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A NOTE ON THE DIOPHANTINE EQUATION
x2 − kxy + ky2 + ly = 0

SAKHA A. ALKABOUSS, BOUALEM BENSEBA, NACIRA BERBARA, SIMON
EARP-LYNCH, and FLORIAN LUCA

Abstract. We investigate the Diophantine equation x2−kxy+ky2+ ly = 0 for
integers k and l with k even. We give a characterization of the positive solutions
of this equation in terms of k and l. We also consider the same equation when
l = pn and k ≡ 2 (mod p) for p ≡ 3 (mod 4); l = 2r3s and k = 2k′ + 1 with
k′ ≡ 2 (mod 3) where n, s, t are non-negative integers.
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1. INTRODUCTION

There have been many works on the Diophantine equation from the title
which is related to the theory of Pell’s equation. In [2], Hu and Le studied the
equation

(1) x2 − kxy + y2 + lx = 0, k, l ∈ Z.

For l = 1, Marlewski and Zarzycki showed in [8] that this equation has infin-
itely many positive integer solutions if and only if k = 3. Further, they asked
whether there are other values of k for which the equation (1) has infinitely
many integer solutions. In [4], Keskin dealt with equation (1) for l = ±1. He
showed that for k > 3 and l = 1, the above equation has no positive integer
solutions, but for k > 3, l = −1, it has infinitely many positive integer solu-
tions. Subsequently, in [11], Yuan and Hu answered the question posed in [8]
by proving that when l = 1, equation (1) has infinitely many integer solutions
if and only if k ̸∈ {−1, 0, 1}. They also considered equation (1) for l = 2 and
l = 4 and determined which values of the positive integer k yield an equation
with infinitely many positive integer solutions. In [5] and [6], Keskin dealt
with the equation x2 − kxy + y2 ± 2n = 0 and determined the circumstances
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under which it has infinitely many positive integer solutions for 0 ≤ n ≤ 10.
In [3], Karaatli and Şiar considered the Diophantine equation

(2) x2 − kxy + ky2 + ly = 0

for l = 2κ, κ ∈ {0, 1, 2, 3}, and determined positive integer values of k for which
these equations have infinitely many positive integer solutions.

Recently, Mavecha [9] considered the equation (2) for l = 2n, where n is a
non-negative integer and k is odd, and proved that this equation has infinitely
many positive integer solutions x and y if and only if k = 5.

In this paper, we deal with equation (2) in integers k and l. We determine
conditions under which this equation has infinitely many positive integer solu-
tions. We do the same thing for this equation when l = 3n and k ≡ 2 (mod 3);
l = 2r3s and k = 2k′ + 1 with k′ ≡ 2 (mod 3) where n, s, t are non-negative
integers.

2. PRELIMINARIES

We give, without proof, two theorems on the theory of Pell’s equation.
These theorems can be found in many books on number theory, in particular
that of Nagell [10].

Theorem 2.1. Let D be a positive integer which is not a perfect square.
The equation

(3) X2 −DY 2 = 1

has infinitely many integer solutions x + y
√
D. All solutions with positive x

and y are obtained from the formula

xn + yn
√
D = (x1 + y1

√
D)n

where x1 + y1
√
D is the fundamental solution of equation (3) and n runs

through all natural numbers.

For integer N , consider the Diophantine equation below

(4) U2 −DV 2 = N.

Let u+ v
√
D and u′+ v′

√
D be solutions of this equation. These solutions are

said to be associated if there is solution x+ y
√
D of (3), so that

u′ + v′
√
D = (u+ v

√
D)(x+ y

√
D).

The associated solutions of (4) form a class of solutions. It is well-known
that there are finitely many classes of solutions to (4), each of which contains
infinitely many solutions.
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Theorem 2.2. If u + v
√
D is a fundamental solution for some class of

solutions to equation (4) and if x1 + y1
√
D is the fundamental solution of

equation (3), then we have the inequalities

0 ≤ v ≤ y1√
2(x1 + 1)

√
N and 0 < |u| ≤

√
1

2
(x1 + 1)N.

We will make use of the following theorem.

Theorem 2.3 ([7, Theorem 4.1]). Let k > 1 be an odd integer. If 0 < t <

2
√
k2 − 4 is an integer and the equation

x2 − y2(k2 − 4) = 4t

has solutions in coprime positive integers x, y, then t = 1 or t = k + 2.

3. NEW RESULTS

In this section, we prove the following theorem and some related results.

Theorem 3.1. Let k and l be integers with l2 < k. The equation

x2 − kxy + ky2 + ly = 0

has infinitely many positive integer solutions x and y if and only if

(l, k) ∈ {(1, 5), (2, 5), (2, 6)}.

Proof. Let us assume that, there exist some integers x and y which satisfy
equation (2). We assume first that k is even. By completing the square, we
get

(5)

(
x− k

2
y

)2

+

(
k − k2

4

)
y2 + ly = 0.

Set a :=

(
k − k2

4

)
. Multiplying equation (5) by 4a, we get the following

equation

a(2x− ky)2 + (2ay + l)2 = l2.

