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ON A SECOND-ORDER DIFFERENTIAL INCLUSION WITH
CERTAIN INTEGRAL AND MULTI-STRIP BOUNDARY

CONDITIONS

AURELIAN CERNEA

Abstract. We study a second-order differential inclusion with integral and
multi-strip boundary conditions defined by a set-valued map with nonconvex
values. We obtain an existence result and we prove the arcwise connectedness
of the solution set of the considered problem.

MSC 2010. 34A60, 34B10, 34B15.

Key words. Differential inclusion, boundary value problem, measurable selec-
tion.

1. INTRODUCTION

This paper is concerned with the following problem

(1) x′′(t) ∈ F (t, x(t)) a.e. ([0, 1]),∫ 1

0
x(s)ds =

m∑
j=1

γj

∫ ηj

ξj

x(s)ds+ c1,

∫ 1

0
x′(s)ds

=

m∑
j=1

ρj

∫ ηj

ξj

x′(s)ds+ c2,

(2)

where F : [0, 1] × R → P(R) is a set-valued map, 0 < ξ1 < η1 < ξ2 < η2 <
... < ξm < ηm < 1, γj , ρj ≥ 0, i = 1,m and c1, c2 ∈ R.

In a recent paper [1], it is studied the problem (1)-(2) and several existence
results are provided for this problem, when the right-hand side of (1) is single-
valued and multi-valued. In the case of differential inclusions, the results in [1]
are obtained using a nonlinear alternative of Leray Schauder type and some
suitable theorems of fixed point theory.

The aim of our paper is to continue the study [1] in the case when the set-
valued map F (., .) has nonconvex values. The main hypothesis in our approach
is that F (., .) is Lipschitz in the second variable. Our goal is twofold. On one
hand, we show that Filippov’s ideas ([5]) can be suitably adapted in order
to obtain the existence of solutions for problem (1)-(1). We recall that for a
differential inclusion defined by a Lipschitzian set-valued map with nonconvex
values, Filippov’s theorem ([5]) consists in proving the existence of a solution
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2 A second-order differential inclusion 223

starting from a given almost solution. Moreover, the result provides an esti-
mate between the starting almost solution and the solution of the differential
inclusion.

On the other hand, following the approach in [8], we prove the arcwise
connectedness of the solution set of problem (1)-(2). The proof is based on a
result (see [7, 8]) concerning the arcwise connectedness of the fixed point set
of a class of set-valued contractions.

Motivation and examples for problem (1)-(2) may be found in [1] and the
references therein. We also note that such kind of results exist in the literature
(see e.g. [3, 4] etc.), but their presentation in the framework of problem (1)-(2)
is new.

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel, Section 3 is devoted to the existence theorem
and in Section 4 we obtain the arcwise connectedness of the solution set.

2. PRELIMINARIES

In what follows we denote by I the interval [0, 1], C(I,R) is the Ba-
nach space of all continuous functions from I to R with the norm ||x||C =
supt∈I |x(t)| and L1(I,R) is the Banach space of integrable functions u(.) :

I → R endowed with the norm ||u||1 =
∫ T
0 |u(t)|dt. The characteristic func-

tion of the set C it is denoted by χC(.) and if a = (a1, a2) ∈ R2 we put
||a|| = |a1|+ |a2|.

Let (X, d) be a metric space. We recall that the Pompeiu-Hausdorff distance
of the closed subsets A,B ⊂ X is defined by

D(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},
where d(x,B) = infy∈B d(x, y).

Consider a set-valued map T on X with nonempty values in X. T is said
to be a λ-contraction if there exists 0 < λ < 1 such that

dH(T (x), T (y)) ≤ λd(x, y) ∀x, y ∈ X.

A function x ∈ C2(I,R) is called a solution of problem (1)-(2) if there exists
a function f ∈ L1(I,R) with f(t) ∈ F (t, x(t)), a.e. (I) such that x′′(t) = f(t)
a.e. (I) and conditions (2) are satisfied.

