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THE INDECOMPOSABLE PREPROJECTIVE AND
PREINJECTIVE REPRESENTATIONS OF THE QUIVER D̃n

ÁBEL LŐRINCZI and CSABA SZÁNTÓ

Abstract. Consider the quiver D̃n and its finite dimensional representations
over the field k. We know due to Ringel in [7] that indecomposable representa-
tions without self extensions (called exceptional representations) can be exhibited
using matrices involving as coefficients only 0 and 1, such that the number of
nonzero coefficients is precisely d−1, where d is the global dimension of the rep-
resentation. This means that the corresponding ”coefficient quiver” is a tree, so
we will call such a presentation a ”tree presentation”. In this paper we describe
explicit tree presentations for the indecomposable preprojective and preinjective

representations of the quiver D̃n. In this way we generalize results obtained by

Mróz in [5] for the quiver D̃4 and by Lőrinczi and Szántó in [4] for the quiver D̃5.
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1. PRELIMINARIES

Let Q = (Q0, Q1) be a tame quiver without oriented cycles (i.e. of type

Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8). Suppose that the vertex set Q0 has n elements and for an
arrow α ∈ Q1 we denote by t(α), h(α) ∈ Q0 the tail and head of α. The Euler
form of Q is a bilinear form on ZQ0

∼= Zn given by 〈x, y〉 =
∑

i∈Q0
xiyi −∑

α∈Q1
xt(α)yh(α). Its quadratic form qQ (called Tits form) is independent

from the orientation of Q and in the tame case it is positive semidefinite with
radical Zδ, where δ is a minimal positive imaginary root of the corresponding
Kac-Moody root system. The defect of x ∈ ZQ0 is then ∂x = 〈δ, x〉.

Let k be a field and consider the path algebra kQ. The category mod-kQ of
finite dimensional right modules over kQ will be identified with the category
rep-kQ of the finite dimensional k-representations of the quiver Q. Recall
that a k-representation of Q is defined as a set of finite dimensional k-spaces
{Mi|i ∈ Q0} corresponding to the vertices together with k-linear maps Mα :
Mt(α) →Mh(α) corresponding to the arrows. Given two representations M =
(Mi,Mα) and N = (Ni, Nα) of the quiver Q a morphism f : M → N between
them consists of a family of k-linear maps (corresponding to the vertices)
fi : Mi → Ni, such that Nαft(α) = fh(α)Mα for all α ∈ Q1.

This work was supported by the Bolyai Scholarship of the Hungarian Academy of Sciences
and Grant PN-II-ID-PCE-2012-4-0100.
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The dimension vector of a representationM = (Mi,Mα) is dimM = (di)i∈Q0

∈ Zn, where di = dimkMi. The global dimension of M is d =
∑

i∈Q0
di. We

will denote by ∂M = ∂(dimM) the defect of M .
Following Ringel in [7] a basis B = (Bi) of a representation M = (Mi,Mα)

consists of a fixed basis Bi for each space Mi, where i ∈ Q0. Let us assume
that such a basis B of M is given. For any arrow α, we may replace the
linear application Mα by the corresponding dh(α) × dt(α) matrix Mα,B. Given
b ∈ Bt(α) and b′ ∈ Bh(α) we denote by Mα,B(b, b′) the corresponding matrix
coefficient, so Mα(b) =

∑
b′∈Bh(α) ∈Mα,B(b, b′)b′. By definition, the coefficient

quiver of M with respect to B has the set of vertices the disjoint union of all
the bases Bi, and there is an arrow (α, b, b′) if Mα,B(b, b′) 6= 0. We will call
an indecomposable representation M of Q a tree module provided there exists
a basis B of M such that the corresponding coefficient quiver is a tree. Note
that for a tree module M of global dimension d, there is a basis B of M such
that precisely d−1 matrix coefficients are non-zero, and one may assume that
all these coefficients are equal to 1 (see [7] for details). Thus, any tree module
can be exhibited by 0-1-matrices such that the number of 1-s is precisely d−1.
Such a presentation is called a tree presentation.

An indecomposable module M is called exceptional if it has no self exten-
sions (i.e. Ext1(M,M) = 0).

It is well known that in the tame cases the indecomposable modules in
mod-kQ are of three types: preprojectives (having negative defect), preinjec-
tives (having positive defect) and regulars (having zero defect). For all the
details we refer to [2, 3, 1, 8]. What is important to notice, that indecompos-
able preprojectives and preinjectives are exceptional.

Having in mind all the notions above we are now able to formulate the main
problem on which this article focuses.

In [7] Ringel proves that any exceptional representation of Q over a field k
is a tree module, so it has a tree presentation. However in many cases these
presentations are not known explicitly.

