COEFFICIENT BOUNDS FOR CERTAIN BAZILEVIČ MAPS

MASHOOD SIDIQ and KUNLE OLADEJI BABALOLA

Abstract

Following Babalola 3, we obtain the best possible upper bound for the coefficients of functions in the class $B_{n}^{\lambda}(\gamma)$, using a technique due to Nehari and Netanyahu [9] and an application of certain integral iteration of Carathéodory-type functions. The sharp bound on the Fekete-Szego functional in $B_{n}^{\lambda}(\gamma)$ is also obtained.

MSC 2010. 30C45.
Key words. Coefficient bound, Bazilevič maps, Carathéodory maps, analytic and univalent function.

1. INTRODUCTION

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

which are analytic in the unit disk $E=\{z:|z|<1\}$.
In a recent paper, Babalola [4] provided a new approach to the study of the well-known Bazilevič functions, given as

$$
f(z)=\left\{\frac{\alpha}{1+\beta^{2}} \int_{0}^{z}[p(t)-\mathrm{i} \beta] t^{-\left(1+\frac{\mathrm{i} \alpha \beta}{1+\beta^{2}}\right)} g(t)^{\left(\frac{\alpha}{1+\beta^{2}}\right)} \mathrm{d} t\right\}^{\frac{1+\mathrm{i} \beta}{\alpha}}
$$

where the parameter β is no longer assumed to be zero, as in many previous works (see e.g. [1, 3, 8, 10, 13, 14]). The new method involved a modification of the class of Carathéodory functions. The modified class is denoted here by P_{ξ} and consists of analytic functions

$$
h(z)=\xi+p_{1} z+\ldots
$$

on E, with positive real part, where $\operatorname{Re} \xi=1$.
The class P_{ξ} is of Carathéodory-type. We see that $h \in P_{\xi}$ if and only if $h(0)=\xi$ and $\operatorname{Re} h(z)>0$. The well-known class P of Carathéodory maps coincides with P_{ξ} for $\xi=1$ and it is easy to see that $p \in P$ if and only if $h(z)=p(z)+\xi-1 \in P_{\xi}$. The function given by $H_{0}(z)=(\xi+(2-\xi) z) /(1-z)=$ $\xi+2 z+2 z^{2}+\ldots$ plays a central role in the study of the class P_{ξ}, especially regarding extremal problems.

[^0]Using the new definition, Babalola inspired new investigations of the class of Bazilevič functions [4, 55. In particular, using the Sălăgean derivative operator, $D^{n}, n=0,1,2, \ldots$, defined by $D^{n} f(z)=D\left(D^{n-1} f(z)\right)=z\left(D^{n-1} f(z)\right)^{\prime}$, with $D^{0} f(z)=f(z)$ (see [12]), he gave the following definition.

Definition 1.1 (5]). Let $\eta>0, \lambda=\eta+\mathrm{i} \mu$ and $\xi=\lambda / \eta$ be some constants. A function $f \in A$ belongs to the class $B_{n}(\lambda)$ if and only if

$$
\frac{D^{n} f(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}} \in P_{\xi}, \quad z \in E .
$$

We note that we obtain the class of Bazilevič functions in the case $\lambda=$ $\alpha /(1+\mathrm{i} \beta), \alpha>0$.

Now, denote by $P_{\xi}(\gamma)$ the subclass of functions $h \in P_{\xi}$ with $\operatorname{Re} h(z)>\gamma$, where $0 \leq \gamma<1$ and $z \in E$.

Definition 1.2. With all parameters defined above, a function $f \in A$ belongs to the class $B_{n}^{\lambda}(\gamma)$ if and only if

$$
\frac{D^{n} f(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}} \in P_{\xi}(\gamma), \quad z \in E .
$$

If $\xi=1$ (that is $\lambda=\eta$) in Definition 1.2, we get the class $T_{n}^{\eta}(\gamma)$ introduced in [10] (see also [2]).

Following Babalola [2], we define an integral iteration of $h \in P_{\xi}(\gamma)$ as follows.

