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WEAK OPENNESS AND WEAK CONTINUITY
IN IDEAL TOPOLOGICAL SPACES

CHAWALIT BOONPOK

Abstract. Our purpose is to introduce the concepts of weakly ⋆-open func-
tions and weakly ⋆-continuous functions. Moreover, some characterizations of
weakly ⋆-continuous functions and θ(⋆)-continuous functions are investigated.
In particular, the relationships between weakly ⋆-continuous functions and θ(⋆)-
continuous functions are established.
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1. INTRODUCTION

In 1984, Rose [21] introduced the notion of weakly open functions. Rose
and Janković [23] have defined the notion of weakly closed functions and in-
vestigated some of the fundamental properties of weakly open and weakly
closed functions. Caldas and Navalagi [4] introduced the notions of weakly
semi-open and weakly semi-closed functions as a new generalization of weakly
open and weakly closed functions, respectively. Noiri et al. [17] introduced
a new class of functions called weakly b-open functions which is a general-
ization of weakly semi-open functions and investigated some characterizations
concerning weakly b-open functions. Ekici [7] introduced the notion of weakly
BR-continuous functions and obtained some characterizations of weakly BR-
continuous functions and the relationships among weakly BR-continuous func-
tions, strongly θ-b-continuous functions, weakly clopen functions and the other
related functions. Caldas et al. [3] introduced the concept of weakly BR-closed
functions and investigated some characterizations of weakly BR-closed func-
tions. In 2011, Caldas et al. [2] introduced and studied a new class of functions
by using the notions of b-θ-open sets and b-θ-closure operator called weakly
BR-open functions. In [18], the present author introduced a new notion of
weakly M -open functions as functions defined between sets satisfying some
minimal conditions and obtained some characterizations of such functions.

The concept of weak continuity due to Levine [16] is one of the most impor-
tant weak forms of continuity in topological spaces. Rose [22] has introduced
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the notion of subweakly continuous functions and investigated the relation-
ships between subweak continuity and weak continuity. Ekici et al. [8] estab-
lished a new class of functions called λ-continuous functions which is weaker
than λ-continuous functions and investigated some fundamental properties of
weakly λ-continuous functions. Popa and Noiri [19] introduced the notion of
weakly (τ,m)-continuous functions as functions from a topological space into
a set satisfying some minimal conditions and investigated several character-
izations of such functions. Moreover, the present author [20] introduced the
concept of weakly M -continuous functions as functions from a set satisfying
some minimal conditions into a set satisfying some minimal conditions and
investigated some characterizations of weakly M -continuous functions. The
notion of ideals in topological spaces has been studied by Kuratowski [15] and
Vaidyanathaswamy [24]. Janković and Hamlett [14] investigated further prop-
erties of ideal topological spaces. Hatir and Noiri [13] have introduced the
notion of semi-I -open sets to obtain decomposition of continuity. In [10], the
present author introduced the notions of weakly semi-I -open sets and weakly
semi-I -continuous functions.

The paper is organized as follows. In Section 3, we introduce and study
the notion of weakly ⋆-open functions. Section 4 is devoted to introducing
and studying weakly ⋆-continuous functions and θ(⋆)-continuous functions.
Moreover, the relationships between weakly ⋆-continuous functions and θ(⋆)-
continuous functions are discussed.

2. PRELIMINARIES

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply X and
Y ) always mean topological spaces on which no separation axioms are assumed
unless explicitly stated.

In a topological space (X, τ), the closure and the interior of any subset A
of X will denoted by Cl(A) and Int(A), respectively.

An ideal I on a topological space (X, τ) is a nonempty collection of subsets
of X satisfying the following properties:

(1) A ∈ I and B ⊆ A imply B ∈ I ;
(2) A ∈ I and B ∈ I imply A ∪B ∈ I .

A topological space (X, τ) with an ideal I onX is called an ideal topological
space and is denoted by (X, τ,I ). For an ideal topological space (X, τ,I )
and a subset A of X, A⋆(I ) is defined as follows:

A⋆(I ) = {x ∈ X | U ∩A ̸∈ I for every open neighbourhood U of x}.

In case there is no chance for confusion, A⋆(I ) is simply written as A⋆.
In [15], A⋆ is called the local function of A with respect to I and τ and

Cl⋆(A) = A⋆ ∪A defines a Kuratowski closure operator for a topology τ⋆(I ).
For any ideal topological space (X, τ,I ), there exists a topology τ⋆(I ) finer
than τ , generated by B(I , τ) = {U − I0 | U ∈ τ and I0 ∈ I }, but in general



3 Weak openness and weak continuity 175

B(I , τ) is not always a topology [14]. A subset A is said to be ⋆-closed [14]
if A⋆ ⊆ A. The complement of a ⋆-closed set is called ⋆-open. The interior of
a subset A in (X, τ⋆(I )) is denoted by Int⋆(A).

