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COEFFICIENT BOUNDS FOR CERTAIN BAZILEVIČ MAPS

MASHOOD SIDIQ and KUNLE OLADEJI BABALOLA

Abstract. Following Babalola [3], we obtain the best possible upper bound
for the coefficients of functions in the class Bλn(γ), using a technique due to
Nehari and Netanyahu [9] and an application of certain integral iteration of
Carathéodory-type functions. The sharp bound on the Fekete-Szego functional
in Bλn(γ) is also obtained.
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1. INTRODUCTION

Let A denote the class of functions of the form

(1) f(z) = z +

∞∑
k=2

akz
k,

which are analytic in the unit disk E = {z : |z| < 1}.
In a recent paper, Babalola [4] provided a new approach to the study of the

well-known Bazilevič functions, given as

f(z) =

{
α

1 + β2

∫ z

0
[p(t)− iβ]t

−
(
1+ iαβ

1+β2

)
g(t)

(
α

1+β2

)
dt

} 1+iβ
α

,

where the parameter β is no longer assumed to be zero, as in many previous
works (see e.g. [1, 3, 8, 10, 13, 14]). The new method involved a modification
of the class of Carathéodory functions. The modified class is denoted here by
Pξ and consists of analytic functions

h(z) = ξ + p1z + . . .

on E, with positive real part, where Re ξ = 1.
The class Pξ is of Carathéodory-type. We see that h ∈ Pξ if and only if

h(0) = ξ and Re h(z) > 0. The well-known class P of Carathéodory maps
coincides with Pξ for ξ = 1 and it is easy to see that p ∈ P if and only if
h(z) = p(z)+ξ−1 ∈ Pξ. The function given by H0(z) = (ξ+(2−ξ)z)/(1−z) =
ξ + 2z + 2z2 + . . . plays a central role in the study of the class Pξ, especially
regarding extremal problems.

The authors thank the referee for his helpful comments and suggestions.
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Using the new definition, Babalola inspired new investigations of the class of
Bazilevič functions [4, 5]. In particular, using the Sălăgean derivative operator,
Dn, n = 0, 1, 2, . . ., defined by Dnf(z) = D(Dn−1f(z)) = z(Dn−1f(z))′, with
D0f(z) = f(z) (see [12]), he gave the following definition.

Definition 1.1 ([5]). Let η > 0, λ = η+iµ and ξ = λ/η be some constants.
A function f ∈ A belongs to the class Bn(λ) if and only if

Dnf(z)λ

ηλn−1zλ
∈ Pξ, z ∈ E.

We note that we obtain the class of Bazilevič functions in the case λ =
α/(1 + iβ), α > 0.

Now, denote by Pξ(γ) the subclass of functions h ∈ Pξ with Re h(z) > γ,
where 0 ≤ γ < 1 and z ∈ E.

Definition 1.2. With all parameters defined above, a function f ∈ A
belongs to the class Bλ

n(γ) if and only if

Dnf(z)λ

ηλn−1zλ
∈ Pξ(γ), z ∈ E.

If ξ = 1 (that is λ = η) in Definition 1.2, we get the class T ηn (γ) introduced
in [10] (see also [2]).

Following Babalola [2], we define an integral iteration of h ∈ Pξ(γ) as fol-
lows.

Definition 1.3. Let h ∈ Pξ(γ). The nth complex-parameter integral iter-
ation of h(z), z ∈ E, is defined by

hn(z) =
λ

zλ

∫ z

0
tλ−1hn−1(t) dt, n = 1, 2, . . . ,

with h0(z) = h(z) = ξ + (1− γ)p1z + . . .

In series form, the above iteration gives hn(z) = ξ + (1 − γ)
∑∞

k=1 pn,kz
k,

where pn,k = (1− γ)λnpk/(λ+ k)n is such that

|pn,k| ≤
2(1− γ)|λ|n

|(λ+ k)|n
, k = 1, 2, . . . .

The function Hn(z), defined by

Hn(γ, z) =
λ

zλ

∫ z

0
tλ−1Hn−1(γ, t)dt, n = 1, 2, . . . ,

where H0(γ, z) = γ+(1−γ)(1+z)/(1−z)+ξ−1 = [ξ+(2(1−γ)−ξ)z]/(1−z),
also plays a central role for extremal problems with respect to the iteration
hn(z).