Definition 1.3. Let $h \in P_{\xi}(\gamma)$. The nth complex-parameter integral iteration of $h(z), z \in E$, is defined by

$$
h_{n}(z)=\frac{\lambda}{z^{\lambda}} \int_{0}^{z} t^{\lambda-1} h_{n-1}(t) \mathrm{d} t, \quad n=1,2, \ldots,
$$

with $h_{0}(z)=h(z)=\xi+(1-\gamma) p_{1} z+\ldots$
In series form, the above iteration gives $h_{n}(z)=\xi+(1-\gamma) \sum_{k=1}^{\infty} p_{n, k} z^{k}$, where $p_{n, k}=(1-\gamma) \lambda^{n} p_{k} /(\lambda+k)^{n}$ is such that

$$
\left|p_{n, k}\right| \leq \frac{2(1-\gamma)|\lambda|^{n}}{|(\lambda+k)|^{n}}, \quad k=1,2, \ldots
$$

The function $H_{n}(z)$, defined by

$$
H_{n}(\gamma, z)=\frac{\lambda}{z^{\lambda}} \int_{0}^{z} t^{\lambda-1} H_{n-1}(\gamma, t) \mathrm{d} t, \quad n=1,2, \ldots
$$

where $H_{0}(\gamma, z)=\gamma+(1-\gamma)(1+z) /(1-z)+\xi-1=[\xi+(2(1-\gamma)-\xi) z] /(1-z)$, also plays a central role for extremal problems with respect to the iteration $h_{n}(z)$.

In the present paper, we follow the work of Babalola [3, using a technique due to Nehari and Netanyahu [9] and an application of the integral iteration $h_{n}(z)$, to obtain the best possible bounds for the coefficients of the functions
in the class $B_{n}^{\lambda}(\gamma)$ and their Fekete-Szego functional. The two coefficient problems dealt with in this paper are well-known in the theory of geometric functions (see [7, 11]). In the next section, we state (and prove, where necessary) the relevant lemmas which we then apply, in Section 3, to prove our results.

2. PRELIMINARY LEMMAS

In 4, Babalola noted that most of the inequalities for P remain unperturbed by the new normalization. The proofs of the first two lemmas are similar to those of given by Nehari and Netanyahu for [9, Lemmas I and II].

Lemma 2.1. If $p(z)=\xi+b_{1} z+b_{2} z^{2}+\ldots$ and $q(z)=\xi+c_{1} z+c_{2} z^{2}+\ldots$ belongs to P_{ξ}, then $r(z)=\xi+\frac{1}{2} \sum_{k=1}^{\infty} b_{k} c_{k} z^{k}$ also belongs to P_{ξ}.
Lemma 2.2. Let $h(z)=\xi+\sum_{k=1}^{\infty} d_{k} z^{k}$ and $\xi+G(z)=\xi+\sum_{k=1}^{\infty} b_{k}^{\prime} z^{k}$ be functions in P_{ξ}. Set

$$
\beta_{m}=\frac{1}{2^{m}}\left[\xi+\frac{1}{2} \sum_{\epsilon=1}^{m}\binom{m}{\epsilon} d_{\epsilon}\right], \quad \beta_{0}=\xi .
$$

If B_{ν} is defined by

$$
\sum_{m=1}^{\infty}(-1)^{m+1} \beta_{m-1} G^{m}(z)=\sum_{\nu=1}^{\infty} B_{\nu} z^{\nu}
$$

then $\left|B_{\nu}\right| \leq 2, \nu=1,2, \ldots$
Corollary 2.3. Let $h_{n}(z)$ be the nth integral iteration of $h_{0}(z)=\xi+$ $\sum_{k=0}^{\infty} p_{k} z^{k}$ with $\operatorname{Re} h_{n}(z)>\gamma$ and let $\xi+G(z)=\xi+\sum_{k=0}^{\infty} b_{k}^{\prime} z^{k}$ be a function in P_{ξ}. Define β_{m} as in the previous lemma and ϕ_{m} as

$$
\begin{equation*}
\phi_{m}=\frac{(1-\gamma) \lambda^{n}}{(\lambda+m)^{n}} \beta_{m}, \quad \phi_{0}=(1-\gamma) \xi . \tag{2}
\end{equation*}
$$