Definition 2.1 ([25]). Let A be a subset of an ideal topological space
(X, τ,I ). A point x ∈ X is called a θ-I -cluster point of A if Cl⋆(U)∩A ̸= ∅
for every U ∈ τ containing x. The set of all θ-I -cluster points of A is called
the θ-I -closure of A and is denoted by Clθı(A). A point x ∈ X is called a
θ-I -interior point of A if Cl⋆(U) ⊆ A for some U ∈ τ containing x. The set
of all θ-I -interior points of A is called the θ-I -interior of A and is denoted
by Intθı(A).

Lemma 2.2. For subsets A and B of an ideal topological space (X, τ,I ),
the following properties hold:

(1) Clθı(Clθı(A)) = Clθı(A).
(2) If A ⊆ B, then Clθı(A) ⊆ Clθı(B).
(3) Clθı(X −A) = X − Intθı(A).
(4) Intθı(X −A) = X − Clθı(A).

Definition 2.3. Let A be a subset of an ideal topological space (X, τ,I ).
A point x ∈ X is called

(i) a θ-⋆-cluster point of A if Cl(U) ∩ A ̸= ∅ for every ⋆-open set U
containing x,

(ii) a θ-⋆-interior point of A if Cl(U) ⊆ A for some ⋆-open set U containing
x.

The set of all θ-⋆-cluster points of A is called the θ-⋆-closure of A and
is denoted by ⋆Clθ(A). If A = ⋆Clθ(A), then A is called θ-⋆-closed. The
complement of a θ-⋆-closed set is said to be θ-⋆-open. The set of all θ-⋆-
interior points of A is called the θ-⋆-interior of A and is denoted by ⋆Intθ(A).

Lemma 2.4. For a subset A of an ideal topological space (X, τ,I ), the
following properties are hold:

(1) If A is open, then Cl⋆(A) = ⋆Clθ(A).
(2) ⋆Clθ(A) is ⋆-closed.

Proof. (1) In general, Cl⋆(A) ⊆ ⋆Clθ(A) holds. Suppose that x ̸∈ Cl⋆(A).
Then, there exists a ⋆-open set U containing x such that A ∩ U = ∅; hence
A∩Cl(U) = ∅ since A is open. Thus, x ̸∈ ⋆Clθ(A) and hence ⋆Clθ(A) ⊆ Cl⋆(A).
This shows that Cl⋆(A) = ⋆Clθ(A).

(2) Let x ∈ X − ⋆Clθ(A). Then x ̸∈ ⋆Clθ(A). There exists a ⋆-open set Ux

containing x such that Cl(Ux) ∩ A = ∅. Thus, ⋆Clθ(A) ∩ Ux = ∅ and hence
x ∈ Ux ⊆ X − ⋆Clθ(A). Thus, X − ⋆Clθ(A) = ∪x∈X−⋆Clθ(A)Ux is ⋆-open. This
shows that ⋆Clθ(A) is ⋆-closed. □
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3. CHARACTERIZATIONS OF WEAKLY ⋆-OPEN FUNCTIONS

In this section, we introduce the concept of weakly ⋆-open functions and
investigate some characterizations of weakly ⋆-open functions.

Definition 3.1. A function f : (X, τ,I ) → (Y, σ,J ) is said to be weakly
⋆-open if f(U) ⊆ Int⋆(f(Cl⋆(U))) for each U ∈ τ .

Theorem 3.2. For a function f : (X, τ,I ) → (Y, σ,J ), the following
properties are equivalent:

(1) f is weakly ⋆-open;
(2) f(Intθı(A)) ⊆ Int⋆(f(A)) for every subset A of X;
(3) Intθı(f

−1(B)) ⊆ f−1(Int⋆(B)) for every subset B of Y ;
(4) f−1(Cl⋆(B)) ⊆ Clθı(f

−1(B)) for every subset B of Y ;
(5) for each x ∈ X and each open set U of X containing x, there exists

an open set V of Y containing f(x) such that V ⊆ f(Cl⋆(U)).

Proof. (1) ⇒ (2): Let A be any subset of X and x ∈ Intθı(A). Then, there
exists U ∈ τ such that x ∈ U ⊆ Cl⋆(U) ⊆ A and hence f(x) ∈ f(U) ⊆
f(Cl⋆(U)) ⊆ f(A). Since f is weakly ⋆-open, f(U) ⊆ Int⋆(f(Cl⋆(U))) ⊆
Int⋆(f(A)) and x ∈ f−1(Int⋆(f(A))). Thus, Intθı(A) ⊆ f−1(Int⋆(f(A))) and
f(Intθı(A)) ⊆ Int⋆(f(A)).

