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SENTINELS FOR AN EPIDEMIOLOGICAL SIR MODEL
WITH SPATIAL DIFFUSION

YASSAMINA HAMADI, DJILLALI BOUAGADA, and ABDENNEBI OMRANE

Abstract. The controllability of the classical epidemiological SIR model of
Kermack and McKendrick [8] with spatial diffusion is studied as an application
to the sentinel method of Lions [10], where we consider that the observation and
the control have their supports in two different sets. The perturbation affects
the ill population I, while the initial condition of the susceptible individuals
S is incomplete. We show that we have null-controllability, which proves the
existence of a sentinel for the SIR model.
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1. INTRODUCTION

Mathematical models are considered complementary tools for understand-
ing the functioning of concrete SIR models and for predicting their evolutions.
Among the first SIR models (since the beginning of the 19th century), we dis-
tinguish the model given by Kermack and Mckendrick [8]. In particular, they
observe that one characteristic in the study of epidemics is the diversity of
the magnitudes of the epidemics due to many factors (incomplete data). A
SIR epidemic model is based on three compartments (or populations): S ,
compartment of susceptible individuals (healthy individuals, who can have a
disease), I, compartment of infections, and R, compartment of the recovered
individuals. Several studies have been carried out around the SIR model (see,
for example, Brauer et al.[4], Capasso [5] or the classical book of Murray [14]
and the references therein).

Here we use the model from [8] for which we add the mortality term and
a spatial diffusion. Indeed, we suppose the most realistic situation of the
geographical spread of epidemics. So, we add the spatial spread as a diffusive
process, where the three compartments have the same diffusion coefficient
D as an example. Only few papers consider this situation (see for example
Abramson [1]). Moreover, we will consider the case of perturbations and
incomplete data. Indeed, some of the parameters of the SIR model are not
directly observable as the model is often disturbed by uncertainties. Prediction
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of the unknown data in the confrontation with real parameters is sometimes
necessary. Our goal is to show that using the method of sentinel, initiated by
Lions [9], [10], an interesting analysis can be done. This theoretical method
works and is insensitive to the missing data.

The sentinel method of Lions is a particular least squares-like method which
is adapted to the identification of parameters in ecosystems with incomplete
data. The sentinel concept relies on the following three objects: a state equa-
tion, an observation function and a control function to be determined. Finding
a sentinel to the SIR model is the same as to study the null-controllability.
In our knowledge, there are only some papers on controllability for the SIR
or SEIR problems (see for example the recent work of Löber [12] and the
references therein).

Many authors use the sentinel method of Lions. See for example Ainseba
et al.[2], Bodart, Demeestere [3] and the references therein. In these articles,
the control function and the observation have their supports in the same set
called the observatory. In this case there always exists a sentinel.

In Miloudi et al.[13] (see also [15] and [7]) the observation and the control
functions can have their supports in two different sets which makes the problem
of finding a sentinel non-trivial. In Miloudi et al.[13] this new method is used
to find an instantaneous sentinel (see also the references therein). In the
present article, we show how to apply this method to the epidemiological SIR
problem of missing data.

2. POSITION OF THE PROBLEM

2.1. THE SIR DIFFUSION MODEL

The individuals are in a bounded region Ω, viewed as an open subset of
Rd, d = 2 or 3, with regular boundary Γ. For T > 0 large enough, we denote
Q = (0, T )×Ω and Σ = (0, T )×Γ. Then the SIR model under consideration
is the following:

(1)



∂tS − δ∆S = µN − βSI − µS in Q,

∂tI − δ∆I = βSI − (γ + µ)I + λÎ in Q,
∂tR− δ∆R = γI − µR in Q,

S(0) = S0 + τ Ŝ0 in Ω,
I(0) = I0 in Ω,
R(0) = R0 in Ω,
S = 0 on Σ,
I = 0 on Σ,
R = 0 on Σ,

where ∂t := ∂
∂t denotes the time first derivative and ∆ :=

∑d
k=1

∂2

∂x2
k

the Lapla-

cian operator, where S represents the population of individuals susceptible to
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infection, I the individuals infected and R, the recovered individuals. We also
denote by N the total population density: N = S + I +R.

