NEW CHARACTERIZATION FOR AN INEQUALITY

SUKET KUMAR

Abstract

A new characterization for the Hardy inequality for the sum of two Hardy-type integral operators is obtained between suitable weighted Lebesgue spaces, for certain ranges of indices.

MSC 2010. 26D10, 26D15.
Key words. Hardy's inequality, weight function.

1. INTRODUCTION

The Hardy inequality for the sum of the two Hardy-type integral operators between suitable weighted Lebesgue spaces has been characterized in dimension one in [4] (see also [1, Remark 2.4]) and in dimension two in [2]. Motivated by this, in Section 2, we give a new condition for the $L_{v}^{p}-L_{u}^{q}$ boundedness for the sum of the two Hardy-type operators, for the case $1<p \leq q<\infty$, which is different from the corresponding results given in $[1,4]$.

Throughout the paper, u and v are weight functions, that is measurable, positive almost everywhere, in an appropriate interval, functions, $\chi_{(n, n+1)}$ is the characteristic function defined on $(n, n+1), f$ is a measurable function, $1<p \leq q<\infty, p^{\prime}=p /(p-1)$ is the conjugate to p and the same is true for the other indices and L_{v}^{p} is a weighted Lebesgue space.

2. MAIN RESULT

Consider the operator

$$
(S f)(x)=\phi_{1}(x) \int_{-\infty}^{x} \psi_{1}(t) f(t) \mathrm{d} t+\phi_{2}(x) \int_{x}^{\infty} \psi_{2}(t) f(t) \mathrm{d} t,
$$

where $\phi_{i}, \psi_{i} . i=1,2$, are non-zero measurable functions not necessarily non-negative and f is a measurable function. The boundedness of S between weighted Lebesgue spaces in dimension one has been considered in [4], for the case $1<p, q<\infty$, and, in [1, Remark 2.4], for the case $1<p<\infty$, $0<q<\infty$. Corresponding results in dimension two have been given in [2]. The characterizations given in $[1,4]$ are of Muckenhoupt type.

Motivated by these results, in this section, we give a new condition for the $L_{v}^{p}-L_{u}^{q}$ boundedness of S, for the case $1<p \leq q<\infty$, which is of non-Muckenhoupt type and is different from those given in $[1,4]$.

More precisely, we prove the following.
Theorem 2.1. The inequality

$$
\begin{equation*}
\|S f\|_{q, u} \leq C\|f\|_{p, v} \tag{1}
\end{equation*}
$$

exists for a constant $C>0, f \in L_{v}^{p}$ and $1<p \leq q<\infty$ if and only if $\max (A, B)<\infty$, where

$$
\begin{aligned}
A= & \sup _{-\infty<x<\infty}\left(\int_{-\infty}^{x}\left(v(t)\left|\psi_{1}(t)\right|^{-p}\right)^{1-p^{\prime}} \mathrm{d} t\right)^{-1 / p} \\
& \times\left(\int_{-\infty}^{x} u(t)\left|\phi_{1}(t)\right|^{q}\left(\int_{-\infty}^{t}\left(v(s)\left|\psi_{1}(s)\right|^{-p}\right)^{1-p^{\prime}} \mathrm{d} s\right)^{q} \mathrm{~d} t\right)^{1 / q} \\
B= & \sup _{-\infty<x<\infty}\left(\int_{-\infty}^{x} u(t)\left|\psi_{2}(t)\right|^{q} \mathrm{~d} t\right)^{-1 / q^{\prime}} \\
& \times\left(\int_{-\infty}^{x}\left(v(t)\left|\phi_{2}(t)\right|^{-p}\right)^{1-p^{\prime}}\left(\int_{-\infty}^{t} u(s)\left|\psi_{2}(s)\right|^{q} \mathrm{~d} s\right)^{p^{\prime}} \mathrm{d} t\right)^{1 / p^{\prime}}
\end{aligned}
$$

and the norm in (1) is of the weighted Lebesgue space.
Proof. The sufficiency:
Define

$$
\left(S_{1} f\right)(x)=\phi_{1}(x) \int_{-\infty}^{x} \psi_{1}(t) f(t) \mathrm{d} t,\left(S_{2} f\right)(x)=\phi_{2}(x) \int_{x}^{\infty} \psi_{2}(t) f(t) \mathrm{d} t
$$

Then $S=S_{1}+S_{2}$.
For S_{1} and S_{2} defined as above, the inequality

$$
\begin{equation*}
\|S f\|_{q, u} \leq\left\|S_{1} f\right\|_{q, u}+\left\|S_{2} f\right\|_{q, u} \tag{2}
\end{equation*}
$$

holds.
Now, consider the following.
Lemma 2.2. Suppose $1<p \leq q<\infty$. The inequalities (1) exist for $S=S_{1}$ if and only if $A<\infty$.

Lemma 2.2 has been proved for $\phi_{1} \equiv \psi_{1} \equiv 1$ in [1, Theorem 1.1] (see also [3]). Proof of Lemma 2.2 is similar to that proof. We omit the details. By making duality arguments and applying suitable substitutions in Lemma 2.2, the following can be proved:

Lemma 2.3. Suppose $1<p \leq q<\infty$. The inequality in (1) exists, for $S=S_{2}$, if and only if $B<\infty$.

The sufficiency now follows from Lemma 2.2, Lemma 2.3 and (2).
The necessity:
Consider first non-negative ϕ_{i}, ψ_{i}. Suppose that (1) holds and $f \geq 0$. Since $\left\|S_{i} f\right\|_{q, u} \leq\|S f\|_{q, u}, i=1,2$, (1) holds for both $S=S_{1}$ and $S=S_{2}$. This implies $A<\infty$, for $i=1$ and $B<\infty$, for $i=2$.

