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THE GALOIS GROUP OF Xp2 + aX + a

SOUFYANE MOKHTARI and BOUALEM BENSEBA

Abstract. Let p be an odd prime number, and a be an integer divisible by p

exactly once. We prove that the Galois group G of the trinomial Xp2 + aX + a
over the field Q of rational number, is either the full symmetric group Sp2 , or

AGL(1, p2) ≤ G ≤ AGL(2, p). And we show that G ≃ Sp2 , except possibly when
p ≡ 1 (mod 8), and each prime divisor q of p+ 1 satisfies q ̸≡ −1 (mod 4), and
p divides the ℓ-adic valuation vℓ(a) of a for each prime divisor ℓ of a/p.
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1. INTRODUCTION

Let p an odd prime number and

f (X) = Xp2 + aX + a ∈ Z [X]

be an Eisenstein trinomial with respect to p andN be the splitting field of f(X)
over Q. The principal aim of this article is to determine the Galois group of f .
While the study of the Galois group of trinomial goes back to the beginning
of the twentieth century [12], his determination is far from established. From
the seventies on, many authors renewed interest in the topic, see for example
[2, 5, 6, 9, 10,14,18,19].

In [10] and [11], K. Komatsu investigated the Galois group of trinomial
g (X) = Xp + aX + a. In [11], it is shown, in particular when p divides a
exactly once and b = a

p is a square, that the Galois group of g (X) is the full

symmetric group Sp. In [14], A. Movahhedi has shown that the Galois group
of such an Eisenstein trinomial, with respect to p, is either the group Aff(Fp),
or the full symmetric group Sp which occurs when b < 0 or b ̸≡ 1 (mod p),
which improving the result of [10]. Later, in [2] and [3] the authors generalized
to a wide family of trinomials the results given in [14].

Note that, knowing the inertia groups of the primes ramified in N , reduces
the area of possible realizations of a permutation group as the Galois group
of f(X). So we are driven to analyse the inertia groups of all primes which
ramifies in N .
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Section 2 is devoted to the detailed analysis of different inertia groups of
primes ramified in N . Our method is based on Newton polygon which turns
out to be efficient for the study of factorisations of polynomials over local field.

In Section 3, the precise local study in Section 2 combined with the classi-
fication of the multiply transitive groups [1] allow us to show that the Galois
group G of the trinomial f (X) is either the full symmetric group Sp2 , or

AGL(1, p2) ≤ G ≤ AGL(2, p), where AGL(1, p2) is the affine group of di-
mension 1 over Fp2 , and AGL(2, p) the affine group of dimension 2 over Fp.
Furthermore, we shall see that G ≃ Sp2 in each of the following cases:

(i) p ̸≡ 1 (mod 8).
(ii) p ≡ 1 (mod 8), and there exists a prime divisor q of p + 1 such that

q ≡ −1 (mod 4).
(iii) there exists a prime divisor ℓ of a/p, such that gcd (υℓ (a) , p) ̸= 1.

2. INERTIA GROUPS

Let p be an odd prime number and a be a rational integer divisible by p
exactly once. Denote by α = α1, α2, ..., αp2 the different roots of the Eisenstein

trinomial f(X) = Xp2 + aX + a in a fixed algebraic closure of Q. Let K =
Q(α) be the field obtained by adjoining the root α to the field Q and let
N = Q(α, α2, ..., αp2) be the splitting field of f(X) over Q. The Galois group
G of N over Q is a transitive group of permutations of the roots of f . The
discriminant D of f is

D = pp
2
bp

2−1D0,

where b = a/p and D0 = p2p
2−1 + b(p2 − 1)p

2−1.
We shall now look at the inertia group of the different places of N in the

extension N/Q.

Proposition 2.1. The inertia group IP (defined up to conjugation of p)
in N/Q is isomorphic to AGL(1, p2), the 1- dimensional affine group over the
finite field Fp2.

Proof. We fix a prime ideal P of N dividing p. Let p = P ∩K. We denote
by NP the completion of N at P and by Kp the closure of K in NP. Since
the trinomial f is of Eisenstein over Qp, by [16, Theorem 5.27] the extension
Kp/Qp is fully ramified.

Consider the polynomial

φ(X) =
f(αX + α)

αp2X
= Xp2−1 +

p2−1∑
i=1

aiX
p2−i−1 ∈ Q (α)[X],

where the coefficients ai are given by

ai =

{(
p2

i

)
if 1 ≤ i ≤ p2 − 2

(p2 + aα1−p2) if i = p2 − 1.
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Let π be a uniformizer of Kp, and υπ be the normalized valuation π-adic
of Kp, so υπ (α) = υp (a) = 1 and υπ (λ) = p2υp (λ) for all λ ∈ Qp, since
Kp/Qp is totally ramified. Then we have υπ (ai) ≥ p2 if 1 ≤ i ≤ p2 − 2 and
υπ

(
ap2−1

)
= 1.