The term λÎ is the perturbation around the infected population term, τ Ŝ0

is the missing term of susceptible infected population. Here, λ and τ are real
parameters, they are not known. The rest are known parameters and have
the following meaning: β is the rate of infection, γ the healing rate, µ is the
mortality rate and δ is the diffusion parameter, representing the same spread
of epidemics in the three classes S, I and R, for simplicity.

If we sum the first three equations in the above SIR system, we obtain the
simplified system:

(2)


∂tN − δ∆N = λÎ in Q,

N (0) = N0 + τ Ŝ0 in Ω,
N = 0 on Σ,

where N0 = S0 + I0 +R0. Hence, system (2) is considered.

We suppose that
∥∥∥Î∥∥∥

L2(Q)
≤ 1 and

∥∥∥Ŝ0
∥∥∥
L2(Ω)

≤ 1. The initial data are S0,

I0 and R0 which are known functions and belong to L2(Ω). Then we know
that there exists a unique solution to the heat equation (2) such that:

(3) N ∈ C0
(
[0, T [;L2(Ω)

)
∩ C0

(
]0, T [;H2(Ω) ∩H1

0 (Ω)
)

(see Lions-Magenes [11] for details).

2.2. THE SENTINEL

We now consider the following question: Is it possible to obtain information

about the term of infected population λÎ, insensitive to the missing term of

susceptible population τ Ŝ0?
A partial answer can be obtained from the least squares method. The

method consists in taking the unknowns {λÎ, τ Ŝ0} = {v, w} as control vari-
ables, but there is no real possibility to find v or w independently. The notion
of sentinel provides the right response for this type of problem as we will
explain later in Section 3.

Naturally, in order to be able to obtain some information, one must observe
the state of the infected population. We then consider an observation system:
we associate a non-empty open subset O ⊂ Ω to it, called observatory, and an
observation of N on O, during a time T , and choose h0 such that

h0 ∈ L2(O × (0, T )).

Now, let ω be an open and non-empty subset of Ω (ω ⊂ Ω, ω 6= O) and
denote N(t, x;λ, τ) := N(λ, τ). Given a control function v ∈ L2(ω × (0, T )),
we finally define

(4) S(λ, τ) =

∫ T

0

∫
O
h0N(λ, τ) dxdt+

∫ T

0

∫
ω
vN(λ, τ) dxdt.



132 Y. Hamadi, D. Bouagada, and A. Omrane 4

The problem consists in finding v such that the sentinel-control pair (S, v)
satisfies the following conditions:

• the sentinel S is insensitive of first order with respect the to missing

terms τ Ŝ0, which means

(5)
∂S
∂τ

(0, 0) = 0 for all Ŝ0;

• the control function v has the property of minimal norm in
L2(ω × (0, T )) in the following sense:

(6) ‖v‖L2(ω×(0,T )) = min
u∈L2(ω×(0,T ))

‖u‖.

Remark 2.1. Lions’s sentinel S corresponds to the case ω = O, so that:

(7) S(λ, τ) =

∫ T

0

∫
O

(h0 − v)N(λ, τ) dxdt.

In this case there exists always a sentinel satisfying (5) defined by v = −h0.

Remark 2.2. Definition (4) gives a generalization of Lions’s sentinel to the
case when the observation and the control are having their supports in two
different sets (see [13] and [15] for more details). It is also a more realistic
hypothesis to have a smaller control set. In the following, we consider:

(8) v ⊂⊂ O.

The system under consideration being linear, the stateN has a differentiable
dependence on τ and λ. We denote:

Nτ =
∂N

∂τ
(0, 0) = lim

τ→0

(
N(0, τ)−N(0, 0)

τ

)
.

Then Nτ = Sτ + Iτ +Rτ is a solution of the system:

(9)


∂tNτ − δ∆Nτ = 0 in Q,

Nτ (0) = Ŝ0 in Ω,
Nτ = 0 on Σ.

Recall that the solution Nτ has the same regularity (3).

3. INFORMATION GIVEN BY THE SENTINEL

We suppose that the density of the population N is observed on O with the
observation:

Nobs = m0.

