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POSITIVE SOLUTIONS FOR DISCRETE
ANISOTROPIC EQUATIONS

ABDESSLEM AYOUJIL, MOHAMMED BERRAJAA, and BRAHIM OUHAMOU

Abstract. Using variational method, we study the existence of positive solu-
tions for an anisotropic discrete Dirichlet problem with some functions α,β and
a nonlinear term f .
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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In the recent mathematical literature a great deal of work has been devoted
to the study of discrete boundary value problems. The studies of such kind of
problems can be placed at the interface of certain mathematical fields, such
as nonlinear differential equations and numerical analysis. More, they are
strongly motivated by their applicability to various fields of research, such as
computer science, mechanical engineering, control systems, artificial or biolog-
ical neural networks, economics and many others. For this reasons, in these
last years, there is a trend to study difference equations by using fixed point
theory, lower and upper solutions method, variational methods and critical
point theory, Morse theory and the mountain-pass theorem, and many inter-
esting results have been obtained, see for instance [1], [3], [6], [7], [10], [11],
[12], [13], [14], [16],[19].

Let T be a positive integer, denote with [1, T ] the discrete interval {1, 2, . . . ,
T}, λ be a positive parameter and consider the following problem

(1)
−∆

(
α(k)ϕp1(k−1)(∆u(k − 1)) + β(k)ϕp2(k−1)(∆u(k − 1))

)
= λf(k, u(k)),

k ∈ [1, T ],

u(0) = u(T + 1) = 0,

where ∆u(k) = u(k+1)−u(k) is the forward difference operator, ϕ will stand
for the homeomorphism defined by ϕs(x) = |x|s−2x, α, β : [1, T + 1]→ [0,∞);
p1, p2 : [0, T +1]→ [2,∞) and f : [1, T ]×R→ (0,∞) is a continuous function,
i.e. for any fixed k ∈ [1, T ] a function f(k, .) is continuous.
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To the best of our knowledge, discrete problems like (1) involving anisotropic
exponents have been discussed for the first time by Mihăilescu et al.[19] and
for the second time by Koné and Ouaro [16], where known tools from the
critical point theory are applied in order to get the existence of solutions.

In [4, 5], Ayoujil studied a parametric version of the problem (1) in the
case α ≡ β ≡ 1. Using variational arguments based on the direct method
in the calculus of variation methods, the mountain pass lemma or Ekeland’s
variational principle, the author proves the existence of at least one nontrivial
solution for the problems of type (1).

Galewski and Wieteska in [11] derived the intervals of the numerical param-
eter for which the parametric version of the problem (1) has at leas 1, exactly
1, or at least 2 positive solutions, and obtained the existence of infinitely many
solutions for a parametric version of the problem (1) in case β ≡ 0

In [15], the author studied a parametric version of the problem (1) and, in
the case α ≡ β ≡ 1, studied the existence and the multiplicity of the solutions.

From now onwards, for all k ∈ [0, T ] and i = 1, 2, we will use the following
notations:

pmin(k) := min
i=1,2

pi(k), pmax(k) := max
i=1,2

pi(k),

p−min = min
k∈[0,T ]

pmin(k), p+
max = max

k∈[0,T ]
pmax(k);

p−i = min
k∈[0,T ]

pi(k), p+
i = max

k∈[0,T ]
pi(k), for i = 1, 2;

α− = min
k∈[1,T+1]

α(k), α+ = max
k∈[1,T+1]

α(k);

β− = min
k∈[1,T+1]

β(k), β+ = max
k∈[1,T+1]

β(k);

m+ = max
k∈[1,T ]

m(k), m− = max
k∈[1,T ]

m(k);

ψ−1 = min
k∈[1,T ]

ψ1(k), ψ+
2 = min

k∈[1,T ]
ψ2(k);

ϕ−1 = min
k∈[1,T ]

ϕ1(k), ϕ+
2 = min

k∈[1,T ]
ϕ2(k).

About the nonlinear term, we assume the following condition:
(A) There exist a function m : [1, T ] → [2,∞) and functions ψ1,ψ2,φ1,φ2 :

[1, T ]→ [0,∞) such that

ψ1(k) + ϕ1(k)|u|m(k)−2u ≤ f(k, u) ≤ ψ2(k) + ϕ2(k)|u|m(k)−2u,

for all u ≥ 0 and all k ∈ [1, T ].
Now, we will show an example of a function which satisfies condition (A).

