Adaptive Cubatures on Triangle

How to implement them

Radu T. Trîmbițaș

"Babeş-Bolyai" University

ROGER 2007, Königswinter

Radu Trîmbițaș ("Babeș-Bolyai" University)

Adaptive Cubatures on Triangle

ROGER 2007, Königswinter 1 / 45

Outline

- 2 A Meta Algorithm for Adaptive Integration
- Our Approach
- MATLAB Implementation 4
- Examples and Tests 5

_ ⊿ _ _ _

3

Problem

• Our problem: calculate the definite integral

$$If := \int_{B} f(x) dx$$
$$f : B \subseteq \mathbb{R}^{n} \longrightarrow \mathbb{R}, \text{ given integrand, } B \text{ given region.}$$

イロト イポト イヨト イヨト

æ

• Our problem: calculate the definite integral

$$If := \int_{B} f(x) dx$$
$$f : B \subseteq \mathbb{R}^{n} \longrightarrow \mathbb{R}, \text{ given integrand, } B \text{ given region.}$$

The aim of constructing integration algorithm is to approximate *lf* with a given error tolerance ε and as few function evaluations as possible.

(日) (周) (三) (三)

Problem

What is an adaptive integration algorithm

- Adaptive algorithms decide dynamically how many function evaluations are needed. The information for such decisions is derived from numerical experiments based on integrand. In general, no a priori information about the decision process is available. The efficiency and reliability of such algorithms depends upon the subdivision strategy.
 - The decision as to whether or not a subregion has to be further subdivided is based on either local and global knowledge. This leads to local and global subdivision strategy respectively.
 - Local knowledge is based only on the considered subregion.
 - Global knowledge is based on knowledge about all subregions of the integration region.
 - In any case, the depth of the subdivision process is determined dynamically.

・ロト ・得ト ・ヨト ・ヨト

Notes

Notes

• For the 1D case the basic idea is as follows: Let [*a*, *b*] be a bounded interval. In order to compute

$$I = \int_{a}^{b} f(x) \, \mathrm{d}x$$

we integrate f using two methods which provide us the approximations l_1 and l_2 . If the difference of this two approximations is less than a given tolerance, we accept the better of them, say l_2 , as approximate value of integral. Otherwise, we divide [a, b] into two (or three) congruent parts; then proceed recursively on each part.

Notes

• For the 1D case the basic idea is as follows: Let [*a*, *b*] be a bounded interval. In order to compute

$$I = \int_{a}^{b} f(x) \, \mathrm{d}x$$

we integrate f using two methods which provide us the approximations l_1 and l_2 . If the difference of this two approximations is less than a given tolerance, we accept the better of them, say l_2 , as approximate value of integral. Otherwise, we divide [a, b] into two (or three) congruent parts; then proceed recursively on each part.

• The idea is credited to Huygens, but in this form appear in [Davis, Rabinowitz 1984].

Negative results

- [deBoor 1971] it is impossible to construct a correct program that integrates each given function.
- Moreover, for a given program, it is possible to find a function f, which is not correctly integrated ([Kahan 1980]).
- Hence, the task of each implementer is to code programs which function correctly for a class of function as large as possible.

The Rice's meta algorithm

- The Rice's meta algorithm 2 [Rice 1975] is an abstract description of the mechanisms involved in adaptive integration.
- It can be used as a starting point for the development of adaptive integration algorithms based on a given formula Q_N with an error estimator E.
- We reproduced it here in the form given in [Überhuber 1995]

The Rice's meta algorithm

Meta algorithm for adaptive integration

Input: f, B, ε , Q_N , E.

Output: The approximate integral value q and the error estimation e.

$$q := Q(f; B); e := E(f, B);$$

insert (B, q, e) into the data structure;

while $e > \varepsilon$ do

choose an element of the data structure (with index s;) Subdivide B_s into subregions B_ℓ , $\ell = 1, 2, ..., L$; Calculate approximations for integrals over $B_1, ..., B_L$

 $q_\ell := Q_N(f; B_\ell), \quad \ell = 1, 2, \dots, L;$

Calculate corresponding error estimates;

 $e_{\ell} := E(f; B_{\ell}), \quad \ell = 1, 2, \dots, L;$ remove old data (B_s, q_s, E_s) from the data structure; Insert $(B_1, q_1, e_1), \dots, (B_L, q_L, e_L)$ into the data structure; $q := \sum_i q_i; \quad e := \sum_i e_i;$ end while

The case of triangle

• As in the case of

[Laurie 1982, Berntsen, Espelid 1992, Cools et al. 1997] our region B will be a collection of triangles.

