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DECAY RESULTS FOR A VISCOELASTIC WAVE EQUATION
WITH DISTRIBUTED DELAY IN BOUNDARY FEEDBACK

ABDELBAKI CHOUCHA and DJAMEL OUCHENANE

Abstract. In this work, a nonlinear viscoelastic wave equation is studied. By
supposing distributed delay feedback acting on the boundary, we establish the
general decay rate under suitable hypothesis.

MSC 2020. 35B40, 35L70, 76Exx, 93D20.

Key words. Wave equation, general decay, distributed delay term, viscoelastic
term, boundary feedback.

1. INTRODUCTION

In the present work, we consider the following wave equation

t
uy — Au(t) + / h(t — 0)Au(p)de =0, in Q@ x R4,
0

o /0 h(t — Q)EU(Q)dQ + B1g1(ue) + /72 |B2(5)|g2(ue(t — 5))ds = 0,

Oov -
(1) on I'y x R4,
u(z,t) =0, on I'g x Ry,
u(z,0) = up(z), ui(z,0)=mui(z), in €,
ug(x, —t) = fo(z,t), in I'1 x (0,72),

where € RY(N > 1) is a bounded domain with a smooth boundary 9Q =
I'y Uy, I'1 and T'g are closed and disjoint, v is the outward normal to I, 5 is
positive constant. 71 < 79 are non-negative constants such that Ss : [11, 2] —
R represents distributive time delay, h is a positive function representing the
kernel of memory, g1, g2 are specific functions.

The time delay is an important factor in various natural and physical phe-
nomena, as the response to the applied force is affected by the time factor, the
same for the transfer of materials and information, and their condition is all
subject to the time factor. Recently, dealing with the delay factor has been
an active area in recent years, and many authors have been interested in this
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type of damping as it greatly affects the stability of systems and the existence
of solutions. In the case (g1(s) = g2(s) = ), this term has several types: delay
(ue(x,t — 1)) see (|13],[17],]22]), distributed delay (f:f |B(s)|u(t — s)ds) as in
the following papers ([7]-[11],|18]) and time-varying delay (u:(z,t — 7(t))) for
example see ([15],[19],(20],[21]).

Even in the general case of the functions (g1, ¢g2), many problems have been
studied, where we find the term delay in the equation or in the boundary
feedback.

In [3], the authors considered the following problem:

(2) uy —Au+ /0 h(t — s)Au(s)ds + p1g1(ue) + paga(w(t —7) =0,

they proved the existence of global solution, and a genaral stability result.
There are also some important works, including [20], where the authors are
concerned with the following problem

Ut — Au = 0,
(3) u(z,t) =0, on I'p x Ry,
du

i + prug + poug(t —7) =0, on I'y x Ry,

they proved under suitable supposition (ua < u1) that the general energy
is exponentially stable. Also, in [21] the authors considered the following
problem:

t
uy — Au + / h(t — s)Au(s)ds 4 poga(us(t — 1) = 0,
0

(4) u(z,t) =0, on Iy x Ry,
du
T + u1g91(ug) =0, on I'y x Ry,

and they established the global existence and asymptotic behavior of problem
. The term of viscoelastic was also introduced in many papers, including
(B).6), [ [12)- (14, [16))-

Starting from all these works and supplementing them, we will try to study
our problem , as we consider the distributed delay within the boudary
feedback, and this makes our problem different from what was previously
studied. Under suitable conditions on various functions we will prove the
general decay result.

Our paper is divided into several sections: in the next section we lay down
the hypotheses, concepts and lemmas we need, and in the third section we
prove our main result. Finally, we give the conclusion.

2. PRELIMINARIES

For studying our problem, in this section we will need some materials.
Firstly, introducing the following hypothesis for B2, h, g1 and gs:
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(A1) h: R, — R, are non-increasing C! functions satisfying
o
(5) h(0) > 0, zo_/ h(o)do < 00, 1 — Iy = 1 > 0.
0
(A2) 39 : R, — R, a non-increasing C'! function, satisfying

(6) J(t)h (t) + h'(t) <0, Vt>0.

