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A TOPOLOGY VIA ω-LOCAL FUNCTIONS IN IDEAL SPACES

AHMAD AL-OMARI and HANAN AL-SAADI

Abstract. The class of ω-closed subsets of a space (X, τ) was defined to intro-
duce ω-closed functions. The purpose of this paper to introduce the notion of
ω-local functions and to give some of its basic properties in an ideal topological
space. Moreover, we define and investigate the ω-compatible spaces.
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1. INTRODUCTION AND PRELIMINARIES

A point x ∈ X is called a condensation point of A, if for each U ∈ τ with
x ∈ U , the set U ∩ A is uncountable. A is said to be ω-closed - see [12] - if it
contains all its condensation points. The complement of an ω-closed set is said
to be ω-open. It is well known that a subset W of a space (X, τ) is ω-open if
and only if, for each x ∈W , there exists U ∈ τ such that x ∈ U and U −W is
countable. The family of all ω-open subsets of a space (X, τ), denoted by τω
or ωO(X), forms a topology on X finer than τ . The ω-closure and ω-interior,
which can be defined in the same way as Cl(A) and Int(A), respectively, will
be denoted by Clω(A) and Intω(A), respectively. Several characterizations of
ω-closed subsets and ideal spaces were provided in [1, 2, 3, 5, 6, 7, 9, 12, 13].

Let (X, τ) be a topological space with no separation properties assumed. For
a subset A of a topological space (X, τ), Cl(A) and Int(A) denote the closure
and the interior of A in (X, τ), respectively. An ideal I on a topological space
(X, τ) is a non-empty collection of subsets of X which satisfies the properties:
(1) A ∈ I and B ⊆ A imply that B ∈ I; (2) A ∈ I and B ∈ I imply A∪B ∈ I.

An ideal topological space is a topological space (X, τ) with an ideal I on
X and is denoted by (X, τ, I). For a subset A ⊆ X, A∗(I, τ) = {x ∈ X :
A ∩ U /∈ I for every open set U containing x} is called the local function
of A with respect to I and τ (see [11, 14]). We simply write A∗ instead of
A∗(I, τ), when there is no chance for confusion. For every ideal topological
space (X, τ, I), there exists a topology τ∗(I), finer than τ , generated by the
base β(I, τ) = {U −J : U ∈ τ and J ∈ I}. It is known - see [11] - that β(I, τ)
is not always a topology. When there is no ambiguity, τ∗(I) is denoted by τ∗.
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Recall that A is said to be ∗-dense in itself (resp. τ∗-closed, ∗-perfect) if
A ⊆ A∗ (resp. A∗ ⊆ A, A = A∗). For a subset A ⊆ X, Cl∗(A) and Int∗(A)
will denote the closure and the interior of A in (X, τ∗), respectively. Let
(X, τ, I) be an ideal topological space. We say the topology τ is compatible
with the ideal I and denote τ ∼ I, if, for every A ⊆ X, we have that if, for
every x ∈ A, there exists U ∈ τ(x) such that U ∩A ∈ I, then A ∈ I - see [11].

2. ωωω-LOCAL FUNCTIONS

Definition 2.1. Let (X, τ, I) be an ideal topological space. For a subset A
of X, we define the set Aω(I, τ) = {x ∈ X : A ∩ U /∈ I for every U ∈ τω(x)},
where τω(x) = {U ∈ τw : x ∈ U}. When there is no confusion, Aω(I, τ) is
briefly denoted by Aω and called the ω-local function of A with respect to I
and τ .

Lemma 2.2. Let (X, τ, I) be an ideal topological space. Then Aω(I, τ) ⊆
A∗(I, τ), for every subset A of X.

Proof. Let x ∈ Aω(I, τ). Then A∩U /∈ I, for every ω-open set U containing
x. Since every open set is ω-open, x ∈ A∗(I, τ). �

Example 2.3. Let X be an uncountable set and let A,B,C be subsets of
X such that each of them is an uncountable set and the family {A,B,C,D} is
a partation of X. We defined the topology τ = {∅, {A}, {A,B}, {A,B,C}, X}
with I = {∅, {A}, {B}, {A,B}}. Let H = {A,D}, then H∗(I) = {C,D} =
Cl(H∗) and Hω(I) = ∅ = Clω(Hω).

