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A NOTE ON SOME SECOND-ORDER INTEGRO-DIFFERENTIAL
INCLUSIONS WITH BOUNDARY CONDITIONS

AURELIAN CERNEA

Abstract. We study the existence of solutions for two classes of second-order
integro-differential inclusions with boundary conditions. We establish Filippov
type existence results in the case of nonconvex set-valued maps.
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1. INTRODUCTION

In the last years we observe a remarkable amount of interest in the study
of existence of solutions of several boundary value problems associated to
problems of the form Dx ∈ F (t, x), where D is a differential operator and F
is a set-valued map. Most of these existence results are obtained using fixed
point techniques and are based on an integral form of the right inverse to
the operator D. This means that for every f the unique solution y of the
equation Dy = f can be written in the form y = Rf , when the operator R
has nonnegative Green’s function.

This paper is concerned with the following second-order boundary value
problems

(1.1) −x′′ ∈ F (t, x, V (x)(t)) a.e. [0, 1], x(0) = 0, x(1) =

∫ 1

0
h(t)x(t)dt,

(1.2) −x′′ − a(t)x′ ∈ F (t, x, V (x)(t)) a.e. [0, 1], x′(0) = 0, x(1) = 0,

where F : [0, 1] × R × R → P(R) is a set-valued map, h : [0, 1] → R an
integrable function, a : (0, 1] → R a nonnegative continuous function with∫ 1
0 a(t)dt =∞ and V : C([0, 1],R)→ C([0, 1],R) a nonlinear Volterra integral

operator defined by V (x)(t) =
∫ t
0 k(t, s, x(s))ds, with k : [0, 1] ×R ×R → R

a given function.
In a relatively recent paper of Benchohra, Nieto and Ouahab ([2]), problem

(1.1) is studied with F single valued and not depending on the last variable and
it is obtained the existence of solutions using the Banach contraction principle
and the nonlinear alternative of Leray Schauder type. In [4], Xiao, Cang and
Liu obtained existence results for problem (1.2) with F not depending on the
last variable. The existence results in [4] use fixed point techniques and are
based on a nonlinear alternative of Leray-Schauder type due to Schafer, on the
Bohnenblust-Karlin fixed point theorem and on the Covitz-Nadler contraction
principle for set-valued maps.
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The aim of this note is to show that Filippov’s ideas ([3]) can be suitably
adapted in order to obtain the existence of solutions for problems (1.1) and
(1.2). Recall that for a differential inclusion defined by a lipschitzian set-valued
map with nonconvex values, Filippov’s theorem ([3]) consists in proving the
existence of a solution starting from a given “quasi” solution. Moreover, the
result provides an estimate between the “quasi” solution and the solution ob-
tained. In the case when F does not depend on the last variable our approach
improves Theorem 3.3 in [2] and Theorem 3.1 in [4].

The paper is organized as follows: in Section 2 we recall some preliminary
results that we need in the sequel and in Section 3 we prove our main results.

2. PRELIMINARIES

Let (X, d) be a metric space. Recall that the Pompeiu-Hausdorff distance
of the closed subsets A, B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)},

where d∗(A,B) = sup{d(a,B); a ∈ A} and d(x,B) = infy∈B d(x, y).
Let I = [0, 1]. We denote by C(I,R) the Banach space of all continuous

functions from I to R endowed with the norm ||x||C = supt∈I |x(t)|, and by
L1(I,R) the Banach space of integrable functions u : I → R endowed with the

norm ||u||1 =
∫ 1
0 |u(t)|dt. With AC1(I,R) we denote the space of differentiable

functions x : (0, 1)→ R whose first derivative x′ is absolutely continuous.

In what follows we assume that M1 =
∫ 1
0 sh(s)ds 6= 1 and we need the

following technical results.

Lemma 2.1. [2] Let σ : [0, 1] → R be an integrable function. Then the
unique solution of the boundary value problem

−x′′ = σ(t) a.e. (I), x(0) = 0, x(1) =

∫ 1

0
h(t)x(t)dt

is given by

x(t) =

∫ 1

0
G(t, s)σ(s)ds,

where

G(t, s) = H(t, s) +
1

1−M1

∫ 1

0
H(r, s)h(r)dr,

H(t, s) :=

{
s(1− t), if 0 ≤ s ≤ t ≤ 1,
t(1− s), if 0 ≤ t ≤ s ≤ 1.