- This allow:
 - A larger degree of generality
 - To restart the algorithm for refinement, performing the continuation of previous work.

A B < A B <</p>

Basic Elements

- A collection of triangles organized in a heap; *M* is the current number of triangles
- A quadrature rule Q to produce a local estimate to the integral over each triangle of the collection
- A procedure for error estimation E
- A strategy for picking the next triangle to be processed in our case the triangle on the top of the heap

A B F A B F

• A subdivision strategy

The algorithm

Initialize the triangle collection;
$$M := m$$
;
Compute \hat{Q}_i and \hat{E}_i , $i = 1, 2, ..., m$
 $\hat{Q} = \sum_{i=1}^{m} \hat{Q}_i$; $\hat{E} = \sum_{i=1}^{n} \hat{E}_i$;
while $\hat{E} > \varepsilon$ do
{Control}
Pick the triangle T_k on top of heap;
{Subdivision}
Divide T_k in p parts;
{Process triangles}
Compute $\hat{Q}_k^{(i)}$, $\hat{E}_k^{(i)}$, $i = 1, ..., p$;
{Update}
 $\hat{Q} := \hat{Q} + \sum_{i=1}^{p} \hat{Q}_k^{(i)} - \hat{Q}_k$; $\hat{E} := \hat{E} + \sum_{i=1}^{p} \hat{E}_k^{(i)} - \hat{E}_k$;
Replace triangle T_k by p new triangles;
 $M := M + p - 1$;
end while

3

Data structures

- A collection of triangles Tri, organized as an array of triangles. Information for each triangle:
 - V1, V2, V3 pointers to vertices (see Vertex bellow)
 - VI approximate of the integral
 - EE error estimation
- A collection of vertices, Vertex, organized as a matrix with two columns (coordinates)
- A heap of pointers to triangles, Heap. Ordered by EE. Triangle with maximum EE on top.

- 小田 ト イヨト 一日

Cubature rules

- The user may choose the cubature rule. A procedures that initializes the nodes and the coefficients is specified at invocation.
- The rule must be given in fully symmetric form, as in [Stroud 71] or in Ronald Cools' Encyclopedia of cubature formula [Encyclopedia].
- A procedure evaluates the cubature formula given in fully symmetric form.
- Supported: a 37 point PI rule of degree 13 [Berntsen, Espelid 1990] and a seven point PI rule of degree 5, due to Radon

Error estimation

• Two methods:

Radu Trîmbițaș ("Babeș-Bolyai" University)

Adaptive Cubatures on Triangle

ROGER 2007, Königswinter 14 / 45

3

イロト イポト イヨト イヨト

(日) (周) (三) (三)

3

14 / 45

Error estimation

- Two methods:
- Embedded cubature formulas.

Radu Trîmbițaș ("Babeș-Bolyai" University) Adaptive Cubatures on Triangle ROGER 2007, Königswinter

Error estimation

- Two methods:
- Embedded cubature formulas.
- Null rules.

Radu Trîmbițaș ("Babeș-Bolyai" University) Adaptive C

3

(日) (周) (三) (三)

Embedded cubature formulas

• We shall use two cubature formulas

$$Q_j[f] = \sum_{i=1}^{N_j} f(x_{ij}, y_{ij}), \qquad j \in \{1, 2\},$$

with degree of exactness d_j , $d_1 < d_2$, where N_j is the number of nodes for Q_j .

• In order to reduce the number of function evaluation (and so the amount of work) one tries to choose Q_1 and Q_2 such that

$$\{(x_{i1}, y_{i1}: i = 1, \dots, N_1\} \subset \{x_{i2}, y_{i2}: i = 1, \dots, N_2\}.$$

A pair (Q_1, Q_2) having this property is called an embedded pair.

• The difference $|Q_1[f] - Q_2[f]|$ is used as an error estimation for Q_1 .

イロト 不得下 イヨト イヨト

Null rules

Null rules

Definition

[Lyness 1965]A rule

$$N[f] = \sum_{i=0}^{n} u_i f(x_i)$$
 (1)

is a null rule iff it has at least one nonzero weight, and in addition $\sum_{i=0}^{n} u_i = 0$. A null rule has the degree d if it integrates to zero all basic monomials of degree $\leq d$ and fail to do so for a monomial of degree d + 1.