If A_{ν} is defined by

$$
\begin{equation*}
\sum_{m=1}^{\infty}(-1)^{m+1} \phi_{m-1} G^{m}(z)=\sum_{\nu=1}^{\infty} A_{\nu} z^{\nu} \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|A_{\nu}\right| \leq \frac{2(1-\gamma)|\lambda|^{n}}{|\lambda+\nu|^{n}}, \quad \nu=1,2, \ldots \tag{4}
\end{equation*}
$$

Proof. The proof follows as in [3], in view of (2).
Lemma 2.4 ([3]). Let $J(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$ be a power series. Then the $m^{\text {th }}$ integer product of $J(z)$ is

$$
J^{m}(z)=\left(\sum_{k=0}^{\infty} c_{k} z^{k}\right)^{m}=\sum_{k=0}^{\infty} c_{k}^{(m)} z^{k}
$$

where $c_{k}^{(1)}=c_{k}$ and

$$
c_{k}^{(m)}=\sum_{j=0}^{k} c_{j} c_{k-j}^{(m-1)}, \quad m \geq 2
$$

Lemma 2.5 ([3, p. 145]). Let $m=1,2, \ldots, n=0,1,2, \ldots$ and $\rho_{l}, l=$ $1,2, \ldots$, take values in the set $M=\{0,1,2, \ldots, m\}$ such that $\rho_{1}+\rho_{2}+\ldots+$ $\rho_{m}=m$. If $\alpha>0$ is a real number, then we have the inequality

$$
\prod_{l=1}^{m} \frac{\alpha^{\rho_{l}}}{(\alpha+l)^{\rho_{l}}} \leq \frac{\alpha}{\alpha+m-1}
$$

Lemma 2.6 (5). Let $h=\xi+p_{1} z+p_{2} z^{2}+\ldots \in P_{\xi}$. Then, for any real number τ, we have the sharp inequality

$$
\left|p_{2}-\tau \frac{p_{1}^{2}}{2}\right| \leq 2 \max \{1,|1-\tau|\} .
$$

Before we state and prove our main result, we compute the leading coefficients A_{ν}, in the expression (3), as follows: From (3) we have

$$
\begin{equation*}
\sum_{m=1}^{\infty}(-1)^{m+1} \phi_{m-1} G^{m}(z)=\phi_{0} G(z)-\phi_{1} G^{2}(z)+\cdots=\sum_{\nu=1}^{\infty} A_{\nu} z^{\nu} \tag{5}
\end{equation*}
$$

with $G(z)=\sum_{\nu=1}^{\infty} b_{\nu}^{\prime} z^{\nu}$, and, applying Lemma 2.4, we have

$$
\begin{equation*}
G^{m}(z)=\left(\sum_{\nu=1}^{\infty} b_{\nu}^{\prime} z^{\nu}\right)^{m}=\sum_{\nu=m}^{\infty} G_{\nu}^{(m)} z^{\nu}, \quad m=1,2, \ldots \tag{6}
\end{equation*}
$$

$G_{\nu}^{(m)}$ has the general form

$$
\begin{equation*}
G_{\nu}^{(m)}=\sum_{\rho \in J_{\nu, m}} G_{\nu, \rho} \prod_{l=1}^{m}\left(b_{l}^{\prime}\right)^{\rho_{l}}, \text { where } G_{\nu, \rho}=\frac{m!}{\rho_{1}!\rho_{2}!\ldots \rho_{l}!}, \tag{7}
\end{equation*}
$$

for some multi-index $\rho=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{m}\right)$ and the set $J_{\nu, m}=\left\{\rho \mid \sum_{l=1}^{m} \rho_{l}=\right.$ $\left.m, \sum_{l=1}^{m} l \rho_{l}=\nu\right\}$. Using (6) and (7) in (5), we obtain

$$
\sum_{m=1}^{\infty}(-1)^{m+1} \phi_{m-1} G^{m}(z)=\sum_{\nu=1}^{\infty}\left(\sum_{m=1}^{\nu}(-1)^{m+1} \phi_{m-1} G_{\nu}^{(m)}\right) z^{\nu},
$$

which implies that

$$
\sum_{\nu=1}^{\infty}\left[\sum_{m=1}^{\nu}(-1)^{m+1} \phi_{m-1} G_{\nu}^{(m)}\right] z^{\nu}=\sum_{\nu=1}^{\infty} A_{\nu} z^{\nu},
$$