Example 1.1. Let f : [1, T ]× R→ (0,∞) be given by

f(k, u) = ln(k + 1) +
2 + arctg(u)

T 2k
|u|m(k)−2u
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for (k, u) ∈ [1, T ]× R.

In the present paper, our goal is to use direct variational method, mountain
pass geometry and Ekeland’s variational principle in order to establish the
existence of at least one positive solutions for the problem (1). Our results
will depend on the relation between p−min, p+

max and m−, m+.
Solutions to (1) will be investigated in a space

H = {u : [0, T + 1]→ R : u(0) = u(T + 1) = 0},

which is a T-dimensional Hilbert space, see [2], with the inner product

(u, v) =
T+1∑
k=1

∆u(k − 1)∆v(k − 1), for all u, v ∈ H.

The associated norm is defined by

||u|| = (
T+1∑
k=1

|∆u(k − 1)|2)
1
2 .

For u ∈ H let u+ = max{u, 0}, u− = max{−u, 0}. Note that u+ ≥ 0, u− ≥ 0,
u = u+ − u−, u+.u− = 0. Now, we can state our main results.

Theorem 1.2. Let m+ < p−min. Assume that the condition (A) holds. Then
for all λ > 0 the problem (1) has at least one positive solution.

Theorem 1.3. Assume that the condition (A) is satisfied and m− > p+
max

or m− < p−min holds. Then there exists a positive constant λ0 such that for
any λ ∈ (0, λ0) the problem (1) has at least one positive solution.

The structure of this paper is outlined as follows. In Section 2, some prelim-
inary results and the statements of the main results are presented. In Section
3, the proofs of the main results are given.

2. PRELIMINARIES

The energy functional corresponding to problem (1) is defined as Jλ : H →
R by the formula

Jλ(u) =

T+1∑
k=1

(
α(k)

p1(k − 1)
|∆u(k − 1|p1(k−1)

+
β(k)

p2(k − 1)
|∆u(k − 1|p2(k−1))− λ

T∑
k=1

F (k, u+(k))

with

(2) F (k, u) =

∫ u

0
f(k, s)ds for u ∈ R and k ∈ [1, T ]
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with any fixed λ > 0. The functional Jλ is continuously Gateaux differentiable
and its Gateaux derivative J

′
λ at u reads

(3)

〈J ′λ(u), v〉 :=
T+1∑
k=1

(α(k)|∆u(k − 1|p1(k−1)−2

+ β(k)|∆u(k − 1|p2(k−1)−2)− λ
T∑
k=1

f(k, u+(k))v(k)

for all v ∈ H.
Suppose that u is a critical point to Jλ, i.e. < J

′
λ(u), v >= 0 for all v ∈

H. Summing by parts and taking boundary values into account, see [12], we
observe that

T+1∑
k=1

∆(α(k)|∆u(k − 1)|p1(k−1)−2 + β(k)|∆u(k − 1|p2(k−1)−2)

− λ
T∑
k=1

f(k, u+(k))v(k) = 0.

Since v ∈ H is arbitrary we see that u satisfies (1).
Now, we list some inequalities that will be are used later. For (a) see [19],

for (b) see [12], for (c) see [20], for (d)− (h) see [11].

Lemma 2.1. (a) For every u ∈ H with ‖u‖ ≤ 1 we have has

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≥ T
p+−2

2 ‖u‖p+ .

(b) For every u ∈ H and for every m ≥ 2 we have

T+1∑
k=1

|∆u(k − 1)|m ≤ 2m
T+1∑
k=1

|u(k)|m.

(c) For every u ∈ H and for any p, q > 1 such that 1
p + q

q = 1 we have

||u||C = max
k∈[1,T ]

|u(k)| ≤ (T + 1)
1
p (
T+1∑
k=1

|∆u(k − 1)|p)
1
p .

(d) For every u ∈ H and for every m > 1 we have

T∑
k=1

|u(k)|m < T (T + 1)m−1
T+1∑
k=1

|∆u(k − 1)|m.

