restart

Family 7, first call for errabs=1e-6, then restart with errabs=1e-8.

(a) First step (b) Second step, restart

Figure: Test for family 7 with restart
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Examples and Tests Tests for family 4

Number of function evaluation - family 4

ε = 10−2, 10−4, . . . , 10−10, 500 samples for each error

Figure: Average number of function evaluation - family 4
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Examples and Tests Tests for family 4

Number of failures - family 4

ε = 10−2, 10−4, . . . , 10−10, 500 samples for each error

Figure: Average number of failures - family 4
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Examples and Tests Tests for family 4

Number of correct digits - family 4

ε = 10−2, 10−4, . . . , 10−10, 500 samples for each error

Figure: Average number of correct digits - family 4
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Examples and Tests Tests for family 7

Number of function evaluation - family 7

ε = 10−2, 10−4, . . . , 10−10, 500 samples for each error

Figure: Average number of function evaluation - family 7
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Examples and Tests Tests for family 7

Number of failures - family 7

ε = 10−2, 10−4, . . . , 10−10, 500 samples for each error

Figure: Average number of failures - family 7
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Examples and Tests Tests for family 7

Number of correct digits - family 7

ε = 10−2, 10−4, . . . , 10−10, 500 samples for each error

Figure: Average number of correct digits - family 7
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Examples and Tests Tests for family 7
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Examples and Tests Tests for family 7
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