Lemma 2.4. Let (X, τ) be an ideal topological space, I and J be ideals on
X, and let A and B be subsets of X. Then the following properties hold.

(1) If A ⊆ B, then Aω ⊆ Bω.
(2) If I ⊆ J , then Aω(I) ⊇ Aω(J ).
(3) Aω = Clω(Aω) ⊆ Clω(A) and Aω is ω-closed in (X, τ).
(4) If A ⊆ Aω, then Aω = Clω(Aω) = Clω(A).
(5) If A ∈ I, then Aω = ∅.

Proof. (1) Suppose that x /∈ Bω. Then there exists U ∈ τω(x) such that
U ∩ B ∈ I. Since U ∩ A ⊆ U ∩ B, U ∩ A ∈ I. Hence x /∈ Aω. Thus
X \Bω ⊆ X \Aω or Aω ⊆ Bω.

(2) Suppose that x /∈ Aω(I). There exists U ∈ τω(x) such that U ∩ A ∈ I.
Since I ⊆ J , U ∩A ∈ J and x /∈ Aω(J ). Therefore Aω(J ) ⊆ Aω(I).

(3) We have Aω ⊆ Clω(Aω), in general. Let x ∈ Clω(Aω). Then Aω∩U 6= ∅,
for every U ∈ τω(x). Therefore there exist y ∈ Aω ∩ U and U ∈ τω(y). Since
y ∈ Aω, A ∩ U /∈ I and hence x ∈ Aω. Hence we have Clω(Aω) ⊆ Aω and
thus Aω = Clω(Aω). Again, let x ∈ Clω(Aω) = Aω. Then U ∩ A /∈ I for
every U ∈ τω(x). This implies U ∩ A 6= ∅, for every U ∈ τω(x). Therefore
x ∈ Clω(A). This shows that Aω(I) = Clω(Aω) ⊆ Clω(A).

(4) For any subset A of X, by (3), we have Aω = Clω(Aω) ⊆ Clω(A). Since
A ⊆ Aω, Clω(A) ⊆ Clω(Aω) and hence Aω = Clω(Aω) = Clω(A).
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(5) Suppose that x ∈ Aω. Then, for any U ∈ τω(x), U ∩ A /∈ I. But, since
A ∈ I, U ∩A ∈ I for some U ∈ τω(x). This is a contradiction. So Aω = ∅. �

Lemma 2.5. Let (X, τ, I) be an ideal topological space. If U ∈ τ , then
U ∩Aω = U ∩ (U ∩A)ω ⊆ (U ∩A)ω, for any closed set A of X.

Proof. Suppose that U is open set and x ∈ U ∩ Aω. Then x ∈ U and
x ∈ Aω. Let V be any ω-open set containing x. Then V ∩ U ∈ τω(x) and
V ∩ (U ∩ A) = (V ∩ U) ∩ A /∈ I. This shows that x ∈ (U ∩ A)ω and hence
we obtain U ∩ Aω ⊆ (U ∩ A)ω. Moreover, U ∩ Aω ⊆ U ∩ (U ∩ A)ω and,
by Lemma 2.4, (U ∩ A)ω ⊆ Aω and U ∩ (U ∩ A)ω ⊆ U ∩ Aω. Therefore
U ∩Aω = U ∩ (U ∩A)ω. �

3. A TOPOLOGY ASSOCIATED WITH ωωω-LOCAL FUNCTIONS

Theorem 3.1. Let (X, τ, I) be an ideal topological space and A, B be any
subsets of X. Then the following properties hold:

(1) (∅)ω = ∅.
(2) (Aω)ω ⊆ Aω.
(3) Aω ∪Bω = (A ∪B)ω.

Proof. (1) The proof is obvious.
(2) Let x ∈ (Aω)ω. Then, for every U ∈ τω(x), U ∩ Aω /∈ I and hence

U ∩ Aω 6= ∅. Let y ∈ U ∩ Aω. Then U ∈ τω(y) and y ∈ Aω. Hence we have
U ∩A /∈ I and x ∈ Aω. This shows that (Aω)ω ⊆ Aω.