Set u := 2ay + l and v := 2x− ky. We obtain the equation

(6) u2 −
(
k2

4
− k

)
v2 = l2.

If k = 2 then in equation (6) we get u2 + v2 = l2 which has only finitely many
solutions in terms of l. If k = 4, then u2 = l2, so in this case the equation
also has only finitely many solutions. Therefore, we assume that k > 4. In

particular,

(
k2

4
− k

)
> 0. Set k =: 2k0, k1 := k0 − 1 and D := k21 − 1. Then

equation (6) becomes

U2 −DV 2 = l2.
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The fundamental solution of the Pell equation

u2 −Dv2 = 1

is (u1, v1) = (k1, 1). Let u+ v
√
D be the fundamental solution of the class of

solutions to equation (6). By Theorem 2, we find that 0 ≤ v ≤ l√
k

< 1, so

v = 0 and u = ℓ. Thus, all solutions of equation (6) are given by (U, V ) =
(±unl,±vnl) where (un, vn) is the nth solution of u2−Dv2 = 1. We have that
l and y are positive, that 2ay + l = U = ±unl for some n and a is negative.
If U = lun, we then get l(un − 1) = 2k0(2 − k0)y, which is impossible since
k0 > 2. If U = −unl, then we see that 2k0(k0 − 2) | l(un + 1). Note that un is
given by

un =
(k1 +

√
D)n + (k1 −

√
D)n

2
≡ kn1 (mod D).

If n is even, then un ≡ (k21)
n/2 ≡ 1 (mod k0), hence k0 | un − 1. Since

we know that 2k0 | l(un − 1), and gcd (un + 1, un − 1) | 2, we see that k0 | l,
implying k0 ≤ l <

√
2k0, which is a contradiction.

If n is odd, then un ≡ k1(k
2
1)

(n−1)/2 (mod D) = k1 (mod k0(k0−2)), there-
fore we have un + 1 ≡ k0 (mod k0(k0 − 2)). Hence, (un + 1)/k0 is an integer
congruent to 1 (mod k0−2), and so it is coprime to k0−2. Since by above we
have that 2k0(k0 − 2) | l(un + 1), we must have 2(k0 − 2) | l(un + 1)/k0. If k0
is even, then so is k0 − 2 and so 2(k0 − 2) divides l, giving 2(k0 − 2) <

√
2k0,

which has no solution for even k0 ≥ 4. If k0 is odd, then since u1 = k1 = k0−1
is even and n is odd, we have u1 | un, meaning that un is even and un + 1 is
odd and again we get 2(k0 − 2) | l. This implies that 2(k0 − 2) ≤

√
2k0, to

which the only solution is k0 = 3; i.e., k = 6. Noting that 2(k0−2) = 2 divides

l, we see that l is even and l <
√
k =

√
6 < 4, so l = 2. Since un ≡ 2 (mod 3)

and un is even, we see that yn is a positive integer and xn = (6yn + 2vn)/2 is
also a positive integer.

Suppose that k is odd. Performing the same algebraic manipulations as
above and multiplying by 4, equation (6) becomes

U2 − ((k − 2)2 − 4)V 2 = 4l2,

where U = k(4− k)y+2l and V = 2x− ky. From this we see k ≥ 5. Dividing
this equation by l1 := gcd (U, V ), we obtain

(7) U2
1 − ((k − 2)2 − 4)V 2

1 = 4l22,

where U1 = U/l1, V1 = V/l1 and l2 = l/l1. Since for k ≥ 7 we have

l2 < k < 2
√
(k − 2)2 − 4

and for k = 5, we have l2 < 5, giving l2 ≤ 4 < 2
√
(5− 2)2 − 4, Theorem 2.3

tells us that l22 = 1 or l22 = k − 2 + 2 = k. Since l22 < k, we must have l2 = 1.
Hence, (U, V ) = l(±un, vn), where this time (un, vn) is the nth positive integer
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solution of u2 − ((k− 2)2 − 4)2v2 = 4. If U = lun, then l(un − 2) = k(4− k)y,
which is impossible for k ≥ 5 odd. This means we must have U = −lun and
so k(k − 4) | l(un + 2). We now set k1 = k − 2 and observe that

un =
(k1 +√

k21 − 4

2

)n
+
(k1 −√

k21 − 4

2

)n
.