In the present paper, we follow the work of Babalola [3], using a technique
due to Nehari and Netanyahu [9] and an application of the integral iteration
hn(z), to obtain the best possible bounds for the coefficients of the functions
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in the class Bλ
n(γ) and their Fekete-Szego functional. The two coefficient

problems dealt with in this paper are well-known in the theory of geometric
functions (see [7, 11]). In the next section, we state (and prove, where nec-
essary) the relevant lemmas which we then apply, in Section 3, to prove our
results.

2. PRELIMINARY LEMMAS

In [4], Babalola noted that most of the inequalities for P remain unper-
turbed by the new normalization. The proofs of the first two lemmas are
similar to those of given by Nehari and Netanyahu for [9, Lemmas I and II].

Lemma 2.1. If p(z) = ξ + b1z + b2z
2 + . . . and q(z) = ξ + c1z + c2z

2 + . . .
belongs to Pξ, then r(z) = ξ + 1

2

∑∞
k=1 bkckz

k also belongs to Pξ.

Lemma 2.2. Let h(z) = ξ +
∑∞

k=1 dkz
k and ξ + G(z) = ξ +

∑∞
k=1 b

′
kz
k be

functions in Pξ. Set

βm =
1

2m

[
ξ +

1

2

m∑
ε=1

(
m
ε

)
dε

]
, β0 = ξ.

If Bν is defined by
∞∑
m=1

(−1)m+1βm−1G
m(z) =

∞∑
ν=1

Bνz
ν ,

then |Bν | ≤ 2, ν = 1, 2, . . .

Corollary 2.3. Let hn(z) be the nth integral iteration of h0(z) = ξ +∑∞
k=0 pkz

k with Re hn(z) > γ and let ξ +G(z) = ξ +
∑∞

k=0 b
′
kz
k be a function

in Pξ. Define βm as in the previous lemma and φm as

(2) φm =
(1− γ)λn

(λ+m)n
βm, φ0 = (1− γ)ξ.

If Aν is defined by

(3)
∞∑
m=1

(−1)m+1φm−1G
m(z) =

∞∑
ν=1

Aνz
ν ,

then

(4) |Aν | ≤
2(1− γ)|λ|n

|λ+ ν|n
, ν = 1, 2, . . .

Proof. The proof follows as in [3], in view of (2). �

Lemma 2.4 ([3]). Let J(z) =
∑∞

k=0 ckz
k be a power series. Then the mth

integer product of J(z) is

Jm(z) =

( ∞∑
k=0

ckz
k

)m
=

∞∑
k=0

c
(m)
k zk,
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where c
(1)
k = ck and

c
(m)
k =

k∑
j=0

cjc
(m−1)
k−j , m ≥ 2.

Lemma 2.5 ([3, p. 145]). Let m = 1, 2, . . . , n = 0, 1, 2, . . . and ρl, l =
1, 2, . . . , take values in the set M = {0, 1, 2, . . . ,m} such that ρ1 + ρ2 + . . . +
ρm = m. If α > 0 is a real number, then we have the inequality

m∏
l=1

αρl

(α+ l)ρl
≤ α

α+m− 1
.

Lemma 2.6 ([5]). Let h = ξ + p1z + p2z
2 + . . . ∈ Pξ. Then, for any real

number τ , we have the sharp inequality∣∣∣∣p2 − τ p212
∣∣∣∣ ≤ 2 max {1, |1− τ |} .

Before we state and prove our main result, we compute the leading coeffi-
cients Aν , in the expression (3), as follows: From (3) we have

(5)
∞∑
m=1

(−1)m+1φm−1G
m(z) = φ0G(z)− φ1G2(z) + · · · =

∞∑
ν=1

Aνz
ν ,

with G(z) =
∑∞

ν=1 b
′
νz
ν , and, applying Lemma 2.4, we have

(6) Gm(z) =

( ∞∑
ν=1

b′νz
ν

)m
=
∞∑
ν=m

G(m)
ν zν , m = 1, 2, . . . .

G
(m)
ν has the general form

(7) G(m)
ν =

∑
ρ∈Jν,m

Gν,ρ

m∏
l=1

(b′l)
ρl , where Gν,ρ =

m!