(A3)g1 : R — R is a non decreasing C! function and H : Ry — R, is a
convex, increasing C1(R;) N C1(]0, oo[) function satisfying

. HO)=0
Q H is linear on [0,¢], or H'(0)=0 and H"(t) >0 on ]0,¢,
and
cols| < gi(s) < eils| if |s| > e,
(8)

s* 4+ gi(s) < H ' (sgi(s)) if |s| <e,

where H~! is the inverse function of H and €, ¢y, ¢; are positive constants.
(A4) g» : R — R is a odd non-decreasing C"! function, such that 3a; > 5 and
C2, 0 > 07

|95(s)| < e,
a1592(s) < G(s) < aasgi(s),

(9)

where G(s) = [; g2(0)do.
(A5) B2 : [r1,72] = R is a bounded function satisfying

(10) 20 / " |Ba(s)/ds < .

1

Let us indroduce
t
(how)(®):= [ [ ne= o)) — vio)ldeds
Secondly, as in [18], take the following new variables

y(z, p,s,t) = u(x,t — sp)

which satisfy

(11) Syt('rap787t)+yp(x7pas7t) :Oa
y(l’, 0, S,t) = ut(x7t)'
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So, problem can be written as

t
gy — Ault) + / h(t — 0)Au(o)do = 0, in Q x Rs,
0
ou t 0
E /0 h(t — Q)@U(Q)dg + Brg1(ug)

T2
(12 + [ 1Bas)ga(ylan 15 0)ds =0, on Ty x B
T1

syi(x, p,s,t) + yp(x,p,5,t) =0, on I'y x Ry,
u(z,t) =0, on I'p x Ry,

u(z,0) = up(z), ui(z,0)=wui(z), in Q,
y(z, p,s,0) = fo(z,ps), in I'1 x (0,1) x (0, 72).

Now, we give the energy functional.

LEMMA 2.1. The energy functional E, defined by

B(0) = gl + 5 (1- [ n@ae)ITu1f + 500 V)

/pl// s|82(3)|G(y (=, p, s, t))dsdpdT,

satisfies

E'(0) <~ | g (w)dl + 5 (0 0 Vu)(e) = (0] Vu(o)

(14) o
_MQ/ / |62(8)|y(;13,1,s,t)gQ(y(x,1,s,t))dde < 07
IR

where 11 = 51—2a2f72]62 )|ds > 0 and py =201 — 1> 0.

Proof. Multiplying 1 by u¢, then integrating over €2, we find

ift{mﬂﬂﬁ 1—/ he dg>||w<>u2+<how)<>}
(15) 48 [ e u)dl = S0 0 Tu)0) + hOIVuO)

1
T2
+/ / 1B2(8)|g2(y(z, 1, s,t))urdsdl’ = 0.
ryJmn

Now, multiplying the equation 3 by |B2(s)|g2(y(z, p, s,t)), and integrating
over I'1 x (0,1) x (11, 72), and using (112, we get
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% /F /01 / fSlﬂz(s>l-G(y(m,p,s,t))dsdpdr

[ i mmsapar

[ |/ " a1 Glote s, ) st
= [ 7 (G000 ~ Gt 1. asar
= ( / |62(s)|ds> 5 G(ug)dT

T2
[ [ 18206)1 Gyt 1,5 s
rrJm
By combining and , we find ((14)) and

E(0) = =1 [ mon(wdl + 50 o Tu(e) = 30| Vulo)
—/F/ |B2(s)]g2(y(z, 1, s,t))udsdT
([T meas) [ cuar

// 1Ba(5)]. Gy, 1, 5, 1))dsdT.
l T1

At this point, let use G* the conjugate function of the convex function G:

G*(s) = igg(st — G(1)).