The aim of this article is to describe explicitly these existing tree presenta-
tions in case of preprojective and preinjective indecomposable representations

over tame quivers of type D̃n. In this way we generalize results obtained by

Mróz in [5] for the quiver D̃4 and by Lőrinczi and Szántó in [4] for the quiver

D̃5.
One can see that the general case D̃n can be traced back to the cases

D̃4, D̃5, D̃6.

2. REPRESENTATIONS OF THE QUIVER D̃n CONSTRUCTED FROM D̃6

REPRESENTATIONS

In this section we will show how to get all the indecomposable preprojective

and preinjective D̃n representations from D̃6.
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We may consider special orientations for the quiver D̃n, having a unique
sink on the central axis. The representations for the other orientations can be
derived from this one, using reflection functors (see [3] pages 15− 16). So we

will look at the following oriented quiver of D̃n type:

1

2

3 4 . . . n− 2 n− 1

n

n+ 1

n ≥ 6

Note that if the dimensions of the vector spaces corresponding to the vertices

3, 4, 5, . . . , (n − 1) are identical, then this case is equivalent to the D̃4 case
because we can take the identity matrix as morphisms between them. The
dimensions corresponding to the other vertices are exactly the same as in the

D̃4 case.
Furthermore, the P (2) and P (n+ 1) representations can be easily obtained

from the P (1) and P (n) representations just by permuting two morphisms.
This also applies to the preinjective case.

The path algebra of the quiver D̃n is the following:

A = KQ ∼=



K 0 K 0 · · · 0 0 0
0 K K 0 · · · 0 0 0
0 0 K 0 · · · 0 0 0
0 0 K K · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 K K · · · K 0 0
0 0 K K · · · K K 0
0 0 K K · · · K 0 K


In addition we determine the dimension vectors of the indecomposable pro-

jective and injective representations, as seen in [1].

dimP (1) =



1
0
1
0
0
...
0


dimP (2) =



0
1
1
0
...
0
0


dimP (3) =



0
0
1
0
...
0
0


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dimP (4) =



0
0
1
1
0
...
0


dimP (n) =



0
0
1
...
1
1
0


dimP (n+ 1) =



0
0
1
...
1
0
1


If we write these into a single matrix, we get the so-called Cartan matrix:

CA =



1 0 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0
1 1 1 1 · · · 1 1 1
0 0 0 1 · · · 1 1 1
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 1 1
0 0 0 0 · · · 0 1 0
0 0 0 0 · · · 0 0 1


Using this matrix, we can calculate the dimension vectors of the indecom-

posable preprojective and preinjective representations:

ΦA = −Ct
AC−1A

dim τ−mP (j) = Φ−mA dimP (j)

dim τmI(j) = Φm
A dim I(j),

where i ∈ {1, . . . , n+ 1}, m ∈ N and τ is the Auslander–Reiten translation.
The key observation is the following lemma.

Lemma 1. Let x = (x1, x2. . . . , xn+1) be a dimension vector of an indecom-

posable preprojective or preinjective D̃n representation. Then #{xi 6= xi+1|i ∈
{3, 4, . . . , n− 1}} ≤ 2.

Proof. Using a well known theorem due to Kac–Moody we know that the
roots of the quadratic form of a quiver are precisely the dimension vectors of
the indecomposable representations of that quiver.

We can obtain these roots by solving the following equation (see page 267
of [1]):

4qQ(x) = (2x1 − x3)2 + (2x2 − x3)2 + (xn−1 − 2xn)2+

(xn−1 − 2xn+1)
2 + 2

n−2∑
i=3

(xi − xi+1)
2 = 4.
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Since the components of the dimension vectors are integers, we can conclude
that the

∑n−2
i=3 (xi − xi+1)

2 component is equal to either 0, 1 or 2, which is
equivalent to #{xi 6= xi+1|i ∈ {3, 4, . . . , n− 1}} ≤ 2. �

The previous lemma tells us that the vector spaces on the main axis of an

indecomposable preprojective or preinjective D̃n representation have at most
3 distinct dimensions, such that each dimension is repeated along the axis.

This is very useful, since in this way we can get a D̃n representation from a

D̃6 representation by simply putting the identity matrix as morphism between
the vector spaces with the same dimension. This representation remains inde-
composable (which can be easily verified by substituting the dimension vector
into the previous equation) and it is also a tree representation. Moreover, if
the number of distinct dimensions of the vector spaces is less than 3, then we

can get a D̃n representation from D̃4 or D̃5.

• 1st case:
∑n−2

i=3 (xi − xi+1)
2 = 0

It follows that xi = xi+1 for all i ∈ {3, 4, . . . , n− 1} i.e.
#{xi 6= xi+1|i ∈ {3, 4, . . . , n− 1}} = 0

This is equivalent to the D̃4 case, see [5].