with

$$
A_{\nu}=\sum_{m=1}^{\nu}(-1)^{m+1} \phi_{m-1} G_{\nu}^{(m)} .
$$

By Corollary 2.3, the coefficients A_{ν} satisfy inequality (4), if $\xi+G(z)=$ $\xi+b_{1}^{\prime} z+b_{2}^{\prime} z^{2}+\ldots$ is a function in the class P_{ξ}, and, by Lemma 2.1, we may set $b_{l}^{\prime}=\frac{1}{2} b_{l} c_{l}$, where $\xi+b_{1} z+b_{2} z^{2}+\ldots$ is in P_{ξ} and $H(z)=\xi+c_{1} z+c_{2} z^{2}+\ldots$ is an arbitrary function in P_{ξ}. Then, taking into account also (7), we have

$$
\begin{equation*}
\left|A_{\nu}\right|=\left|\sum_{m=1}^{\nu}(-1)^{m+1} \frac{\phi_{m-1}}{2^{m}}\left(\sum_{j=1}^{\nu} G_{j} \prod_{l=1}^{m} b_{l}^{\rho_{l}} c_{l}^{\rho_{l}}\right)\right| \leq \frac{2(1-\gamma)|\lambda|^{n}}{|\lambda+\nu|^{n}} . \tag{8}
\end{equation*}
$$

Using (2) in (8), yields

$$
\left|A_{\nu}\right|=\left|\sum_{m=1}^{\nu} \frac{(-1)^{m+1}(1-\gamma) \lambda^{n}}{2^{m}(\lambda+m-1)^{n} \lambda} \beta_{m-1}\left(\sum_{j=1}^{\nu} G_{j} \prod_{l=1}^{m} b_{l}^{\rho_{l}} c_{l}^{\rho_{l}}\right)\right| \leq \frac{2(1-\gamma)|\lambda|^{n-1}}{|\lambda+\nu|^{n}}
$$

Using Lemma 2.5, we get, for $\nu=1,2, \ldots$,

$$
\begin{align*}
& \sum_{m=1}^{\nu}(-1)^{m+1} \frac{\beta_{m-1}}{2^{m}|\lambda|}\left(\sum_{j=1}^{\nu} G_{j} \prod_{l=1}^{m} \frac{(1-\gamma)^{\rho_{l}} \eta^{\rho_{l}+1}|\lambda|^{n \rho_{l}-\rho_{l}-1}}{|\lambda+l|^{n \rho_{l}}} b_{l}^{\rho_{l}} c_{l}^{\rho_{l}}\right) \tag{9}\\
& \leq \sum_{m=1}^{\nu} \frac{(-1)^{m+1}(1-\gamma)|\lambda|^{n}}{|\lambda+m-1|^{n}|\lambda|} \frac{\beta_{m-1}}{2^{m}}\left(\sum_{j=1}^{\nu} G_{j} \prod_{l=1}^{m} b_{l}^{\rho_{l}} c_{l}^{\rho_{l}}\right) .
\end{align*}
$$

Using (8) in (9), we get

$$
\begin{align*}
& \left|\sum_{m=1}^{\nu} \frac{(-1)^{m+1} \beta_{m-1}}{2^{m} \lambda}\left(\sum_{j=1}^{\nu} G_{j} \prod_{l=1}^{m} \frac{(1-\gamma)^{\rho_{l}} \eta^{\rho_{l}+1} \lambda^{n \rho_{l}-\rho_{l}-1}}{(\lambda+l)^{n \rho_{l}}} b_{l}^{\rho_{l}} c_{l}^{\rho_{l}}\right)\right| \tag{10}\\
& \leq \frac{2(1-\gamma)|\lambda|^{n-1}}{|\xi||\lambda+\nu|^{n}}
\end{align*}
$$

which implies that

$$
\begin{equation*}
\left|\sum_{m=1}^{\nu} \frac{(-1)^{m+1}(1-\gamma)^{m} \eta^{m+1} \lambda^{m n-m-2} \beta_{m-1}}{2^{m}} \Phi_{\nu}\right| \leq \frac{2(1-\gamma)|\lambda|^{n-1}}{|\xi||\lambda+\nu|^{n}}, \tag{11}
\end{equation*}
$$

where

$$
\Phi_{\nu}=\sum_{j=1}^{\nu} G_{j} \prod_{l=1}^{m} \frac{b_{l}^{\rho_{l}} c_{l}^{\rho_{l}}}{(\lambda+l)^{n \rho_{l}}} .
$$