(16)

Then, G* is the Legendre transform of G, which is given by (Arnold [2], p.61-
62)

(18) G*(s) = s(G") 7! (s) = G[(G") " (s)], Vs =0.
and G* satisfies the generalized Young inequality
(19) st < G*(s) +G(t), Vs, t>0.
From the definition of G, we find
(20) G*(s) = 595 () — Gg5 ' (s)), Vs > 0.
Hence, by and @ we have
G (g2(y(x,1,5,1)) = y(x, 1, 5,1)g2(y(x, 1, 5,1)) — Gly(x, 1, 5,1))

(21) < (1—a)y(x,1,st)gy(z,1,s,1).
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Using , and @, we find

E'(0) < 81 [ g (w)dl + 5 (1 0 Vu)(t) = (0] Vu(o)

Iy

+ (1 - al)/F /7—2 |52(s)\y(x, 17 Svt)QQ(y($a 17 Sat))deF

+ 2(/ \Bg(s)|ds> /F G(ug)dT

(22) —/F /72 |B2(8)|.G(y(x, 1, s,t))dsdT,

s—(m—m I \52<s>\ds) | (ujar

(11— 2a) /F / o)y, 1,5, O)gn(y(, 1, 5, 1))dsdl

(' o Vu)(t) — sh(1) V()3

N~

+

By setting py = 81 — 2as f;f |B2(s)|ds and py = 2aq1 — 1, we obtain 1)
Hence, — give F is a non-increasing function. This completes of the
proof. O

Now, we give the well posedness result for the problem , which can be
established by Faedo-Galarkin method and combination between the results
(11, [B],[20))-

THEOREM 2.2. Suppose that (@—(@) are satisfied. Then, for any ug, u; €
H%O () N L3(Q), and fo € L*(T1,(0,1), (11,72)), there exists a weak solution
(u,y) of problem (13) such that

u,ur € C(10, T, Hp, (2)) N CH(J0, T[, L*(2)),
Ut € C(]07 T[7 LQ(Q))a
ye C(]Oa T[7 LQ(FL (07 1)7 (Tla 7—2)))'
Also, to achiev our goal, we need the following Lemma
LEMMA 2.3 (Jensen’s Inequality). If H is a convex function on [a,b], h :
¥ — [a,b] and q are integrable functions on ¥, q(x) > 0 and [s q(x)dz = Q >
0, then

(23) (5 [ roaar) < 5 [ Ho)a
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3. GENERAL DECAY

In this section, we state and prove our general decay result of the system

. For this goal, we set

(24) U(t) = /Qu(t)ut(t)da:,
(25) ot) = - /Q " /0 Bt — o) (u(t) — u(g))dods
and

1 To
(26) o(t) = /F/O/ se” P?|Ba(s)|G(y(x, p, s,t))dsdpdI.

LEMMA 3.1. The functional U(t) defined in satisfies, for €1,e2,e3 > 0,
V(1) < —(1—e1 — (e2 +3)6p) || Va3

(27) +HUtH3+C(61)/F g2 (ug)dT

T2
+ele)hoVa)(®) +e(er) [ [ 1030w, 1,5, 1)dsdr.
Iy Jm
Proof. A differentiation of and using (12))1, gives
W(0) = Julp+ [ upuds
Q

~ulg+ [ uo|su- [ it - )au(o)ie] s

t
= Jluel3 - (1 — /0 h(o)do)|[Vull3

+ /Q Vul?) /0 h(t = 0)(Vu(t) = Vu(o))dodz
J1

_51/F ugl(ut)dI‘—i-/F u/T2 \Bg(s)|gg(y(az,1,s,t))ds>df.

-~

J2 J3

We estimate the last 3 terms of the RHS of . Applying Hélder’s, Poincaré
and Young’s inequalities, and , we find for g; > 0,7 =1,2,3,

(29) J < alHVuﬂg—i—c(al)/ g%(ut)dl“.
I't

(30) Jo < e9cy||Vull3 + c(ea)(h o Vu)(t).
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Similarly, we have
BI) s < eae|Vull 4o / / 182(8) g2 (2, 1, 5, £))dsdT
Combining (|29 — and , we get

V() < fuelz—(—er - (52+53)CP>HVUHZ+C<€1)/ g7 (uy)dl

+c(g2)(h o Vu)( 63// |Ba(s)g3(y(x,1,s,t))dsdl.
I Jm

]
LEMMA 3.2. The functional ®(t) defined in satisfies, for any 61 > 0,
b9 >0,
t
#(0) < ~( [tz — o)l
+61(2 = D)|[Vul3 — e(62)(h' 0 Vu)(t)
(32)

+ ¢(01)(ho Vu)(t) + c/F g3 (ug)dl

+ C/F1 /Tl72 |Ba(5)g3(y(z,1, s,t))dsdl.