• 2nd case:
∑n−2

i=3 (xi − xi+1)
2 = 1

It follows that there exists a j ∈ Z such that xj 6= xj+1 and xi = xi+1

for all i ∈ {3, . . . , j − 1, j + 1, . . . , n− 1} i.e.
#{xi 6= xi+1|i ∈ {3, 4, . . . , n− 1}} = 1

This is equivalent to the D̃5 case, see [4].

• 3rd case:
∑n−2

i=3 (xi − xi+1)
2 = 2

It follows that there exist k, l ∈ Z such that k < l xk 6= xk+1 and
xl 6= xl+1 for all i ∈ {3, . . . , k − 1, k + 1, . . . , l − 1, l + 1, . . . , n− 1} i.e.

#{xi 6= xi+1|i ∈ {3, 4, . . . , n− 1}} = 2

This is equivalent to the D̃6 case, which is the subject of this paper.

3. REPRESENTATIONS OF THE QUIVER D̃6

Applying the 3rd case from the previous lemma to D̃6 we get the equality
(2x1 − x3)2 + (2x2 − x3)2 + (x5 − 2x4)

2 + (x5 − 2x7)
2 = 0, which is equivalent

to the next system of equations:


2x1 = x3

2x2 = x3

x5 = 2x6

x5 = 2x7

This means that every dimension vector of an indecomposable D̃6 represen-
tation has the form [x1, x1, 2x1, x4, 2x6, x6, x6].

Now, using the previous lemma we deduce that there are only 4 possible
dimension vectors, and these are the following:
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[x1, x1, 2x1, 2x1 + 1, 2x1 + 2, x1 + 1, x1 + 1]

[x1, x1, 2x1, 2x1 + 1, 2x1, x1, x1]

[x1, x1, 2x1, 2x1 − 1, 2x1, x1, x1]

[x1, x1, 2x1, 2x1 − 1, 2x1 − 2, x1 − 1, x1 − 1].

Since there are two possible orientations for each one, using the defect of the
quiver, we determine whether they are the dimension vectors of a preprojec-
tive, preinjective or a regular representation.

For n,m ≥ 0 we denote by 0n×m ∈ Mn×m and 0n ∈ Mn×n the zero matrix
and by In ∈ Mn×n the identity matrix. In addition we use the following
notations:

◦Πn,m =

1

1
. . .

1 0 · · · 0

 ∈Mn×m, Π◦n,m =

0 · · · 0 1
. . .

1

1

 ∈Mn×m,

In =

 1

1

. .
.

1

 ∈Mn×n, Σn,n+1 =


1
. . .

1 1
. . .

1

 ∈Mn×(n+1)

The representations of our specially oriented D̃6 quiver have the following
form:

kn1

kn2

kn3 kn4 kn5

kn6

kn7

X

Y

Z T
U

V

Here the matrices X,Y, Z, T, U, V correspond to the linear applications cor-
responding to the arrows (relative to the canonical bases). Note that the
representation is uniquely determined by the matrix list (X,Y, Z, T, U, V ) and
its dimension vector is [n1, n2, n3, n4, n5, n6, n7].

Using these notations we now list the indecomposable preprojective D̃6 rep-
resentations. The first row contains the dimension vector of the representation,
while the second one the morphism family of the representation. In every case
n ≥ 0.
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[2n+ 1, 2n, 4n+ 1, 4n+ 1, 4n, 2n, 2n]([
I2n+1

