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MULTIPLE SOLUTIONS TO p-KIRCHHOFF TYPE PROBLEMS
INVOLVING CRITICAL SOBOLEV EXPONENT IN RN

RACHIDA KAID, ATIKA MATALLAH, and SOFIANE MESSIRDI

Abstract. In this paper, we use variational methods to study the existence and
multiplicity of non negative solutions for a p-Kirchhoff equation involving critical
Sobolev exponent.
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1. INTRODUCTION

This paper deals with the existence and multiplicity of nontrivial solutions
of the following Kirchhoff problem

(Pλ)

{
− (α ∥u∥p + β)∆pu = up

∗−1 + λfuq−1 in RN

u ≥ 0, u ∈ W 1,p
(
RN
)
,

where α and β are two positive constants, N ≥ 3, 1 < p < N , 1 < q < p, λ is
a positive parameter, f ̸≡ 0, ∆p is the p-Laplacian operator, defined by

∆pu =
N∑
i=1

∂

∂xi

(
|∇u|p−2 ∂u

∂xi

)
, 1 < p < N,

p∗ = pN/ (N − p) is the critical exponent and ∥·∥ is the usual norm in the
space W 1,p

(
RN
)
, given by

∥u∥p =
∫
RN

|∇u|pdx.

Kirchhoff type problems are often referred to as being nonlocal because of the
presence of the term

∫
RN |∇u|pdx which implies that the equation in (Pλ) is no

longer a pointwise identity. It is analogous to the stationary case of equations
that arise in the study of string or membrane vibrations, namely,

utt −
(
a

∫
Ω
|∇u|2dx+ b

)
∆u = g (x, u) ,
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where Ω ⊂ RN , u denotes the displacement, g(x, u) is the external force and b
is the initial tension while a is related to the intrinsic properties of the string
(such as Young’s modulus). Equations of this type were first proposed by
Kirchhoff in 1883 to describe the transversal oscillations of a stretched string.

In recent years, Kirchhoff type problems in bounded or unbounded domain
have been studied in many papers by using variational methods. Some inter-
esting studies can be found in [2, 5, 6, 7, 8, 10]. This problems in the whole
space RN considered in general without the critical Sobolev exponent, when
the difficulty is due to the lack of compactness embedding from W 1,p(RN )
into the space Lr

(
RN
)
. In this subcritical case, many authors considering the

following equation

(PV )
{

− (α ∥u∥p + β)∆pu+ V (x)u = h(x, u) in RN ,

where N ≥ 3, 1 < p < N , V ∈ C
(
RN ,R

)
and h ∈ C

(
RN × R, R

)
is subcrit-

ical. In such problems, some conditions are imposed on the weight function
V (x) which are key points for recovering the compactness of Sobolev embed-
ding. See for example [5],[11] and [7].

On the other hand, the problem (Pλ) without the nonlocal term α ∥u∥p is
treated by Alves [1], he proves the existence of two nonnegative solutions for
(Pλ) where α = 0, β = 1 and f is a nonnegative function.

A natural and interesting question is whether results concerning the solu-
tions of problem (Pλ) with α = 0 remain valid for α ̸= 0. Our answer is
affirmative, but the adaptation to the procedure to our problem is not trivial
at all, since the appearance of nonlocal term. In this context, we need more
delicate estimates. We are concerned in finding conditions on N, p, f and λ for
which problem (Pλ) possesses multiple nontrivial solutions via the variational
methods. To the best of our knowledge, there is no result on the multiple
nontrivial solutions to the critical problem (Pλ) in RN .

Before stating our results, recall that, the best Sobolev constant

S = inf
u∈W 1,p(RN )

∥u∥p(∫
RN |u|p∗dx

)p/p∗ ,
is attained in RN by the function

U (x) =

[
N ((N − p) / (p− 1))p−1

](N−p)/p2

[
1 + |x|p/(p−1)

](N−p)/p
,

see [10]. We introduce the following conditions on N, p and f :

(H0) N/3 = p/2 = m, with m ∈ N∗,
(H1) f+ ̸≡ 0,
(H2) f ∈ Lq0

(
RN
)
with q0 = pN/ [(p− q)N + qp] ,

(H3)
∫
RN fU qdx > 0.
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Our main results are the following.