(2) ⇒ (3): Let B be any subset of Y . By (2), we have f(Intθı(f
−1(B))) ⊆

Int⋆(f(f−1(B))) ⊆ Int⋆(B). Thus, Intθı(f
−1(B)) ⊆ f−1(Int⋆(B)).

(3) ⇒ (4): Let B be any subset of Y . By (3),

X − Clθı(f
−1(B)) = Intθı(X − f−1(B))

= Intθı(f
−1(Y −B))

⊆ f−1(Int⋆(Y −B))

= f−1(Y − Cl⋆(B)) = X − f−1(Cl⋆(B))

and hence f−1(Cl⋆(B)) ⊆ Clθı(f
−1(B)).

(4) ⇒ (5): Let x ∈ X and U ∈ τ containing x. By (4), we have

f−1(Cl⋆(Y − Cl⋆(U))) ⊆ Clθı(f
−1(Y − Cl⋆(U))).

Since f−1(Cl⋆(Y − Cl⋆(U))) = X − f−1(Int⋆(f(Cl⋆(U)))) and

Clθı(f
−1(Y − f(Cl⋆(U)))) = Clθı(X − f−1(f(Cl⋆(U))))

⊆ Clθı(X − Cl⋆(U))

= X − Intθı(Cl
⋆(U)) ⊆ X − U,

X − f−1(Int⋆(f(Cl⋆(U)))) ⊆ X − U . Thus, U ⊆ f−1(Int⋆(f(Cl⋆(U)))) and
hence f(U) ⊆ Int⋆(f(Cl⋆(U))). Since f(x) ∈ Int⋆(f(Cl⋆(U))), there exists a
⋆-open set V of Y such that f(x) ∈ V ⊆ f(Cl⋆(U)).
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(5) ⇒ (1): Let U ∈ τ and x ∈ U . By (5), there exists a ⋆-open set V of Y
containing f(x) such that V ⊆ f(Cl⋆(U)). Hence, we have

f(x) ∈ V ⊆ Int⋆(f(Cl⋆(U)))

for each x ∈ U . Consequently, we obtain f(U) ⊆ Int⋆(f(Cl⋆(U))). This shows
that f is weakly ⋆-open. □

Definition 3.3 ([6]). A subset A of an ideal topological space (X, τ,I ) is
said to be ⋆-dense if Cl⋆(A) = X.

Definition 3.4 ([9]). An ideal topological space (X, τ,I ) is said to be
⋆-hyperconnected if V is ⋆-dense for every nonempty open set V of X.

Theorem 3.5. Let (X, τ,I ) be a ⋆-hyperconnected space. Then a function
f : (X, τ,I ) → (Y, σ,J ) is weakly ⋆-open if and only if f(X) is ⋆-open in
(Y, σ,J ).

Proof. Let f be weakly ⋆-open. Since X ∈ τ , f(X) ⊆ Int⋆(f(Cl⋆(X))) =
Int⋆(f(X)) and hence f(X) ⊆ Int⋆(f(X)). Thus, f(X) is ⋆-open in (Y, σ,J ).

Conversely, suppose that f(X) is ⋆-open in (Y, σ,J ). Let U ∈ τ . Then
f(U) ⊆ f(X) = Int⋆(f(X)) = Int⋆(f(Cl⋆(U))). Consequently, we obtain
f(U) ⊆ Int⋆(f(Cl⋆(U))). This shows that f is weakly ⋆-open. □

4. ON WEAKLY ⋆-CONTINUOUS FUNCTIONS

In this section, we introduce the concepts of weakly ⋆-continuous functions
and θ(⋆)-continuous functions. Some characterizations of weakly ⋆-continuous
functions and θ(⋆)-continuous functions are investigated. Moreover, the re-
lationships between weakly ⋆-continuous functions and θ(⋆)-continuous func-
tions are discussed.

Definition 4.1. A function f : (X, τ,I ) → (Y, σ,J ) is said to be weakly
⋆-continuous at x ∈ X if for each ⋆-open set V of Y containing f(x), there
exists a ⋆-open set U of X containing x such that f(U) ⊆ Cl(V ). A function
f : (X, τ,I ) → (Y, σ,J ) is said to be weakly ⋆-continuous if it has that
property at each point x ∈ X.

Theorem 4.2. A function f : (X, τ,I ) → (Y, σ,J ) is weakly ⋆-continuous
at x ∈ X if and only if for each ⋆-open set V of Y containing f(x), x ∈
Int⋆(f−1(Cl(V ))).