◦Π2n,2n+1

]
,

[
I2n
I2n

01,2n

]
, [I4n+1],

[◦Π2n,4n

01,4n

Π◦2n,4n

]
,

[
I2n
02n

]
,

[
02n

I2n

])
[2n, 2n+ 1, 4n+ 1, 4n+ 1, 4n, 2n, 2n]([

I2n
I2n

01,2n

]
,

[
I2n+1

◦Π2n,2n+1

]
, [I4n+1],

[◦Π2n,4n

01,4n

Π◦2n,4n

]
,

[
I2n
02n

]
,

[
02n

I2n

])
[2n, 2n, 4n+ 1, 4n+ 1, 4n+ 12n+ 1, 2n]([

01,2n

I2n
I2n

]
,

[
I2n

01,2n

I2n

]
, [I4n+1], [I4n+1],

[
I2n+1

02n,2n+1

]
,

[
02n+1,2n

I2n

])
[2n, 2n, 4n+ 1, 4n+ 1, 4n+ 1, 2n, 2n+ 1]([

01,2n

I2n
I2n

]
,

[
I2n

01,2n

I2n

]
, [I4n+1], [I4n+1],

[
02n+1,2n

I2n

]
,

[
I2n+1

02n,2n+1

])
[2n, 2n+ 1, 4n+ 1, 4n+ 1, 4n+ 1, 2n, 2n]([

I2n
01,2n

I2n

]
,

[
I2n+1

02n,2n+1

]
, [I4n+1], [I4n+1],

[
02n+1,2n

I2n

]
,

[
01,2n

I2n
I2n

])
[2n+ 1, 2n, 4n+ 1, 4n+ 1, 4n+ 1, 2n, 2n]([

I2n+1

02n,2n+1

]
,

[
I2n

01,2n

I2n

]
, [I4n+1], [I4n+1],

[
02n+1,2n

I2n

]
,

[
01,2n

I2n
I2n

])
[2n+ 1, 2n+ 1, 4n+ 2, 4n+ 2, 4n+ 1, 2n, 2n+ 1]([

I2n+1

02n+1

]
,

[
02n+1

I2n+1

]
, [I4n+1],

[
◦Π2n+1,4n+1

Π◦2n+1,4n+1

]
,

[
I2n
I2n

01,2n

]
,

[
I2n+1

◦Π2n,2n+1

])
[2n+ 1, 2n+ 1, 4n+ 2, 4n+ 2, 4n+ 1, 2n+ 1, 2n]([

I2n+1

02n+1

]
,

[
02n+1

I2n+1

]
, [I4n+2],

[
◦Π2n+1,4n+1

Π◦2n+1,4n+1

]
,

[
I2n+1

◦Π2n,2n+1

]
,

[
I2n
I2n

01,2n

])
[2n+ 1, 2n, 4n+ 2, 4n+ 2, 4n+ 2, 2n+ 1, 2n+ 1][I2n+1

I2n+1

]
,

01,2n

I2n
I2n

01,2n

, [I4n+1], [I4n+2],

[
I2n+1

02n+1

]
,

[
02n+1

I2n+1

]
[2n, 2n+ 1, 4n+ 2, 4n+ 2, 4n+ 2, 2n+ 1, 2n+ 1],
01,2n

I2n
I2n

01,2n

, [I2n+1

I2n+1

]
, [I4n+1], [I4n+2],

[
I2n+1

02n+1

]
,

[
02n+1

I2n+1

]
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[2n+ 1, 2n+ 1, 4n+ 2, 4n+ 2, 4n+ 2, 2n+ 1, 2n][I2n+1