(3) It follows from Lemma 2.4 that (A ∪ B)ω ⊇ Aω ∪ Bω. To prove the
reverse inclusion, let x /∈ Aω ∪ Bω. Then x belongs neither to Aω nor to Bω.
Therefore there exist Ux, Vx ∈ τω(x) such that Ux ∩ A ∈ I and Vx ∩ B ∈ I.
Since I is additive, (Ux ∩A) ∪ (Vx ∩B) ∈ I. Since I is hereditary and

(Ux ∩A) ∪ (Vx ∩B) = [(Ux ∩A) ∪ Vx] ∩ [(Ux ∩A) ∪B]

= (Ux ∪ Vx) ∩ (A ∪ Vx) ∩ (Ux ∪B) ∩ (A ∪B)

⊇ (Ux ∩ Vx) ∩ (A ∪B),

(Ux ∩ Vx) ∩ (A ∪ B) ∈ I. Since (Ux ∩ Vx) ∈ τω(x), x /∈ (A ∪ B)ω. Hence
(X \Aω)∩ (X \Bω) ⊆ X \ (A∪B)ω or (A∪B)ω ⊆ Aω ∪Bω. Hence we obtain
Aω ∪Bω = (A ∪B)ω. �

Theorem 3.2. Let (X, τ, I) be an ideal topological space, Cl∗ω(A) = Aω∪A
and A, B be subsets of X. Then:

(1) Cl∗ω(∅) = ∅.
(2) A ⊆ Cl∗ω(A).
(3) Cl∗ω(A ∪B) = Cl∗ω(A) ∪ Cl∗ω(B).
(4) Cl∗ω(A) = Cl∗ω(Cl∗ω(A)).
(5) If A ⊆ B, then Cl∗ω(A) ⊆ Cl∗ω(B).

Proof. By Theorem 3.1, we obtain:
(1) Cl∗ω(∅) = (∅)ω ∪ ∅ = ∅.
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(2) A ⊆ A ∪Aω = Cl∗ω(A).
(3) Cl∗ω(A∪B) = (A∪B)∗∪(A∪B) = (Aω∪Bω)∪(A∪B) = Cl∗ω(A)∪Cl∗ω(B).
(4) Cl∗ω(Cl∗ω(A)) = Cl∗ω(Aω ∪A) = (Aω ∪A)ω ∪ (Aω ∪A) = ((Aω)ω ∪Aω)∪

(Aω ∪A) = Aω ∪A = Cl∗ω(A).
(5) Since A ⊆ B, we have Cl∗ω(A) = Aω ∪A ⊆ Bω ∪B = Cl∗ω(B). �

By Theorem 3.2, we obtain that Cl∗ω(A) = A ∪ Aω is a Kuratowski closure
operator. We will denote by τ∗ω the topology generated by Cl∗ω, that is τ∗ω =
{U ⊆ X : Cl∗ω(X − U) = X − U}.

Lemma 3.3. Let (X, τ, I) be an ideal topological space and A,B be subsets
of X. Then Aω −Bω = (A−B)ω −Bω.

Proof. By Theorem 3.1, we obtain Aω = [(A−B)∪ (A∩B)]ω = (A−B)ω ∪
(A ∩B)ω ⊆ (A−B)ω ∪Bω. Therefore Aω −Bω ⊆ (A−B)ω −Bω. We have,
by Theorem 3.1, (A−B)ω ⊆ Aω and hence (A−B)ω−Bω ⊆ Aω−Bω. Hence
we obtain Aω −Bω = (A−B)ω −Bω. �

Corollary 3.4. Let (X, τ, I) be an ideal topological space and A,B be
subsets of X with B ∈ I. Then (A ∪B)ω = Aω = (A−B)ω.

Proof. By Theorem 3.2 and since B ∈ I, Bω = φ. Therefore Aω = (A−B)ω,
by Lemma 3.3. Hence, by Theorem 3.2, (A ∪B)ω = Aω ∪Bω = Aω. �

Lemma 3.5. Let (X, τ, I) be an ideal topological space and A,B be subsets
of X. Then:

(1) Cl∗ω(A ∩B) ⊆ Cl∗ω(A) ∩ Cl∗ω(B).
(2) If U ∈ τω, then U ∩ Cl∗ω(A) ⊆ Cl∗ω(U ∩A).