Moreover, we suppose that N has a differentiable dependence on τ and λ
of the first order and that we can formally write:

S(λ, τ) ' S(0, 0) + λ
∂S

∂λ
(0, 0),
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since, by definition, ∂S
∂τ (0, 0) = 0. Therefore, we can write:

λ
∂S

∂λ
(0, 0) =

∫
Q

(h0χO + vχω)m0 dxdt− S(0, 0).

If we denote by N0 the density of the population calculated at λ = τ = 0,
then

λ
∂S

∂λ
(0, 0) =

∫
Q

(h0χO + vχω) (m0 −N0) dxdt,

which contains the information on λÎ.
We point out that N0 is a solution to the heat problem:

(10)

 ∂tN0 − δ∆N0 = 0 in Q,
N0 (0) = I0 +R0 in Ω,
N0 = 0 on Σ,

where we suppose that I0, R0 ∈ L2(Ω) and that it is the unique solution of
the regularity in (3).

4. FROM SENTINELS TO NULL-CONTROLLABILITY

Now, we show that v is such that (5)–(6) are equivalent to a null-controllabi-
lity problem. We transform the insensitivity condition (5) as follows:

We introduce the adjoint state by defining the function q = q(t, x) as a
solution of the following adjoint problem:

(11)

 −∂tq − δ∆q = h0χO + vχω in Q,
q (T ) = 0 in Ω,
q = 0 on Σ.

Since h0 ∈ L2((0, T ) × O) and v ∈ L2((0, T ) × ω), using the method of
transposition [11], we can show that the adjoint problem (11) admits a unique
solution

q ∈ L2 (Q) ∩ C
(
[0, T ] ;H−1 (Ω)

)
.

In the following, and, for simplicity, we denote

L =
∂

∂t
− δ∆ and its adjoint L∗ = − ∂

∂t
− δ∆.

The proposition below shows that the existence of a sentinel is equivalent
to a controllability problem.

Proposition 4.1. Let q be the solution of the adjoint problem (11). Then
the problem of existence of a sentinel insensitive to the missing term is equiv-
alent to a null-controllability problem, that is to (11) together with:

(12) q(0) = 0 in Ω.
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Proof. We multiply the first equation of the system (11) by Nτ and integrate
by parts over Q to have:

−
∫
Q
Nτ L

∗q dxdt = −
∫

Ω
q(T )Nτ (T ) dx+

∫
Ω
q(0)Nτ (0) dx

−
∫
Q
q LNτ dxdt+

∫
Σ

∂q

∂ν
Nτdσ −

∫
Σ
q
∂Nτ

∂t
dσ.

Since Nτ and q are solutions of the systems (9) and (11), we obtain:∫ T

0

∫
Ω
Nτ (h0χO + vχω)dxdt =

∫
Ω
q(0)Ŝ0dx, ∀ Ŝ0 ∈ L2(Ω)

If the sentinel exists, then we have:∫
Ω
q(0)Ŝ0dx = 0, ∀ Ŝ0 ∈ L2(Ω).

That is: q(0) = 0 in Ω. The reciprocal is immediate. �

5. EXISTENCE OF A SENTINEL FOR THE SIR MODEL

We define

V =
{
ρ ∈ C∞(Q), ρ = 0 on Σ

}
.

We use the classical Carleman inequality to solve the null-controllability prob-
lem (11)–(12). Then we have the following proposition:

Proposition 5.1. Denote by Qω = (0, T ) × ω. Then there is a constant
C = C (Ω, ω) > 0 such that for any ρ ∈ V, we have:

(13)

∫
Q

1

θ2
|ρ|2 dxdt ≤ C

[∫
Q
|Lρ|2 dxdt+

∫
Qω

|ρ|2 dxdt

]
,

where θ ∈ C2(Q) is positive with 1
θ bounded.

Proof. For a proof of this classical result, known as the observability inequal-
ity for the heat equation, we refer to the work of Fursikov and Imanuvilov [6],
where they use the Carleman estimates. �

In the following, we show that there is a control v such that the conditions
(11)–(12) are satisfied. We define a bilinear form from V × V to R by

a (ρ, ρ) =

∫
Q
LρLρ′ dxdt+

∫
Qω

ρρ′ dxdt, ρ, ρ′ ∈ V.