02n+1

]
,

[
02n+1

I2n+1

]
, [I4n+2], [I4n+2],

[
I2n+1

I2n+1

]
,

01,2n

I2n
I2n

01,2n




[2n+ 1, 2n+ 1, 4n+ 2, 4n+ 2, 4n+ 2, 2n, 2n+ 1][I2n+1

02n+1

]
,

[
02n+1

I2n+1

]
, [I4n+2], [I4n+2],

01,2n

I2n
I2n

01,2n

, [I2n+1

I2n+1

]
[2n+ 1, 2n+ 2, 4n+ 3, 4n+ 3, 4n+ 2, 2n+ 1, 2n+ 1]([

I2n+1

I2n+1

01,2n+1

]
,

[
I2n+2

◦Π2n+1,2n+2

]
, [I4n+3],

[◦Π2n+1,4n+2

01,4n+2

Π◦2n+1,4n+2

]
,

[
I2n+1

02n+1

]
,

[
02n+1

I2n+1

])
[2n+ 2, 2n+ 1, 4n+ 3, 4n+ 3, 4n+ 2, 2n+ 1, 2n+ 1]([

I2n+2
◦Π2n+1,2n+2

]
,

[
I2n+1

I2n+1

01,2n+1

]
, [I4n+3],

[◦Π2n+1,4n+2

01,4n+2

Π◦2n+1,4n+2

]
,

[
I2n+1

02n+1

]
,

[
02n+1

I2n+1

])
[2n+ 1, 2n+ 1, 4n+ 3, 4n+ 3, 4n+ 3, 2n+ 1, 2n+ 2]([

02n+2,2n+1

I2n+1

]
,

[
01,2n+1

I2n+1

I2n+1

]
, [I4n+3], [I4n+3],

[
I2n+1

01,2n+1

I2n+1

]
,

[
I2n+2

02n+1,2n+2

])
[2n+ 1, 2n+ 1, 4n+ 3, 4n+ 3, 4n+ 3, 2n+ 2, 2n+ 1]([

02n+2,2n+1

I2n+1

]
,

[
01,2n+1

I2n+1

I2n+1

]
, [I4n+3], [I4n+3],

[
I2n+2

02n+1,2n+2

]
,

[
I2n+1

01,2n+1

I2n+1

])
[2n+ 2, 2n+ 1, 4n+ 3, 4n+ 3, 4n+ 3, 2n+ 1, 2n+ 1]([

I2n+2

02n+1,2n+2

]
,

[
02n+2,2n+1

I2n+1

]
, [I4n+3], [I4n+3],

[
01,2n+1

I2n+1

I2n+1

]
,

[
I2n+1

01,2n+1

I2n+1

])
[2n+ 1, 2n+ 2, 4n+ 3, 4n+ 3, 4n+ 3, 2n+ 1, 2n+ 1]([

02n+2,2n+1

I2n+1

]
,

[
I2n+2

02n+1,2n+2

]
, [I4n+3], [I4n+3],

[
01,2n+1

I2n+1

I2n+1

]
,

[
I2n+1

01,2n+1

I2n+1

])
[2n+ 2, 2n+ 2, 4n+ 4, 4n+ 4, 4n+ 3, 2n+ 2, 2n+ 1]([

I2n+2

02n+2

]
,

[
02n+2

I2n+2

]
, [I4n+4],

[
◦Π2n+2,4n+3

Π◦2n+2,4n+3

]
,

[
I2n+2

◦Π2n+1,2n+2

]
,

[
I2n+1

I2n+1

01,2n+1

])
[2n+ 2, 2n+ 2, 4n+ 4, 4n+ 4, 4n+ 3, 2n+ 1, 2n+ 2]([

I2n+2

02n+2

]
,

[
02n+2

I2n+2

]
, [I4n+4],

[
◦Π2n+2,4n+3

Π◦2n+2,4n+3

]
,

[
I2n+1

I2n+1

01,2n+1

][
I2n+2

◦Π2n+1,2n+2

])
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[2n+ 1, 2n+ 2, 4n+ 4, 4n+ 4, 4n+ 4, 2n+ 2, 2n+ 2]
01,2n+1