Proof. Let f be weakly ⋆-continuous at x ∈ X and V be any ⋆-open set of Y
containing f(x). Then, there exists a ⋆-open set U of X containing x such that
f(U) ⊆ Cl(V ). Thus, x ∈ U ⊆ f−1(Cl(V )) and hence x ∈ Int⋆(f−1(Cl(V ))).

Conversely, let x ∈ X and V be any ⋆-open set of Y containing f(x). By
the hypothesis, we have x ∈ Int⋆(f−1(Cl(V ))). There exists a ⋆-open set U of



178 C. Boonpok 6

X such that x ∈ U ⊆ f−1(Cl(V )); hence f(U) ⊆ Cl(V ). This shows that f is
weakly ⋆-continuous at x. □

Theorem 4.3. A function f : (X, τ,I ) → (Y, σ,J ) is weakly ⋆-continuous
if and only if f−1(V ) ⊆ Int⋆(f−1(Cl(V ))) for every ⋆-open set V of Y .

Proof. Let V be any ⋆-open set of Y and x ∈ f−1(V ). Then f(x) ∈ V .
Since f is weakly ⋆-continuous at x, by Theorem 4.2, x ∈ Int⋆(f−1(Cl(V )))
and hence f−1(V ) ⊆ Int⋆(f−1(Cl(V ))).

Conversely, let x ∈ X and V be any ⋆-open set of Y containing f(x).
Then x ∈ f−1(V ) ⊆ Int⋆(f−1(Cl(V ))) and hence x ∈ Int⋆(f−1(Cl(V ))). By
Theorem 4.2, f is weakly ⋆-continuous at x. This shows that f is weakly
⋆-continuous. □

Theorem 4.4. For a function f : (X, τ,I ) → (Y, σ,J ), the following
properties are equivalent:

(1) f is weakly ⋆-continuous;
(2) f(Cl⋆(A)) ⊆ ⋆Clθ(f(A)) for every subset A of X;
(3) Cl⋆(f−1(B)) ⊆ f−1(⋆Clθ(B)) for every subset B of Y ;
(4) Cl⋆(f−1(V )) ⊆ f−1(Cl⋆(V )) for every open set V of Y .

Proof. (1) ⇒ (2): Let A be any subset of X. Suppose that x ∈ Cl⋆(A) and
G be any ⋆-open set of Y containing f(x). Since f is weakly ⋆-continuous,
there exists a ⋆-open set U of X containing x such that f(U) ⊆ Cl(G). Since
x ∈ Cl⋆(A), we have U∩A ̸= ∅. It follows that ∅ ≠ f(U)∩f(A) ⊆ Cl(G)∩f(A).
Thus, Cl(G)∩ f(A) ̸= ∅ and f(x) ∈ ⋆Clθ(f(A)). This shows that f(Cl⋆(A)) ⊆
⋆Clθ(f(A)).

(2) ⇒ (3): Let B be any subset of Y . By (2),

f(Cl⋆(f−1(B))) ⊆ ⋆Clθ(f(f
−1(B))) ⊆ ⋆Clθ(B)

and hence Cl⋆(f−1(B)) ⊆ f−1(⋆Clθ(B)).

(3) ⇒ (4): Let V be any open set of Y . By Lemma 2.4, Cl⋆(V ) = ⋆Clθ(V ).
Thus, the proof is obvious.

(4) ⇒ (1): Let x ∈ X and V be any ⋆-open set of Y containing f(x). Since

V ∩ (Y − Cl(V )) = ∅,

f(x) ̸∈ Cl⋆(Y − Cl(V )) and hence x ̸∈ f−1(Cl⋆(Y − Cl(V ))). By (4), we
have x ̸∈ Cl⋆(f−1(Y − Cl(V ))). Therefore, there exists a ⋆-open set U of X
containing x such that U ∩f−1(Y −Cl(V )) = ∅; hence f(U)∩(Y −Cl(V )) = ∅.
This implies that f(U) ⊆ Cl(V ). Thus, f is weakly ⋆-continuous. □
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Theorem 4.5. For a function f : (X, τ,I ) → (Y, σ,J ), the following
properties are equivalent:

(1) f is weakly ⋆-continuous;
(2) f−1(V ) ⊆ Int⋆(f−1(Cl(V ))) for every ⋆-open set V of Y ;
(3) Cl⋆(f−1(Int(F ))) ⊆ f−1(F ) for every ⋆-closed set F of Y ;
(4) Cl⋆(f−1(Int(Cl⋆(B)))) ⊆ f−1(Cl⋆(B)) for every subset B of Y ;
(5) f−1(Int⋆(B)) ⊆ Int⋆(f−1(Cl(Int⋆(B)))) for every subset B of Y .

Proof. (1) ⇒ (2): This follows from Theorem 4.3.