Proof. A differentiation of (25) and using (12)), gives

/utt/ (t—o)( u(p))dodx
/ o [ G~ o)) ~ u(@ode - (/ th(g)dg)uutn%
-/ {Au - / h(t — 0)Au(e >>dg} [ / it — g)(u(t) - u(g))dg} da
— [ [ = 0 att) — u(o)ede - (/ th<g>d0>||ut||%
:/QVU/O h(t — 0)(Vu(t) — Vu(p))dodz

Ji
-, </0t it~ g)w@)de) (/ot HEs eVl = V“(@)dQ) o

~~

Jo

51 [ ot | At = o)) ~ u(e))de ) ar

J3
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([ i tote s mas) ([ nie - oo - uianae)ar

Ja
[ [ W o - (0ot ([ ntopae) i
J,

We estimate the terms of the RHS of . Applying Holder’s, Poincaré and
Young’s inequalities, , we find

(34) Ji < 61| Vull3 + c(61)(h o Vu)(t),

and
5o ([ o) [ (Vu(t) [ bie - o)(wult) - Vuto)de )

(35) t ?
- ( [ bt oxwutn - wg))dg) da
<6(1- l)HVuH% + ¢(61)(h o Vu)(t),

Similarly, we have

Js < /F G2 (ur)dT + e(h o Vu)(b),

1
T2
(36) < / / 18a()g2(y(x, 1, 5, £))dsdT + (b o Vuu)(2),
I Jn
Js < 52||ut|]§ — 0(52)(h’ o Vu)(t).
A substitution of (34)-(36) into (33), gives (32). O

LEMMA 3.3. The functional ©(t ) defined in (26) satisfies
)<-m [ / / $162(5)|-G(y(w, p, 5,£))dsdpdl
I
B+ / ugg1 ()T
r

T2
—7]1041/ / |B2(5)|y ($a1a57t) gQ(y (x,l,s,t))ds.
MJn

Proof. By differentiating of ©(t), and using (12))2, we have

1 T2
om - - [ 1 / / e~ 13(5) |-y 92 (4((z, p, 5,£))dsclpdT

1
— _/I‘/O/ se”*P|Ba(s)|.G(y(z, p, s,t))dsdpdl’
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_/F1 /: ’52(3>\[68G(y (2,1,5,1)) — G(y (2,0, s,t)) | dsdz.

Applying y(z,0,s,t) = w(x,t), and e * < e % < 1, for any 0 < p < 1, and
setting m; = e~ "2, we obtain

1 T2
o) < —m /F /0 / 182(5)].G(y(x, pr 5, 1)) dsdpdT
“m / / 18(9)Cly (w1, 5, ))dsdT
b d G(uy)dT,
o / 1Ba(s)|ds) /F Gl
by@and , we find .

Now, we introduce the functional
(38) G(t) := NE(t)+V(t)+ MP(t) + O(t).
for some positive constants N, M to be determined.

LEMMA 3.4. There exist v;,to > 0, @ =1,...,5 satisfying

39) G'(t) < —mE@®)+ 72/F 93 (ug)dT + y3(h o Vu)(t), ¥t > to.

and
(10) WE(t) < G(t) < 15 E(1).