I2n+1

I2n+1

01,2n+1

, [I2n+2

02n+2

]
, [I4n+4], [I4n+4],

[
02n+2

I2n+2

]
,

[
I2n+2

I2n+2

]
[2n+ 2, 2n+ 1, 4n+ 4, 4n+ 4, 4n+ 4, 2n+ 2, 2n+ 2][I2n+2

02n+2

]
,

01,2n+1

I2n+1

I2n+1

01,2n+1

, [I4n+4], [I4n+4],

[
02n+2

I2n+2

]
,

[
I2n+2

I2n+2

]
[2n+ 2, 2n+ 2, 4n+ 4, 4n+ 4, 4n+ 4, 2n+ 1, 2n+ 2][I2n+2

02n+2

]
,

[
02n+2

I2n+2

]
, [I4n+4], [I4n+4],

01,2n+1

I2n+1

I2n+1

01,2n+1

, [I2n+2

I2n+2

]
[2n+ 2, 2n+ 2, 4n+ 4, 4n+ 4, 4n+ 4, 2n+ 2, 2n+ 1][I2n+2

02n+2

]
,

[
02n+2

I2n+2

]
, [I4n+4], [I4n+4],

[
I2n+2

I2n+2

]
,

01,2n+1

I2n+1

I2n+1

01,2n+1




[2n, 2n, 4n+ 1, 4n+ 1, 4n, 2n, 2n]([
I2n
I2n

01,2n

]
,

[
01,2n

I2n
I2n

]
, [I4n+1],

[◦Π2n,4n

01,4n

Π◦2n,4n

]
,

[
I2n
02n

]
,

[
02n

I2n

])
[2n, 2n, 4n+ 1, 4n+ 1, 4n+ 1, 2n, 2n]([

I2n
02n+1,2n

]
,

[
02n+1,2n

I2n

]
, [I4n+1], [I4n+1],

[
I2n
I2n

01,2n

]
,

[
01,2n

I2n
I2n

])
[2n+ 1, 2n+ 1, 4n+ 2, 4n+ 2, 4n+ 1, 2n, 2n]([

I2n+1

02n+1

]
,

[
02n+1

I2n+1

]
, [I4n+2],

[
◦Π2n+1,4n+1

Π◦2n+1,4n+1

]
,

[
I2n
I2n

01,2n

]
,

[
01,2n

I2n
I2n

])
[2n+ 1, 2n+ 1, 4n+ 3, 4n+ 3, 4n+ 2, 2n+ 1, 2n+ 1]([

I2n+1

I2n+1

01,2n+1

]
,

[
01,2n+1

I2n+1

I2n+1

]
, [I4n+3],

[◦Π2n+1,4n+2

01,4n+2

Π◦2n+1,4n+2

]
,

[
I2n+1

02n+1

]
,

[
02n+1

I2n+1

])
[2n+ 1, 2n+ 1, 4n+ 3, 4n+ 3, 4n+ 3, 2n+ 1, 2n+ 1]([

I2n+1

02n+2,2n+1

]
,

[
02n+2,2n+1

I2n+1

]
, [I4n+3], [I4n+3],

[
I2n+1

I2n+1

01,2n+1

]
,

[
01,2n+1

I2n+1

I2n+1

])
[2n+ 2, 2n+ 2, 4n+ 4, 4n+ 4, 4n+ 3, 2n+ 1, 2n+ 1]([

I2n+2

02n+2

]
,

[
02n+2

I2n+2

]
, [I4n+4],

[
◦Π2n+2,4n+3

Π◦2n+2,4n+3

]
,

[
I2n+1

I2n+1

01,2n+1

]
,

[
01,2n+1

I2n+1

I2n+1

])
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[n+ 1, n+ 1, 2n+ 2, 2n+ 1, 2n, n, n]([◦Πn,n+1

In+1

01,n+1

]
,

[
01,n+1
◦Πn,n+1

In+1

]
,

[
◦Πn+1,2n+1

Π◦n+1,2n+1

]
,

[◦Πn,2n

01,2n

Π◦n,2n

]
,

[
In
0n

]
,

[
0n
In

])
Now we list the preinjective tree representations. The first row is the di-

mension vector, the second one is the morphism family associated to the rep-
resentation.

[2n+ 1, 2n, 4n, 4n, 4n, 2n, 2n]([
◦Π2n,2n+1

Π◦2n,2n+1

]
,

[
02n

I2n

]
, [I4n], [I4n],

[
I2n
02n

]
,

[
I2n
I2n

])
[2n, 2n+ 1, 4n, 4n, 4n, 2n, 2n]([

02n

I2n

]
,

[
◦Π2n,2n+1

Π◦2n,2n+1

]
, [I4n], [I4n],

[
I2n
02n

]
,

[
I2n
I2n

])
[2n, 2n, 4n, 4n, 4n, 2n+ 1, 2n]([

I2n
02n

]
,

[
I2n
I2n

]
, [I4n], [I4n],

[
◦Π2n,2n+1

Π◦2n,2n+1

]
,

[
02n

I2n

])
[2n, 2n, 4n, 4n, 4n, 2n, 2n+ 1]([

I2n
02n

]
,

[
I2n
I2n

]
, [I4n], [I4n],

[
02n

I2n

]
,

[
◦Π2n,2n+1

Π◦2n,2n+1

])
[2n, 2n+ 1, 4n+ 1, 4n+ 1, 4n+ 1, 2n+ 1, 2n+ 1]([

02n+1,2n

I2n

]
,

[
I2n+1

02n,2n+1

]
, [I4n+1], [I4n+1],

[
I2n+1

Π◦2n,2n+1

]
,

[
I2n+1

◦Π2n,2n+1

])
[2n+ 1, 2n, 4n+ 1, 4n+ 1, 4n+ 1, 2n+ 1, 2n+ 1]([

I2n+1

02n,2n+1

]
,

[
02n+1,2n

I2n

]
, [I4n+1], [I4n+1],

[
I2n+1

Π◦2n,2n+1

]
,

[
I2n+1

◦Π2n,2n+1

])
[2n, 2n, 4n, 4n, 4n+ 1, 2n, 2n+ 1]([

I2n
02n

]
,

[
02n

I2n

]
, [I4n],

[
◦Π2n,4n+1

Π◦2n,4n+1

]
,

[
I2n

01,2n

I2n

]
,

[
◦Π2n,2n+1

I2n+1

])
[2n, 2n, 4n, 4n, 4n+ 1, 2n+ 1, 2n]([

I2n
02n

]
,

[
02n

I2n

]
, [I4n],

[
◦Π2n,4n+1

Π◦2n,4n+1

]
,

[
◦Π2n,2n+1

I2n+1

]
,

[
I2n

01,2n

I2n

])
[2n+ 1, 2n, 4n+ 1, 4n+ 1, 4n+ 2, 2n+ 1, 2n+ 1]([

I2n+1

Π◦2n,2n+1

]
,

[
I2n

01,2n

I2n

]
, [I4n+1], [Σ4n+1,4n+2],

[
I2n+1

02n+1

]
,

[
02n+1

I2n+1

])
[2n, 2n+ 1, 4n+ 1, 4n+ 1, 4n+ 2, 2n+ 1, 2n+ 1]([

I2n
01,2n

I2n

]
,

[
I2n+1

Π◦2n,2n+1

]
, [I4n+1], [Σ4n+1,4n+2],

[
I2n+1

02n+1

]
,

[
02n+1

I2n+1

])
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[2n+ 1, 2n+ 1, 4n+ 1, 4n+ 1, 4n+ 1, 2n+ 1, 2n]([
I2n+1

