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ON NONHOMOGENEOUS p-LAPLACIAN ELLIPTIC EQUATIONS
INVOLVING A CRITICAL SOBOLEV EXPONENT
AND MULTIPLE HARDY-TYPE TERMS

SOFIANE MESSIRDI and ATIKA MATALLAH

Abstract. In this paper, we consider a class of nonhomogeneous p-Laplacian el-
liptic equations with a critical Sobolev exponent and multiple Hardy type terms.
By the Ekeland variational principale on a Nehari manifold and the mountain
pass lemma, we prove the existence of multiple solutions, under sufficient condi-
tions on the data and the considered parameters.
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1. INTRODUCTION

In this paper we study the existence and the multiplicity of the positive
solutions of the quasilinear elliptic problem (P):

N Z P2, _
P D o =

*_9
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i .
e o

u=0 ond,
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where Q is an open smooth bounded domain of RN (N > 3),1 < p < N, k € N*,
a; € €, A\; and p; are nonnegative parameters and s; are positive constants
(1<i<k); fis a bounded Ineasurable function which is positive in each
neighborhood of a;. Here p* denotes the critical Sobolev exponent and
Ayu = div(|VulP~* Vu) is the p—Laplaman operator.

Problem (P) is related to the Hardy inequality [6]:

Juf” 1 o0
————dx < = | |VulPdz, for all u € C5°(Q),
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»
where a € Q and @ = (%) is the best Hardy constant. We shall work with
the space W = Wol’p (92), the completion of C§°(2) with respect to the norm

k 1/p
ull :== Vull — ulP | dz ,
Ju (/QQ P- L Z‘m) )

with 1 < p < N, gy > 0 for i = 1,...,k and Zleui < . In particu-
lar, Hardy’s inequality shows that this norm is equivalent to the usual norm
(Jo IV uf” da) /7.
Many research works related to problem (P) were considered by some au-
thors in recent years. We mention especially the following interesting works:
e Abdellaoui et al. [1] studied the following problem:
Ah ()

|zf”

—Apu = lulf w4 g (2) [ulP ' uin RY,
where h and g are two bounded measurable functions. They proved existence
and nonexistence results for two cases: they first considered the equation with
a concave singular term, then they studied the critical case related to the Hardy
inequality, providing a description of the behavior of the radial solutions of the
limiting problem and obtaining existence and multiplicity results for perturbed
problems through variational and topological arguments.

e Haidong Liu proved in [10] the existence of two solutions of the following
problem:

—Apu =V (@) [P 2w+ [ufP 2w+ Af (z,u)  in Q
u=0 on 0 €,
under some sufficient assumptions on V| f, A and p, where V(z) is a linear
weight and f is a positive function. The case p = 2 has been treated by Chen
[3], who proved the existence of at least m positive solutions.
e Hsu studied in [7] the existence and multiplicity of positive solutions of
the quasilinear elliptic problem:

—Apu — Z |p P u = [ulf 2u4 A|ul?u inQ
—ay

u=~0 on 0 .

Using Nehari’s manifold and the mountain pass lemma, he proved the existence
of two solutions for 1 < ¢ < p and some assumptions on the parameters pi;, A.

REMARK 1.1. The case p = 2 in problem (P) has been treated in [2].

To state our results, we need some notions. Let A;, B; (4; < B;) be the
zeroes of the function g(t) = (p — 1)t — (N —p)tP~L + p;, t >0 (for p = 2 we
have A; = /I — /Il — i, Bi = Vi + B — i), 1 <i < k. Let us denote

si=p(l+ B;) — N,
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A= min {\i (sj)},

7j=1,..,
where

P
M (s;):= inf L Ld =1
1(s5) ueéll/l\{ﬂ} {HUH /Q |z — a7 v ’

with 1 <p< N ands; >0,1<j<k.
Now, we consider the following hypotheses:
(H1) f is a positive function in each neighborhood of a; and satisfies

p -1

: [uf?
fudx < Cy, | ||ul]f — )\i/s,d:c ,
/| R

(p*=1)/(p*~p)

for all u € W such that [, lulP" dz =1 and C,, = (z;*%lp) (5*_,11

(H2) We consider € > 0 small enough, § = (N —p)/p and 1 <[ < k such
that [, fue; dz = O (e [In(g)|) with 6 < min (B, — 6,6 — A;) and uc; € W.