ρ1!ρ2! . . . ρl!
,

for some multi-index ρ = (ρ1, ρ2, . . . , ρm) and the set Jν,m = {ρ|
∑m

l=1 ρl =
m,

∑m
l=1 lρl = ν}. Using (6) and (7) in (5), we obtain

∞∑
m=1

(−1)m+1φm−1G
m(z) =

∞∑
ν=1

(
ν∑

m=1

(−1)m+1φm−1G
(m)
ν

)
zν ,

which implies that

∞∑
ν=1

[
ν∑

m=1

(−1)m+1φm−1G
(m)
ν

]
zν =

∞∑
ν=1

Aνz
ν ,

with

Aν =

ν∑
m=1

(−1)m+1φm−1G
(m)
ν .
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By Corollary 2.3, the coefficients Aν satisfy inequality (4), if ξ + G(z) =
ξ + b′1z + b′2z

2 + . . . is a function in the class Pξ, and, by Lemma 2.1, we may

set b′l = 1
2blcl, where ξ+b1z+b2z

2+ . . . is in Pξ and H(z) = ξ+c1z+c2z
2+ . . .

is an arbitrary function in Pξ. Then, taking into account also (7), we have

(8) |Aν | =

∣∣∣∣∣∣
ν∑

m=1

(−1)m+1φm−1
2m

 ν∑
j=1

Gj

m∏
l=1

bρll c
ρl
l

∣∣∣∣∣∣ ≤ 2(1− γ)|λ|n

|λ+ ν|n
.

Using (2) in (8), yields

|Aν | =

∣∣∣∣∣∣
ν∑

m=1

(−1)m+1(1− γ)λn

2m(λ+m− 1)nλ
βm−1

 ν∑
j=1

Gj

m∏
l=1

bρll c
ρl
l

∣∣∣∣∣∣ ≤ 2(1− γ)|λ|n−1

|λ+ ν|n
.

Using Lemma 2.5, we get, for ν = 1, 2, . . .,

ν∑
m=1

(−1)m+1 βm−1
2m|λ|

 ν∑
j=1

Gj

m∏
l=1

(1− γ)ρlηρl+1|λ|nρl−ρl−1

|λ+ l|nρl
bρll c

ρl
l


≤

ν∑
m=1

(−1)m+1(1− γ)|λ|n

|λ+m− 1|n |λ|
βm−1
2m

 ν∑
j=1

Gj

m∏
l=1

bρll c
ρl
l

 .

(9)

Using (8) in (9), we get∣∣∣∣∣∣
ν∑

m=1

(−1)m+1βm−1
2mλ

 ν∑
j=1

Gj

m∏
l=1

(1− γ)ρlηρl+1λnρl−ρl−1

(λ+ l)nρl
bρll c

ρl
l

∣∣∣∣∣∣
≤ 2(1− γ)|λ|n−1

|ξ||λ+ ν|n
,

(10)

which implies that∣∣∣∣∣
ν∑

m=1

(−1)m+1(1− γ)mηm+1λmn−m−2βm−1
2m

Φν

∣∣∣∣∣ ≤ 2(1− γ)|λ|n−1

|ξ||λ+ ν|n
,(11)

where

Φν =

ν∑
j=1

Gj

m∏
l=1

bρll c
ρl
l

(λ+ l)nρl
.

3. MAIN RESULT

Theorem 3.1. Let η > 0, µ be a real number, λ = η + iµ, ξ = λ/η and
0 ≤ γ < 1. If f ∈ Bλ

n(γ), then

|ak| ≤
2(1− γ)|λ|n−1

|ξ||λ+ k − 1|n
, k = 2, 3, . . .
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The inequalities are sharp. The equalities are obtained for f(z) satisfying

Dnf(z)λ

ηλn−1zλ
=
ξ + [2(1− γ)− ξ]zk−1

1− zk−1
, k = 2, 3, . . .

Proof. Let f ∈ Bλ
n(γ). Then there exists an analytic function h ∈ Pξ(γ)

such that
Dnf(z)λ

ηλn−1zλ
= h(z) = γ + (1− γ)p(z) + ξ − 1,

for some p(z) = 1 + p1z + p2z
2 + . . . ∈ P . Hence

f(z)

z
=

(
1 + (1− γ)ηλn−1

∞∑
k=1

pkz
k

(λ+ k)n

) 1
λ

.