02n,2n+1

]
,

[
I2n+1

Π◦2n,2n+1

]
, [I4n+1], [I4n+1],

[
I2n+1

◦Π2n,2n+1

]
,

[
02n+1,2n

I2n

])
[2n+ 1, 2n+ 1, 4n+ 1, 4n+ 1, 4n+ 1, 2n, 2n+ 1]([

I2n+1

02n,2n+1

]
,

[
I2n+1

Π◦2n,2n+1

]
, [I4n+1], [I4n+1],

[
02n+1,2n

I2n

]
,

[
I2n+1

◦Π2n,2n+1

])
[2n+ 1, 2n+ 2, 4n+ 2, 4n+ 2, 4n+ 2, 2n+ 1, 2n+ 1]([

I2n+1

I2n+1

]
,

[
◦Π2n+1,2n+2

Π◦2n+1,2n+2

]
, [I4n+2], [I4n+2],

[
02n+1

I2n+1

]
,

[
I2n+1

02n+1

])
[2n+ 2, 2n+ 1, 4n+ 2, 4n+ 2, 4n+ 2, 2n+ 1, 2n+ 1]([
◦Π2n+1,2n+2

Π◦2n+1,2n+2

]
,

[
I2n+1

I2n+1

]
, [I4n+2], [I4n+2],

[
02n+1

I2n+1

]
,

[
I2n+1

02n+1

])
[2n+ 1, 2n+ 1, 4n+ 2, 4n+ 2, 4n+ 2, 2n+ 1, 2n+ 2]([

I2n+1

02n+1

]
,

[
I2n+1

I2n+1

]
, [I4n+2], [I4n+2],

[
02n+1

I2n+1

]
,

[
◦Π2n+1,2n+2

Π◦2n+1,2n+2

])
[2n+ 1, 2n+ 1, 4n+ 2, 4n+ 2, 4n+ 2, 2n+ 2, 2n+ 1]([

I2n+1

02n+1

]
,

[
I2n+1

I2n+1

]
, [I4n+2], [I4n+2],

[
◦Π2n+1,2n+2

Π◦2n+1,2n+2

]
,

[
02n+1

I2n+1

])
[2n+ 2, 2n+ 1, 4n+ 3, 4n+ 3, 4n+ 3, 2n+ 2, 2n+ 2]([

I2n+2
◦Π2n+1,2n+2

]
,

[
02n+2,2n+1

I2n+1

]
, [I4n+3], [I4n+3],

[
I2n+2

02n+1,2n+2

]
,

[
I2n+2

Π◦2n+1,2n+2

])
[2n+ 1, 2n+ 2, 4n+ 3, 4n+ 3, 4n+ 3, 2n+ 2, 2n+ 2]([

02n+2,2n+1

I2n+1

]
,

[
I2n+2

◦Π2n+1,2n+2

]
, [I4n+3], [I4n+3],

[
I2n+2

02n+1,2n+2

]
,

[
I2n+2

Π◦2n+1,2n+2

])
[2n+ 1, 2n+ 1, 4n+ 2, 4n+ 2, 4n+ 3, 2n+ 2, 2n+ 1]([

I2n+1

02n+1

][
02n+1

I2n+1

]
, [I4n+2],

[
◦Π2n+1,4n+3

Π◦2n+1,4n+3

]
,

[
◦Π2n+1,2n+2

I2n+2

]
,

[
I2n+1

01,2n+1

I2n+1

])
[2n+ 1, 2n+ 1, 4n+ 2, 4n+ 2, 4n+ 3, 2n+ 1, 2n+ 2]([

I2n+1

02n+1

][
02n+1

I2n+1

]
, [I4n+2],

[
◦Π2n+1,4n+3

Π◦2n+1,4n+3

]
,

[
I2n+1

01,2n+1

I2n+1

]
,

[
◦Π2n+1,2n+2

I2n+2

])
[2n+ 1, 2n+ 2, 4n+ 3, 4n+ 3, 4n+ 4, 2n+ 2, 2n+ 2]([

I2n+1

01,2n+1

I2n+1

]
,

[
I2n+2

Π◦2n+1,2n+2

]
, [I4n+3], [Σ4n+3,4n+4],

[
I2n+2

02n+2

]
,

[
02n+2

I2n+2

])
[2n+ 2, 2n+ 1, 4n+ 3, 4n+ 3, 4n+ 4, 2n+ 2, 2n+ 2]([

I2n+2

Π◦2n+1,2n+2

]
,

[
I2n+1

01,2n+1

I2n+1

]
, [I4n+3], [Σ4n+3,4n+4],

[
I2n+2

02n+2

]
,

[
02n+2

I2n+2

])
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[2n+ 2, 2n+ 2, 4n+ 3, 4n+ 3, 4n+ 3, 2n+ 1, 2n+ 2]([
I2n+2