(2) ⇒ (3): Let F be any ⋆-closed set of Y . Then Y − F is ⋆-open in Y and
by (2),

X − f−1(F ) = f−1(Y − F ) ⊆ Int⋆(f−1(Cl(Y − F )))

= Int⋆(f−1(Y − Int(F )))

= X − Cl⋆(f−1(Int(F ))).

Thus, Cl⋆(f−1(Int(F ))) ⊆ f−1(F ).

(3) ⇒ (4): Let B be any subset of Y . Since Cl⋆(B) is ⋆-closed and by (3),

Cl⋆(f−1(Int(Cl⋆(B)))) ⊆ f−1(Cl⋆(B)).

(4) ⇒ (5): Let B be any subset of Y . By (4),

f−1(Int⋆(B)) = X − f−1(Cl⋆(Y −B))

⊆ X − Cl⋆(f−1(Int(Cl⋆(Y −B))))

= Int⋆(f−1(Cl(Int⋆(B)))).

Thus, we get the result.

(5) ⇒ (1): Let V be any ⋆-open set of Y . By (5), we have f−1(V ) =
f−1(Int⋆(V )) ⊆ Int⋆(f−1(Cl(Int⋆(V )))) = Int⋆(f−1(Cl(V ))). Thus, by Theo-
rem 4.3, f is weakly ⋆-continuous. □

Definition 4.6. A subset A of an ideal topological space (X, τ,I ) is said
to be:

(1) I -R closed [1] if A = Cl⋆(Int(A));
(2) pre-I -open [5] if A ⊆ Int(Cl⋆(A));
(3) semi-I -open [12] if A ⊆ Cl⋆(Int(A));
(4) strong β-I -open [11] if A ⊆ Cl⋆(Int(Cl⋆(A))).

Theorem 4.7. For a function f : (X, τ,I ) → (Y, σ,J ), the following
properties are equivalent:

(1) f is weakly ⋆-continuous;
(2) Cl⋆(f−1(Int(F ))) ⊆ f−1(F ) for every J -R closed set F of Y ;
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(3) Cl⋆(f−1(Int(Cl⋆(V )))) ⊆ f−1(Cl⋆(V )) for every strong β-J -open set
V of Y ;

(4) Cl⋆(f−1(Int(Cl⋆(V )))) ⊆ f−1(Cl⋆(V )) for every semi-J -open set V of
Y .

Proof. (1) ⇒ (2): Let F be any J -R closed set of Y . Then Int(F ) is
open, by Theorem 4.4, Cl⋆(f−1(Int(F ))) ⊆ f−1(Cl⋆(Int(F ))). Since F is J -
R closed, we have Cl⋆(f−1(Int(F ))) ⊆ f−1(F ).

(2) ⇒ (3): Let V be any strong β-J -open set of Y . Then Cl⋆(V ) =
Cl⋆(Int(Cl⋆(V ))) and hence Cl⋆(V ) is J -R closed. By (2),

Cl⋆(f−1(Int(Cl⋆(V )))) ⊆ f−1(Cl⋆(V )).

(3) ⇒ (4): The proof is obvious.

(4) ⇒ (1): Let V be any open set of Y . Then V is strong β-J -open and
by (4), we have Cl⋆(f−1(V )) ⊆ Cl⋆(f−1(Int(Cl⋆(V )))) ⊆ f−1(Cl⋆(V )). Hence,
by Theorem 4.4, f is weakly ⋆-continuous. □

Theorem 4.8. For a function f : (X, τ,I ) → (Y, σ,J ), the following
properties are equivalent:

(1) f is weakly ⋆-continuous;
(2) Cl⋆(f−1(Int(Cl⋆(V )))) ⊆ f−1(Cl⋆(V )) for every pre-J -open set V of

Y ;
(3) Cl⋆(f−1(V )) ⊆ f−1(Cl⋆(V )) for every pre-J -open set V of Y ;
(4) Cl⋆(f−1(V )) ⊆ f−1(Cl⋆(V )) for every open set V of Y .

Proof. (1) ⇒ (2): Let V be any pre-J -open set of Y . Then Cl⋆(V ) =
Cl⋆(Int(Cl⋆(V ))) and hence Cl⋆(V ) is J -R closed. By Theorem 4.7,

Cl⋆(f−1(Int(Cl⋆(V )))) ⊆ f−1(Cl⋆(V )).

(2) ⇒ (3): Let V be any pre-J -open set of Y . Then V ⊆ Int(Cl⋆(V )) and
by (2), Cl⋆(f−1(V )) ⊆ Cl⋆(f−1(Int(Cl⋆(V )))) ⊆ f−1(Cl⋆(V )).

(3) ⇒ (4): The proof is obvious.