In what follows we need the following technical lemma proved in [1].

Lemma 2.1. Assume that [1−
∑m

j=1 γj(ηj − ξj)][1−
∑m

j=1 ρj(ηj − ξj)] ̸= 0.

For a given integrable function f(.) : [0, T ] → R, the unique solution of the
differential equation x′′(t) = f(t) with boundary conditions (2) is given by

(3)
x(t) =

∫ t
0 (t− s)f(s)ds+ 1

a1a2
[12

∫ 1
0 (2a(t) + a1(t− s))(1− s)f(s)ds+

a1c1 + a2c2 +
∑m

j=1

∫ ηj
ξj

∫ s
0 [ρja(t) + γja1(s− u)]f(u)duds],

where a(t) = a2t − a3, a1 = 1 −
∑m

j=1 γj(ηj − ξj), a2 = 1 −
∑m

j=1 ρj(ηj − ξj)

and a3 =
1
2 − 1

2

∑m
j=1 γj((ηj)

2 − (ξj)
2).
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Remark 2.2. For c = (c1, c2) ∈ R2 we set Pc(t) =
c2
a1
t+ c1

c2
− c2a3

a1a2
− ac2

c1
and

we denote G(t, s) = G1(t, s)+G(t, s)+G(t, s), where G1(t, s) = (t−s)χ[0,t](s),

G2(t, s) = − 1
2a1a2

(2a(t)+a1(t− s))(1− s) and G3(t, s) =
1

a1a2

∑m
j=1[a(t)ρj((ηj

−s)χ[0,ηj ](s)−(ξj−s)χ[0,ξj ](s))+a1γj(
(ηj−s)2

2 χ[0,ηj ](s)−
(ξj−s)2

2 χ[0,ξj ](s))] then

the solution in (3) may be written as

x(t) = Pc(t) +

∫ 1

0
G(t, s)f(s)ds.

Moreover, |G1(t, s)| ≤ t ≤ 1 ∀t, s ∈ I, |G2(t, s)| ≤ 1
2|a1a2|(2(|a2| + |a3|) +

|a1|) =: M2 ∀t, s ∈ I, |G3(t, s)| ≤ 1
|a1a2|

∑m
j=1[ρj(|a2| + |a3|)(|ηj | + |ξj |) +

γj |a1|(
η2j
2 +

ξ2j
2 )] =:M3 ∀t, s ∈ I, and therefore,

|G(t, s)| ≤ 1 +M2 +M3 =:M ∀t, s ∈ I.

3. A FILIPPOV TYPE EXISTENCE RESULT

First we recall a selection result ([2]) which is a version of the celebrated
Kuratowski and Ryll-Nardzewski selection theorem ([6]).

Lemma 3.1. Consider X a separable Banach space, B is the closed unit ball
in X, H : I → P(X) is a set-valued map with nonempty closed values and
g : I → X,L : I → R+ are measurable functions. If

H(t) ∩ (g(t) + L(t)B) ̸= ∅ a.e.(I),

then the set-valued map t→ H(t)∩ (g(t)+L(t)B) has a measurable selection.

Hypothesis H1. i) F : I × R → P(R) has nonempty closed values and
for every x ∈ R F (., x) is measurable.

ii) There exists L ∈ L1(I,R) such that for almost all t ∈ I, F (t, .) is L(t)-
Lipschitz in the sense that

D(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀ x, y ∈ R.

Theorem 3.2. Assume that Hypothesis H1 is satisfied, assume thatM ||L||1
< 1 and let y ∈ C2(I,R) be such that there exists q(.) ∈ L1(I,R) with d(y′′(t),

F (t, y(t))) ≤ q(t) a.e. (I). Denote c̃1 =
∫ 1
0 y(s)ds −

∑m
j=1 γj

∫ ηj
ξj
y(s)ds, c̃2 =∫ 1

0 y
′(s)ds−

∑m
j=1 ρj

∫ ηj
ξj
y′(s)ds.