So the (Kp,X)-Newton polygon of φ consists of one segment joining the
points (0, 0) and (p2−1, 1). Hence by [7, Theorem 1.5], the ramification index
of the local extension Kp (α2) /Kp is equal to p2 − 1.

Write IP for the inertia group of NP/Qp, and

I
′
P = IP ∩Gal(NP/Kp)

for the inertia group of NP/Kp , it is a point stabilizer of IP. By the Ab-
hyankar’s Lemma [16, p. 229], the extension NP/Kp is tamely ramified, so

in this case I
′
P is cyclic generated by a

(
p2 − 1

)
-cycle. Introduce the iner-

tia field L0 in NP/Qp, then the totally ramified extension Kp/Qp is linearly
disjoint from the unramified extension L0/Qp, so f(X) remains irreducible
over L0 which implies that IP act transitively on the roots of f (X). On the
other hand the totally ramified extension Kp (α2) /Kp is linearly disjoint from
the unramified extension L0(α)/Kp, so φ(X) remains irreducible over L0(α).

which implies that I
′
P is regular. Hence IP is sharply doubly transitive group

[1, 15] of degree p2 with order p2(p2 − 1) whose point stabilizers are abelian.
The proposition follows by [8, Corollary 7.6A (ii), p. 239]. □

Lemma 2.2. Let q ̸= p be a prime divisor of a.

(1) If p2 divides υq (a), then the prime number q is unramified in K.
(2) If gcd(p2; υq(a)) ≤ p, then the prime number q is tamely ramified in K.

Moreover, when gcd(p2; υq(a)) = 1 then the prime q is totally ramified
in K.

Proof. The Newton’s polygon of f(X) relative to the prime q consists of a
single side joining the points (0; 0) and (p2; υq(a)), and its associated polyno-
mial is a binomial of the form

G(Y ) = Y m + aq,

where aq = a/qυq(a) and m = gcd(p2, υq(a)). Then from [17, Sect. 2, Theorem

5], it follows that q = Ap2/m, where A is an integral ideal of K.
Furthermore, since G(Y ) is separable modulo q, so A is a product of distinct

prime ideals of K [17, Sect. 2, Theorem 6]. □

By combining the last lemma and the Abhyankar’s Lemma [16, p.229], we
obtain immediately:

Proposition 2.3. Let q ̸= p be a prime divisor of a, ramified in N , then
the inertia group (defined up to conjugation) of q in N/Q is a cyclic group of
order either p2 or p according to whether gcd

(
p2, υq (a)

)
= 1 or p.
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3. GALOIS GROUPS

Note that, if | D0 | is not a square, then the Galois group G of the trinomial
f is the symmetric group Sp2 . Indeed, if a prime number ℓ divides | D0 | to
an odd power, then ℓ divides the absolute discriminant of the number field K
exactly once [13, Theorem 2]. This implies that the Galois group G contains a
transposition [10, Lemma 1]. Now G is a doubly transitive permutation group
(see Proposition 2.1) and contains a transposition, then by [8, Theorem 3.3A,
p. 77] G is the full symmetric group.

Now, the question which springs to mind is: for which values of p, is the
absolute value of D0 not a square?

Lemma 3.1. Let p be an odd prime number, and

f (X) = Xp2 + aX + a ∈ Z[X]

be an Eisenstein trinomial with respect to p. Then the integer |D0| is not a
square in each of the following two cases:

(i) p ̸≡ 1 (mod 8)
(ii) p ≡ 1 (mod 8), and there exists a prime divisor q of p + 1 such that

q ≡ −1 (mod 4).

Proof. Suppose that |D0| = k2 for somme rational integer k, then we have

D0 ≡ p2p
2−1 ≡ p ≡ ±k2 (mod 8).

If p ̸≡ 1 (mod 8), then p ≡ −1 (mod 8) and D0 = −k2. So
p− 1

2
≡ −1

(mod 4) and there exists is a prime divisor q of
p− 1

2
such that q ≡ −1

(mod 4). Knowing that p ≡ 1 (mod q), then −k2 ≡ p2p
2−1 ≡ 1 (mod q), so

−1 is a quadratic residue modulo q which is a contradiction since q ≡ −1
(mod 4).

If (ii) holds, then D0 ≡ p2p
2−1 ≡ p ≡ 1 (mod 8) and the equality D0 = −k2

is impossible. So D0 = k2 and then k2 ≡ p2p
2−1 ≡ p ≡ −1 (mod q) which

implies that −1 is a quadratic residue modulo q; which is a contradiction since
q ≡ −1 (mod 4). Therefore, the integer |D0| is not a square. □

The above discussion and Lemma 3.1 immediately yields the following re-
sult.