Proof. (1) This is obvious by Theorem 3.2.
(2) Since U ∈ τω, we have by Theorem 3.2, U ∩ Cl∗ω(A) = U ∩ (A ∪ Aω) =

(U ∩A) ∪ (U ∩Aω) ⊆ (U ∩A) ∪ (U ∩A)ω = Cl∗ω(U ∩A). �

Corollary 3.6. Let (X, τ, I) be an ideal topological space and A be subsets
of X. If A ⊆ Aω, then Clω(A) = Cl∗ω(A).

Proof. The proof follows from Theorem 3.2. �

Definition 3.7. Let (X, τ) be a topological space and I an ideal on X. A
subset A of X is said to be τ∗ω-closed if and only if Aω ⊆ A.

It is well known that if U ∈ τ∗ω if and only if X − U is τ∗ω-closed, then
U ⊆ X − (X − U)ω. Thus, if x ∈ U , x /∈ (X − U)ω, i.e there exists a ω-open
set V such that V ∩ (X − U) ∈ I. Hence I0 = V ∩ (X − U) and we have
x ∈ V − I0 ⊆ U , where V is ω-open set and I0 ∈ I.

Theorem 3.8. Let (X, τ) be a topological space and I be an ideal on X.
Then β is a basis, where β(I, τ) = {V − I0 : V ∈ τω, I0 ∈ I}.

Proof. Since φ ∈ I, then τω ⊆ β and hence X = ∪β . Also, for every
β1, β2 ∈ β, we have β1 = V1 − I1 and β2 = V2 − I2, where V1, V2 ∈ τω and
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I1, I2 ∈ I. Then β1 ∩ β2 = (V1 − I1) ∩ (V2 − I2) = (V1 ∩ −(X − I1)) ∩ (V2 ∩
(X − I2)) = (V1 ∩ V2)− (I1 ∪ I2) ∈ β, where V1 ∩ V2 ∈ τω, I1 ∪ I2 ∈ I. �

Remark 3.9. The topology τ∗ω finer than τω. See the following example.

Example 3.10. Let X = R be the set of all real numbers with the topology
τ = {∅, X, {1}} and let Q be the set of all rational numbers, I = {P(Q)}. Put
A = Q. Then A ∈ τ∗ω, but A is not ω-open, since Clω(A) * A

Remark 3.11. Let A be a subset of an ideal topological space (X, τ, I).

(1) If I = {φ}, then Aω = Clω(A) = Cl∗ω(A).
(2) If I = P(X), then A∗ = Aω = {φ} and Cl∗(A) = Cl∗ω(A) = A.

In view of our remarks, the following implications hold:

open //

��

τ∗-open

��
ω-open // τ∗ω-open

Example 3.12. Let (X, τ, I) be an ideal space, with X{a, b, c}, τ = {∅, X,
{a}} and I = {∅, {b}}. Then the set {b} is ω-open, but not τ∗-open.

Example 3.13. Let X = R with the usual topology τ and let Q be the set
of all rational numbers, I = {P(Qc)}. Let A = Q. Then A is τ∗-open, but it
is not an ω-open set.

4. ωωω-COMPATIBLE IN IDEAL TOPOLOGICAL SPACE

Definition 4.1. Let (X, τ, I) be an ideal topological space. We say the
topology τ is ω-compatible with the ideal I and denote τ ∼ω I, if the following
holds for every A ⊆ X: if, for every x ∈ A, there exists U ∈ τω(x) such that
U ∩A ∈ I, then A ∈ I.

Remark 4.2. A compatible space is ω-compatible, but not conversely.
Theorem 4.3. Let (X, τ, I) be an ideal topological space. Then the follow-

ing are equivalent:

(1) τ ∼ω I;
(2) if a subset A of X has a cover of ω-open sets, each of whose intersection

with A is in I, then A ∈ I;
(3) for every A ⊆ X, A ∩Aω = φ implies that A ∈ I;
(4) for every A ⊆ X, A−Aω ∈ I;
(5) for every A ⊆ X, if A contains no non-empty subset B with B ⊆ Bω,

then A ∈ I.