Then there exists x(.) : I → R a solution of problem (1)-(2) satisfying for
all t ∈ I

|x(t)− y(t)| ≤ 1

1−M ||L||1
sup
t∈I

|Pc(t)− Pc̃(t)|+
M

1−M ||L||1
||q||1.

Proof. The set-valued map t → F (t, y(t)) is measurable with closed values
and the hypothesis that d(y′′(t), F (t, y(t))) ≤ q(t) a.e. (I) is equivalent to

F (t, y(t)) ∩ {y′′(t) + q(t)[−1, 1]} ≠ ∅ a.e. (I).
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Therefore, we can apply Lemma 2 in order to deduce that there exists a
measurable selection f1(t) ∈ F (t, y(t)) a.e. (I) such that

(4) |f1(t)− y′′(t)| ≤ q(t) a.e. (I)

Define x1(t) = Pc(t) +
∫ 1
0 G(t, s)f1(s)ds and one has

|x1(t)− y(t)| = |Pc(t)− Pc̃(t) +
∫ 1
0 G(t, s)(f1(s)− y′′(s))ds| ≤

|Pc(t)− Pc̃(t)|+
∫ 1
0 |G(t, s)|q(s)ds ≤ |Pc(t)− Pc̃(t)|+M ||q||1.

Our statement is that it is enough to construct the sequences xn(.) ∈
C(I,R), fn(.) ∈ L1(I,R), n ≥ 1 with the properties

(5) xn(t) = Pc(t) +

∫ 1

0
G(t, s)fn(s)ds, t ∈ I,

(6) fn(t) ∈ F (t, xn−1(t)) a.e. (I), n ≥ 1,

(7) |fn+1(t)− fn(t)| ≤ L(t)|xn(t)− xn−1(t)| a.e. (I), n ≥ 1.

If this procedure is done, then from (4)-(7) we have for almost all t ∈ I

|xn+1(t)− xn(t)| ≤
∫ 1

0
|G(t, t1)|.|fn+1(t1)− fn(t1)|dt1

≤M

∫ 1

0
L(t1)|xn(t1)− xn−1(t1)|dt1 ≤M

∫ 1

0
L(t1)

∫ 1

0
|G(t1, t2)|.

|fn(t2)− fn−1(t2)|dt2 ≤M2

∫ 1

0
L(t1)

∫ 1

0
L(t2)|xn−1(t2)− xn−2(t2)|dt2dt1

≤Mn

∫ 1

0
L(t1)

∫ 1

0
L(t2)...

∫ 1

0
L(tn)|x1(tn)− y(tn)|dtn . . . dt1

≤ (M ||L||1)n(sup
t∈I

|Pc(t)− Pc̃(t)|+M ||q||1).

Thus, {xn(.)}n∈N is a Cauchy sequence in the Banach space C(I,R), hence
converging uniformly to some x(.) ∈ C(I,R). Therefore, by (7), for almost all
t ∈ I, the sequence {fn(t)}n∈N is Cauchy in R. Denote by f be the pointwise
limit of fn.

At the same time, we have

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
n−1∑
i=1

|xi+1(t)− xi(t)|

≤ sup
t∈I

|Pc(t)− Pc̃(t)|+M ||q||1

+
n−1∑
i=1

(sup
t∈I

|Pc(t)− Pc̃(t)|+M ||q||1)(M ||L||1)i

=
supt∈I |Pc(t)− Pc̃(t)|+M ||q||1

1−M ||L||1
.

(8)
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On the other hand, from (4), (7) and (8) we obtain for almost all t ∈ I

|fn(t)− y′′(t)| ≤
n−1∑
i=1

|fi+1(t)− fi(t)|+ |f1(t)− y′′(t)|

≤ L(t)
supt∈I |Pc(t)− Pc̃(t)|+M ||q||1

1−M ||L||1
+ q(t).

Hence the sequence fn is integrably bounded and therefore f ∈ L1(I,R).
With Lebesque’s dominated convergence theorem we may take the limit in

(5), (6) and we find that x(.) is a solution of (1). Finally, passing to the limit
in (8) we obtained the desired estimate on x(.).

