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SEMIREGULAR MODULES RELATIVE TO A PRERADICAL

TAYYEBEH AMOUZEGAR

Abstract. Let τM be a preradical on the category σ[M ] for some module M . A
module N ∈ σ[M ] is called τM -semiregular in σ[M ] if for all n ∈ N , there exists
a decomposition N = A ⊕ B such that A is a projective submodule of nR and
nR ∩ B ⊆ τM (N). We prove that if N ∈ σ[M ] is a projective module, then N
is τM -semiregular if and only if N is finitely τM -supplemented and that τM (N)
is quasi finitely strongly lifting (for short QFSL) if and only if every finitely
generated submodule of N/τM (N) is a direct summand and τM (N) is QFSL.
Furthermore, it is shown that if N ∈ σ[M ] is a τM -semiregular module, then N
is finitely refinable if and only if every submodule of τM (N) is QFSL in N if and
only if every finitely generated submodule of τM (N) is DM in N .
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1. INTRODUCTION

Throughout this paper R will denote an associative ring with identity, M
a unitary right R-module. The notation N ≤⊕ M denotes that N is a direct
summand of M . For a module N , Rad(N), Soc(N), and ZM (N) are the
radical, the socle and the sum of theM -singular submodules ofN , respectively.

Let M ∈ Mod-R. By σ[M ] we mean the full subcategory of Mod-R whose
objects are submodules of M -generated modules.

A functor τM from σ[M ] to itself is called a preradical on σ[M ] if it satisfies
the following properties:

(i) τM (N) is a submodule of N , for every N ∈ σ[M ];
(ii) If f : N ′ → N is a homomorphism in σ[M ], then f(τM (N ′)) ≤ τM (N)

and τM (f) is the restriction of f to τM (N ′).
Throughout the paper τM will be a preradical on σ[M ]. In case M = R,

we write τ(N) instead of τM (N). Note that if K is a summand of N ∈ σ[M ],
then K ∩ τM (N) = τM (K). Rad, Soc, and ZM are preradicals on σ[M ].

Many authors work with various extensions of semiregular modules (see
[2, 3, 9, 11, 14]). In [10], Nicholson and Yousif introduced I-semiregular rings

for an ideal I of a ring R. Alkan and Özcan generalized in [2] this concept to
modules and defined F -semiregular modules for a submodule F of a module N .
In this paper we define τM -semiregular modules in σ[M ] for any preradical τM ,
by taking τM (N) as a fully invariant submodule of N . A module N ∈ σ[M ]
is called τM -semiregular in σ[M ] if for all n ∈ N , there exists a decomposition
N = A⊕B such that A is a projective submodule of nR and nR∩B ⊆ τM (N).
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If σ[M ] =Mod-R, then it is said that N is τ -semiregular. In this note, we
investigate some properties of such modules. We show that if M = A⊕B is a
module over a local ring R, then M is τ -semiregular if and only if both of A
and B are τ -semiregular. We prove that if N ∈ σ[M ] is a projective module,
then N is τM -semiregular if and only if N is finitely τM -supplemented and that
τM (N) is QFSL if and only if every finitely generated submodule of N/τM (N)
is a direct summand and τM (N) is QFSL. It is shown that if N ∈ σ[M ] is a τM -
semiregular module, then N is finitely refinable if and only if every submodule
of τM (N) is QFSL in N if and only if every finitely generated submodule of
τM (N) is DM in N .

2. τM -SEMIREGULAR MODULES

A module N ∈ σ[M ] is called τM -semiregular in σ[M ] if for all n ∈ N , there
exists a decomposition N = A ⊕ B such that A is a projective submodule of
nR and nR ∩B ⊆ τM (N).

Lemma 2.1. The following conditions are equivalent for a module N ∈
σ[M ]:

(1) N is τM -semiregular.
(2) For any finitely generated submodule K of N , there exists a homomor-

phism g from N to K such that g2 = g, gM is projective and (1 − g)K ≤
τM (N).

(3) For any finitely generated submodule K of N , there exists a decompo-
sition N = A ⊕ B such that A is a projective submodule of K and K ∩ B ⊆
τM (N).

(4) For any finitely generated submodule K of N , K can be written as
K = A⊕ S where A is a projective summand of N and S ⊆ τM (N).

Proof. The assertions follow from [2, Theorem 2.3]. �

Proposition 2.1. Every direct summand of a τM -semiregular module in
σ[M ] is τM -semiregular.