- A null rule of the form (1) has the degree at most n-1.
- Null rules may be used as estimations of error.
- An estimation based on a single null rule is sometimes unreliable; in practice one uses combination of null rules of various degrees.[Berntsen, Espelid 1991]

イロト 不得 トイヨト イヨト 二日

Error estimation using null rules

Error estimation using null rules

{Compute}

$$e_j := N_j[f], j = 1, ..., 2k;$$

 $E_j := (e_{2j-1}^2 + e_{2j}^2)^{1/2}, j = 1, ..., k;$
 $r_j := E_j / E_{j+1}, j = 1, ..., k - 1;$
if $r > 1$ then
 $\hat{E} = 10 \max_j E_j$ {Nonasymptotic}
else if $1/2 \le r$ then
 $\hat{E} := 10r^1E_1$ {Weakly-asymptotic}
else

$$E = 10 \cdot 4r^3 E_1 \{ \text{Strongly-asymptotic} \}$$

end if

- Since cubature rules and null rules are based on the same set of nodes, they are evaluated simultaneously.
- Embedded cubatures are considered combination of a cubature rule Q_1 and a null rule $Q_1 Q_2$.

Subdivision

• The simplest subdivision is in four congruent triangles, determined by vertices and midpoints of edges

• A more flexible method

- Use subdivision directions parallel to the sides of the triangle
- 4th differences parallel to the sides are computed
- Let e be a unit vector along one side of triangle T_k , h the length of the side, C the barycenter. Define the measure of variation of f in direction e:

$$D(e) = h^{q} \left| f\left(C - \frac{4}{15}he\right) - 4f\left(C - \frac{2}{15}he\right) + 6f(C) - 4f\left(C + \frac{2}{15}he\right) + f\left(C - \frac{4}{15}he\right) \right|$$

$$(2)$$

• Three heuristic constants q, ρ_1 , ρ_2 are involved

Subdivision

- Define D_a = D(a/ ||a||), D_b = ... using (2)
- The triangle is divided into four or three triangles according to magnitude of D_a, D_b, D_c
- Requires 13 new function evaluations

Subdivision types

Radu Trîmbițaș ("Babeș-Bolyai" University)

æ

Algorithm — Choice of subdivision

- Compute estimates D_a , D_b , D_c for sides a, b, c
- 2 Relabel the sides so that $D_a \ge D_b \ge D_c$
- If D_c ≥ D_a/ρ₁ then choose S₁;
 else if D_b ≥ D_a/ρ₂ and D_c ≥ D_a/ρ₂ then choose S₂;
 else if D_b ≥ D_a/ρ₂ and D_c < D_a/ρ₂ then choose S₃;
 else choose S₄
 end if

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

• We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)

- Parameters:
- F function to be integrated

• We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)

- Parameters:
- Tri collection of triangles

• We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)

Parameters:
 Vertex - collection of vertices

• We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)

- Parameters:
- VI value of integral for a triangle

• We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)

- Parameters:
- EE error estimation for a triangle

• We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)

• Parameters:

opt - options: errabs, errel, restart, initf, trace, nfev -

• We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)

• Parameters:

initf - initialization function; return cubature parameters: weights, nodes, null rulles type; call: [W,G,m,p]=initf

• We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)

- Parameters:
- result approximate of integral

• We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)

- Parameters:
- ee error estimation

• We code a flexible set of functions which allow to select the cubature formula and null rules. There exists also a restart facility that allows the refinement of previous result. The syntax of main function, CubatureTriang is

[result, ee, stat, Tri, Vertex, VI, EE] = CubatureTriang(F, Tri, ... Vertex, VI, EE, opt, varargin)

• Parameters:

stat - statistics: number of function evaluations, number of triangles, success/failure.

MATLAB implementation - cubature and null rules

- Cubature rule and null rules are given in fully symmetric form.
- The function fselcub approximate the integral and the error on the current triangle.
- The selection of cubature and null rules is performed via the initf parameter of CubatTri. Implemented:
 - Berntsen & Espelid 13 degree formula with eight null rules, function BerntsenEspelid
 - embedded 5-7 degree cubature formula, function ecf57 [Cools, Haegemans 1988].
 - embedded 5-7 degree cubature formula, function ecf58 [Laurie 1982].
- The user can code his own function if he/she obeys the call syntax.

イロト 不得 トイヨト イヨト 二日

MATLAB implementation - Data structures management

- Function NewVertex inserts a new vertex into the Vertex matrix
- Function NewTriangle inserts a triple of pointers (indices) to the vertices of triangle into the array Tri
- Function InsertIntoHeap takes a pointer to the current triangle and its error estimation and insert the pointer into heap at an appropriate place, udating the heap
- Function ExtractMaxFromHeap extract the top triangle from heap and update the data structures.