Theorem 3.2. Let p be an odd prime number, and

f (X) = Xp2 + aX + a ∈ Z[X]

be an Eisenstein trinomial with respect to p. Then the Galois group G of the
trinomial f (X) is the full symmetric group Sp2 in each of the following two
cases:

(i) p ̸≡ 1 (mod 8)
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(ii) p ≡ 1 (mod 8), and there exists a prime divisor q of p + 1 such that
q ≡ −1 (mod 4).

From [8, Theorem 4.1B] we see that the socle of a finite doubly transitive
group is either a regular elementary abelian p-group, or a nonregular non-
abelian simple group. The doubly transitive groups with nonabelian socle are
listed in [1, CTT p. 20, and weak CDT p. 21]. Those lists and [8, Theorem
4.7A], allows us to give the following list of possible realizations of the Galois
group G of the trinomial f :

(1) G ≃ Sp2 ; or
(2) G ≃ Ap2 ; or

(3) (Zp)
2 ≤ G ≤ AGL (2, p) , where (Zp) is the cyclic group of order p; or

(4) PSL(m, q) ≤ G ≤ PΓL(m, q) for an integer m > 1 and a prime power
q such that (qm − 1) / (q − 1) = p2.

Theorem 3.3. Let

f(X) = Xp2 + aX + a

be an Eisenstein trinomial with respect to p. Then the absolute Galois group
G of f(X) is either the full symmetric group Sp2, or AGL(1, p2) ≤ G ≤
AGL(2, p).

Proof. We first notice that D is not a square, so G is not contained in the
alternating group Ap2 . Now suppose PSL(m, q) ≤ G ≤ PΓL(m, q). For some
integer m > 1 and a prime power q we have

p2 =
qm − 1

q − 1
= qm−1 + qm−2 + ...+ q + 1.

If q is odd, then m must be an odd number, which implies that G does
not contain an involution fixing at most three points [6, Proposition 2.4]; this
contradicts the assumption that G is a Galois group of trinomial.

If q is even, using [1, Numerical Lemma, p 23] and [6, Proposition 2.4], the
only renaming case is (m, q) = (2, 8) and (n, p) = (2, 3) which is impossible
by (Theorem 3.2). Knowing by Proposition 2.1 that the affine linear group
AGL(1, p2) ≤ G, this completes the proof. □

Now, we shall assume that the prime number p ≡ 1 (mod 8) such that each
prime divisor q of p+1 satisfies q ̸≡ −1 (mod 4). It Should be noted that the
expression D0 is a square for infinitely many rational integers b. Indeed, we

have p2p
2−1 ≡ 1 (mod 8), and for every odd prime divisors ℓ of p− 1 and q of

p + 1 we have p2p
2−1 ≡ 1 (mod ℓ) and p2p

2−1 ≡ −1 (mod q). Knowing that

q ≡ 1 (mod 4), then p2p
2−1 is a quadratic residue modulo q. So the congruence

X2 ≡ p2p
2−1mod

(
p2 − 1

)p2−1

is solvable. Now let α be a solution of the above congruence and we may

assume that α is not divisible by p, since α+(p2−1)p
2−1 is also a solution of this
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congruence. So there exists an integer β which is not divisible by p such that

α2−p2p
2−1 = β(p2−1)p

2−1. For every r ∈ Z, let b = β+2rpα+r2p2(p2−1)p
2−1;

then D0 is a square.
Summarizing, we have established:

Theorem 3.4. Let p be a prime number and

f(X) = Xp2 + aX + a ∈ Z[X]

be an Eisenstein trinomial with respect to p. If there is a prime divisor ℓ ̸= p
of a such that gcd (υℓ (a) , p) = 1, then the absolute Galois group G of f is the
full symmetric group Sp2.

Proof. We may assume that |D0| is a square, since otherwise G would be
the symmetric group Sp2 . We fix a prime ideal Q of N lying above q. Let
q = Q∩K. We denote by NQ the completion of N at Q and by Kq the closure
of K in Nq, the local field Kq is obtained by adjoining a root α of f to Qq;
it is a totally ramified extension of Qq (Lemma 3.1).Write IQ for the inertia
group of Q in N/Q. We introduce the maximal unramified extension L0 in
NQ/Qq; it is linearly disjoint from the totally ramified extension Kq/Qq, so
f(X) remains irreducible over L0. Hence IQ acts transitively on the roots of
f(X). As IQ is cyclic of order p2 (Proposition 2.3). By [4, Proposition 1.1],
and Theorem 3.3 we conclude that the group G is Sp2 . □
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