Π◦2n+1,2n+2

]
,

[
I2n+2

◦Π2n+1,2n+2

]
, [I4n+3], [I4n+3],

[
02n+2,2n+1

I2n+1

]
,

[
I2n+2

02n+1,2n+2

])
[2n+ 2, 2n+ 2, 4n+ 3, 4n+ 3, 4n+ 3, 2n+ 2, 2n+ 1]([

I2n+2
◦Π2n+1,2n+2

]
,

[
I2n+2

Π◦2n+1,2n+2

]
, [I4n+3], [I4n+3],

[
I2n+2

02n+1,2n+2

]
,

[
02n+2,2n+1

I2n+1

])
[2n+ 1, 2n+ 1, 4n+ 1, 4n+ 1, 4n+ 1, 2n+ 1, 2n+ 1]([

I2n+1

02n,2n+1

]
,

[
02n,2n+1

I2n+1

]
, [I4n+1], [I4n+1],

[
I2n+1

◦Π2n,2n+1

]
,

[
Π◦2n,2n+1

I2n+1

])
[2n, 2n, 4n, 4n, 4n+ 1, 2n+ 1, 2n+ 1]([

I2n
02n

]
,

[
02n

I2n

]
, [I4n],

[
◦Π2n,4n+1

Π◦2n,4n+1

]
,

[
I2n+1

◦Π2n,2n+1

]
,

[
Π◦2n,2n+1

I2n+1

])
[2n+ 1, 2n+ 1, 4n+ 2, 4n+ 2, 4n+ 3, 2n+ 2, 2n+ 2]([

I2n+1

02n+1

]
,

[
02n+1

I2n+1

]
, [I4n+2],

[
◦Π2n+1,4n+3

Π◦2n+1,4n+3

]
,

[
I2n+2

◦Π2n+1,2n+2

]
,

[
Π◦2n+1,2n+2

I2n+2

])
[2n+ 1, 2n+ 1, 4n+ 1, 4n+ 1, 4n+ 2, 2n+ 1, 2n+ 1]([

I2n+1
◦Π2n,2n+1

]
,

[
Π◦2n,2n+1

I2n+1

]
, [I4n+1], [Σ4n+1,4n+2],

[
I2n+1

02n+1

]
,

[
02n+1

I2n+1

])
[2n+ 2, 2n+ 2, 4n+ 3, 4n+ 3, 4n+ 4, 2n+ 2, 2n+ 2]([

I2n+2
◦Π2n+1,2n+2

]
,

[
Π◦2n+1,2n+2

I2n+2

]
, [I4n+3], [Σ4n+3,4n+4],

[
I2n+2

02n+2

]
,

[
02n+2

I2n+2

])
[2n+ 2, 2n+ 2, 4n+ 3, 4n+ 3, 4n+ 3, 2n+ 2, 2n+ 2]([

I2n+2

02n+1,2n+2

]
,

[
02n+1,2n+2

I2n+2

]
, [I4n+3], [I4n+3],

[
I2n+2

◦Π2n+1,2n+2

]
,

[
Π◦2n+1,2n+2

I2n+2

])
[n, n, 2n, 2n+ 1, 2n+ 2, n+ 1, n+ 1]([

In
0n

]
,

[
0n
In

]
,

[
◦Πn,2n+1

Π◦n,2n+1

]
, [Σ2n+1,2n+2],

[
In+1

01,n+1
◦Πn,n+1

]
,

[
Π◦n,n+1

01,n+1

In+1

])

To check the correctness of the representations listed above, we checked the
following three things: indecomposability, the defect and the fact that these
presentations are indeed tree presentations.

For every preprojective (or preinjective) indecomposable M representation
we have that dimk End(M) = 1 and conversely dimk End(M) = 1 implies
indecomposability. Using this fact we checked if the endomorphism ring of the
representations is one dimensional.

The defect of a representations can be calculated using the Euler form.
Finally we verified if the presentations are tree presentations. We know

due to Ringel in [7] that if M is indecomposable, then its coefficient tree
associated to any basis is connected. We checked that the number of 1’s in
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each presentation is the global dimension minus one, which implies that in our
connected coefficient quiver the number of edges equals the number of vertices
minus one, which implies that the coefficient quiver is indeed a tree.

REFERENCES
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