Proof. (1) ⇒ (2) The proof is obvious.
(2) ⇒ (3) Let A ⊆ X and x ∈ A. Then x /∈ Aω and there exists Vx ∈ τω(x)

such that Vx ∩ A ∈ I. Therefore we have A ⊆ ∪{Vx : x ∈ A} and Vx ∈ τω(x)
and, by (2), A ∈ I.
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(3) ⇒ (4) For any A ⊆ X, A − Aω ⊆ A and (A − Aω) ∩ (A − Aω)ω ⊆
(A−Aω) ∩Aω = φ. By (3), A−Aω ∈ I.

(4) ⇒ (5) By (4), for every A ⊆ X, A − Aω ∈ I. Let A − Aω = J ∈ I.
Then A = J ∪ (A ∩Aω) . By Lemma 2.4, Aω = Jω ∪ (A ∩Aω)ω = (A ∩Aω)ω.
Therefore we have A ∩ Aω = A ∩ (A ∩ Aω)ω ⊆ (A ∩ Aω)ω and (A ∩ Aω) ⊆ A.
By the assumption A ∩Aω = φ, A = A−Aω ∈ I.

(5) ⇒ (1) Let A ⊆ X and assume that, for every x ∈ A, there exists
U ∈ τω(x) such that U∩A ∈ I. Then A∩Aω = φ. Since (A−Aω)∩(A−Aω)ω ⊆
(A−Aω)∩Aω = φ, A−Aω contains no nonempty subset B with B ⊆ Bω. By
(5), A−Aω ∈ I and we have A = A ∩ (X −Aω) = A−Aω ∈ I. �

Theorem 4.4. Let (X, τ, I) be an ideal topological space. Then the follow-
ing properties are equivalent:

(1) τ ∼ω I;
(2) for every τ∗ω-closed subset A, A−Aω ∈ I.

Proof. (1) ⇒ (2) It follows by Theorem 4.3.
(2) ⇒ (1) Let A ⊆ X and suppose that, for every x ∈ A, there exists an

ω-open set U containing x such that U ∩ A ∈ I. Then A ∩ Aω = ∅. Since
Cl∗ω(A) = A ∪Aω is τ∗ω-closed, we have (A ∪Aω)− (A ∪Aω)ω ∈ I. Moreover,
(A ∪ Aω) − (A ∪ Aω)ω = (A ∪ Aω) − (Aω ∪ (Aω)ω) = (A ∪ Aω) − Aω = A.
Therefore A ∈ I. �

Theorem 4.5. Let (X, τ, I) be an ideal topological space and τ be ω-
compatible with I. A set is closed with respect to the τ∗ω-topology if and only
if it is the union of a set which is ω-closed with respect to τ and a set in I.

Proof. Let A be τ∗ω-closed. Then Aω ⊆ A implies that A = (A−Aω) ∪Aω.
We have, by Theorem 4.4, A − Aω ∈ I and, by Theorem 3.1, Aω is ω-closed
with respect to τ .

Conversely, if A = B ∪ I, where B is ω-closed with respect to τ and I ∈ I,
then, by Theorem 3.1 and Lemma 2.4, we have Aω = Bω ∪ Iω = Bω ⊆
Clω(B) = B ⊆ A. Thus Aω ⊆ A and A is τ∗ω-closed. �

Corollary 4.6. Let (X, τ, I) be an ideal topological space. If τ is ω-
compatible with I, then β(τ, I) = τ∗ω.

Proof. Let U ∈ τ∗ω. Then, by Theorem 4.5, X − U = F ∪ B, where F
is ω-closed and B ∈ I. Then U = X − (F ∪ B) = (X − F ) ∩ (X − B) =
(X − F ) − B = V − B, where V = X − F is ω-open set of X. Thus every
τ∗ω-open set is of the from V − B, where V is ω-open and B ∈ I. It follows
from Theorem 3.8 that β(τ, I) = τ∗ω. �

Theorem 4.7. Let (X, τ, I) be an ideal topological space. Then the follow-
ing properties are equivalent:

(1) τω ∩ I = ∅;
(2) if I ∈ I, then Intω(I) = ∅;
(3) for every G ∈ τω, G ⊆ Gω;
(4) X = Xω.
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Proof. (1)⇒ (2) Let τω∩I = ∅ and I ∈ I. Suppose that x ∈ Intω(I). Then
there exists U ∈ τω such that x ∈ U ⊆ I. Since I ∈ I, ∅ 6= {x} ⊆ U ∈ τω ∩ I.
This implies τω ∩ I = ∅.Therefore Intω(I) = ∅.