Expanding binomially and employing Lemma 2.4, we have

(12) f(z) = z +

∞∑
k=2

B̃1C
(1)
k−1z

2 +

∞∑
k=2

B̃2C
(2)
k−1z

3 + . . .+

∞∑
k=2

B̃mC
(m)
k−1z

k + . . . ,

where

B̃m =
(1− γ)mηmλm(n−2)∏m−1

j=0 (1− jλ)

m!

and C
(m)
k ,m = 1, 2, . . . ; k = m,m+ 1, . . . is defined by

(13)
∞∑
k=1

C
(m)
k zk =

( ∞∑
k=1

qkz
k

)m
,

where qk = pk
(λ+k)n and C

(m)
k has a similar description as G

(m)
ν in (7)

C
(m)
k =

k∑
j=1

Ck,ρ

m∏
l=1

qρll .

Comparing the coefficients in (1) and (12), we have

(14) ak =

k−1∑
m=1

(1− γ)mηmλm(n−2)∏m−1
j=0 (1− jλ)

m!

k−1∑
j=1

Cj

m∏
l=1

qρll

 .

Now, comparing (14) and the term in absolute value in (11) with ν = k− 1
and noting that Cj in (14) and Gj in (11) have similar descriptions as Cj
mentioned earlier, we conclude that the inequalities in (4) hold if we are able
to find two members h(z) = ξ+d1z+d2z

2+. . . and H(z) = ξ+c1z+c2z
2+. . . of

Pξ which give rise to the constants βm (as required by Lemma 2.2) and cl. For

H ∈ Pξ, a natural choice is the function H(z) = ξ+(2−ξ)z
1−z = ξ+ 2z+ 2z2 + . . .,
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which turns out to be suitable. Thus, we have cl = 2, l = 1, 2, . . . Then (11)
yields

(15)

∣∣∣∣∣
k−1∑
m=1

(−1)m+1(1− γ)mηm+1λmn−m−2βm−1Φk−1

∣∣∣∣∣ ≤ 2(1− γ)|λ|n−1

|ξ||(λ+ k − 1)|n
.

Also, comparing (14) and the terms in the absolute value in (15), we have

(−1)m+1βm−1
λ

=

∏m−1
j=0 (1− jλ)

m!ηλm−1
,

that is

(16) βm−1 =

∏m−1
j=1 (jλ− 1)

m!ηλm−2
, β0 = ξ.

Now, we define

(17)
1

2m−1

[
ξ +

1

2

m−1∑
ε=1

(
m− 1
ε

)
dε

]
=

∏m−1
j=1 (jλ− 1)

m! η λm−2
,

for some dε, ε = 1, 2, . . . ,m − 1, and we need to find h(z)k corresponding
to each ak, k = 2, 3, 4, . . . , such that the coefficients dε of each h(z)k satisfy
(17). In view of (15), we consider the following cases for m = 1, 2, . . . , k − 1,
k = 2, 3, 4, . . .

(i) For k = 2, m = 1, using (16), we have β0 = ξ and, by (17), we have
dε = 0, for all ε. Hence we obtain h(z)2 = ξ.

(ii) For k = 3, m = 1, 2, using (17), we have d1 = −2/η. Hence, we obtain

h(z)3 = ξ − −1

η
+

1

η

(
1− z
1 + z

)
= ξ − −2

η
z + . . .

(iii) For k = 4, m = 1, 2, 3, using (17), we have

1

4

[
ξ +

1

2
(2d1 + d2)

]
=

(λ− 1)(2λ− 1)

6 η λ

and, taking d1 = 0, we obtain d2
2 = λ2−6λ+2

3ηλ , where

|d2| =
2

3

∣∣∣∣λ2 − 6λ+ 2

η λ

∣∣∣∣ ≤ 2.

We define

h(z)4 =
2(λ− 1)(2λ− 1)

3 η λ
−
(
λ2 − 6λ+ 2

3 η λ

)(
1− z2

1 + z2

)
,

where
|λ2 + 2| ≤ (3η + 6)|λ|.

Then

h(z)4 = ξ +
2(λ2 − 6λ+ 2)

3ηλ
z2 + . . . .
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(iv) For k = 5, we have m = 1, 2, 3, 4. So, using (17), we get

1

8

[
ξ +

1

2
(3d1 + 3d2 + d3)

]
=

(λ− 1)(2λ− 1)(3λ− 1)

24 η λ2
,

where, taking d1 = d2 = 0, we obtain

d3
2

=
6λ3 − 11λ2 + 6λ− 1

3 η λ2
,

with

|d3| =
2

3

∣∣∣∣3λ3 − 11λ2 +−6λ− 1

η λ2

∣∣∣∣ ≤ 2,

and we define

h(z)5 =
6λ3 − 11λ2 + 6λ− 1

3 η λ2
−
(

3λ3 − 11λ2 + 6λ− 1

3 η λ2

)(
1− z3

1 + z3

)
,

where
|3λ3 − 11λ2 − 1| ≤ (3η|λ| − 6)|λ|.