3. MAIN RESULT

Theorem 3.1. Let $\eta>0, \mu$ be a real number, $\lambda=\eta+\mathrm{i} \mu, \xi=\lambda / \eta$ and $0 \leq \gamma<1$. If $f \in B_{n}^{\lambda}(\gamma)$, then

$$
\left|a_{k}\right| \leq \frac{2(1-\gamma)|\lambda|^{n-1}}{|\xi||\lambda+k-1|^{n}}, k=2,3, \ldots
$$

The inequalities are sharp. The equalities are obtained for $f(z)$ satisfying

$$
\frac{D^{n} f(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}}=\frac{\xi+[2(1-\gamma)-\xi] z^{k-1}}{1-z^{k-1}}, k=2,3, \ldots
$$

Proof. Let $f \in B_{n}^{\lambda}(\gamma)$. Then there exists an analytic function $h \in P_{\xi}(\gamma)$ such that

$$
\frac{D^{n} f(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}}=h(z)=\gamma+(1-\gamma) p(z)+\xi-1
$$

for some $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots \in P$. Hence

$$
\frac{f(z)}{z}=\left(1+(1-\gamma) \eta \lambda^{n-1} \sum_{k=1}^{\infty} \frac{p_{k} z^{k}}{(\lambda+k)^{n}}\right)^{\frac{1}{\lambda}}
$$

Expanding binomially and employing Lemma 2.4, we have

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} \tilde{B}_{1} C_{k-1}^{(1)} z^{2}+\sum_{k=2}^{\infty} \tilde{B}_{2} C_{k-1}^{(2)} z^{3}+\ldots+\sum_{k=2}^{\infty} \tilde{B}_{m} C_{k-1}^{(m)} z^{k}+\ldots \tag{12}
\end{equation*}
$$

where

$$
\tilde{B}_{m}=\frac{(1-\gamma)^{m} \eta^{m} \lambda^{m(n-2)} \prod_{j=0}^{m-1}(1-j \lambda)}{m!}
$$

and $C_{k}^{(m)}, m=1,2, \ldots ; k=m, m+1, \ldots$ is defined by

$$
\begin{equation*}
\sum_{k=1}^{\infty} C_{k}^{(m)} z^{k}=\left(\sum_{k=1}^{\infty} q_{k} z^{k}\right)^{m} \tag{13}
\end{equation*}
$$

where $q_{k}=\frac{p_{k}}{(\lambda+k)^{n}}$ and $C_{k}^{(m)}$ has a similar description as $G_{\nu}^{(m)}$ in 7

$$
C_{k}^{(m)}=\sum_{j=1}^{k} C_{k, \rho} \prod_{l=1}^{m} q_{l}^{\rho_{l}}
$$

Comparing the coefficients in (1) and $\sqrt[12]{ }$, we have

$$
\begin{equation*}
a_{k}=\sum_{m=1}^{k-1} \frac{(1-\gamma)^{m} \eta^{m} \lambda^{m(n-2)} \prod_{j=0}^{m-1}(1-j \lambda)}{m!}\left(\sum_{j=1}^{k-1} C_{j} \prod_{l=1}^{m} q_{l}^{\rho_{l}}\right) \tag{14}
\end{equation*}
$$

Now, comparing (14) and the term in absolute value in (11) with $\nu=k-1$ and noting that C_{j} in (14) and G_{j} in (11) have similar descriptions as C_{j} mentioned earlier, we conclude that the inequalities in (4) hold if we are able to find two members $h(z)=\xi+d_{1} z+d_{2} z^{2}+\ldots$ and $H(z)=\xi+c_{1} z+c_{2} z^{2}+\ldots$ of P_{ξ} which give rise to the constants β_{m} (as required by Lemma 2.2) and c_{l}. For $H \in P_{\xi}$, a natural choice is the function $H(z)=\frac{\xi+(2-\xi) z}{1-z}=\xi+2 z+2 z^{2}+\ldots$,
which turns out to be suitable. Thus, we have $c_{l}=2, l=1,2, \ldots$ Then (11) yields

$$
\begin{equation*}
\left|\sum_{m=1}^{k-1}(-1)^{m+1}(1-\gamma)^{m} \eta^{m+1} \lambda^{m n-m-2} \beta_{m-1} \Phi_{k-1}\right| \leq \frac{2(1-\gamma)|\lambda|^{n-1}}{|\xi||(\lambda+k-1)|^{n}} \tag{15}
\end{equation*}
$$