(4) ⇒ (1): It follows from Theorem 4.4. □

Definition 4.9. An ideal topological space (X, τ,I ) is called ⋆-Hausdorff
(resp. ⋆-Urysohn) if for each distinct points x, y ∈ X, there exist ⋆-open
sets U and V containing x and y, respectively, such that U ∩ V = ∅ (resp.
Cl(U) ∩ Cl(V ) = ∅).

Theorem 4.10. If f : (X, τ,I ) → (Y, σ,J ) is a weakly ⋆-continuous
injection and (Y, σ,J ) is ⋆-Urysohn, then (X, τ,I ) is ⋆-Hausdorff.
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Proof. Let x, y be any distinct points of X. Then f(x) ̸= f(y). Since
(Y, σ,J ) is ⋆-Urysohn, there exist ⋆-open sets U and V of Y containing f(x)
and f(y), respectively, such that Cl(U) ∩ Cl(V ) = ∅. Since f is weakly ⋆-
continuous, there exist ⋆-open sets G and W of X containing x and y, re-
spectively, such that f(G) ⊆ Cl(U) and f(W ) ⊆ Cl(V ). This implies that
G ∩W = ∅. Thus, (X, τ,I ) is ⋆-Hausdorff. □

Definition 4.11. A subset K of an ideal topological space (X, τ,I ) is
said to be I (⋆)-closed (resp. ⋆-compact) relative to (X, τ,I ) if for each cover
{Vγ | γ ∈ Γ} of K by ⋆-open sets of X, there exists finite subset Γ0 of Γ
such that K ⊆ ∪{Cl(Vγ) | γ ∈ Γ0} (resp. K ⊆ ∪{Vγ | γ ∈ Γ}). If X is
I (⋆)-closed (resp. ⋆-compact) relative to (X, τ,I ), then (X, τ,I ) is said to
be I (⋆)-closed (resp. ⋆-compact).

Theorem 4.12. If f : (X, τ,I ) → (Y, σ,J ) is a weakly ⋆-continuous
function and K is ⋆-compact relative to (X, τ,I ), then f(K) is J (⋆)-closed
relative to (Y, σ,J ).

Proof. Let K be ⋆-compact relative to (X, τ,I ). Let {Vγ | γ ∈ Γ} be
any cover of f(K) by ⋆-open sets of (Y, σ,J ). For each x ∈ K, there exists
γ(x) ∈ Γ such that f(x) ∈ Vγ(x). Since f is weakly ⋆-continuous, there exists
a ⋆-open set U(x) containing x such that f(U(x)) ⊆ Cl(Vγ(x)). The family
{U(x) | x ∈ K} is a cover of K by ⋆-open sets of X. Since K is ⋆-compact
relative to (X, τ,I ), there exist a finite number of points, say, x1, x2, ..., xn in
K such that K ⊆ ∪{U(xk) | xk ∈ K, 1 ≤ k ≤ n}. Thus,

f(K) ⊆ ∪{f(U(xk)) | xk ∈ K, 1 ≤ k ≤ n}
⊆ ∪{Cl(Vγ(xk)) | xk ∈ K, 1 ≤ k ≤ n}.

This shows that f(K) is J (⋆)-closed relative to (Y, σ,J ). □

Corollary 4.13. If f : (X, τ,I ) → (Y, σ,J ) is a weakly ⋆-continuous
surjection and (X, τ,I ) is ⋆-compact, then (Y, σ,J ) is J (⋆)-closed.

Definition 4.14. A function f : (X, τ,I ) → (Y, σ,J ) is said to be θ(⋆)-
continuous at x ∈ X if for each ⋆-open set V of Y containing f(x), there exists
a ⋆-open set U of X containing x such that f(Cl(U)) ⊆ Cl(V ). A function
f : (X, τ,I ) → (Y, σ,J ) is said to be θ(⋆)-continuous if it has that property
at each point x ∈ X.

Remark 4.15. For a function f : (X, τ,I ) → (Y, σ,J ), the following
implication holds:

θ(⋆)-continuity ⇒ weak ⋆-continuity.
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The converse of the implication is not true in general. We give an example
for the implication as follows.

Example 4.16. Let X = {a, b, c} with a topology τ = {∅, {a}, X} and an
ideal I = {∅, {b}}. Let Y = {1, 2, 3} with a topology

σ = {∅, {1}, {2}, {1, 2}, Y }
and an ideal J = {∅}. A function f : (X, τ,I ) → (Y, σ,J ) is defined as
follows: f(a) = 1 and f(b) = f(c) = 3. Then f is weakly ⋆-continuous but f
is not θ(⋆)-continuous.