In order to finish the proof it remains to construct the sequences xn(.), fn(.)
with the properties in (5)-(7). The construction will be done by reccurence.

Since the first step is already realized, assume that for some N ≥ 1 we
already constructed xn(.) ∈ C(I,R) and fn(.) ∈ L1(I,R), n = 1, 2, ...N satis-
fying (5),(7) for n = 1, 2, ...N and (6) for n = 1, 2, ...N−1. The set-valued map
t→ F (t, xN (t)) is measurable. Moreover, the map t→ L(t)|xN (t)− xN−1(t)|
is measurable. By the lipschitzianity of F (t, .) we have that for almost all t ∈ I

F (t, xN (t)) ∩ {fN (t) + L(t)|xN (t)− xN−1(t)|[−1, 1]} ≠ ∅.

From Lemma 2 there exists a measurable selection fN+1(.) of F (., xN (.))
such that

|fN+1(t)− fN (t)| ≤ L(t)|xN (t)− xN−1(t)| a.e. (I).

We define xN+1(.) as in (5) with n = N +1. Thus fN+1(.) satisfies (6) and
(7) and the proof is complete. □

If in Theorem 1 we take y(.) = 0 and q(.) = L(.) we obtain the following
consequence of Theorem 1.

Corollary 3.3. Assume that Hypothesis H1 is satisfied, M ||L||1 < 1 and
d(0, F (t, 0)) ≤ L(t) a.e. (I). Then there exists x(.) : I → R a solution of
problem (1)-(2) satisfying for all t ∈ I

(9) |x(t)| ≤ 1

1−M ||L||1
sup
t∈I

|Pc(t)|+
M

1−M ||L||1
||L||1.

Remark 3.4. A similar result to the one in Corollary 1 may be found in
[1], namely, Theorem 4; this result does not contain a priori bounds as in (9).

4. ARCWISE CONNECTEDNESS OF THE SOLUTION SET

In this section we are concerned with the more general problem

(10) x′′(t) ∈ F (t, x(t), H(t, x(t))) a.e. ([0, 1]),
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0
x(s)ds =

m∑
j=1

γj

∫ ηj

ξj

x(s)ds+ c1,

∫ 1

0
x′(s)ds =

m∑
j=1

ρj

∫ ηj

ξj

x′(s)ds+ c2,

(11)

where F : I ×R×R → P(R) and H : I ×R → P(R).
We assume that F and H are closed-valued Lipschitzian set-valued maps

with respect to the second variable and F is contractive in the third variable.
Obviously, the right-hand side of the differential inclusion in (10) is in general
neither convex nor closed. We prove the arcwise connectedness of the solution
set to (10)-(11). When F does not depend on the last variable (10) reduces to
(1) and the result remains valid for problem (1)-(2).

Let Z be a metric space with the distance dZ . In what follows, when the
product Z = Z1 ×Z2 of metric spaces Zi, i = 1, 2, is considered, it is assumed
that Z is equipped with the distance dZ((z1, z2), (z

′
1, z

′
2)) =

∑2
i=1 dZi(zi, z

′
i).

Let X be a nonempty set and let F : X → P(Z) be a set-valued map with
nonempty closed values. The range of F is the set F (X) = ∪x∈XF (x). The
multifunction F is called Hausdorff continuous if for any x0 ∈ X and every ϵ >
0 there exists δ > 0 such that x ∈ X, dX(x, x0) < δ implies DZ(F (x), F (x0)) <
ϵ.

Let (T,F , µ) be a finite, positive, nonatomic measure space and let (X,
|.|X) be a Banach space. We recall that a set A ∈ F is called atom of µ if
µ(A) ̸= 0 and for any B ∈ F , B ⊂ A one has µ(B) = 0 or µ(B) = µ(A). µ
is called nonatomic measure if F does not contains atoms of µ. For example,
Lebesgue’s measure on a given interval in Rn is a nonatomic measure.