Consider now some general ϕ_{i}, ψ_{i}. Suppose (1) holds. For a given $\varepsilon>0$, define

$$
v_{\varepsilon}(x)=\max \left\{v(x),\left|\phi_{1}(x)\right|^{p} \varepsilon\right\} .
$$

Since $\|f\|_{p, v} \leq\|f\|_{p, v_{\varepsilon}}$, (1) is equivalent to

$$
\begin{equation*}
\|S f\|_{q, u} \leq C\|f\|_{p, v_{\varepsilon}} . \tag{3}
\end{equation*}
$$

For $-\infty<\alpha<\beta<\gamma<\infty$, define

$$
\begin{equation*}
f(x)=\left(\frac{v_{\varepsilon}(x)}{\psi_{1}(x)}\right)^{1-p^{\prime}} \operatorname{sgn}\left(\psi_{1}(x)\right) \chi_{(\alpha, \beta)}(x) . \tag{4}
\end{equation*}
$$

Clearly, the RHS of (3), for f defined as in (4), is dominated by

$$
C\left(\int_{\alpha}^{\gamma}\left|\psi_{1}(x)\right|^{p^{\prime}} v_{\varepsilon}^{1-p^{\prime}}(x) \mathrm{d} x\right)^{1 / p}
$$

which is less than $C\left(\varepsilon^{1-p^{\prime}}(\gamma-\alpha)\right)^{1 / p}<\infty$, whereas the LHS of (1) can be estimated as

$$
\|S f\|_{q, u} \geq\left(\int_{\beta}^{\gamma} u(x)\left|\phi_{1}(x)\right|^{q}\left(\int_{-\infty}^{x}\left|\psi_{1}(t)\right|^{p^{\prime}} v_{\varepsilon}^{1-p^{\prime}}(t) \mathrm{d} t\right)^{q} \mathrm{~d} x\right)^{1 / q}
$$

Consequently,

$$
\begin{aligned}
& \left(\int_{\alpha}^{\gamma}\left|\psi_{1}(x)\right|^{p^{\prime}} v_{\varepsilon}^{1-p^{\prime}}(x) \mathrm{d} x\right)^{-1 / p} \\
& \left(\int_{\beta}^{\gamma} u(x)\left|\phi_{1}(x)\right|^{q}\left(\int_{-\infty}^{x}\left|\psi_{1}(t)\right|^{p^{\prime}} v_{\varepsilon}^{1-p^{\prime}}(t) \mathrm{d} t\right)^{q} \mathrm{~d} x\right)^{1 / q} \leq C<\infty
\end{aligned}
$$

holds for C independent of $\alpha, \beta, \varepsilon$ and v_{ε}. For $\alpha \rightarrow-\infty, \beta \rightarrow-\infty$ and $\varepsilon \rightarrow 0$ (via a subsequence), $v_{\varepsilon} \rightarrow v$ and, taking the supremum over γ satisfying $-\infty<\gamma<\infty$, we have $A<\infty$.

By using a dual argument, (1) is equivalent to

$$
\left\|S^{*} f\right\|_{p^{\prime}, v^{1-p^{\prime}}} \leq C\|f\|_{q^{\prime}, u^{1-q^{\prime}}},
$$

where S^{*} is the adjoint operator of S defined as

$$
\left(S^{*} f\right)(x)=\psi_{1}(x) \int_{x}^{\infty} \phi_{1}(t) f(t) \mathrm{d} t+\psi_{2}(x) \int_{-\infty}^{x} \phi_{2}(t) f(t) \mathrm{d} t
$$

For a given $\varepsilon>0$, define

$$
u_{\varepsilon}(x)=\min \left\{u(x),\left|\phi_{2}(x)\right|^{-q} \varepsilon\right\} .
$$

Since $\|f\|_{q^{\prime}, u^{1-q^{\prime}}} \leq\|f\|_{q^{\prime}, u_{\varepsilon}^{1-q^{\prime}}},(3)$ is equivalent to

$$
\begin{equation*}
\left\|S^{*} f\right\|_{q, u} \leq C\|f\|_{q^{\prime}, u_{\varepsilon}^{1-q^{\prime}}} \tag{5}
\end{equation*}
$$

For $-\infty<\alpha<\beta<\gamma<\infty$, define

$$
\begin{equation*}
g(x)=u_{\varepsilon}(x)\left|\phi_{2}(x)\right|^{q-1} \operatorname{sgn}\left(\phi_{2}(x)\right) \chi_{(\alpha, \beta)}(x) . \tag{6}
\end{equation*}
$$

Necessity of $B<\infty$, now, can be established by making parallel arguments and using (5) for $f=g$.

REmARK 2.4. The corresponding result of Theorem 2.1 for the dual operator of S can be easily obtained by using a dual argument. We omit the details.

REFERENCES

[1] A. Kufner and L.-E. Persson, Weighted inequalities of Hardy type, World Scientific, 2003.
[2] S. Kumar, A Hardy-type inequality in two dimensions, Indag. Math.(N.S.), 20 (2009), 247-260.
[3] L.-E. Persson and V.D. Stepanov, Weighted integral inequalities with the geometric mean operator, J. Inequal. Appl., 7 (2002), 727-746.
[4] P.A. Zharov, On a two-weight inequality. Generalization of inequalities of Hardy and Poincaré (in Russian), Trudy Mat. Inst. Steklov 194 (1992), 97-110, translation in Proc. Steklov Inst. Math., 194 (1993), 101-114.

Received April 16, 2018
Accepted May 22, 2018

NIT Hamirpur
Department of Mathematics
Himachal Pradesh 177005, India
E-mail: kumar.suket@gmail.com