Hence, un ≡ 2(k1/2)
n (mod k21 − 4). Since k is odd, k21 − 4 is also odd, and so

2 is invertible modulo k21 − 4. If n is even, we then have

un ≡ 2(k21 · 4−1)n/2 ≡ 2((k21 − 4) · 4−1 + 1)n/2 ≡ 2 (mod k21 − 4),

which means that k21 − 4 = k(k − 4) | un − 2. Since k(k − 4) | l(un + 2),
gcd (un − 2, un + 2) | 4 and k(k− 4) is odd, we have k(k− 4) | l, so k(k− 4) ≤√
k, which cannot hold for k ≥ 5. Hence, n must be odd, which means that

un ≡ k1(k
2
1/4)

(n−1)/2 ≡ k − 2 (mod k21 − 4),

and so un + 2 ≡ k (mod k(k − 4)). From this, we have k | un + 2 and
(un + 2)/k ≡ 1 (mod k − 4), and so un + 2 is coprime to k − 4. Since k − 4 |
l(un + 2)/k, we must have k− 4 | l, meaning k− 4 ≤

√
k, and so k = 5. Since

v1 = 1 and n is odd, we have that vn is odd and y = l(un+2)/5. Since l <
√
k,

we get l = 1, 2, which are the cases covered in [3] and [9]. Hence, equation (2)
has infinitely many solutions if and only if (l, k) = (1, 5), (2, 5), (2, 6). □

We deduce the following corollary.

Corollary 3.2.
(i) If k is odd and s ≥ 0 is an integer, the equation x2−kxy+ky2+2sy = 0

has infinitely many positive integer solutions x and y if and only if k = 5. If
k is even and s ∈ {0, 1, 2}, then the equation x2 − kxy + ky2 + 2sy = 0
has infinitely many positive integer solutions x and y if and only if (k, s) ∈
{(6, 1), (6, 2), (8, 2)}.

(ii) The equation x2 − kxy + ky2 + ly = 0, where l = pn, p ≡ 3 (mod 4)
and k ≡ 2 (mod p) are integers and n is a non-negative integer, has infinitely
many positive integer solutions x and y if and only if k = 5.

(iii) The equation x2−kxy+ky2+ly = 0, where l = 2a3b, k = 2k′+1, k′ ≡ 2
(mod 3) are integers and a and b are non-negative integers, has infinitely many
positive integer solutions x and y if and only if k = 5.

Proof.
(i) Suppose first that k is odd. Then (k− 2)2− 4 ≡ 5 (mod 8), so reducing

equation (7) modulo 8 gives U2
1 + 3V 2

1 ≡ 4l22 (mod 8). Since l = 2s, the value
l2 must also be a power of 2 and so U1 and V1 must be odd and l22 = 1. It
follows that U = −lun, and so k(k− 4) | l if n is even or (k− 4) | l if n is odd.
Since k is odd and l is a power of 2, the only possibility is that n is odd and
k = 5.

Now suppose that k is even. The cases s = 0, 1 follow from Theorem 3.1 so

assume that s = 2, that is l = 4. If k ≡ 2 (mod 4), then k(k−4)
4 is a product of
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two consecutive odd integers so it is congruent to 3 (mod 4), and thus equation
(6) gives U2 + V 2 ≡ l2 (mod 4). From this we see that U and V cannot both

be odd and so l | U . If k ≡ 0 (mod 4), then k(k−4)
4 is a multiple of 8, so

equation (6) becomes U2 − 8bV 2 = 16 for some integer b which gives 4 | U .
Hence, l = 4 | U in either case. From the proof of Theorem 3.1 it follows that
either n is even, k = 2k0 and k0 divides l, or n is odd, k = 2k0 and 2(k0 − 2)
divides l. The first case gives k0 | 4, for which the possibilities are k0 = 1, 2, 4,
the first two of which are impossible since x2 − kxy + ky2 + 4y is positive for
x, y positive and k = 2, 4, which leaves k = 8 as the only possibility. The
second case gives k0 − 2 | 2, so k0 = 3, 4, which means that k = 6, 8.

(ii) If k is odd, then equation (7) modulo p becomes U2
1 + (2V1)

2 ≡ 4l22
(mod p), and since p ≡ 3 (mod 4), we can’t have that p divides the sum of
two coprime squares, so we must have l22 = 1. Hence either n is even and
k(k − 4) divides l or n is odd and k − 4 divides l. In the first instance, since
l = pn, we must have that k and k − 4 are powers of the same prime. This is
only possible for k = 5, but then p = 5 does not satisfy the congruence p ≡ 3
(mod 4). In the second instance, k = 5 satisfies the condition.

If k is even then similarly to before, we get that either n is even and k0 | l
or n is odd and 2(k0 − 2) | l. The second case is impossible since l is a power
of an odd prime. In the first case we get that k0 is a power of p, but since
k ≡ 2 (mod p) and k = 2k0, only k = 2 works. But in that case the expression
x2 − 2xy + 2y2 + ly is always positive and so there are no solutions.

(iii) Reducing equation (7) modulo 8 in a similar manner to in part (i) gives
that l22 is odd, so since l = 2a3b, we must have 2a | U . Reducing modulo 3,
we obtain l22 ≡ 1 (mod 3), and so 3b | U . Hence, l | U and we again obtain
that either n is even and k(k − 4) | l or n is odd and k − 4 | l. Since l = 2a3b

and k is odd, the case when n is even implies that k and k − 4 are powers of
3, which is impossible. If n is odd, then we must have k − 4 = 3r for some r.
If r > 0, then k ≡ 1 (mod 3), which contradicts k = 2k′ + 1 ≡ 2(2) + 1 ≡ 2
(mod 3). Therefore k = 5 is the only possibility. □
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