(e) For every u ∈ H and for every m ≥ 1 we have

T+1∑
k=1

|∆u(k − 1)|m ≤ (T + 1)||u||m.
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(f) For every u ∈ H and for every m ≥ 2 we have

T+1∑
k=1

|∆u(k − 1)|m ≥ T
2−p−

2 ||u||m.

(g) For every u ∈ H with ||u|| > 1

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≥ T
2−p−

2 ||u||p− − (T + 1).

(h) For every u ∈ H we have

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≤ (T + 1)||u||p+ + (T + 1).

(i) For every u ∈ H with ‖u‖ ≥ 1 one has

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≥ T
2−p−

2 ‖u‖p− − T.

(j) For any m ≥ 2 there exists a positive constant cm such that

T∑
k=1

|u(k)|m ≤ cm
T+1∑
k=1

|∆u(k − 1)|m, ∀u ∈ H.

Next, we provide some tools that are used throughout the paper.

Theorem 2.2 ([18]). Let E be a reflexive Banach space. If a functional J ∈
C1(E,R) is weakly lower semicontinous and coercive, i.e. lim||u||→∞ J(x) =
+∞, then there exists x̃ ∈ E such that infx∈E J(x) = J(x̃) and x̃ is also a

critical point of J , i.e. J
′
(x̃) = 0. Moreover, if J is strictly convex, then the

critical point is unique.

Theorem 2.3 ([8, Ekeland’s principle]). Let X be a complete metric space
and Φ : X → R a lower semicontinuous functon that is bounded below. Let
ε > 0 and u ∈ X be given such that Φ(u) ≤ infX Φ + ε

2 . Then given λ > 0
there exists uλ ∈ X such that

(i) Φ(uλ) ≤ Φ(u),
(ii) d(uλ, u) < λ,
(iii) Φ(uλ) < Φ(u) + ε

λd(u, uλ) for all u 6= uλ.

Definition 2.4. Let E be a real Banach space. We say that a functional
J : E → R satisfies the Palais-Smale condition if every sequence (un) such

that {J(un)} is bouned and J
′
(un)→ 0 has a convergent subsequence.

Finally, we will provide some results that are used in the proof of the Main
Theorem. The following lemma may be viewed as a kind of discrete maximum
principle. These results follow as in [9].
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Lemma 2.5. Let λ > 0. Assume that u ∈ H is a solution of the equation

(4)


−∆

(
α(k)ϕp1(k−1)(∆u(k − 1)) + β(k)ϕp2(k−1)(∆u(k − 1))

)
= λf(k, u+(k)), k ∈ [1, T ],

u(0) = u(T + 1) = 0.

Then u(k) > 0 for all k ∈ [1, T ] and, moreover, u is a positive solution of (1).

Proof. Note that ∆u(k−1)∆u−(k−1) ≤ 0 for every k ∈ [1, T +1]. Assume
that u ∈ H is a solution to (4). Taking v = u− in (3) we obtain

T+1∑
k=1

(α(k)|∆u(k − 1)|p1(k−1)−2 + β(k)|∆u(k − 1)|p2(k−1)−2)

×∆u(k − 1)∆−u(k − 1) = λf(k, u+(k))u−(k).

Since the term on the left is nonpositive and the one on the right is nonnegative,
this equation holds true if both terms are equal to zero, which leads to u−(k) =
0 for all k ∈ [1, T ]. Then u = u+. Moreover, u(k) 6= for all k ∈ [1, T ]. Indeed,
assume that there exists k ∈ [1, T ] such that u(k) = 0. Then, by (4) we have

α(k + 1)u(k + 1)p1(k+1)−1 + α(k)u(k − 1)p1(k−1)−1

+β(k + 1)u(k + 1)p2(k+1)−1 + β(k)u(k − 1)p2(k−1)−1 + λf(k, 0) = 0;

Since λ > 0 and f(k, 0) > 0, we have a contradiction. Thus u(k) 6= 0 for all
k ∈ [1, T ], and it follows u is a positive solution of (1) We will prove that Jλ
satisfies the Palais-Smale condition. �

3. PROOFS

Proof of Theorem 1.2. Fix λ > 0. Since H is finite dimensional and
since Jλ is Gateaux differentiable and continuous it suffices to show that it
is coercive. By the condition (A) and the inequalities (c), (d), (e) and (g) in
Lemma(2.1), for sufficiently large ||u||, we obtain

Jλ(un) ≥ α− + β−

p+
max

(
T

2−p−
min
2 ||u||p

−
min − (T + 1)

)
−

λ(
ϕ+

2

m−

T∑
k=1

|u+(k)|m(k) + ψ+
1

T∑
k=1

|u+(k)|) ≥

α− + β−

p+
max

||u||p
−
min − α− + β−

p+
max

(T + 1)

− λ(
ϕ+

2

m−
T (T + 1m

+
)||u+||m

+ − λTψ+
1 max
k∈[1,T ]

|u+(k)| ≥

α− + β−

p+
max

||u||p
−
min − α− + β−

p+
max

(T + 1)
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− λ(
ϕ+

2

m−
T (T + 1m

+
)||u+||m

+ − λT (T + 1)
1
2ψ+

1 ||u+||.

Since m+ < p−min, the functional Jλ is coercive on H. The assumptions of
Theorem(2.2) are satisfied and, by Lemma(2.5), the problem (1) has a positive
solution.

Proof of Theorem 1.3. In order to use a mountain pass lemma, we start
by proving that Jλ satisfied the Palais-Smale condition.

Let {un} ⊂ H be a sequence such that {Jλ(un)} is bounded and J
′
λ(un) −→

0. Since H is finitely dimensional, it is enough to show {un} is bounded. Let
{unk

} be such a subesquence of the sequence {un} whose all elements are
non-negative and {unl

} be subesquence of {un} whose all elements are non-
positive. Either of this sequences must have an infinite number of elements.
Assume that {un} is unbounded. Note that either {unk

} or {unl
} is then

unbounded, up to subsequence that we assume to be chosen. Suppose that
{unk

} is unbounded. Then by (2), by the condition (A), and from inequality
(b),(f) and (h) in Lemma(2.1) we have

Jλ(unk
) ≤ α+ + β+

p−min

(
(T + 1)||unk

||p
+
max + (T + 1)

)

−λ
(
ϕ−1
m+

2−m
−

(T + 1)
2−m−

2 ||unk
||m− + ψ−1

T∑
k=1

unk
(k)

)
Since m− > p+

max we have Jλ(unk
)→ −∞ as ||unk

|| → +∞ which is a contra-
diction with the fact that {Jλ(un)} is bounded since in this case also {Jλ(uk)}
is bounded. Now suppose {unl

} is bounded. Then from Lemma(2.1) (g) we
observe that

Jλ(unl
) ≥ α− + β−

p+
max

(
T

2−p−
min
2 ||unl

||p
−
min − (T + 1)

)
Since m− > p+

max we have Jλ(unk
) → −∞ as ||unk

|| → +∞ which is a
contradiction with the fact that {Jλ(un)} is bounded. It follows that {unk

} is
bounded. Hence the sequence {un} is bounded.

Now, we will verify the other asuumptions. Put

Ω :=

{
u ∈ H : ||u|| ≤ (T + 1)−

1
2

}
.

Then, by Lemma (2.1) (c), it follows that

|u(k)| ≤ max
s∈[1,T ]

|u(s)| ≤ (T + 1)
1
2 ||u|| ≤ 1, ∀u ∈ Ω, ∀k ∈ [1, T ].

Next we see that for all
T∑
k=1

F (k, u+(k)) ≤
T∑
k=1

ϕ2(k)

m(k)
+ ψ2(k), ∀u ∈ Ω.
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Therefore, in view Lemma (2.1) (a), we deduce

Jλ(u) ≥ α− + β−

p+
max

(
T

p+max−2
2 (T +1)

−p+max
2

)
−λ

T∑
k=1

(
ϕ2(k)

m(k)
+ψ2(k)

)
, ∀u ∈ ∂Ω.

Consequently, if we set

(5) λ0 =
(α− + β−)T

p+max−2
2 (T + 1)

−p+max
2

p+
max

∑T
k=1(ϕ2(k)

m(k) + ψ2(k))
,

then for λ ∈ (0, λ0), we have

(6) Jλ(u) > 0, ∀u ∈ ∂Ω.