- 本間 と えき と えき とうき

Examples and tests - Test families

$$\begin{array}{ll} \mbox{Test family} & \mbox{Attributes} \\ 1 & f_1(x,y) = (|x-\beta_1|+y)^{d1} & \mbox{X-axis singularity} \\ 2 & f_2(x,y) = \begin{cases} 1 & \sqrt{(x-\beta_1)^2 + (y-\beta_2)^2} < d2 \\ 0 & \mbox{otherwise} & \mbox{Discontinuous} \\ \end{cases} \\ \begin{array}{ll} f_3(x,y) = \exp(-\alpha_1|x-\beta_1|-\alpha_2|y-\beta_2|) & \mbox{C}_0 \mbox{ function} \\ 4 & f_4(x,y) = \exp(-\alpha_1^2(x-\beta_1)^2 - \alpha_2^2(y-\beta_2)^2) & \mbox{Gaussian} \\ 5 & f_5(x,y) = (\alpha_1^{-2} + (x-\beta_1)^2)^{-1}(\alpha_2^{-2} + y^2)^{-1} & \mbox{X-axis peak} \\ 6 & f_6(x,y) = (\alpha_1^{-2} + (x-\beta_1)^2)^{-1}(\alpha_2^{-2} + (y-\beta_2)^2)^{-1} & \mbox{Internal peak} \\ 7 & f_7(x,y) = \cos(2\pi\beta_1 + \alpha_1x + \alpha_2y) & \mbox{Oscillatory} \\ \bullet \ d_i \ - \mbox{dificulty parameters}, \ j = 1, \dots, 7 \end{array}$$

- α_1 , α_2 , β_1 , β_2 random parameters uniformly distributed on [0, 1].
- α_1 , α_2 scaled such that $\alpha_1 + \alpha_2 = d_j$

Test - family 1

(a) Graph of f_1

(b) Evaluation points

Figure: Test for family 1

Radu Trîmbițaș ("Babeș-Bolyai" University)

Adaptive Cubatures on Triangle

ROGER 2007, Königswinter

★ 3 > < 3 >

Test - family 2

(a) Graph of f_2

(b) Evaluation points

Figure: Test for family 2

Radu Trîmbițaș ("Babeș-Bolyai" University)

Adaptive Cubatures on Triangle

ROGER 2007, Königswinter

< 🗇 🕨

→ E → < E →</p>

27 / 45

э

Test - family 3

(a) Graph of f_3

(b) Evaluation points

Figure: Test for family 3

Radu Trîmbițaș ("Babeș-Bolyai" University)

Adaptive Cubatures on Triangle

ROGER 2007, Königswinter

★ 3 > < 3 >

Test - family 4

(a) Graph of f_4

(b) Evaluation points

Figure: Test for family 4

Radu Trîmbițaș ("Babeș-Bolyai" University)

Adaptive Cubatures on Triangle

ROGER 2007, Königswinter

∃ → (∃ →

Test - family 5

(a) Graph of f_5

(b) Evaluation points

Figure: Test for family 5

Radu Trîmbițaș ("Babeș-Bolyai" University)

Adaptive Cubatures on Triangle

-ROGER 2007, Königswinter

< E

Test - family 6

(a) Graph of f_6

(b) Evaluation points

Figure: Test for family 6

Radu Trîmbițaș ("Babeș-Bolyai" University)

Adaptive Cubatures on Triangle

► < ☐ ► < ∃ ► < ∃ ►</p>
ROGER 2007, Königswinter

Test - family 7

(a) Graph of f_7

(b) Evaluation points

Figure: Test for family 7

Radu Trîmbițaș ("Babeș-Bolyai" University)

Adaptive Cubatures on Triangle

ROGER 2007, Königswinter

イロト イ団ト イヨト イヨト

Restart

Test with restart

Family 7, first call for errabs=1e-6, then restart with errabs=1e-8.

