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NEW CHARACTERIZATION FOR AN INEQUALITY

SUKET KUMAR

Abstract. A new characterization for the Hardy inequality for the sum of two
Hardy-type integral operators is obtained between suitable weighted Lebesgue
spaces, for certain ranges of indices.
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1. INTRODUCTION

The Hardy inequality for the sum of the two Hardy-type integral operators
between suitable weighted Lebesgue spaces has been characterized in dimen-
sion one in [4] (see also [1, Remark 2.4]) and in dimension two in [2]. Motivated
by this, in Section 2, we give a new condition for the Lpv−Lqu boundedness for
the sum of the two Hardy-type operators, for the case 1 < p ≤ q <∞, which
is different from the corresponding results given in [1, 4].

Throughout the paper, u and v are weight functions, that is measurable,
positive almost everywhere, in an appropriate interval, functions, χ(n,n+1) is
the characteristic function defined on (n, n + 1), f is a measurable function,
1 < p ≤ q < ∞, p′ = p/(p − 1) is the conjugate to p and the same is true for
the other indices and Lpv is a weighted Lebesgue space.

2. MAIN RESULT

Consider the operator

(Sf)(x) = φ1(x)

∫ x

−∞
ψ1(t)f(t)dt+ φ2(x)

∫ ∞
x

ψ2(t)f(t)dt,

where φi, ψi. i = 1, 2, are non-zero measurable functions not necessarily
non-negative and f is a measurable function. The boundedness of S between
weighted Lebesgue spaces in dimension one has been considered in [4], for
the case 1 < p, q < ∞, and, in [1, Remark 2.4], for the case 1 < p < ∞,
0 < q < ∞. Corresponding results in dimension two have been given in [2].
The characterizations given in [1, 4] are of Muckenhoupt type.

Motivated by these results, in this section, we give a new condition for
the Lpv − Lqu boundedness of S, for the case 1 < p ≤ q < ∞, which is of
non-Muckenhoupt type and is different from those given in [1, 4].
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More precisely, we prove the following.

Theorem 2.1. The inequality

(1) ‖Sf‖q,u ≤ C‖f‖p,v
exists for a constant C > 0, f ∈ Lpv and 1 < p ≤ q < ∞ if and only if
max(A,B) <∞, where

A = sup
−∞<x<∞

(∫ x

−∞
(v(t)|ψ1(t)|−p)1−p

′
dt

)−1/p
×
(∫ x

−∞
u(t)|φ1(t)|q

(∫ t

−∞
(v(s)|ψ1(s)|−p)1−p

′
ds

)q
dt

)1/q

B = sup
−∞<x<∞

(∫ x

−∞
u(t)|ψ2(t)|qdt

)−1/q′

×

(∫ x

−∞
(v(t)|φ2(t)|−p)1−p

′
(∫ t

−∞
u(s)|ψ2(s)|qds

)p′
dt

)1/p′

and the norm in (1) is of the weighted Lebesgue space.

Proof. The sufficiency:
Define

(S1f)(x) = φ1(x)

∫ x

−∞
ψ1(t)f(t)dt, (S2f)(x) = φ2(x)

∫ ∞
x

ψ2(t)f(t)dt.

Then S = S1 + S2.
For S1 and S2 defined as above, the inequality

(2) ‖Sf‖q,u ≤ ‖S1f‖q,u + ‖S2f‖q,u
holds.

Now, consider the following.

Lemma 2.2. Suppose 1 < p ≤ q <∞. The inequalities (1) exist for S = S1
if and only if A <∞.

Lemma 2.2 has been proved for φ1 ≡ ψ1 ≡ 1 in [1, Theorem 1.1] (see also
[3]). Proof of Lemma 2.2 is similar to that proof. We omit the details. By
making duality arguments and applying suitable substitutions in Lemma 2.2,
the following can be proved:

Lemma 2.3. Suppose 1 < p ≤ q < ∞. The inequality in (1) exists, for
S = S2, if and only if B <∞.

The sufficiency now follows from Lemma 2.2, Lemma 2.3 and (2).
The necessity:
Consider first non-negative φi, ψi. Suppose that (1) holds and f ≥ 0. Since

‖Sif‖q,u ≤ ‖Sf‖q,u, i = 1, 2, (1) holds for both S = S1 and S = S2. This
implies A <∞, for i = 1 and B <∞, for i = 2.
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Consider now some general φi, ψi. Suppose (1) holds. For a given ε > 0,
define

vε(x) = max{v(x), |φ1(x)|pε}.
Since ‖f‖p,v ≤ ‖f‖p,vε , (1) is equivalent to

(3) ‖Sf‖q,u ≤ C‖f‖p,vε .
For −∞ < α < β < γ <∞, define

(4) f(x) =

(
vε(x)

ψ1(x)

)1−p′

sgn(ψ1(x))χ(α,β)(x).

Clearly, the RHS of (3), for f defined as in (4), is dominated by

C

(∫ γ

α
|ψ1(x)|p′v1−p′ε (x)dx

)1/p

,

which is less than C(ε1−p
′
(γ − α))1/p < ∞ , whereas the LHS of (1) can be

estimated as

‖Sf‖q,u ≥
(∫ γ

β
u(x)|φ1(x)|q

(∫ x

−∞
|ψ1(t)|p

′
v1−p

′
ε (t)dt

)q
dx

)1/q

.

Consequently,(∫ γ

α
|ψ1(x)|p′v1−p′ε (x)dx

)−1/p
(∫ γ

β
u(x)|φ1(x)|q

(∫ x

−∞
|ψ1(t)|p

′
v1−p

′
ε (t)dt

)q
dx

)1/q

≤ C <∞

holds for C independent of α, β, ε and vε. For α→ −∞, β → −∞ and ε→ 0
(via a subsequence), vε → v and, taking the supremum over γ satisfying
−∞ < γ <∞, we have A <∞.

By using a dual argument, (1) is equivalent to

‖S∗f‖p′,v1−p′ ≤ C‖f‖q′,u1−q′ ,

where S∗ is the adjoint operator of S defined as

(S∗f)(x) = ψ1(x)

∫ ∞
x

φ1(t)f(t)dt+ ψ2(x)

∫ x

−∞
φ2(t)f(t)dt.

For a given ε > 0, define

uε(x) = min{u(x), |φ2(x)|−qε}.
Since ‖f‖q′,u1−q′ ≤ ‖f‖q′,u1−q′

ε
, (3) is equivalent to

(5) ‖S∗f‖q,u ≤ C‖f‖q′,u1−q′
ε

.

For −∞ < α < β < γ <∞, define

(6) g(x) = uε(x)|φ2(x)|q−1sgn(φ2(x))χ(α,β)(x).
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Necessity of B < ∞, now, can be established by making parallel arguments
and using (5) for f = g. �

Remark 2.4. The corresponding result of Theorem 2.1 for the dual operator
of S can be easily obtained by using a dual argument. We omit the details.
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