Note that |H(t, s)| ≤ 1
4 ∀ t, s ∈ I and therefore

|G(t, s)| ≤ 1

4
+

1

|1−M1|
1

4

∫ 1

0
h(r)dr =: G0.
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Lemma 2.2. [4] Let a : (0, 1] → R be a nonnegative continuous function

with
∫ 1
0 a(t)dt = ∞. For a given f ∈ L1(I,Rn) the unique solution of the

boundary value problem

−x′′(t)− a(t)x′(t) = f(t) a.e. ([0, 1]),
x′(0) = 0, x(1) = 0,

is given by

x(t) =

∫ 1

0
G1(t, s)f(s)ds,

where

G1(t, s) =

{ ∫ 1
s e
−

∫ r
s a(τ)dτdr if 0 ≤ t ≤ s ≤ 1∫ 1

t e
−

∫ r
s a(τ)dτdr if 0 ≤ s ≤ t ≤ 1.

Remark 2.3. If a(t) ≥ δ ∀t ∈ [0, 1], where δ > 0 is a given constant, then

0 < K := max
t,s∈I

G1(t, s) = max
s∈I

∫ 1

s
e−

∫ r
s a(τ)dτdr <

1− e−δ

δ
.

In particular, since 1− e−δ < δ, it follows that

2δ

1 + δ − e−δ
K < 1.

3. THE MAIN RESULTS

In order to prove our results we need the following hypotheses.

Hypothesis 3.1. i) F : I ×R ×R → P(R) has nonempty closed values
and is L(I)⊗ B(R×R) measurable.

ii) There exists L ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F (t, ·, ·) is
L(t)-Lipschitz in the sense that

dH(F (t, x1, y1), F (t, x2, y2)) ≤ L(t)(|x1 − x2|+ |y1 − y2|),∀ x1, x2, y1, y2 ∈ R.

iii) k : I ×R×R→ R is a function such that ∀x ∈ R, (t, s)→ k(t, s, x) is
measurable.

iv) |k(t, s, x)− k(t, s, y)| ≤ L(t)|x− y| a.e. (t, s) ∈ I × I, ∀x, y ∈ R.

We use next the following notations

M(t) := L(t)

(
1 +

∫ t

0
L(u)du

)
, t ∈ I, M0 =

∫ 1

0
M(t)dt, L0 :=

∫ 1

0
L(t)dt.

Theorem 3.2. Assume that Hypothesis 3.1 is satisfied and G0M0 < 1. Let

y ∈ AC1(I,R) be such that y(0) = 0, y(1) =
∫ 1
0 h(t)y(t)dt and such that there

exists p ∈ L1(I,R+) with d(−y′′(t), F (t, y(t), V (y)(t))) ≤ p(t) a.e. on I.
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Then there exists x ∈ C(I,R) a solution of problem (1.1) satisfying for all
t ∈ I the inequality

(3.1) |x(t)− y(t)| ≤ G0

1−G0M0

∫ 1

0
p(t)dt.

Proof. The set-valued map t→ F (t, y(t), V (y)(t)) is measurable with closed
values and

F (t, y(t), V (y)(t)) ∩ {−y′′(t) + p(t)[−1, 1]} 6= ∅ a.e. (I).

It follows (e.g., Theorem 1.14.1 in [1]) that there exists a measurable selec-
tion f1(t) ∈ F (t, y(t), V (y)(t)) a.e. on I such that

(3.2) |f1(t) + y′′(t)| ≤ p(t) a.e. I

Defining x1(t) =
∫ 1
0 G1(t, s)f1(s)ds, one has

|x1(t)− y(t)| ≤ G0

∫ 1

0
p(t)dt.