Proof. Let N ∈ σ[M ] be a τM -semiregular module and K ≤⊕ N . If k ∈
K, then N has a decomposition N = A ⊕ B such that A is a projective
submodule of kR and kR∩B ⊆ τM (N). It follows that K = A⊕ (K ∩B) and
kR ∩ (K ∩ B) ≤ kR ∩ B ⊆ τM (N). Thus kR ∩ (K ∩ B) ⊆ τM (K). Therefore
K is τM -semiregular. �

Like in [4], a submodule K ⊆ N ∈ σ[M ] is called τM -supplement provided
there exists some U ⊆ N such that N = U +K and U ∩K ⊆ τM (K).

Proposition 2.2. Let N ∈ σ[M ] be a τM -semiregular module. If N =
X+Y such that Y ≤⊕ N and X∩Y is cyclic, then Y contains a τM -supplement
of X in N .
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Proof. Since N is τM -semiregular, and X ∩ Y is cyclic, we have, by Lemma
2.1, X ∩ Y = A⊕B, where A is a projective summand of N and B ⊆ τM (N).
Since Y ≤⊕ N , we have B ⊆ τM (Y ). Write Y = A ⊕ A′. It follows that
X ∩Y = A⊕ (X ∩Y ∩A′) = A⊕ (X ∩A′). Let π : A⊕A′ → A′ be the natural
projection. It follows that X∩A′ = π(A⊕(X∩A′)) = π(X∩Y ) = π(A⊕B) =
π(B) hence X ∩A′ ⊆ τM (A′), and that N = X + Y = X +A+A′ = X +A′.
Therefore A′ is a τM -supplement of X in N that is contained in Y . �

Lemma 2.2. Let N ∈ σ[M ] be a τM -semiregular module. Then every in-
decomposable cyclic submodule C of N is either contained in τM (N) or a
projective summand of N .

Proof. By Lemma 2.1, we have C = A ⊕ B such that A is a projective
summand of N in σ[M ] and B ⊆ τM (N). Since C is indecomposable, we have
either C = A or C = B. �

If M has a largest submodule, i.e. a proper submodule which contains all
other proper submodules, then M is called a local module. A ring is a local
ring if and only if RR (or RR) is a local module.

Corollary 2.1. Let M be a module over a local ring R. If M is τ -
semiregular, then every cyclic submodule is either contained in τ(M) or a
projective summand of M .

Proof. The proof follows from Lemma 2.2, and the fact that every cyclic
module over a local ring is a local module. �

Theorem 2.1. Let M = A ⊕ B be a module over a local ring R. Then M
is τ -semiregular if and only if both of A and B are τ -semiregular.

Proof. Let C be an arbitrary cyclic submodule of M . Then C = (a+ b)R,
where a ∈ A and b ∈ B. Since A and B are τ -semiregular, then we have
nothing to prove whenever a = 0 or b = 0. Now to avoid trivially we may
consider C is not contained in τ(M). Since (a+ b)R ≤ aR + bR, we have aR
or bR is not contained in τ(M). Without loss of generality we may assume aR
is not contained in τ(M), hence it is not contained in τ(A). By Corollary 2.1,
aR is a projective summand of A. Since aR ⊕ bR = (a + b)R + bR, we have,
by [8, 4.47], that there exists K ≤ (a + b)R such that aR ⊕ bR = K ⊕ bR.
It follows that (a + b)R = K ⊕ [(a + b)R ∩ bR]. Since C is a local module,
and C is not contained in bR, we have that C = K. Now we show that K
is a projective summand of M . It is clear that aR ⊕ B = K + B, and so
K ∩B = K ∩ (K⊕ bR)∩B = (aR⊕ bR)∩B ∩K = bR∩K = 0. As aR ≤⊕ A,
we have K ⊕ B = aR ⊕ B ≤⊕ M and so C = K ≤⊕ M . On the other hand,
since aR⊕bR = K⊕bR, aR ∼= K. Thus K is projective. The converse follows
from Proposition 2.1. �

Let M be a module. A preradical τM on σ[M ] is called a left exact preradical
if for any submodule K of N ∈ σ[M ], τM (K) = K ∩ τM (N) (see [13]). For
example, Soc and ZM are left exact preradicals on σ[M ].



4 Semiregular modules relative to a preradical 13

Lemma 2.3. Let τM be a left exact preradical on σ[M ]. Then the following
are equivalent:

(1) Every injective module is τM -semiregular in σ[M ];
(2) Every module is τM -semiregular in σ[M ].

Proof. (1) ⇒ (2) Let N be a module in σ[M ] and K a finitely generated

submodule of N . Since N̂ , the M -injective hull of N , is τM -semiregular by
(1), there is a decomposition K = A⊕B such that A is a projective summand

of N̂ in σ[M ] and B ≤ τM (N̂). Then A is a projective summand of N in σ[M ]

and B ≤ N ∩ τM (N̂) = τM (N). Thus N is τM -semiregular in σ[M ].
(2)⇒ (1) is clear. �

We mention that the proof of Lemma 2.3 is similar to [12, Lemma 3.1].
If M is a Noetherian injective cogenerator in σ[M ], then it is called a Noe-

therian Quasi-Frobenius or QF-module [14].

