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A NEWLY DEFINED SUBCLASS OF BI-UNIVALENT
FUNCTIONS SATISFYING SUBORDINATE CONDITIONS

EMEKA PETER MAZI and TIMOTHY OPOOLA

Abstract. The purpose of our present paper is to introduce a newly defined
subclass of bi-univalent functions satisfying subordinate conditions defined in
the open unit disc. Coefficient estimates of |az| and |as| and the Fekete-Szegd
problem for functions of this newly-defined class are established. The results of
this work generalize some well known results.
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1. INTRODUCTION

Let A denote the class of functions of the form
(o]
1) f) =2+ Y gt
k=2

which are analytic in the open unit disk U= {z € C': |z] < 1}. Let S be the
subclass of A consisting of functions which are analytic and univalent in U.

Here, we recall some definitions and concepts of classes of analytic functions.
Let f € A. Then f is said to be in the class S(a, s, t) if it satisfies

(L2000,
f(s2) = f(t2)
for some 0 < a < 1, s,t € C with s # ¢, |t| <1 and for all z € U. The class
S(a, s,t) was introduced by Frasin [7]. The class S(«,1,t) was introduced
and studied by Owa et al.[14], and, by taking ¢t = —1, the class S(a,1,—1) =
Ss(a) was introduced by Sakaguchi [15] and a corresponding element is called
Sakaguchi function of order «, where as S5(0) = S is the class of starlike
functions with respect to the symmetrical points in U. Also, we note that

S(a,1,0) = S*(«) which is the familiar class of starlike functions of order
a(0<a<l).
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We recall the principle of subordination between analytic functions. Let
the functions f and ¢ be analytic in U. Given the functions f,g € A, f is
subordinate to g if there exists a Schwarz function w € A, where

A={w:w(0)=0, |w(z)] <1, z€ U},

such that
fZ)=gw(z) (2€0).
We denote this subordination by

f=gor f(z)<g(z2) (z€U).

In particular, if the function ¢ is univalent in U, the above subordination is
equivalent to

f(0) =g(0), f(U) cg(U).
The Keobe One-Quarter Theorem [6] states that the range of every function

in the class S contains the disk {w : |w| < 1/4}. Therefore, every f € S has
an inverse function f~! satisfying

U fE) =2 (2€D)
and
F(Hw)) = w, (lw] <ro(f);ro(f) = 1/4).

In fact, the inverse function f~! is given by
(2) g(w) = fHw) = w— agw? + (243 — a3)w> — (543 — Sasas + ag)w + - - - .

An analytic function f is said to be bi-univalent in U if both f and f~! are
univalent in U.The class of analytic and bi-univalent function in U is denoted
by .

For a brief history of the functions in the class 3, see [5, 10, 18], the pioneer-
ing work on this subject by Srivastava et al.[17], which has apparently revived
the study of bi-univalent functions in recent years. Recently, motivated sub-
stantially by the aforementioned pioneering work on this subject by Srivastava
et al.[17], many authors investigated the coefficient bounds for various sub-
classes of bi-univalent functions (see, for example, [2, 9, 11, 12, 13, 18, 19, 20]).
Not much is known about the bounds on the general coefficient |ay,| for n = 4.
In the literature, there are only a few works determining the general coeffi-
cient bounds for |a,| for the analytic bi-univalent functions (see, for example,
[1, 8, 16, 22]). The coefficient estimate problem for each

lan]  (neN\{1,2}, N={1,2,3,...})

is still an open problem.
In [4] the class Ly(5) of A-pseudo-starlike functions of order  was defined
as follows:
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DEFINITION 1.1. Let f € A, suppose 0 < 8 < 1 and A > 1 is real. Then
f(2) € Lx(B) of A-pseudo-starlike functions of order 5 in the unit disk if and
only if

A (N
3 Re———— > 3.
@) e

Babalola [4] proved that all pseudo-starlike functions are Bazilevic of type

1 —_
1-— 3 order S A and univalent in the open unit disk U.