Theorem 1.1. Assume that α > 0, β > 0, N , p satisfy (H0) , 1 < q < p
and f satisfies (H1)− (H2) . Then there exists Λ1 > 0 such that problem (Pλ)
has at least one nontrivial solution for any λ ∈ (0, Λ1) .

Theorem 1.2. In addition to the assumption of Theorem 1, we assume that
f satisfies (H3) . Then there exists Λ2 > 0 such that problem (Pλ) has at least
two nontrivial solutions for any λ ∈ (0, Λ2) .

This paper is organized as follows. In Section 2 we give some technical
results which allow us to give a variational approach of our main results that
we prove in Section 3.

2. AUXILIARY RESULTS

In this paper we use the following notation: ∥.∥r stands for ∥.∥Lr(RN ) , Bρ is

the ball centred at 0 and of radius ρ, → (resp.⇀) denotes strong (resp. weak)
convergence, u± = max (±u, 0) and ◦n (1) denotes ◦n (1) → 0 as n → ∞.

Since our approach is variational, we define the functional Iλ by

Iλ(u) =
α

2p
||u||2p + β

p
||u||p − 1

p∗

∫
RN

(
u+
)p∗

dx− λ

q

∫
RN

f
(
u+
)q

dx,

for all u ∈ W 1,p
(
RN
)
. Using (H2) , it is clear that Iλ is well defined in

W 1,p
(
RN
)
and belongs to C1

(
W 1,p

(
RN
)
, R
)
. u ∈ W 1,p

(
RN
)
\ {0} is said

to be a weak solution of problem (Pλ) if it satisfies u ≥ 0 and

(α||u||p + β)

∫
RN

|∇u|p−2∇u∇φ dx−
∫
RN

(
u+
)p∗−1

φ dx

− λ

∫
RN

f
(
u+
)q−1

φ dx = 0,

for all φ ∈ W 1,p
(
RN
)
.

To prove our main results, we need following lemmas.

Lemma 2.1. Assume that α > 0, β > 0, N ≥ 3, 1 < p < N , 1 < q < p and
f satisfies (H2) . Then there exist positive numbers Λ1, ρ1 and δ1 such that for
all λ ∈ (0, Λ1) we have

(i) Iλ (u) ≥ δ1 > 0, for all u ∈ W 1,p
(
RN
)
with ∥u∥ = ρ1

(ii) Iλ (u) ≥ −p− q

p

[(
2q

β

) q
p ∥f∥q0
qSq/p

]p/(p−q)

λp/(p−q) for all u ∈ Bρ1 .

Proof. Let u ∈ W 1,p
(
RN
)
\ {0}, then by Sobolev and Hölder inequalities,

we have

Iλ(u) ≥
α

2p
∥u∥2p + β

p
∥u∥p − S−p∗/p

p∗
∥u∥p

∗
− λ

q
S−q/p ∥f∥q0 ∥u∥

q .
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Let η > 0, ρ = ∥u∥ and

h (ρ) =
α

2p
ρ2p +

β

p
ρp − S−p∗/p

p∗
ρp

∗ − λ

q
S−q/p ∥f∥q0 ρ

q.

Then

λ

q
S−q/p ∥f∥q0 ρ

q =

[(
ηp

q

) q
p

ρq

][(
ηp

q

)− q
p λ

q
S−q/p ∥f∥q0

]

≤ ηρp +
p− q

p

[(
q

pη

) q
p S−q/p

q
∥f∥q0

]p/(p−q)

λp/(p−q).

Therefore,

h (ρ) ≥
(
β

p
− η

)
ρp − S

− p∗
p

p∗
ρp

∗ − p− q

p

[(
q

pη

) q
p S

− q
p

q
∥f∥q0

] p
p−q

λ
p

p−q ,

Choosing η = β/2p, we get

h (ρ) ≥ β

2p
ρp − S

− p∗
p

p∗
ρp

∗ − p− q

p

[(
2q

b

) q
p S

− q
p

q
∥f∥q0

] p
p−q

λ
p

p−q .