We claim that it is enough to construct the sequences (xn) in C(I,R) and
(fn) in L1(I,R), n ≥ 1 with the following properties

(3.3) xn(t) =

∫ 1

0
G1(t, s)fn(s)ds, t ∈ I,

(3.4) fn(t) ∈ F (t, xn−1(t), V (xn−1)(t)) a.e. I,

|fn+1(t)− fn(t)| ≤L(t) · |xn(t)− xn−1(t)|

+ L(t) ·
∫ t

0
L(s)|xn(s)− xn−1(s)|ds a.e. I

(3.5)

If this construction is realized, then from (3.2)-(3.5) we have for almost all
t ∈ I

|xn+1(t)− xn(t)| ≤ G0(G0M0)
n

∫ 1

0
p(t)dt ∀n ∈ N.

Indeed, assuming that the last inequality is true for n − 1, we prove it for
n. We get that

|xn+1(t)− xn(t)| ≤
∫ 1

0
|G1(t, t1)| · |fn+1(t1)− fn(t1)|dt1

≤ G0

∫ 1

0
L(t1)

(
|xn(t1)− xn−1(t1)|+

∫ t1

0
L(s)|xn(s)− xn−1(s)|ds

)
dt1

≤ G0

∫ 1

0
L(t1)

(
1 +

∫ t1

0
L(s)ds

)
dt1 ·Gn0Mn−1

0

∫ 1

0
p(t)dt

= G0(G0M0)
n

∫ 1

0
p(t)dt.
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Therefore (xn) is a Cauchy sequence in the Banach space C(I,R), hence it
converges uniformly to some x ∈ C(I,R). Therefore, by (3.5), for almost all
t ∈ I, the sequence (fn(t)) is Cauchy in R. Let f be the pointwise limit of
(fn).

Moreover, one has that

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
n−1∑
i=1

|xi+1(t)− xi(t)|

≤ G0

∫ 1

0
p(t)dt+

n−1∑
i=1

G0

∫ 1

0
p(t)dt(G0M0)

i

=
G0

∫ 1
0 p(t)dt

1−G0M0
.

(3.6)

On the other hand, from (3.2), (3.5) and (3.6) we obtain for almost all t ∈ I

|fn(t) +y′′(t)| ≤
n−1∑
i=1

|fi+1(t)−fi(t)|+ |f1(t) +y′′(t)| ≤ L(t)
G0

∫ 1
0 p(t)dt

1−G0M0
+p(t).

Hence the sequence (fn) is integrable bounded and thus f ∈ L1(I,R).
Using Lebesgue’s dominated convergence theorem and taking the limit in

(3.3) and (3.4), we deduce that x is a solution of (1.1). Finally, passing to the
limit in (3.6), we obtained the desired estimate for x.

It remains to construct the sequences (xn) and (fn) with the properties in
(3.3)-(3.5). The construction will be done by induction.

Since the first step is already realized, assume that for some N ≥ 1 we
have already constructed xn ∈ C(I,R) and fn ∈ L1(I,R), n = 1, 2, . . . N ,
satisfying (3.3), (3.5) for n = 1, 2, . . . N , and (3.4) for n = 1, 2, . . . N − 1.
The set-valued map t → F (t, xN (t), V (xN )(t)) is measurable. Moreover, the

map t→ L(t)(|xN (t)− xN−1(t)|+
∫ t
0 L(s)|xN (s)− xN−1(s)|ds) is measurable.

Since F (t, ·) is a Lipschitz function, we have, for almost all t ∈ I, that the
intersection of F (t, xN (t)) with{
fN (t) + L(t)

(
|xN (t)− xN−1(t)|+

∫ t

0
L(s)|xN (s)− xN−1(s)|ds

)
[−1, 1]

}
is not empty. Theorem 1.14.1 in [1] yields that there exists a measurable
selection fN+1 of F (·, xN (·), V (xN )(·)) such that for almost t ∈ I

|fN+1(t)− fN (t)| ≤ L(t)(|xN (t)− xN−1(t)|+
∫ t

0
L(s)|xN (s)− xN−1(s)|ds).

We define xN+1 as in (3.3) with n = N + 1. Thus fN+1 satisfies (3.4) and
(3.5) and the proof is finished. �

If in Theorem 3.2, we have that y(·) = 0, we obtain the following conse-
quence of Theorem 3.2.
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Corollary 3.3. Assume that Hypothesis 3.1 is satisfied and that there
exists p ∈ L1(I,R+) such that d(0, F (t, 0, V (0)(t))) ≤ p(t) a.e. on I and
G0M0 < 1. Then there exists a solution x of problem (1.1) satisfying for all
t ∈ I

|x(t)| ≤ G0

1−G0M0

∫ 1

0
p(t)dt.