REMARK 1.2. If g € L9(Q) is a positive function with ¢ = p*/ (p* — 1) and

) p(p*—1)
(/Q quw) < Cp

N =SE N T e
A (p*—1)

then g satisfies (H1). Moreover, if f (z) = eelne’| g (x) for ¢ > 0 small enough,

then f € L9(Q) satisfies (H1) and (H2).

The main result of this paper is the following theorem.

THEOREM 1.3. Assume that p; > 0, A; > 0, s; > 0, Zle i < i, Zle i <
X* and f satisfies (H1) and (H2). Then the problem (P) has at least 2k solu-
tions in W.

This paper is organized as follows. In the forthcoming section we give some
notations and preliminary results. By Ekeland’s variational principle on a
Nehari manifold and the mountain pass lemma, we establish in section 3 the
proof of our theorem.

2. PRELIMINARY LEMMAS

We give here some results which play important roles in the sequel of this
work.

In what follows, we denote the norms of L4 (Q), (1 < ¢ < co) and W~!(the
dual of W) by [u], and ||ul| _, respectively. LP (Q,|r — a;) denotes the usual
weighted L () space with the weight |z — a;|°. C,C; denote various positive
constants whose exact values are not important. By ng we denote the open
ball in © with center at a; and radius r > 0.
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We define for p; € (0,72) and a; € 2 the constant:

P Jul”
Jo [ IVul _Mz’m dzx
S, (Q):= inf 5 - 1 <i<k.
' ueW\{0} |ulp-

From [8], S, is independent of any @ C RY in the sense that S, (Q) =
Sy, (RY) = S,,. In addition, the constant S, is achieved by a family of
functions

‘/6,2('%') = g(p_N)/pUi (x _8 az)

where the positive radial function U; is defined in [1] and € > 0. Moreover,
the function V¢ ; satisfies:

VeaP ' Vi

—ApVei — i = ’VE,Z”p*_Q Vei o in RN\ {a;}

|z — a;f
u—>0 as |z|] — oo.

Now, we shall give some estimates for the extremal functions V;; which we
shall use later. Let ; € C3°(€2) be such that
0 if |z —a;| >2r

, and |V, <C,
1 if |z —ai| <7 and Vi (@)

0<wpi(z) <1, @i(ﬂf)Z{

where 0 is a small positive number. Take u.; = ¢; (z) V. ;(z) foriin {1,... k}.
In what follows, we consider s;, A; > 0 and p; > 0 such that Zle Wi <
and 8\ < A%
By [9], we have the following estimates.

LEMMA 2.1. Assume that v € W is a positive solution of problem (P) and
1 <p< N. Then, for e >0 small enough and § = (N — p) /p, we have

p_ M P _ gN/p p(B;—9)
/Q <|VU5,'L| |JJ — (Li|p |Us,l ) dzx S}Li + O (E ) s
/Q ‘Ua77j|p* dr = SZ/P —0 (EP*(Bﬁts)) ,

[ el ueip” " de = 0 (26749,
Q

/ |t i |U|p*_1 dz =0 (E(P*—l)((i—Ai)> ’
0

@ (5(5*‘42')) , Ai+(p—1)B; > pd
/ |Vue ;[P [Voldz = O (e®=4) | (e)|), A;+(p—1)B;=pé
@ O (5(p_1)(Bi_6)) 5 Al + (p - 1) B’L < p(sa
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(Spl((SA)) Bi+(p—1)Ai>p($
/ Vol [Vueldz = O (P |In(e)),  Bi+(p—1) A =pd
@ O(z’f(B 6)), Bi—i-(p—l)Ai < pé,
g [P o] O (e00=49) (p—1)Bi + A; > pd
Ue 5 v )
|;_7a|pd$ =<0 (5(1071)(3176) Hn (5)|) , (p _ 1) Bz + Az — p5
C O (- DE0) (0= 1) B+ Ai < i,
and
Bl 0 (5(1)‘_1;(5_141')) ) Bi+(p—1)A; > pd
[ Lo me). B -1 Ai=p
O (B9, Bi+ (p—1) A; < po.
Let