Easy computations show that

max
ρ≥0

h (ρ) = h

([
β

2
S

p∗
p

]1/(p∗−p)
)

=
1

N

(
β

2
S

)N
p

− p− q

p

[(
2q

b

) q
p S

− q
p

q
∥f∥q0

] p
p−q

λ
p

p−q

Taking

ρ1 =

[
β

2
S

p∗
p

]1/(p∗−p)

, δ1 =
1

2N

(
β

2
S

)N
p

,

and

Λ1 =
1

q ∥f∥q0

(
β

2q
S

) q
p

(
p

2N (p− q)

(
β

2
S

)N
p

) p−q
p

.

Then the conclusion holds. □

In the sequel of this paper we need the condition (H0) . So, we replace p by
2m and N by 3m with m ∈ N∗.

Lemma 2.2. Assume that α > 0, β > 0, N , p satisfy (H0), 1 < q < p and f
satisfies (H2). If (un) is a (PS)c sequence of Iλ, then un ⇀ u in W 1,2m

(
R3m

)
for some u with I ′λ (u) = 0.
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Proof. We have

(1) c+ ◦n (1) = Iλ (un) and ◦n (1) =
〈
I ′λ (un) , un

〉
,

this implies that

c+ ◦n (1) = Iλ (un)−
1

6m

〈
I ′λ (un) , un

〉
≥ α

12m
||un||4m +

β

3m
||un||2m − λ

(
1

q
− 1

6m

)
S−q/p ∥f∥q0 ∥un∥

q .

Then (un) is bounded in W 1,2m
(
R3m

)
. Up to a subsequence if necessary, we

obtain

un ⇀ u in W 1,2m
(
R3m

)
, L6m

(
R3m

)
, un → u a.e.,∇un → ∇u a.e. in R3m.

Then ⟨I ′λ (un) , φ⟩ = 0 for all φ ∈ C∞
0

(
R3m

)
, which means that I ′λ (u) = 0. □

Next, we prove an important lemma which ensures the local compactness
of the (PS) sequence for Iλ.

Lemma 2.3. Assume that α > 0, β > 0, N , p satisfy (H0) , 1 < q < p and
f satisfies (H2) , and let (un) ⊂ W 1,2m

(
R3m

)
be a (PS)c sequence for Iλ for

some c ∈ R such that un ⇀ u in W 1,2m
(
R3m

)
. Then

either un → u or c ≥ Iλ (u) + Cα,β,S

(
α

48m
Cα,β,S +

β

6m

)
,

where Cα,β,S = αS3 +
(
α2S6 + 4βS3

)1/2
.

Proof. By the proof of Lemma 2 we have (un) is a bounded sequence in
W 1,2m

(
R3m

)
. Then by (H2) we get

(2)

∫
R3m

f
(
u+n
)q

dx →
∫
R3m

f
(
u+
)q

dx.

Furthermore, if we write vn = un − u; we derive vn ⇀ 0 in W 1,2m
(
R3m

)
, and

by using Brezis-Lieb Lemma [4] we have

(3) ∥un∥2m = ∥vn∥2m+∥u∥2m+on(1) and ∥un∥6m6m = ∥vn∥6m6m+∥u∥6m6m+on(1).

Putting together (2.2) and (2.3) , we get

c+on(1) = Iλ(u)+
α

4m
∥vn∥4m+

β

2m
∥vn∥2m+

α

2m
∥vn∥2m ∥u∥2m− 1

6m
∥vn∥6m6m ,

and

(4) on(1) = α ∥vn∥4m + β ∥vn∥2m + 2α ∥vn∥2m ∥u∥2m − ∥vn∥6m6m .

