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ON THE DIOPHANTINE EQUATION x5 + ky3 = z5 + kw3

N. YOUSEFNEJAD, H. SHABANI-SOLT, and A. S. JANFADA

Abstract. In this article we consider the symmetric Diophantine equation xm+
kyn = zm + kwn, where k is a rational number and prove that, for any rational
number k, the equation x5+ky3 = z5+kw3 has infinitely many rational nontrivial
solutions. The strategy is to use the elliptic fibration method.
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1. INTRODUCTION

By a symmetric Diophantine equation in two variables we mean an equation
of the form

f(x, y) = f(z, w),

where f is a polynomial with integer coefficients. Some authors have studied
the above symmetric Diophantine equation in low degrees, see [1, 2, 3]. An
attractive case is the equation

xm + kyn = zm + kwn,

where k is a rational number. Shorey studied this equation by analytic number
theory methods [6]. As a matter of fact, in the case where m,n are coprime,
the above equation is reduced to a simple form.

Lemma 1.1. Let m,n be coprime integers. Then the rational solutions of

(1) xm + kyn = zm + kwn

are equivalent to the rational solutions of xm + yn = zm + wn.

The proof is straightforward. The coprime relation gcd(m,n) = 1 implies
the existence of the positive integers α, β such that αn−βm = 1. Multiplying
both sides of (1) by kβm gives the result.

One of the effective methods to solve a given Diophantine equation is to find
an elliptic fibration and use the specialization process to obtain an elliptic
curve. Now, to check that the Diophantine equation has (infinitely many)
nontrivial solutions is equivalent to check that the resulted elliptic curve has
positive rank. We call a solution(x, y, z, w) a trivial solution if x = z, and
y = w. Throughout this article, by a solution, we mean a nontrivial solution.
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Using the above method, the authors of [5] studied the Diophantine equation
x6 + ky3 = z6 + kw3, where k is a rational number, and showed by computer
calculations that, for all integers 1 ≤ k ≤ 500, this equation has infinitely
many integral solutions. Then, using this results and some other evidences,
they conjectured that, for all rational numbers k, the Diophantine equation
x6 + ky3 = z6 + kw3 has infinitely many integral solutions.

Now consider the Diophantine equation

(2) x5 + ky3 = z5 + kw3, k ∈ Q.
We use a similar method to show that, for all k, the equation (2) has infinitely
many rational solutions. In general, it is not easy to find a single elliptic
fibration that works for all or finitely many k. In this article, we manage to
do this. In fact, in Theorem 1.2 we exhibit an elliptic fibration over (2) and
then deduce the existence of infinitely many rational solutions.

In this article we consider the equation (2) as a three-fold and prove the
following main result.

Theorem 1.2. Consider the algebraic singular three-fold

(3) x5 + ky3 = z5 + kw3, k ∈ Q.
(I) The three-fold (3) is an elliptic three-fold having an elliptic fibration

defined over Q.
(II) The three-fold (3) has infinitely many rational solutions.

Recall that an elliptic three-fold is an algebraic projective (resp. affine)
three-fold C together with a morphism π : C → P2 (resp. π : C → Q2) such
that for all but finitely many t ∈ P2 (resp. t ∈ Q2), π−1(t) is an elliptic curve.
Here, we consider the affine case. We cite [4] for more details on three-folds
and [8] for elliptic three-folds.

2. PRELIMINARIES

Consider the following equation defined over the field K.

v2 = au4 + bu3 + cu2 + du+ e, a 6= 0.

Take a point (u, v) = (p, q) on this curve. We may assume p = 0. Then e = q2

and we get the curve

v2 = au4 + bu3 + cu2 + du+ q2, a 6= 0.

Suppose q = 0. If d = 0, then the curve has a singularity at (u, v) = (0, 0).
Therefore, assume d 6= 0. Then,( v

u2

)2
= d

(
1

u

)3

+ c

(
1

u

)2

+ b

(
1

u

)
+ a,

and, putting X = 1/u and Y = 1/u2, we obtain the elliptic curve Y 2 =
dX3 + cX2 + bX + a. The more complicated case is when q 6= 0, for which we
have the following result [7].
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Theorem 2.1. Let K be a field of characteristic not 2. Consider the quartic
equation

v2 = au4 + bu3 + cu2 + du+ q2

with a, b, c, d, q,∈ K and q 6= 0. Let

X =
2q(v + q) + du

u2
, Y =

4q2(v + q) + 2q(du+ cu2)− (d2u2/2q)

u3
.