(a) First step

(b) Second step, restart

Figure: Test for family 7 with restart

(日) (同) (三) (三)

Number of function evaluation - family 4

 $\varepsilon = 10^{-2}, 10^{-4}, \ldots, 10^{-10}$, 500 samples for each error

Radu Trîmbițaș ("Babeș-Bolyai" University)

Adaptive Cubatures on Triangle

ROGER 2007, Königswinter

Number of failures - family 4

 $\varepsilon = 10^{-2}, 10^{-4}, \ldots, 10^{-10}$, 500 samples for each error

Radu Trîmbițaș ("Babeș-Bolyai" University)

Adaptive Cubatures on Triangle

Number of correct digits - family 4

 $\varepsilon = 10^{-2}$, 10^{-4} , ..., 10^{-10} , 500 samples for each error

Radu Trîmbitas ("Babes-Bolyai" University)

Adaptive Cubatures on Triangle

ROGER 2007, Königswinter

Number of function evaluation - family 7

 $\varepsilon = 10^{-2}, 10^{-4}, \ldots, 10^{-10}$, 500 samples for each error

Radu Trîmbițaș ("Babeș-Bolyai" University)

Adaptive Cubatures on Triangle

ROGER 2007, Königswinter

Number of failures - family 7

 $\varepsilon = 10^{-2}, 10^{-4}, \ldots, 10^{-10}$, 500 samples for each error

Radu Trîmbițaș ("Babeș-Bolyai" University)

Adaptive Cubatures on Triangle

Number of correct digits - family 7

 $\varepsilon = 10^{-2}, 10^{-4}, \ldots, 10^{-10},$ 500 samples for each error

Radu Trîmbițaș ("Babeș-Bolyai" University)

Adaptive Cubatures on Triangle

ROGER 2007, Königswinter

References I

J. Berntsen, T. O. Espelid:

Algorithm 706: DCUTRI: An algorithm for Adaptive Cubature Over a Collection of Triangles,

ACM TOMS, vol. 18, No. 3, 1992, pp. 329-342.

J. Berntsen, T. O. Espelid: Error Estimation in Automatic Quadrature Routines, ACM TOMS, vol. 17, No. 2, 1991, pp. 233–252.

J. Berntsen, T. O. Espelid: *Degree 13 Symmetric Quadrature Rules for the Triangle*, Report No. 44, Bergen University, Norway, 1990.

References II

T. O. Espelid, A. Genz:

On the Subdivison Strategy in Adaptive Cubature Algorithms for Triangular Regions,

Report No. 44, Bergen University, Norway, 1990.

Carl de Boor:

On writing automatic integration algorithm,

in: *Mathematical Software*, John R. Rice ed., Academic Press, New York, pp. 201–209, 1971.

R. Cools, A. Haegemans:

An embedded pair of cubature formulae of degree 5 and 7 for the triangle,

BIT 28, 1988, pp. 357-359.

References III

R. Cools, D. P. Laurie, L. Pluym:

Cubpack++: A C++ package for Authomatic Two-dimensional Cubature. ACM TOMS, vol. 23, No. 1, 1997, pp. 1–15.

💊 Philip J. Davis, Philip Rabinowitz: Methods of Numerical Integration, 2nd edition, Academic Press, Orlando, 1984.

William M. Kahan:

Handheld calculator evaluates integrals, Hewlett-Packard Journal **31**(8), 23–32, 1980.

D. P. Laurie:

Algorithm 584: CUBTRI: Automatic Cubature over a triangle, ACM TOMS, vol. 8, No. 2, 1982, pp. 210–218.

References IV

J. Rice: A metaalgorithm for adaptive quadrature, *JACM*, **22**(1975), pp. 61–82.

🖡 I. Somogyi, R. Trîmbițas:

The study of an adaptive algorithm for some cubature formulas on triangle,

Studia UBB.

I. Somogyi, R. Trîmbițas:

On an adaptive algorithm based on embedded cubature formulas on triangle,

MACS6, Pécs, 2006.

🔈 A. H. Stroud:

Approximate Calculation of Multiple Integrals, Englewood Cliffs, N.J. Prentice-Hall, Inc.1971.

References V

🛸 Cr. Überhuber,

Computer Numerik, Band II, Springer, 1995.

Ronald Cools:

Encyclopedia of Cubature Formulae

www.cs.kuleuven.be/cwis/research/nines/research/ecf

J. Nievergelt, H. Hinterberger, K. C. Sevcik: The grid file: An adaptable, symmetric, multikey file structure, *ACM Trans. on DB Syst.* 9(1), 1984.

🔈 H. Samet:

The Design and Analysis of Spatial Data Structure, Addison -Wesley, Reading, Ma., 1991.

References VI

M. G. Trîmbiţaş, R. T. Trîmbiţaş:

Adaptive cubatures on triangle and spatial data structures, Proceedings NAAT 2006, pp. 401–409.

J. N. Lyness:

Symmetric integration rules for hypercubes III. Construction of integration rules using null rules.

Math. Comput. 19, 1965, pp. 625-637.