I i Juf?
I(u) := Vul’ — T — ANi———— | dz,
(u) /Q [Vl Z“ Iz — a|” Z — P

i=1 =

S*:= inf {(I(u))l/p;||u|p*=1}.

uweW\ {0}

From the fact that Zf 1 Ai < A*, we have S* > 0.
The energy functional assomated to (P) is given by the following expression:

T (u) = 71 —/W d:z—/fudx

We see that J is well defined in W and belongs to C! (W, R).
It is known that a weak solution u € W of (P) corresponds to a critical
point of J which is given by:

Jul””?

pi | = fuf
(J'(u),p) = /<|VU‘P 2VuVep — Z i a|pu¢_zww)dx

7l

/ lulP” 2 upda —/ fodr =0, for all p € W.

More standard elliptic regularity argument imply that a weak solution u € W
is indeed in C%(Q\{a1,az,...,a;}) N CHQ\{a1,az,...,a;}) and we can say
that u satisfies (P) in the classical sense.

DEFINITION 2.2. A functional J € C(W,R) satisfies the Palais—Smale
condition at level ¢, ((PS), for short), if any sequence (u,) C W such that

J (up) — ¢ and J' (u,) — 0 in W' (dual of W),

contains a strongly convergent subsequence.
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As J is not bounded below on W, it is useful to consider it on the Nehari
manifold:

N ={ueW\{0}: (J'(v),u) =0}.
It is natural to split A into three subsets:
Nt={ue N : (J"(u),u) >0},
N ={ueN: (J"(u),u) <0},
={ueN:(J"(u),u) =0},

(J"(w),u)y = pl(u) /fu dx
= (p—1)I(u)—(p"—1)
= (p—p)I(u p—l/fudw

LEMMA 2.3. Let f satisfy condition (H1). Then, for any uw € W\ {0} there
exists a unique t+ =t* (u) > 0 such that ttu € N~ and

(p*=1)/(p*—p)
tt > 7(]) mEIC p) = tmax (u> = tmax
(p* = 1) ul,-
and J (ttu) = max J (tu) . Moreover, if [ fu dx > 0, then there exists a
Q

with

< max

unique t= = t~ (u) > 0 such that t7u € N1 t7 < tpax and J(t7u) =
inf J (tu).

0<t<tmax
Proof. The lemma can be proved in the same way as in [13]. O

LEMMA 2.4. Let f # 0 satisfy condition (H1). Then N°= @.
Proof. Suppose that N°# @. Then, for u € N°, we have:

(p—1)I(w) = (" =1)[ull.,
— up:—/fudx
|uly ;
p*

—(p—l)/ fu dz.
Q
From (#1) and (1) we obtain
0 < Cp(I(u))r=D/F=r) _ / fu dz
Q

(p*=1)/(p*—p)
o | (2= DT e
= (p" —p)lul, {((p*l)up*> 1] 0,

and thus

(1)

=" —p)

p*
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which yields to a contradiction. O
Define, for i € {1,...,k},
 Joile) [Vul? do

Vuly

Bi(u) : , where ¥;(x) = min{p, |z — a;|} and p > 0.

Take rg = § with p < %H;éin la; — a;| and let
i#]

Ni={ueN":B;(u) <ro} and N ={ueN™ :Bi(u) <ro}.
Denote

m; = inf J(u) and m; = inf J(u).
ueN;F ueN;

LEMMA 2.5 ([3]). Let p > 0 and o defined as above. If B;(u) < rg, then

/ |Vul? dz > 3/ |Vul? dz.
Q0 O\B?

3. MAIN RESULT
From now on, we consider j fixed in {1,...,k}.
3.1. EXISTENCE OF SOLUTIONS IN Nt

Using Ekeland’s variational principle we prove the existence of k solutions

in N'T.
ProOPOSITION 3.1. Let f be a bounded measurable function, locally positive
in each neighborhood of a;, satisfying (H1). Then m; = inf+J (v) is achieved
vE/\fi
at a point u; € /\/’;r which is a critical point and even a local minimum for J.