Motivated by the work of Eker, Seker [16] and Zaprawa [21], the purpose of
our present paper is to introduce a subclass of bi-univalent functions satisfying
subordinate conditions. Coefficient estimates for |ag| and |ag| and the Fekete-
Szegd problem for functions of this newly-defined class are established.

DEFINITION 1.2. A function f € ¥ is said to be in the class ng’a((p, s,t)
if the following subordinations hold

G 0APEP (s DI
=) e — ey T () — F))

< ¢(2)

and

i@ (s Dfwg )P
=) ) = Fw) T (glow) — fwyy )

where g(w) = f~1(w), s,t € C with s # ¢, |\ > 0,[t| <1,0< a < 1.

REMARK 1.3. (i) For s =1 and t = —1 we get the class ASQ’a(go, 1,—1) of
functions f € ¥ satisfying the conditions

2e[/"()1" 2((=f" (=)
G - =) TG - ey =)

(1-a)

and A / na
/

@ | A @)
g(w) = f(—w)  (g(w) — f(-w))’
where the function g = f~! is defined by (2) and was studied by Eker and
Seker [16].

(ii) For s =1, ¢t =0, A = 1 we get the class ZS;:’OC(QO, 1,0) of functions f € ¥
satisfying the conditions

(1-a)

G R
W=alTy Ty e

and

wg'(w) | (wg'(w))’
11—« +a
S )
where the function g = f~! is defined by (2) and was studied by Ali et al.[3].

< p(w),
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(iii) For o = 0 we get the class ZS3((}£

the conditions
{ (s — t Nk H am
arg < 7

afg{i‘t )| <

where the function ¢ = f~! is deﬁned by (2) and was studied by Mazi and
Opoola [11].
(iv) For a = 0 we get the class ZS%((M) s,t) of functions f € ¥

satisfying the conditions
. @—wnuxaﬁ}
Re{ Sy ) >

S

where the function g = f~! is defined by (2) and was studied by Mazi and
Opoola [11].

(v) For o = 0 we get the class ZS((£
the conditions

2), s,t) of functions f € X satisfying

and

/\

and

2) 1, 0) of functions f € ¥ satisfying

zv%dﬁ}‘ o
arg s —————— o| < —
{ f(z) 2
and

/ A

e PP o

g(w 2

where the function g = f~1 is defined by (2) and was studied by Joshi et al.[9].

(vi) For a« = 0 we get the class LS%((%), 1,0) of functions f € X
satisfying the conditions
{z 2)A
ed 2 \Z
z

{5}
() o
(2)

and

where the function g = f~! is defined by (2
[9]-

(vii) For s = 1, t = 0 A = 1 we get the class 45’;’0(% 1,0) of functions
f € 3 satisfying the conditions

2f(2)
O

and was studied by Joshi et al.

¢(2)



150 E.P. Mazi and T.O. Opoola 5

and
wg' (w)
g(w)
where the function g = f~! is defined by (2) and was studied by Ali et al.[3].

< p(w),

2. COEFFICIENT ESTIMATES

Let ¢ be an analytic function with positive real part in U with ¢(0) = 1
and ¢'(0) > 0. Also, let ¢(U) be starlike with respect to 1 and symmetric
with respect to the axis. Thus, ¢ has the Taylor series expansion

(4) ¢(2) = 1+ Byz + Bez* + B32® +--- (By > 0).
For functions in the class ASQ’Q(Q@, s,t) the following estimates are obtained:

THEOREM 2.1. Let the function f given by (1) be in the class ZSQ’a(qﬁ, s,t).
Then

Biv By

5 |CL2|<
\/\ [(A—2X(s+t — A) — st) + a((s2 + st + 12)

—6A(s+t—A)]BI - (1+a)2(2A — s — t)%(B2 — By)|

B? N By
14+ a)22A—s—1t)2 (14 2a)(3\ — s — st — t?)