Therefore,

(5) c+ on(1) = Iλ(u) +
α

12m
∥vn∥4m +

β

3m
∥vn∥2m +

α

3m
∥vn∥2m ∥u∥2m .
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Assume that ∥vn∥ → l > 0, then by (2.4) and the Sobolev inequality we obtain

S−3l6m ≥ αl4m + βl2m,

this implies that

l2m ≥ α

2
S3 +

S3

2

(
α2 + 4βS−3

)1/2
=

1

2

(
αS3 +

(
α2S6 + 4βS3

)1/2)
=

1

2
Cα,β,S .

From the above inequality and (2.5) we conclude

c ≥ Iλ(u) +
α

12m
l4m +

β

3m
l2m

≥ Iλ(u) +
α

48m
C2
α,β,S +

β

6m
Cα,β,S

≥ Iλ(u) + Cα,β,S

(
α

48m
Cα,β,S +

β

6m

)
;

This finishes the proof of lemma 3. □

3. PROOF OF THEOREM 1

Now, we proof the existence of a local minimizer.
By Lemma 1, we define

c1 = inf
{
Iλ (u) ; u ∈ B̄ρ1

}
.

Using (H1) we can choose v ∈ W 1,2m
(
R3m

)
such that

∫
R3m f (v+)

q
dx > 0.

Then there exists t0 > 0 small enough such that ∥t0v∥ < ρ1 and

Iλ(t0v) =
α

4m
t4m0 ∥v∥4m +

β

2m
t2m0 ∥v∥2m − t6m0

6m

∫
R3m

(
v+
)6m

dx

− λ

q
tq0

∫
R3m

f
(
v+
)q

dx < 0,

which implies that c1 < 0. Using the Ekeland’s variational principle [8], for
the complete metric space B̄ρ1 with respect to the norm of W 1,2m

(
R3m

)
,

we obtain by Lemma 2, the existence of a (PS)c1 sequence (un) ⊂ B̄ρ1 such

that un ⇀ u1 in W 1,2m
(
R3m

)
for some u1 with ∥u1∥ ≤ ρ1. After a direct

calculation, we derive
∥∥u−1 ∥∥ =

〈
I ′λ (u1) , u

−
1

〉
= 0, which implies u1 ≥ 0. As

Iλ(0) = 0 > c1 then u1 ̸= 0. Assume un ↛ u1 in W 1,2m
(
R3m

)
, then it follows

from Lemma 3 that

c1 ≥ Iλ (u) + Cα,β,S

(
α

48m
Cα,β,S +

β

6m

)
> c1,
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which is a contradiction. Thus u1 is a nontrivial solution of (Pλ) with negative
energy.

4. PROOF OF THEOREM 2

Now, we proof the existence of Mountain Pass type solution, here we need
the condition (H3).

Lemma 4.1. Assume that α > 0, β > 0, (H0) − (H3) hold, and let Λ2 > 0
such that

−p− q

p

[(
2q

β

) q
p ∥f∥q0
qSq/p

]p/(p−q)

λp/(p−q) + Cα,β,S

(
α

48m
Cα,β,S +

β

6m

)
> 0,

for all λ ∈ (0,Λ2). Then there exists 0 < Λ∗ ≤ Λ2 such that

sup
t≥0

Iλ(tU) < c1 + Cα,β,S

(
α

48m
Cα,β,S +

β

6m

)
, for all λ ∈ (0,Λ∗).

Proof. We consider functions

Φ1(t) =
αt4m

4m
∥U∥4m +

βt2m

2m
∥U∥2m − t6m

6m
∥U∥6m6m ,

and

Φ2(t) = Φ1(t)− λt

∫
R3m

fU q dx.

So, for all λ ∈ (0,Λ2) we have

Φ2(0) = 0 <− p− q

p

[(
2q

β

) q
p ∥f∥q0
qSq/p

]p/(p−q)

λp/(p−q)

+ Cα,β,S

(
α

48m
Cα,β,S +

β

6m

)
.