Theorem 4.17. A function f : (X, τ,I ) → (Y, σ,J ) is θ(⋆)-continuous
at x ∈ X if and only if for each ⋆-open set V of Y containing f(x), x ∈
⋆Intθ(f

−1(Cl(V ))).

Proof. Let f be θ(⋆)-continuous at x ∈ X and V be any ⋆-open set of Y
containing f(x). Then, there exists a ⋆-open set U of X containing x such
that f(Cl(U)) ⊆ Cl(V ). Thus, x ∈ U ⊆ Cl(U) ⊆ f−1(Cl(V )) and hence
x ∈ ⋆Intθ(f

−1(Cl(V ))).
Conversely, let V be any ⋆-open set of Y containing f(x). Then, by the

hypothesis we have x ∈ ⋆Intθ(f
−1(Cl(V ))). There exists a ⋆-open set U of X

such that x ∈ U ⊆ Cl(U) ⊆ f−1(Cl(V )); hence f(Cl(U)) ⊆ Cl(V ). This shows
that f is θ(⋆)-continuous at x ∈ X. □

Theorem 4.18. A function f : (X, τ,I ) → (Y, σ,J ) is θ(⋆)-continuous if
and only if f−1(V ) ⊆ ⋆Intθ(f

−1(Cl(V ))) for every ⋆-open set V of Y .

Proof. Let V be any ⋆-open set of Y and x ∈ f−1(V ). Then f(x) ∈ V . Since
f is θ(⋆)-continuous at x, by Theorem 4.17 we have x ∈ ⋆Intθ(f

−1(Cl(V )))
and hence f−1(V ) ⊆ ⋆Intθ(f

−1(Cl(V ))).
Conversely, let x ∈ X and V be any ⋆-open set of Y containing f(x). Then

x ∈ f−1(V ) ⊆ ⋆Intθ(f
−1(Cl(V ))) and hence x ∈ ⋆Intθ(f

−1(Cl(V ))). Thus, by
Theorem 4.17, f is θ(⋆)-continuous. □

Theorem 4.19. For a function f : (X, τ,I ) → (Y, σ,J ), the following
properties are equivalent:

(1) f is θ(⋆)-continuous;
(2) f(⋆Clθ(A)) ⊆ ⋆Clθ(f(A)) for every subset A of X;
(3) ⋆Clθ(f

−1(B)) ⊆ f−1(⋆Clθ(B)) for every subset B of Y .

Proof. (1) ⇒ (2): Let A be any subset of X. Let x ∈ ⋆Clθ(A) and G
be any ⋆-open set of Y containing f(x). Since f is θ(⋆)-continuous, there
exists a ⋆-open set U of X containing x such that f(Cl(U)) ⊆ Cl(G). Since
x ∈ ⋆Clθ(A), we have Cl(U) ∩ A ̸= ∅. It follows that ∅ ≠ f(Cl(U)) ∩ f(A) ⊆
Cl(G) ∩ f(A). Hence, Cl(G) ∩ f(A) ̸= ∅ and f(x) ∈ ⋆Clθ(f(A)). This shows
that f(⋆Clθ(A)) ⊆ ⋆Clθ(f(A)).
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(2) ⇒ (3): Let B be any subset of Y . By (2), we have f(⋆Clθ(f
−1(B))) ⊆

⋆Clθ(f(f
−1(B))) ⊆ ⋆Clθ(B) and hence ⋆Clθ(f

−1(B)) ⊆ f−1(⋆Clθ(B)).

(3) ⇒ (1): Let x ∈ X and V be any ⋆-open set of Y containing f(x). Since

Cl(V ) ∩ (Y − Cl(V )) = ∅,

f(x) ̸∈ ⋆Clθ(Y − Cl(V )) and hence x ̸∈ f−1(⋆Clθ(Y − Cl(V ))). By (3), we
have x ̸∈ ⋆Clθ(f

−1(Y −Cl(V ))). There exists a ⋆-open set U of X containing
x such that Cl(U) ∩ f−1(Y − Cl(V )) = ∅; hence f(Cl(U)) ∩ (Y − Cl(V )) = ∅.
This shows that f(Cl(U)) ⊆ Cl(V ). Thus, f is θ(⋆)-continuous. □

Theorem 4.20. A function f : (X, τ,I ) → (Y, σ,J ) is θ(⋆)-continuous if
and only if ⋆Clθ(f

−1(V )) ⊆ f−1(⋆Clθ(V )) for every ⋆-open set V of Y .