If F does not depend on the last variable, problem (1.1) reduces to

(3.7) −x′′ ∈ F (t, x) a.e. [0, 1], x(0) = 0, x(1) =

∫ 1

0
h(t)x(t)dt.

Hypothesis 3.4. i) F : I ×R → P(R) has nonempty closed values and,
for every x ∈ R, F (·, x) is measurable.

ii) There exists L ∈ L1(I,R+) such that, for almost all t ∈ I, F (t, ·) is
L(t)-Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y|,∀ x, y ∈ R.

iii) d(0, F (t, 0)) ≤ L(t) a.e. I.

In this case, Corollary 3.3 has the following statement.

Proposition 3.5. Assume that Hypothesis 3.4 is satisfied and G0L0 < 1.
Then there exists a solution x of problem (3.7) satisfying for all t ∈ I

(3.8) |x(t)| ≤ G0L0

1−G0L0
.

Remark 3.6. In particular, if F is single-valued, the above Proposition 3.5
yields Theorem 3.3 in [2]. We note that the approach in [2] does not provide
a priori bounds as in (3.8).

We are concerned next with problem (1.2).

Hypothesis 3.7. Hypothesis 3.1 is satisfied, there exists δ > 0 such that

a(t) ≥ δ for any t ∈ (0, 1], and M0 =
∫ 1
0 M(t)dt < 2δ

1+δ−e−δ .

The proof of the next theorem is similar to the proof of Theorem 3.2.

Theorem 3.8. Assume that Hypothesis 3.7 is satisfied and that KM0 < 1.
Let y ∈ AC1(I,R) be such that y′(0) = 0, y(1) = 0 and such that there exists
q ∈ L1(I,R+) with d(−y′′(t)− a(t)y′(t), F (t, y(t), V (y)(t))) ≤ q(t) a.e. on I.

Then there exists a solution x ∈ C(I,R) of problem (1.2) satisfying for all
t ∈ I

|x(t)− y(t)| ≤ K

1−KM0

∫ 1

0
q(t)dt.
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If in Theorem 3.2 the function y(·) = 0, we obtain the following consequence
of Theorem 3.2.

Corollary 3.9. Assume that Hypothesis 3.7 is satisfied, that there exists
q ∈ L1(I,R+) with d(0, F (t, 0, V (0)(t))) ≤ q(t) a.e. on I, and that KM0 < 1.

Then there exists a solution x of problem (1.1) satisfying for all t ∈ I

|x(t)| ≤ K

1−KM0

∫ 1

0
q(t)dt.

If F does not depend on the last variable, problem (1.2) reduces to

(3.9) −x′′ − a(t)x′ ∈ F (t, x) a.e. [0, 1], x′(0) = 0, x(1) = 0.

Hypothesis 3.10. Hypothesis 3.4 is satisfied, there exists δ > 0 such that

a(t) ≥ δ for any t ∈ (0, 1], and L0 =
∫ 1
0 L(t)dt < 2δ

1+δ−e−δ .

In this case, Corollary 3.9 becomes the next proposition.

Proposition 3.11. Assume that Hypothesis 3.10 is satisfied and KL0 < 1.
Then there exists a solution x of problem (3.9) satisfying for all t ∈ I

(3.10) |x(t)| ≤ KL0

1−KL0
.

Remark 3.12. A similar result to Proposition 3.11 is obtained in Theorem
3.1 of [4] using the Covitz-Nadler contraction principle for set-valued maps.
We note that the approach in [4] does not provides a priori bounds as in (3.10).
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