Proof. We start by showing that J is bounded below in A. Indeed, for
u € N T, we have

I(u) > [uf’- .

Since u € N, we get:

J(u) =

)p/(p—l

v

\Y,
N N NS

( —1 : HfHP/(P—l) )
(p* — p)l/(P—l) -
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In particular,

1-p\ (" = D”* Ve ~
+ p/(p _
mj > 0><pp*)(p* )1/(p 1)HfH , for j=1,...k,

where mgy = inj{/J (u).
ue
We claim that m;r < 0. In fact, we know that | pe Juej > 0 for all € smaller
J

than a certain 1 > 0.
Set 0 < te; <1tz jmax> 8lven by Lemma 2.3, such that ¢_ uc; € NT. Since

Bj (t;jum) tends to 0, as € goes to 0, it follows that there exists an g9 such

that 3; (t;jug,j) <rgfor 0 <e < ey <eq. Then t;ju&j € /\/']-Jr, whence

*

()’ ()
— E,j E’j —
T (1zjues) = uey) =~ ey = 1, [ fuey

p
et s
< (1 —pz)jl(jf* —p) (tg_,j>pl(u€7j) 0.

and thus —oo < mg < mj < 0.
Ekeland’s variational principle gives us a minimizing sequence (), C /\/jJr
with the following properties:
(1) J(ujn) <m +
(i5) J(w) > J(ujn) — 2 IV (w —ujp)l,, forallweNj.

By taking n large, we have for some ¢ € (0,e2) such that

S = (5= 5 )t = (1= ) [ fuindo

BB (Y

1
< mi+-<
J n

This implies

/ fuj, do > (1; (]i 1; ) (t J)pI(ue,j) > 0.

Consequently, u;, # 0 and we get

(p—l)(p*—p)<7 P pr—1
o) 1eg) < Jugall € = ||
p(p*_l) £,] £,] 7,Mn p(p*_p)

Thus there exists a subsequence labeled (u; ), such that w;, — u; weakly in
W, when n goes to +oo. Using an argument similar to one from [13], we can
conclude that ||J' (u;,)|_ tends to 0, as n goes to +oo.

*
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We deduce that
(2) (J' (uj),¢) =0, for all p € W,

i.e. uj is a weak solution of (P).
In particular, u; € N and we have

, —1)(p* — _
Jooa= i, [ snta > S2LE SR (i) 1) >0

Thus u; # 0. Also, from Lemma 2.4 and (1) it follows that necessarily u; €
NT.
By the fact that 5; (u;) = n@ooﬁj (ujn) < ro, then u; € /\/j+. Hence

o= (1) (1 1)

. . . _ +
< nhﬂmoo inf J (ujn) = mj.

+
m;

IN

Hence, similarly to [13], we conclude that u; is a local minimizer for J.

Then u;j, — u; strongly in W and J (u;) = mj = inf+I (v). By Lemma
VEN;

J
2.3, we deduce the existence of k solutions to problem (P). O

3.2. EXISTENCE OF SOLUTIONS IN N'™

In this subsection, we shall find the range of ¢ when J verifies condition
N N . [oN N/p N
LEMMA 3.2. Ifc< %Sm/p, where Sm/p = mln{Sm/p, e ,Suk/p, SSH,QP}’ then
J satisfies condition (PS),.
Proof. Let (uy) be a (PS), sequence for J with ¢ < %Sﬁ/p. We know that

(up,) is bounded in W and there exists a subsequence of (u,) (still denoted by
(un)) and u € W such that:

Uy — u weakly in W,

up — u weakly in L (Q, |z — a;|7?), for 1 <i<kandin L (Q),
u, — ustrongly in LP (Q, |z — a;|" ), for 1 <i <k,

un, — ustrongly in L7 (Q), for 1 < g < p*

/qun—>/9fu.