We denote by L1(T,X) the Banach space of all (equivalence classes of)
Bochner integrable functions u : T → X endowed with the norm

|u|L1(T,X) =

∫
T
|u(t)|Xdµ

A nonempty set K ⊂ L1(T,X) is called decomposable if, for every u, v ∈ K
and every A ∈ F , one has

χA.u+ χT\A.v ∈ K

where χB, B ∈ F indicates the characteristic function of B.
Next we recall some preliminary results ([7]) that are the main tools in the

proof of our result. To simplify the notation we write E in place of L1(T,X).

Lemma 4.1. Assume that ϕ : S×E → P(E) and ψ : S×E×E → P(E) are
Hausdorff continuous set-valued maps with nonempty, closed, decomposable
values, satisfying the following conditions

a) There exists L ∈ [0, 1) such that, for every s ∈ S and every u, u′ ∈ E,

DE(ϕ(s, u), ϕ(s, u
′)) ≤ L|u− u′|E .
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b) There exists L ∈ [0, 1) such that L+L < 1 and for every s ∈ S and every
(u, v), (u′, v′) ∈ E × E,

DE(ψ(s, u, v), ψ(s, u
′, v′)) ≤ L(|u− u′|E + |v − v′|E).

Set Fix(Γ(s, .)) = {u ∈ E;u ∈ Γ(s, u)}, where Γ(s, u) = ψ(s, u, ϕ(s, u)),
(s, u) ∈ S × E. Then

1) For every s ∈ S the set Fix(Γ(s, .)) is nonempty and arcwise connected.
2) For any si ∈ S, and any ui ∈ Fix(Γ(s, .)), i = 1, . . . , p there exists a

continuous function γ : S → E such that γ(s) ∈ Fix(Γ(s, .)) for all s ∈ S and
γ(si) = ui, i = 1, . . . , p.

Lemma 4.2. Let U : T → P(X) and V : T ×X → P(X) be two set-valued
maps with nonempty closed values satisfying the following conditions

a) U is measurable and there exists r ∈ L1(T ) such that DX(U(t), {0}) ≤
r(t) for almost all t ∈ T .

b) The set-valued map t→ V (t, x) is measurable for every x ∈ X.
c) The set-valued map x→ V (t, x) is Hausdorff continuous for all t ∈ T .
Let v : T → X be a measurable selection from t → V (t, U(t)). Then there

exists a selection u ∈ L1(T,X) of U(.) such that v(t) ∈ V (t, u(t)), t ∈ T .

Hypothesis H2. Let F : I × R2 → P(R) and H : I × R → P(R) be
two set-valued maps with nonempty closed values, satisfying the following
assumptions

i) The set-valued maps t → F (t, u, v) and t → H(t, u) are measurable for
all u, v ∈ R.

ii) There exists l ∈ L1(I,R+) such that, for every u, u′ ∈ R,

D(H(t, u), H(t, u′)) ≤ l(t)|u− u′| a.e. (I).

iii) There exist m ∈ L1(I,R+) and θ ∈ [0, 1) such that, for every u, v, u′,
v′ ∈ R,

D(F (t, u, v), F (t, u′, v′)) ≤ m(t)|u− u′|+ θ|v − v′| a.e. (I).

iv) There exist f, g ∈ L1(I,R+) such that

d(0, F (t, 0, 0)) ≤ f(t), d(0, H(t, 0)) ≤ g(t) a.e. (I).

For c = (c1, c2) ∈ R2 we denote by S(c) the solution set of (10)-(11).
In what follows N(t) := max{l(t),m(t)}, t ∈ I.

Theorem 4.3. Assume that Hypothesis H2 is satisfied and 2M
∫ T
0 N(s)ds+

θ < 1. Then
1) For every c ∈ R2, the solution set S(c) of (10)-(11) is nonempty and

arcwise connected in the space C(I,R).
2) For any ci ∈ R2 and any ui ∈ S(ci), i = 1, . . . , p, there exists a contin-

uous function s : R2 → C(I,R) such that s(c) ∈ S(c) for any c ∈ R2 and
s(ci) = ui, i = 1, . . . , p.