Proof. This is obvious from Theorem 4.19.
Conversely, let V be any ⋆-open set of Y containing f(x). Since

Cl⋆(V ) ∩ (Y − Cl⋆(V )) = ∅,

f(x) ̸∈ ⋆Clθ(Y − Cl⋆(V )) and hence x ̸∈ f−1(⋆Clθ(Y − Cl⋆(V ))). By the
hypothesis, x ̸∈ ⋆Clθ(f

−1(Y − Cl⋆(V ))) and there exists a ⋆-open set U of
X containing x such that Cl(U) ∩ f−1(Y − Cl⋆(V )) = ∅. This shows that
f(Cl(U)) ⊆ Cl⋆(V ) ⊆ Cl(V ). Therefore, f is θ(⋆)-continuous. □

Theorem 4.21. If (X, τ,I ) is an ideal topological space and for any distinct
points x1, x2 ∈ X, there exists a function f : (X, τ,I ) → (Y, σ,J ) such that

(1) (Y, σ,J ) is ⋆-Urysohn,
(2) f(x1) ̸= f(x2) and
(3) f is θ(⋆)-continuous at x1 and x2, then (X, τ,I ) is ⋆-Urysohn.

Proof. Let x1, x2 be any distinct points of X. Then, by the hypothesis there
exists a function f : (X, τ,I ) → (Y, σ,J ) which satisfies the three conditions.
Now let yi = f(xi) for i = 1, 2. Then y1 ̸= y2.

Since (Y, σ,J ) is ⋆-Urysohn, there exist ⋆-open sets Vi, i = 1, 2 such that
yi ∈ Vi and Cl(V1) ∩ Cl(V2) = ∅. Since f is θ(⋆)-continuous at xi, there exists
a ⋆-open set Ui containing x such that f(Cl(Ui)) ⊆ Cl(Vi) for i = 1, 2. This
implies that Cl(U1) ∩ Cl(U2) = ∅. Thus, (X, τ,I ) is ⋆-Urysohn. □

Corollary 4.22. If f : (X, τ,I ) → (Y, σ,J ) is a θ(⋆)-continuous injec-
tion and (Y, σ,J ) is ⋆-Urysohn, (X, τ,I ) is ⋆-Urysohn.

Definition 4.23. A function f : (X, τ,I ) → (Y, σ,J ) is said to have a
strongly θ(⋆)-closed graph if for each (x, y) ∈ (X × Y ) − G(f), there exist a
⋆-open set U of X containing x and a ⋆-open set V of Y containing y such
that [Cl(U)× Cl(V )] ∩G(f) = ∅.
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Lemma 4.24. A function f : (X, τ,I ) → (Y, σ,J ) has a strongly θ(⋆)-
closed graph if and only if for each (x, y) ∈ (X × Y ) − G(f), there exist a
⋆-open set U of X containing x and a ⋆-open set V of Y containing y such
that f(Cl(U)) ∩ Cl(V ) = ∅.

Theorem 4.25. If f : (X, τ,I ) → (Y, σ,J ) is a θ(⋆)-continuous function
and (Y, σ,J ) is ⋆-Urysohn, then G(f) is strongly θ(⋆)-closed.

Proof. Suppose that (x, y) ∈ (X × Y ) − G(f). Then y ̸= f(x). Since
(Y, σ,J ) is ⋆-Urysohn, there exist ⋆-open sets V and W of Y containing y
and f(x), respectively, such that Cl(V ) ∩ Cl(W ) = ∅.

Since f is θ(⋆)-continuous, there exists a ⋆-open set U of X containing x
such that f(Cl(U)) ⊆ Cl(W ). This implies that f(Cl(U))∩Cl(V ) = ∅ and by
Lemma 4.24, G(f) is strongly θ(⋆)-closed. □

Theorem 4.26. If f : (X, τ,I ) → (Y, σ,J ) is an injective θ(⋆)-continuous
function with a strongly θ(⋆)-closed graph, then (X, τ,I ) is ⋆-Urysohn.

Proof. Let x and y be any distinct points of X. Then, since f is injective,
we have f(x) ̸= f(y). Thus, (x, f(y)) ∈ (X×Y )−G(f). Since G(f) is strongly
θ(⋆)-closed, by Lemma 4.24 there exist a ⋆-open set U of X containing x and
a ⋆-open set V of Y containing f(y) such that f(Cl(U)) ∩ Cl(V ) = ∅.

Since f is θ(⋆)-continuous, there exists a ⋆-open set W of X containing y
such that f(Cl(W )) ⊆ Cl(V ). Therefore, we have f(Cl(U)) ∩ f(Cl(W )) = ∅
and hence Cl(U) ∩ Cl(W ) = ∅. This shows that (X, τ,I ) is ⋆-Urysohn. □
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[23] D. A. Rose and D. S. Janković, Weakly closed functions and Hausdorff spaces, Math.

Nachr., 130 (1987), 105–110.
[24] R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci.

Sect. A, 20 (1944), 51–61.
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