(6) las| <

Proof. Let f € 45’;’0‘(4,0, s,t). Then there are analytic functions u,v : U —

U with «(0) = v(0) = 0, satisfying
=A@ (=0l
S [P R (5 B V[ F ()

(s~ uld @] | (s— Olwd @) _
B O ey = fw) T (glw) — Flawyy PO

Define the functions p; and po by

1
p1(2)=lJ_FZE2=1+C1Z+62z2+---
and B
1+v(z 9
= =1+b b
p2(2) 1—0(2) + 012 + b22” +

or, equivalently,

(9) U(Z):ii—;i:;<(Clz+<62_cj>z2+.“>
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and

(10) u(z)—gzli—;((bler(bQ_l’j)z%r...)

It is clear that p; and pe are analytic in U and p;(0) = p2(0) = 1; since
u,v : U — U, the functions p; and py have positive real part in U and hence
|bi| <2 and |¢;| < 2. In view (5), (6), (9) and (10), we have

. . i t)Z[f/(Zi]A + a(s — Ol () = <p1(z) - 1) :

F57) — ft2) ) - fe)y P\
and

el @) | (s Dlwg @) (piw) -1
12) =) = Fw) T (gow) — Fw)y ‘“O(p2<w>+1>'

Using (9) and (10) together with (4), we obtain

(13) ¢ (Zig — i) =1+ %Blclz + (;B1 (cg - ) n 3201> 2

and

-1 1 1
(14) ¢ <p1(w) ) =1+ §B1b1w + (231 (bg — ) + Bgcl> w? + -

pr(w) +1
Since
L (s — t)z[f'(z)* a(S*t)[(Zf'( )]
N O — ) T (F2) - Flt2))
(1) f (14 )X — 5 — )] apz + (14 3a) (s + 2st + £2)
—2\(s+t—A+1)a32® + (1 +2a)(3\ — 52 — st — t})azz> + - - -
and
= Duld ) (s = Bl(wg )P
=) w) — Fw) T (glow) — Fltw)y
=1—-[(14+a)2\—s—t)]asw
(16) +((6A— s —t2) —2X(s +t — A+ 1)

—a6A(s+t—A—1)+(s—1) ))oz%w2
— (1+22)(3\ — 52 — 12 — st)azw? + -
it follows from (11)-(16) that

1
(17) (1+oz)(2)\—s—t)a2 = 53161,

(1+3a)((s* +2st +1%) —2A(s +t — A+ 1))a3
2

+ (14 20)(3\ — 5% — st — t?)az = fBl <02 - 02> + BQCl,

(18)
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1
(19) —(1+a)(2)\—s—t)a2 = iBlbh

and
(6A—s? —t2) —2A(s +t— A+ 1) —a(6A(s +t —X—1) + (s — t)?)a3
(20)

1 br\ | 1
—(1+22)(3\ — s* —t* — st)ag = §Bl (b2 - 21) + Zng%.

See that (17) and (19) together yield:
1
(21) ca=-by and 2(1+a)?2\-s-1)*= Z(b% +c2).

By adding (20) to (18), we obtain

[(2X — 4X(s +t — \) — 2st) + 200((s? + 4st +t2) — 6A(s + ¢ — \))]a2
(22) 1 1,
= §B1(b2 + 02) + Z(bl + Cl)(BQ - B]_)
By using (21) and (22), we find that

_ B%(bg + 62)

202\ —4N(s +t — X) — 25t + 2a((s? + 4st + t2)
—6A(s+t—N)]|B? —4(1 + a)2(2\ — s — t)2(By — By)
which, in view of the well-known inequalities |be| < 2 and |c3| < 2 for functions
with positive real part, gives us the desired estimate for |as|, as asserted in

().
In order to find the bound for |as|, by subtracting (20) from (18) and using
(21), we obtain

(23) a3

B3b? N Bi(ca — b2)
41+ a)?(2A —s—1)2 41 +2X)(B\ — 2 — st — t2)
and, applying |b;| < 2 and |c;| < 2 (i = 1,2) again, we get
B} n By
1+ a)22X—s—1)2  (142a)(3\—s2— st —12)’
This completes the proof. O

(24) ag =

las| <
(

For s = 1 and t = —1, the class ASQ’O‘ (¢, s,t) reduces to the class studied by
Eker and Seker [16]. For functions in this class we have the following corollary.