Proof. Since the function h is positive and continuous, for all {5 > 0, we
have

t to
/ h(o)de Z/ h(e)de := ho, Yt > to.
0 0

By differentiation of , using the Lemmas and we obtain
G'(t) ;= NE'(t) + ¥'(t) + M®'(t) + ©'(t)

<~ (M0t = 52~ 1) 3

(41) — ((l—81 —Cp(52+53)) _M(Sl(l_l)> HVUH%

4 <c(€2) + Mc(61)> (ho Va)(t) + <12v _ Mc(62)> (W o V) (1)



11 Viscoelastic wave equation with distributed delay in boundary feedback 53

+ <C<€1) +CM) /F1 gt (ug)dl — (MlN —ﬂ1> /F1 urga (ug)dl
+ (cten) +0rc) [ [ s ) dsar

1 T
o [ slBas) Glyta s )dsdpar
I JoO T1
T2
- <M2N+771041) / / ‘52(8)”3/(1,‘,]_,S,t)gg(y(l’,1,8,t>)d5dr.
ThJm
Now, we choose ¢;,7 = 1, 2,3 so small that
li:=1l—¢1 — Cp(€2 + 83)) > 0.
Next, letting do = %, then we select M large enough such that %M —1>0,
then we pick §; = W Therefore, becomes, for positive constants
di,i=1,...,5
G'(t) < —dilug3 = d2[| Vul|3 + ds(h o Vu)(t)
N
+ (5 — A o Vu)()
+d4/ g% (ug)dT — (ulN - [31)/ urgr (ug)dl
Fl 1_‘1
42 "
W a8 lgb e s, ) dsar
I Jm
1 T2
o [ [ slBa(s)| Gyt . )dsdpdr
r'rJo Jmp

- <M2N+7]1041) /F / ‘52(5)”2/(1"’1a5>t)92(y($71787t))d5dr‘
By using @1, we get
N

G'(t) < —du|lucll3 — dol| Vull3 + ds(h o Vu)(t) + (5~ c)(h o Vu)(t)

+al4/F g1 (ug)dl’ — (M1N51> /1“ uy g1 (ug)dl
(43) 1 1 rrm '

[ [ sl Gt s 1) asapar

1/0 Jm

T2
- <M2N+77101102d5>/ / |B2(5)||y(x, 1, 8,t)g2(y(x, 1, s,t))dsdl.
i Jn
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On the other hand, from -, by using Hoélder, Young’s and Poincaré
inequalities, we get

) - NE)| < 5 (I3 + I Tu(o1})
(449) + 5 (1@l + etho v 0)

1 T2
o[ ][ s Bas)| Gyt s )dsdpar.
Iy Jo T1

Using the fact that e™?° < 1, we find

()~ NE(t)| < L (nut( 02 +cp||w<t>||%>
M (uutwu% T eplho Vu><t>)

(45)
/Fl/ / s|Ba2(s).G(y(z, p, s, t))dsdpdl’
< CE(t
Hence
(46) (N = C)E(t)| <G(t) < (N + C)E(t).

Now, by choosing N large enough such that

N
N-C>0, yyN — 1 >0, 5—C>07 waN + nag — cods > 0,

and exploiting , estimates and , respectively, give and .
O

THEOREM 3.5. Suppose that @-(@ are satisfied, there exist positive con-
stants A1, Ao, to and g € (0,¢] such that the energy of (@ satisfies:

(47) E(t) < /\1H1{/\2 <1 + /t: ﬁ(a)da> } vt > to,

where H (t ft R(g rde, and

t, if H is linear on [0,¢],

(48)  R(?) :{ tH'(sot), if H'(0)=0 and H" >0 on (0,¢].
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Proof. Multiplying by ¥(t), using and (14)), we find
IBG () <~ E(t) + 120(1) / 2 (ur)dT + 439(t)(h o Vu) (8)

Iy

(49) < B E(L) + 0(1) /F ()T — (' 0 V) (1)

< IO +700) [ g u)dr - 2380,

Since 9(t) is non-increasing function, we have

50) 5 (9050) +2mB0)) < —nIOEQ) + 200 [ g(uoar

Let

(51) K(t) :=9()G(t) + 2y3E(t) ~ E(t).
Hence, we obtain
(52) K'(t) < =9t E(t) —|—’ygi9(t)/r g (ug)dl, Vit > to.