It is easy to verify that a (., .) is bilinear, symmetric and positive. We verify
that it is a scalar product too. Indeed, if a (ρ, ρ) = 0, then∫

Q
|Lρ|2 dxdt = 0 and

∫
Qω

|ρ|2 dxdt = 0.
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Then, using the observability inequality of Fursikov and Imanuvilov (13),
we deduce: ∫

Q

1

θ2
|ρ|2 dxdt = 0 so that ρ = 0 inQ.

We denote by V the Hilbert space which is the completion of V with respect
to the norm:

‖ρ‖2V = a (ρ, ρ) = ‖Lρ‖2L2(Q) + ‖ρ‖2L2(Qω) .

Lemma 5.2. We suppose that h0 ∈ L2 (Q) and that θh0 ∈ L2 (Q). Then the
linear mapping L defined by

L : V → R

ρ 7−→ L (ρ) =

∫
Q
h0χO ρ dxdt

is continuous on V .

Proof. Using the hypothesis and the Cauchy-Schwarz inequality, we obtain

|L (ρ)| ≤
(∫

Q
|θh0χ O|2 dxdt

) 1
2
(∫

Q

1

θ2
|ρ|2 dxdt

) 1
2

≤ C
√
a(ρ, ρ) = C ‖ρ‖V .

Then L is continuous on V . �

Remark 5.3. The space V is a weighted Hilbert space. Indeed, if we define
Hθ(Q) as follows:

Hθ(Q) =

{
ρ ∈ L2(Q) such that

∫
Q

1

θ2
|ρ|2 dxdt <∞

}
,

equipped with the norm ‖ρ‖
θ

=

(∫
Q

1

θ2
|ρ|2 dxdt

) 1
2

, then, using the observ-

ability inequality (13), we obtain:

‖ρ‖
θ
≤ C ‖ρ‖V .

This shows that V is continuously imbedded into Hθ(Q).

As a consequence, we have the following:

Corollary 5.4. We assume that the hypothesis of Lemma 5.2 is satisfied.
Then there exists a unique function ρ ∈ V solution to the problem:

(14) a (ρ, ρ) =

∫ T

0

∫
Ω
h0χOρdxdt, ∀ρ ∈ V.

Proof. Since the application L is linear and continuous on V and since the
bilinear, symmetric form a (., .) is continuous and coercive on V × V , by the
application of Lions’s theorem [11], there exists a unique ρ ∈ V solution to
the variational problem (14). �
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Proposition 5.5. Let ρ ∈ V be the unique solution of (14). Then the
couple (v, q) given by

(15) v = −ρχω
and by

(16) q = Lρ

is the unique solution to the null-controllability problem (11)–(12).

Proof. Indeed, if ρ ∈ V is the solution of (14), then∫
Q
LρLρdxdt+

∫
Qω

ρρdxdt =

∫
Q
h0χOρdxdt, ∀ρ ∈ V.

We put v = −ρχω and q = Lρ. Then we have

(17)

∫
Q
q Lρdxdt =

∫
Q

(h0χO + vχω) ρ dxdt, ∀ρ ∈ V.

Now, we integrate formally by parts (for ρ ∈ V ⊂ V ) in the left hand side
of (17) to obtain:∫

Q
q Lρdxdt =

∫
Q
ρL∗q dxdt+

∫
Ω
ρ(T )q(T ) dx−

∫
Ω
ρ(0)q(0) dx

+

∫
Σ

∂ρ

∂ν
q dσ −

∫
Σ

∂q

∂ν
ρdσ

This, successively implies that q(0) = q(T ) = 0 and q|Σ = 0. We then obtain:

L∗q = h0χO + vχω on Q.

That is (11)–(12). �

6. CONCLUDING REMARKS

The infections diseases represents one of the richest areas in mathematical
biology. In this paper the controllability problem of the classical epidemiologi-
cal SIR model with spacial diffision and the existence of a sentinel SIR model
have been considered. Conditions for the existence of a problem solution are
then derived.
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[8] W.O. Kermack, and A.G. McKendrick, A contribution to the mathematical theory of
epidemics, Proceedings of the Royal Society of London. Series A, 115 (1927), 700–721.
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