Hence

h(z)5 = ξ +
2(3λ3 − 11λ2 + 6λ− 1)

3 η λ2
z3 + . . .

(v) For k ≥ 6, we have m = 1, 2, 3, . . . , k − 1, and we set d1 = −2ξ
(m−1) ,

d2 = d4 = · · · = dτ = σ, where τ equals m − 1, if m − 1 is even, and
m−2, otherwise. Also, d3 = d5 = · · · = dω = 0, where ω equals m−1,
if m− 1 is odd, and m− 2, otherwise. Thus, we have

σm
2

=
2m−1ξ

∏m−1
j=1

(
jλ−1
jλ

)
m

((
m− 1

2

)
+

(
m− 1

4

)
+ · · ·+

(
m− 1
τ

)) ,
for all ε = 1, 2, . . . ,m− 1 such that |dε| ≤ 2. Thus, setting m = k − 1,
we find that h(z)k, k ≥ 6, is given by

h(z)k = ξ − 2ξ

k − 2
z +

σk−1
2

z2 +
σk−1

2
z4 + . . .

That h(z)k belongs to Pξ follows from the fact that Pξ is, like P , a
convex family. The proof is complete.

�

Theorem 3.2. Let η > 0, µ be a real number, λ = η + iµ, ξ = λ/η and
0 ≤ γ < 1 . If f ∈ Bλ

n(γ), then∣∣a3 − ρa22∣∣ ≤ 2(1− γ)|λ|n−1

|ξ||λ+ 2|n
max{1, |1−M |},

where

M =
(2ρ+ λ− 1)(1− γ)(λ+ 2)2ηλn−2

(λ+ 1)2n
.
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The inequalities are sharp. For each ρ, equalities are obtained by the same
extremal function defined in Theorem 3.1.

Proof. Careful computations for (6) yield

a2 =
(1− γ)ηλn−2p1

(λ+ 1)n

a3 =
(1− γ)ηλn−2p2

(λ+ 2)n
+

(1− λ)(1− γ)2η2λ2n−4p21
2(λ+ 1)2n

.

Hence,∣∣a3 − ρa22∣∣ =
(1− γ)ηλn−2

(λ+ 2)n

∣∣∣∣p2 − (2ρ+ λ− 1)(1− γ)(λ+ 2)nηλn−2

(λ+ 1)2n
p21
2

∣∣∣∣ .
By choosing

τ =
(2ρ+ λ− 1)(1− γ)(λ+ 2)nηλn−2

(λ+ 1)2n

and using Lemma 2.6, the result then follows. �

For λ = α/(1+iβ), we have the following corollaries for generalized Bazilevič

maps (with g(z) = z), whose family is denoted here by Bα,β
n (γ).

Corollary 3.3. Let f ∈ Bα,β
n (γ). Then

|ak| ≤
2(1− γ)αn√

(1 + β2)(α2 + β2)[α2 + 2α(k − 1) + (1 + β2)(k − 1)2]n
, k = 2, 3, . . .

The inequalities are sharp.

Corollary 3.4. Let f ∈ Bα,β
n (γ). Then∣∣a3 − ρa22∣∣ ≤ 2(1− γ)αn

√
(1 + β2)n√

(α2 + β2)[(α+ 2)2 + 4β2]n
max{1, |1− T |},

where

T =
(1− γ)(α+ 2 + iβ)2αn−1[2ρ+ α− 1 + iβ(2ρ− 1)]

(1 + β2)(1 + iβ)n+1
.

The inequalities are sharp.

Finally, we remark that, with appropriate choices of the defining parameters,
our results agree with the existing results.
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and their applications to analytic and univalent functions, Tamkang J. Math., 37 (2006),
355–366.

[3] K. O. Babalola, Bounds on the coefficients of certain analytic and univalent functions,
Mathematica, 50 (73) (2008), 139–148.



10 Coefficient bounds for certain Bazilevič maps 133
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