Using a standard argument, we deduce that u is a weak solution of prob-
lem (P). By the Concentration-Compactness Principle [11, 12], there exist
a subsequence, still denoted by (uy), an at most countable set &, (x;) -

and

JES
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Q\ U{a;} , and sets of nonnegative numbers iy, 7y, for j € 5 fia;, Ya;s Va,
FEI\{L,...k}
for 1 < i < k such that

k
Vunl” = dft > Y fin, 00, + Y fia,ba,

JES i=1

and
|un|l’ —~dp = Zuxjém] + Zyal a;
JES
where 6, is the Dirac mass at z.
By the Sobolev-Hardy inequalities, we get
(3) fia, = Hifa; = Su 8P, 1< i < k.

Cram 3.3. Either v, =0 or 7, > S N/p , for any j € Q and either 7,, =0
or Vg, > Sm/p, forall1 <i<k.

Proof of Claim 3.3. Let € > 0 be small enough such that a; ¢ chj, for all
1<j5<Ek, andB;ﬂB;j =g, fori#j andi,j €S

Let ¢£ be a smooth cut-off function centered at z; such that:

L if [z —xy) < §

; 4
) and |Vg!| < -
0, if [z —zj| >¢ £

0< ¢l <1, ¢>§={
Then

ti i | [V, 7 62 = liny /Q BLdfs > fin,,

e—=0n—o0 [q

|un|p

o —hm/gb]d’y—()

e—0n—o0 Jo v — Z|p

lim lim | |upl? ¢! = lim | ¢ldo =1,
e—=0n—o0 [ e—=0 Jo

lim lim [ |u, [P~ Vu, Vel = 0,

e—0n—o0 Q

and thus we have

0 =lim lim {(J' (up), un@?) > fiz, — .

e—0n—o0 J

By the Sobolev-Hardy inequalities, we get

Soﬁgi/p* < ﬂxj )
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hence we deduce that
De, = 0 or 7, > Sp /.
Consider the possibility of concentration at points a;, with 1 <17 < k. For
e > 0 small enough such that z; ¢ B, for all j € 3, and B3 N B = @, for
1#jand 1 <i,5 <k.
Let 9! be a smooth cut-off function centered at x; such that

; ; 1 if |z —x < & . 4
0<yl <1, ¢ = 2 and |VyL| < -,
S¥esl v {O if |z —a>¢ ‘ ¢g‘_€
then
. . p — >
;1_1(}1(1)”11_)120/(2 |V, [Pl = hm/ Yidfi > flq,,
. . p* i 1s Py~ o~
ggrgw}ggoé\un! Ve —gg%/g%dV—Vaw
lim lim M¢ = lim [ ¥'d~y =7,
e=0n—o0 Jo v —a;|P 7 e=0 Jg ¢ v
lim lim [unl” Ll =0, for j #i
e—=>0n—o0 Jo |;1; — aj|p € ’ ’
lim lim / [un|P ™2 Vu, Vi = 0,
e—=0n—o00 Jo
and thus we have
(4) 0= ;gr(l)nh—{go <J un un¢g> > Mal Ni;?ai - Dai-
From (4) and (5) we deduce that
Suii)gi/p* < ﬂai
and then either 7,, = 0 or v,, > Sfx./p, forall 1 <i<k. ]

Consequently, from the above argument and (3), we conclude that:

c = lim (J(un)—;<J’(un),un>>

n—oo

- p*
A

- % Zﬁwﬁz%
=1

JES
If Dy, = Uy, = 0, for all i € {1,...,k},j € 3, then ¢ = 0, which contradicts
the assumption that ¢ > 0. On the other hand, if there exists an i € {1,...,k}
such that 7, # 0 or there exists an j €  with 7, # 0, then we infer that

1
c> NSZ/Z) =c*.
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Therefore J satisfies the (PS), condition for ¢ < ¢*. O

LEMMA 3.4. Under conditions (H1), (H2) and 0 < s; < s}, there exists
g0 > 0 such that, for 0 < e < g9, we have
I (uj+t Lo,
il;%) (uj + tue ;) <m + N
Proof. Set g (t) := J(u; + tuzy). Then ¢g(0) = J(u;) < mj + %S’g/p and,
by the continuity of g, there exists ¢ty > 0 small enough such that g (¢) <

m] + Sm/p for all t € (0, tp). On the other hand, it is easy to see that

g(t) = —o0, as t — 400, that is, there exists t; > 0 large enough such that

g(t) < mj + %S,]x/p, for all ¢ > t1. So, we only need to show that sup
to<t<t1
N
g(t) <mb + Lsu/".