Next, let uζ ∈ H be defined as follows:

{
uζ = ζ for k = 1, ..., T

uζ(0) = uζ(T + 1) = 0.
We will

verify that there exists ζ such that

(7) uζ0 ∈ H\Ω and Jλ(uζ0) < min
u∈∂Ω

Jλ(u).

Then for ζ > 1 we have

J(uζ) ≤ (α+ + β+)

(
ζpmax(0)

pmin(0)
+
ζpmax(T )

pmin(T )

)
− λ

T∑
k=1

(
ϕ1(k)ζm(k)

m(k)
+ ψ1(k)ζ

)

≤ 2(α+ + β+)
ζp

+
max

p−min

− λT
(
ϕ−1
m+

+ ψ−1 ζ
1−m−

)
ζm
−
.

Since m− > p+
max, limζ→∞ Jλ(uζ) = −∞. So, the assertion (7) holds true.

Applying a mountain pass lemma, thus, by Lemma 2.5, the problem (1) has
at least one positive solution.

Case: m− < p−min.

In order to use Ekland’s variational principle, let λ ∈ (0, λ0) be fixed, where
λ0 is given by (5). From (6) and using the Weierstrass theorem, we obtain
infx∈∂Ω Jλ(u) > 0.

Now take t ∈ [0, 1] and define u0 ∈ H a function such that{
u0(k0) = t for k ∈ [1, T ] \ {k0}
u0(k0) = 0

with k0 ∈ [1, T ] is given such that m(k0) = m−. Then,

Jλ(u0) ≤ α(k0) + β(k0)

pmin(k0 − 1)
tpmin(k0−1) +

α(k0 + 1) + β(k0 + 1)

pmin(k0)
tpmin(k0)
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−λ
(
ϕ1(k0)

m(k0)
tm(k0) + ψ1(k0)t

)
≤

2(α+ + β+)

p−min

tp
−
min − λ

(
ϕ+

1

m+
+ ψ−1

)
tm
−
.

Hence, for 0 < t <

(
λp−min(

ϕ+
1

m+ +ψ−1 )

2(α++β+)

) 1

p−
min
−m−

, we have Jλ(u0) < 0. As u0 ∈

IntΩ, we write infu∈IntΩ Jλ(u) < 0 < infu∈∂Ω Jλ(u). Let us choose ε > 0 such
that

(8) 0 < ε < inf
u∈∂Ω

Jλ(u)− inf
u∈IntΩ

Jλ(u).

Therefore, by applying the Ekeland’s variational principle (Theorem 2.3) to
the functional Jλ : Ω→ R, we find uε ∈ Ω such that

Jλ(uε) < inf
u∈Ω

Jλ(u) + ε and Jλ(uε) < Jλ(u) + ||u− uε||, for u 6= uε.

Hence, by (6), Jλ(uε) < infu∈Ω Jλ(u)+ ε ≤ infu∈IntΩ Jλ(u)+ ε < infu∈∂Ω Jλ(u)
and so, uε ∈ IntΩ.

Now, let us define Φλ :→ R by Φλ(u) = Jλ(u) + ε||u− uε|| for u 6= uε. It is
easy to see that uε is a minimum point of Φ, and thus

(9)
Φλ(u)(uε + hv)− Φλ(uε)

h
≥ 0,

for h > 0 small enough and any v ∈ Ω. Note that formula (9) reduces to

Jλ(u)(uε + hv)− Jλ(uε)

h
+ ε||v|| ≥ 0.

Letting h→ 0, we deduce that< J
′
λ(uε), v > +ε||v|| > 0, that is, ||J ′λ(uε)|| ≤

ε. Therefore, there exists a sequence {un} ⊂ IntΩ such that

Jλ(un)→ inf
u∈Ω

Jλ(u) and J
′
λ(un)→ 0.

Since thre sequence {un} is bounded in H, there exists v0 ∈ H such that, up
to a subsequence, {un} converges to v0 in H. Thus

Jλ(v0) = inf
u∈Ω

Jλ(u) and J
′
λ(v0) = 0.

The above relations imply that v0 is a solution of problem (1).
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