(2) ⇒ (3) Let x ∈ G. Assume that x /∈ Gω. Then there exists Ux ∈ τω(x)
such that G∩Ux ∈ I. By (2), x ∈ G∩Ux = Intω(G∩Ux) = ∅. Hence x ∈ Gω

and G ⊆ Gω.
(3) ⇒ (4) Since X is ω-open, X = Xω.
(4) ⇒ (1) X = Xω = {x ∈ X : U ∩ X = U /∈ I}, for each ω-open set U

containing x. Hence τω ∩ I = ∅. �

Theorem 4.8. Let (X, τ, I) be an ideal topological space, τ be ω-compatible
with I and τω∩I = ∅. Let G be a τ∗ω-open set such that G = U−A, where U ∈
τω and A ∈ I. Then Clω(Gω) = Clω(G) = Gω = Uω = Clω(U) = Clω(Uω).

Proof. Let G = U − A, where U ∈ τω and A ∈ I. Since τω ∩ I = ∅, by
Theorem 4.7, we have U ⊆ Uω. Hence, by Lemma 2.4, Uω = Clω(Uω) =
Clω(U).

Now, we prove that G ⊆ Gω, by using G ∈ τ∗ω. Since Cl∗ω(X −G) = X −G,
(X −G)ω ⊆ X −G and, by Lemma 3.3, Xω −Gω ⊆ X −G. Since τω ∩ I = ∅,
by Theorem 4.7, X − Gω ⊆ X − G and hence we have G ⊆ Gω. Hence, by
Lemma 2.4, Gω = Clω(G) = Clω(Gω) .

Now, since G ⊆ U , Gω ⊆ Uω. By Lemma 3.3, Gω = (U −A)ω ⊇ Uω−Aω =
Uω, since A ∈ I. Thus Uω = Gω. Hence we obtain the desired result. �

Definition 4.9. An ideal I is called a σ-ideal - see [11] - if it is countably
additive, that is if In ∈ I, for each n ∈ N , then ∪{In : n ∈ N} ∈ I.

Definition 4.10. A space (X, τ) is said to satisfy the C1 condition - see
[10] - if every infinite subset of X has non-empty interior.

Proposition 4.11 ([10]). If a space (X, τ) satisfies the condition C1, then
A− Int(A) is finite, for any A ⊆ X.

Definition 4.12 ([12]). A space (X, τ) is said to be ω-Lindelöf if and only
if every cover of X by ω-open sets of X has a countable subcover. A space
(X, τ) is said to have the hereditary ω-Lindelöf property if every subspace has
the ω-Lindelöf property.

Lemma 4.13 ([8]). If U is an ω-open subset of a space (X, τ), then U − C
is ω-open, for every countable subsets C of X.

Theorem 4.14. Let (X, τ) be a hereditary ω-Lindelöf space satisfying con-
dition C1 and let I be a σ-ideal on X. Then τ ∼ω I.

Proof. Let A ⊆ X and assume that, for every x ∈ A, there exists an ω-
open set U such that U ∩ A ∈ I. This implies U ∩ Int(A) ∈ I. Now,
{(Ux − C) ∩ Int(A) : x ∈ A} is a cover of Int(A) by ω-open sets and a
countable subset C of X. By the assumption that (X, τ) is hereditarily ω-
Lindelöf, this cover has a countable subcover {(Ux(n) −C) ∩ Int(A) : n ∈ N}.
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Since I is a σ-ideal, Int(A) = ∪{(Ux(n) − C) ∩ Int(A) : n ∈ N} ∈ I. If A is
an open subset of X, then the proof is complete. If A is not open, then, by
Proposition 4.11, A− Int(A) is finite. For every x ∈ A− Int(A), there exists
an ω-open set Ux such that Ux ∩A ∈ I, hence Ux ∩ (A− Int(A)) ∈ I. By the
finite additivity of I, we have A− Int(A) = ∪{Ux ∩ (A− Int(A))} ∈ I. This
means that A = Int(A) ∪ (A− Int(A)) ∈ I. Hence τ ∼ω I. �
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