From the following elementary inequality satisfied, for all o, 8 € R,
ja+ 817 = laf? = |87 = qaB (Jal*= |817) < € (Blal"™" +alB")
we have

sup g(t) = sup J(u; +tusy)
to<t<t; to<t<t1

J(u;) + supJ (tue )
>0

IN

e / (1Vu3P! [Vuaes] + [V g [V o
g [P ] e
c iy Je a
+ 22/%/ ( el T e—ap
g [P fuae] e
+ C:Qj&/g( e+ —— | da
=1

|z — a;] |z — a;]

s 0 [ (gl + il gt )
Q
By (H2), we obtain

tp
sup J (tu&l) = Ssup ( usl / |u£ l|p dz — t/ fualdx>
to<t<t; t>0 \ P

tp/

< sup| — Ve |P — i——— | dz

< ap(2 [ (- Dl )
tP” N

— */ lue P d:):) —tl/fug,ld:c

< ng/uo(sp(f‘l 5>) 0(59\1n(5)|).
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From Lemma 2.1 and the fact that § < min (B; — §,d — A;), it follows that

1
sup g (t) < m;+ —SN/p,

to<i<ty NH
O
The mountain pass lemma gives us a value that is below the threshold
m;r + %Sﬁ/ 2, which we shall compare with the value m; = inf 1.

N

Take u. ; € W such that |Vue j|, = 1. Then, by Lemma 2.2J, we can find a
unique t;j (ue,j) > 0 such that t:,jua’j € N~. We may use an argument similar
to that in the previous subsection to find t;fju&j € /\/{, for € small enough
and [ <t;r,ju57j> = gl?)niaxl (tue ;) . The uniqueness of t;j implies that t;j (u)
is a continuous function of .

Set

Uy = {UEW: o] < ¢ <|Z”)}u{0}

UQZ{UGW:||UH>15+ <va\|>}

We remark that W\/\/J_ = U; UUy and ./\/jJr C Uy. In particular, u; € Uy.

We claim that, for ¢; carefully chosen and ¢ > 0 small enough, we have
uj = uj + tjue ; € Uy (using the same argument as in [13]).

Set

£;={h:[0,1] — W : h is continuous with h(0) = u;, h(1) = u;}.

and

LEMMA 3.5. For a suitable choice of t; > 0 and € > 0,
= inf I(h(t
< hlen,C]- tlél[g,)f] (h(£))

defines a critical value for I and ¢ > m; .
Proof. Clearly h : [0,1] — W given by h(t) = u; + ttju.; belongs to £;.

Thus I(h(t)) < m;“ + %Sg/p and hencecj < m;r + %S,]l\lf/p. Also, since the

range of any h € £; intersects /\/‘]7, we obtain ¢; > m; = inf,- I. The
J
lemma follows by applying the mountain pass lemma. O

PROPOSITION 3.6. Suppose that f verifies conditions (H1) and (H2). Then
I has a minimizer uj € /\/’j_ such that m; =1 (uj) . Moreover, u; is a solution
of problem (P).

Proof. There exists a minimizing sequence (v;,) C N~ such that I (v;,) —
m; and I' (vj,) — 0 in W.
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By Lemma 3.5, we have m; < mj’ + %S,])l[/p. Using Lemma 3.4, we deduce
that v, converges strongly to u; in W. Thus u; € /\/j_ and m; =1 (uj).
Then I’ (u;) = 0, and thus u; is a solution of the problem (P). We conclude

that (P) admits also k solutions in N’ ™. O

Proof of Theorem 1.3. By Proposition 3.1 and Proposition 3.6, we conclude

that problem(P) admits at least 2k distinct solutions in W. O
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