To arrive at our main result, it remains to estimate the last term of the in-

equality .

To this aim we consider

(53) TIi:= {a: el Jul > 5} and T?% := {x el Ju < 5}.

By and , we have

64 w00 [ gl <7200 | gl < B,
1 1

where \g = 22290

.
At this stage, we have two cases to discuss:

Case 1. H is linear on [0,¢]: According and (14), we get
69 00 [ gt <5200 [ ghu)r < -ME),
1 1

where \y = 22¢9(0)

.

Substituting and into , we find

Ki(t) < —md(t)E(t)
E(t)

= _,\5q9(t)R<E(O)>, vt > to,

(56)

where

(57) K1(t) = (K(t) + AE(t) ~ E(0),
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and A = A3 + \q, A\s = 11 E(0). Integrating over (to,t) and using (57),
yields .

Case 2. H is nonlinear: From , and by Jensen’s inequality ,

with £ = T2, g(z) = 1 and f(z) = B~ (ur(2)g (ur(x))), we get
200 [ g < /“H (g (ug))dT
(58) < \9(t)|T3|H (‘ 7] 2utgl Uy dF>
Ei

< A9 (t)|T3|H™ 1<

i)

Substituting (54]) and ( into (| , we find

(59) IC/Q(t) < () E(t) + Ae¥(t)H ™ 1< E 2) > YVt > to,
I

where

(60) Ka(t) = (K(t) + AsE(t)) ~ E(t),

and )\6 == )\2|F%|
Now, for 0 < g9 < € and Jg > 0, according , and we have

o E() '
{H <€0E()>/C2(t) + 50E(t)}
U E() (. E®) o E®)N ’
Ewyf<oEwQKﬂ®+H<wEmQKd®+%E@)
< —yd(t)H' <€o g((é))>E(t) + XV (t)H' (50 g(?))
- E'(t) /
x H 1(— m\ﬁl) + 8o E' (t)
< ot (20 o0y w1 22))
_ AeV(t) /
7 E'(t) + 0o E'(t)

V() H <50§((t))> 2611&(2)’ '(t) + SoE' (1)
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Now choose g¢ so small that \; := v E(0) — A¢gg > 0, and let §y be large

enough such that §y — iﬁfl%) > 0. Hence, we find
o E) ' ,( E@)\ E(t)
(61) {H (EOE(O)>’C2(t) + (50E<t)} < —)ql?(t)H <€0E(0)) m
= —)\719(t)R <50 gééi) Vit > to.

At this point, we consider

Ki(t), if H is linear on |0, ],
/Cg(t) =

H' (50]5((8>IC2(2€) +60E(t), if H'(0)=0and H” >0 on (0,¢].
Then, from and , we get

Kis(t) < —Agﬁ(t)R(eo fEx((t))))’W > to.

Since K3(t) ~ E(t), 3¢1,&2 > 0 such that

(62) &Ks(t) < E(t) < &K3(1).
Introducing the functional
. Ks®)
(63) Blt) = &7y
we have
E(t)
(64) B(t) < m < 1.

According , , and since H is a increasing finction, we find

) §1A E(t)
B'(t) < _El(OE;ﬁ(t)R<E(O)>

65
" ot £0),
By integrating over (to,t) and using H'(t) = —ﬁ, we have
(66) H(B(t)) — H(B(0)) > Ao ttﬁ(a)da.
0

Since, H~! is decreasing functional, we obtain
(67) B(t) < H—1<H(B(0)) + Ao /ttﬁ(a)do—), Yt > to.

0

Now B(t) ~ E(t), yields (47). The proof is complete. O
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4. CONCLUSION

The purpose of this work was to study the general decay of solutions for a
viscoelastic wave equations with distributed delay in boundary feedback. This
type of problem is frequently found in some mathematical models in applied
sciences. Especially in the theory of viscoelasticity. In the next work, we try
to add other dampings and terms (Balakrishnan-Taylor damping, dispersion
and Logarithmic terms).
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