Also, comparing (14) and the terms in the absolute value in (15), we have

$$
(-1)^{m+1} \frac{\beta_{m-1}}{\lambda}=\frac{\prod_{j=0}^{m-1}(1-j \lambda)}{m!\eta \lambda^{m-1}}
$$

that is

$$
\begin{equation*}
\beta_{m-1}=\frac{\prod_{j=1}^{m-1}(j \lambda-1)}{m!\eta \lambda^{m-2}}, \quad \beta_{0}=\xi \tag{16}
\end{equation*}
$$

Now, we define

$$
\begin{equation*}
\frac{1}{2^{m-1}}\left[\xi+\frac{1}{2} \sum_{\epsilon=1}^{m-1}\binom{m-1}{\epsilon} d_{\epsilon}\right]=\frac{\prod_{j=1}^{m-1}(j \lambda-1)}{m!\eta \lambda^{m-2}}, \tag{17}
\end{equation*}
$$

for some $d_{\epsilon}, \epsilon=1,2, \ldots, m-1$, and we need to find $h(z)_{k}$ corresponding to each $a_{k}, k=2,3,4, \ldots$, such that the coefficients d_{ϵ} of each $h(z)_{k}$ satisfy (17). In view of (15), we consider the following cases for $m=1,2, \ldots, k-1$, $k=2,3,4, \ldots$
(i) For $k=2, m=1$, using (16), we have $\beta_{0}=\xi$ and, by (17), we have $d_{\epsilon}=0$, for all ϵ. Hence we obtain $h(z)_{2}=\xi$.
(ii) For $k=3, m=1,2$, using (17), we have $d_{1}=-2 / \eta$. Hence, we obtain

$$
h(z)_{3}=\xi-\frac{-1}{\eta}+\frac{1}{\eta}\left(\frac{1-z}{1+z}\right)=\xi-\frac{-2}{\eta} z+\ldots
$$

(iii) For $k=4, m=1,2,3$, using 17, we have

$$
\frac{1}{4}\left[\xi+\frac{1}{2}\left(2 d_{1}+d_{2}\right)\right]=\frac{(\lambda-1)(2 \lambda-1)}{6 \eta \lambda}
$$

and, taking $d_{1}=0$, we obtain $\frac{d_{2}}{2}=\frac{\lambda^{2}-6 \lambda+2}{3 \eta \lambda}$, where

$$
\left|d_{2}\right|=\frac{2}{3}\left|\frac{\lambda^{2}-6 \lambda+2}{\eta \lambda}\right| \leq 2 .
$$

We define

$$
h(z)_{4}=\frac{2(\lambda-1)(2 \lambda-1)}{3 \eta \lambda}-\left(\frac{\lambda^{2}-6 \lambda+2}{3 \eta \lambda}\right)\left(\frac{1-z^{2}}{1+z^{2}}\right),
$$

where

$$
\left|\lambda^{2}+2\right| \leq(3 \eta+6)|\lambda| .
$$

Then

$$
h(z)_{4}=\xi+\frac{2\left(\lambda^{2}-6 \lambda+2\right)}{3 \eta \lambda} z^{2}+\ldots
$$

(iv) For $k=5$, we have $m=1,2,3,4$. So, using (17), we get

$$
\frac{1}{8}\left[\xi+\frac{1}{2}\left(3 d_{1}+3 d_{2}+d_{3}\right)\right]=\frac{(\lambda-1)(2 \lambda-1)(3 \lambda-1)}{24 \eta \lambda^{2}}
$$

where, taking $d_{1}=d_{2}=0$, we obtain

$$
\frac{d_{3}}{2}=\frac{6 \lambda^{3}-11 \lambda^{2}+6 \lambda-1}{3 \eta \lambda^{2}}
$$