Define

a1 = d/q, a2 = c− (d2/4q2), a3 = 2qb, a4 = −4q2a, a6 = a2a4.

Then
Y 2 + a1XY + a3Y = X3 + a2X

2 + a4X + a6.

The inverse transformation is

u =
2q(X + c)− (d2/2q)

Y
, v = −q +

u(uX − d)

2q
.

The point (u, v) = (0, q) corresponds to the point (X,Y ) = ∞ and (u, v) =
(0,−q) corresponds to (X,Y ) = (−a2, a1a2 − a3).

3. PROOFS

Proof of Theorem 1.2. We prove Part (I). By Lemma 1.1, we prove the
result for the three-fold

(4) x5 + y3 = z5 + w3.

Intersecting the three-fold (4) with the hyperplanes

x− z − t = 0, w − y − s = 0

we get

(5)
5t

3s
z4 +

10t2

3s
+

10t3

3s
z2 +

5t4

3s
z +

t5

3s
− s2

12
=

(
y +

s

2

)2
.

We want the expression
t5

3s
− s2

12
to be a square, say

t5

3s
− s2

12
= q2.

Multiplying both sides by 3
s4

, we get(
t

s

)5

−
(

1

2s

)2

= 3
( q
s2

)2
.

Now, putting x′ = 1
2s , y

′ = q
s2
, z′ = t

s , we have

(6) x′2 + 3y′2 = z′5,

where we may assume that x′, y′ are integers. Write (6) as

(x′ +
√
−3y′)(x′ −

√
−3y′) = z′5.
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We are looking for a parametric solution for (6) with rational coefficients such
that (x′+

√
−3y′), (x′−

√
−3y′) are coprime in the integral ring of the number

field Q(
√
−3). Since this ring is a unique factorization domain, we have

(7) x′ +
√
−3y′ = (g +

√
−3h)5, x′ −

√
−3y′ = (g −

√
−3h)5,

for some integers g, h. One can immediately deduce that

z′ = g2 + 3h3.

Expanding the right hand side of one of the equations in (7) we get

x′ = g5 − 30g3h2 + 45gh4, y′ = 5g4h− 30g2h3 + 9h5.

Finally, we get

s = 1/2(g5 − 30g3h2 + 45gh4), t = s(g2 + 3h3), q = s2(5g4h− 30g2h3 + 9h5).

Putting v = y + s/2, now, the equation (5) becomes

(8) v2 =
5t

3s
z4 +

10t2

3s
+

10t3

3s
z2 +

5t4

3s
z + q2,

which corresponds, by Theorem 2.1, to the elliptic curve

Eg,h : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

where

a1 =
5t3

3q
, a2 =

10t3

3s
− 25t6

36q2
, a3 =

20qt2

3s
, a4 = −20tq2

3s
, a6 = a2a4.

Since t, s, q are rational functions of g, h, Eg,h is an elliptic curve over Q(g, h)
and this proves Part (I).

To prove (II), we note that, by the specialization g = g0, h = h0, the elliptic
curve Eg0,h0 has positive rank with a non-torsion (X,Y ) on it. Then, by
Theorem 2.1, the point (X,Y ) on the elliptic curve Eg,h corresponds to the
point (z, v) on the quartic curve (8), where

z =
36q2s2 + 90q2st4 − 25t8

18qs2Y
, v =

−6q2s+ 3sz2X − 5zt4

6qs
.

Now, from the equations x− z− t = 0, w− y− s = 0, v = y+ s/2 we get the
rational point

(x, y, z, w) = (z + t, v − s/2, z, y + s)

on the three-fold (3) and therefore we get an integral point on it. Since the
rank of Eg0,h0 is assumed to be positive, we conclude that the three-fold (3)
has infinitely many rational, and hence integral, solutions.

On the other hand, a straightforward search by the MWRANK software
records the following positive-rank elliptic curves.

(g0, h0) (1,1) (2,1) (3,1) (4,1) (5,1) (1,2) (2,2)
rank r 2 2 3 2 1 1 ≤ r ≤ 3 1 ≤ r ≤ 3

This proves Part (II) and completes the proof of Theorem 1.2. �
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