Corollary 2.2. Let M be a finitely generated self-projective module which
is a selfgenerator in σ[M ]. If M is a Noetherian QF-module, then every module
in σ[M ] is ZM -semiregular in σ[M ].

Proof. Let N ∈ σ[M ] be injective in σ[M ]. Then N is projective in σ[M ]
from [14, 48.14]. By [7, Theorem 3.11], ZM (M) = Rad(M). Since N is M -

generated and projective in σ[M ], N is isomorphic to a summand of M (Λ) for
an index set Λ. This implies that ZM (N) = Rad(N). Again by [14, 48.14], M
is perfect in σ[M ]. Then N is semiperfect in σ[M ] by [14, 43.8]. Hence N is
ZM -semiregular. By Lemma 2.3, every module in σ[M ] is ZM -semiregular in
σ[M ]. �

A module N ∈ σ[M ] is called (finitely) τM -supplemented if each of its
(finitely generated) submodules has a τM -supplement in N . It is clear that a
τM -semiregular module is finitely τM -supplemented.

Proposition 2.3. Let N ∈ σ[M ] be a projective finitely τM -supplemented
module and assume that every τM -supplement submodule is a direct summand
of N . Then N is τM -semiregular.

Proof. Let U be a finitely generated submodule of N . Then there exists a
submodule K of N such that U ∩K ⊆ τM (K) and N = K + U . Hence K is
a direct summand of N and since N = K + U and N is projective, it follows
that N = K ⊕ A such that A ⊆ U . Then U = A ⊕ (K ∩ U) and so N is
τM -semiregular. �

Let U be a submodule of a module N ∈ σ[M ]. U is called (finitely) strongly
lifting inN if for every (finitely generated) submodule A ofN wheneverN/U =
(A+ U)/U ⊕ (B + U)/U , then N has a decomposition N = P ⊕Q such that
P ⊆ A, (A + U)/U = (P + U)/U and (B + U)/U = (Q + U)/U [11]. The
submodule U is called quasi (finitely) strongly lifting in N or briefly QSL
(QFSL) if whenever (A + U)/U is a direct summand of N/U (and A is a



14 T. Amouzegar 5

finitely generated submodule of N), then N has a direct summand P such
that P ⊆ A and P + U = A+ U [1].

Proposition 2.4. Consider the following conditions for a module N ∈
σ[M ].

(1) N is τM -semiregular.
(2) (i) Every finitely generated submodule of N/τM (N) is a direct summand.

(ii) τM (N) is finitely strongly lifting.
Then (1)⇒ (2)(i). If N is projective, then (1)⇒ (2)(ii). If N is projective

and, for every summand K of N , there exists a decomposition N = A⊕B such
that A ⊆ K ∩ τM (N) and B ∩K ∩ τM (N) + L 6= N for any proper submodule
L of N/L singular, then (2)⇒ (1).

Proof. The assertions follow from [2, Theorem 2.12]. �

Proposition 2.5. Let N ∈ σ[M ] be a τM -semiregular module. Then τM (N)
is QFSL in N .

Proof. Let N/τM (N) = [K + τM (N)/τM (N)] ⊕ L/τM (N) for a finitely
generated submodule K of N and a submodule L of N . Since N is τM -
semiregular, there exists a decomposition N = A⊕B where A is a projective
submodule of K and B ∩ K ⊆ τM (N). Thus K = A ⊕ (B ∩ K) and so
A+ τM (N) = K + τM (N). �

Theorem 2.2. Let N ∈ σ[M ] be a projective module. Then the following
statements are equivalent:

(1) N is τM -semiregular;
(2) N is finitely τM -supplemented and τM (N) is QFSL;
(3) Every finitely generated submodule of N/τM (N) is a direct summand

and τM (N) is QFSL.

Proof. The implications (1)⇒ (2)⇒ (3) are clear.
(3) ⇒ (1) Let U be a finitely generated submodule of N . By (3), we have

N/τM (N) = [U+τM (N)/τM (N)]⊕[K/τM (N)] for a submodule K and so there
exists a decomposition N = A⊕B such that A ⊆ U , A+τM (N) = U+τM (N).
Since τM (N) = τM (A)⊕ τM (B), it follows that U ∩B ⊆ (U + τM (N))∩ (B +
τM (N)) = (A+τM (N))∩(B+τM (N)) = [(A+τM (B))∩B]+τM (A) = τM (N).
Hence U ∩B ⊆ τM (N) ∩B ⊆ τM (B) and so N is τM -semiregular. �

In [3], a proper submodule K of N is called DM in N if there exists a direct
summand S of N such that S ⊆ K and N = S +X whenever N = K +X for
a submodule X of N . A module N ∈ σ[M ] is said to be finitely refinable if,
whenever N = A+ B for a finitely generated submodule A and a submodule
B, there exists a direct summand C of N such that C ⊆ A and N = C + B
(see [6]).