COROLLARY 2.2. If f(2) from (1) is in the class ASg’a(gb, 1,—1), then

las| < B1vBi
T V@A + X = 1) +2a(3A2 — 1)]B? — 4X2(1 + a)2(By — By)|

and
B? N By
A221+a)2 (1+2a)BXN—1)

laz| <
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For s = 1, t = 0 and A = 1, the class éSg’a(qﬁ,s,t) reduces to the class
studied by Ali et al.[3]. For functions in this class we have the following
corollary.

COROLLARY 2.3. If f(2) from (1) is in the class ZS;J’O‘((;S, 1,0), then

las| < BivVB1
" V(1 +a)|Bf = (1+0a)(B: — Bi)|

and
B2 n By
1+ )2 2(142a)

las| <
(

For s =1,¢t =0 and o = 0, the class Lsg’a(qb, s,t) reduces to the class of \-
pseudo bi-convex functions with respect to symmetrical points. For functions
in this class we have the following corollary.

COROLLARY 2.4 ([16]). If f(z) from (1) is in the class ZSQ’O(qb, 1,—1), then

las| < B1v By
T VI@N2+ XN —1)B? —4X2(By — By)|

and
B? By
+ —.

< 1
sl s et @D

For s =1,t =0 and o = 1, the class éSg’a(qS, s,t) reduces to the class of \-
pseudo bi-starlike functions with respect to symmetrical points. For functions
in this class we have the following corollary.

COROLLARY 2.5. If f(z) from (1) is in the class 4S§’1(¢, 1,—1), then

las] < BV By
~ VI(BX2+ X —3)B? — 16)A2(By — By)|

and
B? B;

g .
sl = 1632 T3 )

3. FEKETE-SZEGO PROBLEM

In this section, we provide the Fekete-Szego inequalities for functions of the
class ASQQ((;&, s,t). These inequalities are given in the following theorem.

THEOREM 3.1. Let the function f(z) given in (1) be in Lsg’a(gb, s,t). Then
lag — pa3| <
1
Bi|h h >

oL h()| < :
(1+20)(3r—s2—st—2) "= 0 2a)Bh — 52 — st — £2)
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_ BY(1—p)
[N —2X(s +t—A) — st) + a(s? + 4st + 12)
—6A(s+t—N)|Bf — (1+a)?2(2\— s —t)?(By — By)

Proof. From (21) we have ¢; = —by. Subtracting (18) and (20) and applying
(21), we have
Bi(ca — bo)

2 = a} .
(26) 9= 02t 101 20) (3N — 52 — st — 12)

From (23) we have
B} (b2 + ¢2)
202\ —4N(s +t — X) — 25t + 20((s? + 4st + t2)
—6A(s+t—N)]|B? —4(1 + a)2(2\ — s — t)2(By — By)
From (26) and (27) it follows that

B 1

2 1

— — h

48T R =y [( () + (1+204)(3)\—32—3t—t2)>c2

+ (h(“) - (1+2a)(3)\—152 —st—t2)) b2] ’

27) =

_ BY(1—p)
(A= 2X(s +t — ) — st) + (s + 4st + t?)
—6A(s+t—AN)]|B? — (1+ «)2(2\ — s — t)%(By — By)
Since all B; are real and By > 0, assertion (25) follows. This completes the
proof of the theorem.

0
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