3) The set S = ∪c∈R2S(c) is arcwise connected in C(I,R).
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Proof. 1) For c ∈ R2 and u ∈ L1(I,R), we define

uc(t) = Pc(t) +

∫ 1

0
G(t, s)u(s)ds, t ∈ I.

First, we prove that the set-valued maps ϕ : R2 × L1(I,R) → P(L1(I,R))
and ψ : R2 × L1(I,R)× L1(I,R) → P(L1(I,R)) given by

ϕ(c, u) = {v ∈ L1(I,R); v(t) ∈ H(t, uc(t)) a.e. (I)},
ψ(c, u, v) = {w ∈ L1(I,R); w(t) ∈ F (t, uc(t), v(t)) a.e. (I)},

c ∈ R2, u, v ∈ L1(I,R) verify the assumptions in Lemma 3.
Since uc is measurable and H satisfies Hypothesis H2 i) and ii), the set-

valued t→ H(t, uc(t)) is measurable and nonempty closed valued, thus it has
a measurable selection. Hence taking into account Hypothesis H2 iv), the set
ϕ(c, u) is nonempty. The fact that the set ϕ(c, u) is closed and decomposable
follows by simple computation. Similarly, we get that ψ(c, u, v) is a nonempty
closed decomposable set.

Pick (c, u), (c̃, u1) ∈ R2 × L1(I,R) and choose v ∈ ϕ(c, u). For each ε > 0
there exists v1 ∈ ϕ(c̃, u1) such that, for every t ∈ I, one has

|v(t)− v1(t)| ≤ D(H(t, uc(t)), H(t, uc̃(t))) + ε ≤ N(t)[|Pc(t)− Pc̃(t)|
+
∫ 1
0 |G(t, s)|.|u(s)− u1(s)|ds] + ε.

Thus there exists M0 ≥ 0 such that

||v − v1||1 ≤M0||c− c̃||.
∫ 1

0
N(t)dt+M

∫ 1

0
N(t)dt||u− u1||1 + ε

for any ε > 0.
This implies

dL1(I,R)(v, ϕ(c̃, u1)) ≤M0||c− c̃||.
∫ 1

0
N(t)dt+M

∫ 1

0
N(t)dt||u− u1||1

for all v ∈ ϕ(c, u). Consequently,

DL1(I,R)(ϕ(c, u), ϕ(c̃, u1)) ≤M0||c− c̃||.
∫ 1

0
N(t)dt+M

∫ 1

0
N(t)dt||u− u1||1

which shows that ϕ is Hausdorff continuous and satisfies the assumptions of
Lemma 3.

Pick (c, u, v), (c̃, u1, v1) ∈ R2×L1(I,R)×L1(I,R) and choose w ∈ ψ(c, u, v).
Then, as before, for each ε > 0 there exists w1 ∈ ψ(c̃, u1, v1) such that for every
t ∈ I

|w(t)− w1(t)| ≤ D(F (t, uc(t), v(t)), F (t, uc̃(t), v1(t))) + ε ≤ N(t)|uc(t)

− uc̃(t)|+ θ|v(t)− v1(t)|+ ε ≤ N(t)[|Pc(t)− Pc̃(t)|+
∫ 1

0
|G(t, s)|.|u(s)

− u1(s)|ds] + θ|v(t)− v1(t)|+ ε ≤ N(t)[M0||c− c̃||+M ||u− u1||1]
+ θ|v(t)− v1(t)|+ ε.
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Hence

||w − w1||1 ≤M0||c− c̃||.
∫ 1

0
N(t)dt+M

∫ 1

0
N(t)dt||u− u1||1

+ θ||v − v1||1 + ε ≤M0||c− c̃||.
∫ 1

0
N(t)dt+

(M

∫ 1

0
N(t)dt+ θ)dL1(I,R)×L1(I,R)((u, v), (u1, v1)) + ε.

As above, we deduce that

DL1(I,R)(ψ(c, u, v), ψ(c̃, u1, v1)) ≤M0||c− c̃||.
∫ 1

0
N(t)dt

+ (M

∫ 1

0
N(t)dt+ θ)dL1(I,R)×L1(I,R)((u, v), (u1, v1)),

namely, the set-valued map ψ is Hausdorff continuous and verifies the hypoth-
esis of Lemma 3.