with

$$
\left|d_{3}\right|=\frac{2}{3}\left|\frac{3 \lambda^{3}-11 \lambda^{2}+-6 \lambda-1}{\eta \lambda^{2}}\right| \leq 2
$$

and we define

$$
h(z)_{5}=\frac{6 \lambda^{3}-11 \lambda^{2}+6 \lambda-1}{3 \eta \lambda^{2}}-\left(\frac{3 \lambda^{3}-11 \lambda^{2}+6 \lambda-1}{3 \eta \lambda^{2}}\right)\left(\frac{1-z^{3}}{1+z^{3}}\right)
$$

where

$$
\left|3 \lambda^{3}-11 \lambda^{2}-1\right| \leq(3 \eta|\lambda|-6)|\lambda| .
$$

Hence

$$
h(z)_{5}=\xi+\frac{2\left(3 \lambda^{3}-11 \lambda^{2}+6 \lambda-1\right)}{3 \eta \lambda^{2}} z^{3}+\ldots
$$

(v) For $k \geq 6$, we have $m=1,2,3, \ldots, k-1$, and we set $d_{1}=\frac{-2 \xi}{(m-1)}$, $d_{2}=d_{4}=\cdots=d_{\tau}=\sigma$, where τ equals $m-1$, if $m-1$ is even, and $m-2$, otherwise. Also, $d_{3}=d_{5}=\cdots=d_{\omega}=0$, where ω equals $m-1$, if $m-1$ is odd, and $m-2$, otherwise. Thus, we have

$$
\frac{\sigma_{m}}{2}=\frac{2^{m-1} \xi \prod_{j=1}^{m-1}\left(\frac{j \lambda-1}{j \lambda}\right)}{m\left(\binom{m-1}{2}+\binom{m-1}{4}+\cdots+\binom{m-1}{\tau}\right)}
$$

for all $\epsilon=1,2, \ldots, m-1$ such that $\left|d_{\epsilon}\right| \leq 2$. Thus, setting $m=k-1$, we find that $h(z)_{k}, k \geq 6$, is given by

$$
h(z)_{k}=\xi-\frac{2 \xi}{k-2} z+\frac{\sigma_{k-1}}{2} z^{2}+\frac{\sigma_{k-1}}{2} z^{4}+\ldots
$$

That $h(z)_{k}$ belongs to P_{ξ} follows from the fact that P_{ξ} is, like P, a convex family. The proof is complete.

TheOrem 3.2. Let $\eta>0$, μ be a real number, $\lambda=\eta+\mathrm{i} \mu, \xi=\lambda / \eta$ and $0 \leq \gamma<1$. If $f \in B_{n}^{\lambda}(\gamma)$, then

$$
\left|a_{3}-\rho a_{2}^{2}\right| \leq \frac{2(1-\gamma)|\lambda|^{n-1}}{|\xi||\lambda+2|^{n}} \max \{1,|1-M|\}
$$

where

$$
M=\frac{(2 \rho+\lambda-1)(1-\gamma)(\lambda+2)^{2} \eta \lambda^{n-2}}{(\lambda+1)^{2 n}} .
$$

The inequalities are sharp. For each ρ, equalities are obtained by the same extremal function defined in Theorem 3.1.

Proof. Careful computations for (6) yield

$$
\begin{gathered}
a_{2}=\frac{(1-\gamma) \eta \lambda^{n-2} p_{1}}{(\lambda+1)^{n}} \\
a_{3}=\frac{(1-\gamma) \eta \lambda^{n-2} p_{2}}{(\lambda+2)^{n}}+\frac{(1-\lambda)(1-\gamma)^{2} \eta^{2} \lambda^{2 n-4} p_{1}^{2}}{2(\lambda+1)^{2 n}}
\end{gathered}
$$

Hence,

$$
\left|a_{3}-\rho a_{2}^{2}\right|=\frac{(1-\gamma) \eta \lambda^{n-2}}{(\lambda+2)^{n}}\left|p_{2}-\frac{(2 \rho+\lambda-1)(1-\gamma)(\lambda+2)^{n} \eta \lambda^{n-2}}{(\lambda+1)^{2 n}} \frac{p_{1}^{2}}{2}\right| .
$$

By choosing

$$
\tau=\frac{(2 \rho+\lambda-1)(1-\gamma)(\lambda+2)^{n} \eta \lambda^{n-2}}{(\lambda+1)^{2 n}}
$$

and using Lemma 2.6, the result then follows.
For $\lambda=\alpha /(1+\mathrm{i} \beta)$, we have the following corollaries for generalized Bazilevič maps (with $g(z)=z$), whose family is denoted here by $B_{n}^{\alpha, \beta}(\gamma)$.