Hence, by the continuity of Φ2(t), there exists t1 > 0 small enough such that

Φ2(t) < −p− q

p

[(
2q

β

) q
p ∥f∥q0
qSq/p

]p/(p−q)

λp/(p−q)+Cα,β,S

(
α

48m
Cα,β,S +

β

6m

)
,

for all t ∈ (0, t1) . On the other hand, the function Φ1(t) attains its maximum
at t2 such that

t2m2 =
α ∥U∥4m +

(
α2 ∥U∥8m + 4β ∥U∥2m ∥U∥6m6m

)1/2
2 ∥U∥6m6m

.

From the definition of S we have

αt4m2
4m

∥U∥4m =
α

4m
∥U∥4m
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×

α ∥U∥4m +
(
α2 ∥U∥8m + 4β ∥U∥2m ∥U∥6m6m

)1/2
2 ∥U∥6m6m


2

=
α

16m

α ∥U∥6m

∥U∥6m6m
+

[
α2 ∥U∥12m + 4β ∥U∥6m ∥U∥6m6m

∥U∥12m6m

]1/22

=
α

16m
C2
α,β,S .

Similarly, we obtain
βt2m2
2m

∥U∥2m =
β

4m
Cα,β,S ,

and
t6m2
6m

∥U∥6m6m =
S−3

48m
C3
α,β,S .

By the above estimates, we obtain

Φ1(t2) =
αt4m2
4m

∥U∥4m +
βt2m2
2m

∥U∥2m − t6m2
6m

∥U∥6m6m

=
α

16m
C2
α,β,S +

β

4m
Cα,β,S − S−3

48m
C3
α,β,S

= Cα,β,S

(
α

48m
Cα,β,S +

β

6m

)
.

Thus we deduce that

Φ1(t) ≤ Cα,β,S

(
α

48m
Cα,β,S +

β

6m

)
.

On the other hand, using Lemma 1 we see that

c1 ≥ −p− q

p

[(
2q

β

) q
p ∥f∥q0
qSq/p

]p/(p−q)

λp/(p−q) for all λ ∈ (0,Λ1),

furthermore, if

λ <

[(
2q

β

) q
p ∥f∥q0
qSq/p

]−p/q [
p

q (p− q)

∫
R3m

fU qdx

](p−q)/q

,

we get

c1 > −λ
t1
q

∫
R3m

fU q dx.

Taking

Λ∗ = min

Λ1, Λ2,

[(
2q

β

) q
p ∥f∥q0
qSq/p

]− p
q [ p

q (p− q)

∫
R3m

fU q dx

] p−q
q

 ,
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then we deduce that

sup
t≥0

Iλ(tU) < c1 + Cα,β,S

(
α

48m
Cα,β,S +

β

6m

)
for all λ ∈ (0,Λ∗) .

□

Note that Iλ(0) = 0 and Iλ(t3U) < 0 for t3 large enough, also from Lemma
1, we know that

Iλ (u)|∂Bρ1
≥ δ1 > 0 for all λ ∈ (0,Λ1).

Then, by the Mountain Pass theorem [3], there exists a (PS)c2 sequence, where

c2 = inf
γ∈Γ

max
t∈[0,1]

Iλ (γ (t)) ,

with

Γ =
{
γ ∈ C([0, 1] , W 1,2m

(
R3m

)
), γ(0) = 0 and γ(1) = t3U

}
.

Using Lemma 2 we have (un) has a subsequence, still denoted by (un), such
that un ⇀ u2 in W 1,2m

(
R3m

)
, for some u2. As

∥∥u−2 ∥∥ =
〈
I ′λ (u2) , u

−
2

〉
= 0, we

conclude that u2 ≥ 0. Furthermore, we know by Lemma 4 that

sup
t≥0

Iλ(tU) < c1 + Cα,β,m,S , for all λ ∈ (0,Λ∗),

then from Lemma 3 we deduce that un → u2 in W 1,2m
(
R3m

)
. Thus we obtain

a critical point u2 of Iλ satisfying Iλ (u2) > 0, and we conclude that u2 is a
nontrivial solution of (Pλ) with positive energy.
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