Define Γ(c, u) = ψ(c, u, ϕ(c, u)), (c, u) ∈ R2 × L1(I,R). With Lemma 3,
the set Fix(Γ(c, .)) = {u ∈ L1(I,R);u ∈ Γ(c, u)} is nonempty and arcwise
connected in L1(I,R). Moreover, for fixed ci ∈ R2 and vi ∈ Fix(Γ(ci, .)), i =
1, . . . , p, there exists a continuous function γ : R2 → L1(I,R) such that

(12) γ(c) ∈ Fix(Γ(c, .)), ∀c ∈ R2,

(13) γ(ci) = vi, i = 1, . . . , p.

Next, we prove that

(14) Fix(Γ(c, .)) = {u ∈ L1(I,R); u(t) ∈ F (t, uc(t), H(t, uc(t))) a.e. (I)}.
Denote by A(c) the right-hand side of (14). If u ∈ Fix(Γ(c, .)) then there

is v ∈ ϕ(c, v) such that u ∈ ψ(c, u, v). Therefore, v(t) ∈ H(t, uc(t)) and

u(t) ∈ F (t, uc(t), v(t)) ⊂ F (t, uc(t), H(t, uc(t))) a.e. (I),

so that Fix(Γ(c, .)) ⊂ A(c).
Let now u ∈ A(c). By Lemma 4, there exists a selection v ∈ L1(I,R) of the

set-valued map t→ H(t, uc(t))) satisfying

u(t) ∈ F (t, uc(t), v(t)) a.e. (I).

Hence, v ∈ ϕ(c, v), u ∈ ψ(c, u, v) and thus u ∈ Γ(c, u), which completes the
proof of (14).

Finally, we note that the function T : L1(I,R) → C(I,R),

T (u)(t) :=

∫ 1

0
G(t, s)u(s)ds, t ∈ I

is continuous and one has

(15) S(c) = Pc(.) + T (Fix(Γ(c, .))), c ∈ R2.
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Since Fix(Γ(c, .)) is nonempty and arcwise connected in L1(I,R), the set
S(c) has the same properties in C(I,R).

2) Let ci ∈ R2 and let ui ∈ S(ci), i = 1, . . . , p be fixed. By (15) there exists
vi ∈ Fix(Γ(ci, .)) such that

ui = Pci(.) + T (vi), i = 1, . . . , p.

If γ : R2 → L1(I,R) is a continuous function satisfying (12) and (13) we
define, for every c ∈ R,

s(c) = Pc(.) + T (γ(c)).

Obviously, the function s : R2 → C(I,R) is continuous, s(c) ∈ S(c) for all
c ∈ R2, and

s(ci) = Pci(.) + T (γ(ci)) = Pci(.) + T (vi) = ui, i = 1, . . . , p.

3) Let u1, u2 ∈ S = ∪c∈R2S(c) and choose ĉ, c̃ ∈ R2, such that u1 ∈ S(ĉ) and
u2 ∈ S(c̃). From the conclusion of 2) we deduce the existence of a continuous
function s : R2 → C(I,R) satisfying s(ĉ) = u1, s(c̃) = u2 and s(c) ∈ S(c),
c ∈ R2. Let h : [0, 1] → R be a continuous mapping such that h(0) = ĉ and
h(1) = c̃. Then the function s ◦ h : [0, 1] → C(I,R) is continuous and verifies

s ◦ h(0) = u1, s ◦ h(1) = u2, s ◦ h(τ) ∈ S(h(τ)) ⊂ S, τ ∈ [0, 1].

□
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