Corollary 3.3. Let $f \in B_{n}^{\alpha, \beta}(\gamma)$. Then

$$
\left|a_{k}\right| \leq \frac{2(1-\gamma) \alpha^{n}}{\sqrt{\left(1+\beta^{2}\right)\left(\alpha^{2}+\beta^{2}\right)\left[\alpha^{2}+2 \alpha(k-1)+\left(1+\beta^{2}\right)(k-1)^{2}\right]}}, k=2,3, \ldots
$$

The inequalities are sharp.
Corollary 3.4. Let $f \in B_{n}^{\alpha, \beta}(\gamma)$. Then

$$
\left|a_{3}-\rho a_{2}^{2}\right| \leq \frac{2(1-\gamma) \alpha^{n} \sqrt{\left(1+\beta^{2}\right)^{n}}}{\sqrt{\left(\alpha^{2}+\beta^{2}\right)\left[(\alpha+2)^{2}+4 \beta^{2}\right]^{n}}} \max \{1,|1-T|\}
$$

where

$$
T=\frac{(1-\gamma)(\alpha+2+\mathrm{i} \beta)^{2} \alpha^{n-1}[2 \rho+\alpha-1+\mathrm{i} \beta(2 \rho-1)]}{\left(1+\beta^{2}\right)(1+\mathrm{i} \beta)^{n+1}} .
$$

The inequalities are sharp.
Finally, we remark that, with appropriate choices of the defining parameters, our results agree with the existing results.

REFERENCES

[1] S. Abdulhalim, On a class of analytic functions involving the Sălăgean differential operator, Tamkang J. Math., 23 (1992), 51-58.
[2] K. O. Babalola and T. O. Opoola, Iterated integral transforms of Carathéodory functions and their applications to analytic and univalent functions, Tamkang J. Math., 37 (2006), 355-366.
[3] K. O. Babalola, Bounds on the coefficients of certain analytic and univalent functions, Mathematica, 50 (73) (2008), 139-148.
[4] K. O. Babalola, New insights into Bazilevič maps, An. Univ. Oradea Fasc. Mat., 23 (2016), 5-10.
[5] K. O. Babalola, New generalizations of Bazilevič maps, Journal of Classical Analysis, 8 (2016), 163-170.
[6] I. E. Bazilevič, On a case of integrability in quadratures of the Loewner-Kufarev equation (in Russian), Mat. Sb., 37 (1955), 471-476 .
[7] P. L. Duren, Univalent functions, Springer-Verlag, New York, 1983.
[8] S. S. Miller, The Hardy class of a Bazilevič function and its derivative, Proc. Amer. Math. Soc., 30 (1971), 125-132.
[9] Z. Nehari and E. Netanyahu, On the coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc., 8 (1957), 15-23.
[10] T. O. Opoola, On a new subclass of univalent functions, Mathematica, 36 (59) (1994), 195-200.
[11] Ch. Pommerenke, Univalent functions, Vandenhoeck und Ruprecht, Göttingen, 1975.
[12] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Mathematics, Vol. 1013, Springer, 1983, 362-372.
[13] R. Singh, On Bazilevič functions, Proc. Amer. Math. Soc., 38 (1973), 261-271.
[14] D. K. Thomas, On Bazilevič functions, Trans. Amer. Math. Soc., 132 (1968), 353-361.

Received June 11, 2017
Accepted September 5, 2017

> | University of Ilorin |
| :---: |
| Department of Mathematics |
| Ilorin, Nigeria |
| E-mail: mashoodsidiq@yahoo.com |
| https://orcid.org/0000-0001-6670-3161 |
| E-mail: kobabalola@gmail.com |
| E-mail: babalola.ko@unilorin.edu.ng |
| https://orcid.org/0000-0002-0337-1005 |

[^0]: The authors thank the referee for his helpful comments and suggestions.