Theorem 2.3. Let N ∈ σ[M ] be a module. Consider the following condi-
tions:
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(1) N is finitely refinable.
(2) Every submodule of τM (N) is QFSL in N .
(3) Every finitely generated submodule of τM (N) is DM in N .
Then (1)⇒ (2)⇒ (3). If N is τM -semiregular, then (3)⇒ (1).

Proof. (1)⇒ (2) Let H be a submodule of τM (N) and (L+H)/H⊕K/H =
N/H for a finitely generated submodule L and a submodule K of N . Then
L+K = N and so there exists a direct summand S of N such that S+K = N
and S ⊆ L. Hence (S +H)/H ⊕K/H = (L+H)/H ⊕K/H and so S +H =
L+H.

(2) ⇒ (3) Let K be a finitely generated submodule of τM (N) such that
N = K + L for a submodule L. Then K/(K ∩ L) is a direct summand of
N/(K ∩L). Thus there exists a direct summand S of N such that S ⊆ K and
S + (K ∩ L) = K. Then S + L = N and so K is DM in N .

(3) ⇒ (1) Assume that every finitely generated submodule of τM (N) is
DM in N . Let K be a finitely generated submodule of N and N = K + L
for a submodule L. Then K = A ⊕ (K ∩ B) such that N = A ⊕ B and
K∩B ⊆ τM (B), since N is τM -semiregular. It follows that N = A+(K∩B)+L
and so B = (K ∩B) + [(A+L)∩B]. Since every finitely generated submodule
of τM (B) is DM in B by [3, Lemma 3.2], there exists a direct summand C of
B such that B = [(A+ L) ∩B] + C and C ⊆ K ∩B and so A⊕ C is a direct
summand of N and N = (A+ C) + L. Then K is DM in N . �

Proposition 2.6. Let τ and ρ be preradicals and N ∈ σ[M ] be a τM -
semiregular module such that τM (N) + L = N and τM (N) ∩ L ⊆ ρM (L) for a
finitely generated submodule L of N . Then there is a decomposition N = A⊕B
such that A is ρM -semiregular and B ⊆ τM (N).

Proof. Let N be τM -semiregular. Then there exists a decomposition N =
A⊕B such that A is projective, L = A⊕ (B ∩ L) and B ∩ L ⊆ τM (B) hence
B ∩ L ⊆ τM (N) ∩ L ⊆ ρM (L). Now we show that A is ρM -semiregular and
B ⊆ τM (N). Let K be a finitely generated submodule of A. Since A is a direct
summand of N , it is also τM -semiregular. Thus there exists a decomposition
A = X ⊕ Y such that X is a projective submodule of K and Y ∩K ⊆ τM (Y ).
Also Y ∩ K ⊆ τM (Y ) ∩ L ⊆ ρM (N) ∩ Y = ρM (Y ) because Y is a direct
summand of N . Thus A is ρM -semiregular. Since τM (N) = τM (A) + τM (B),
we have N = τM (N) + L = τM (A) + τM (B) +A+ (B ∩ L) = A⊕ τM (B) and
so τM (B) = B ⊆ τM (N). �

Theorem 2.4. Let R be a local ring. Then the following statements are
equivalent:

(1) RR is τ -semiregular;
(2) Every finitely generated free R-module is τ -semiregular;
(3) Every finitely generated projective R-module is τ -semiregular;
(4) If F is a finitely generated free R-module and N is a finitely generated

fully invariant submodule of F , then F/N is τ -semiregular.
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Proof. (1) ⇒ (2) Let R be τ -semiregular. Then by Theorem 2.1, a finitely
generated free module is τ -semiregular.

(2)⇒ (3)⇒ (1) and (4)⇒ (1) They are clear.
(2) ⇒ (4) Let K/N be a finitely generated submodule of F/N . Then

there exists a decomposition F = A ⊕ B where A is a projective submodule
of K and B ∩ K ⊆ τ(B). Then F/N = (A + N)/N ⊕ (B + N)/N and
(A+N)/N is a projective submodule of K/N . Moreover, (B+N)/N∩K/N =
(B ∩K +N)/N ⊆ τ(B +N/N). Hence F/N is τ -semiregular. �

3. δ(M) AND SOC(M)

According to Zhou [15], a submodule N of a module M is called δ-small in
M , denoted by N �δ M , if N+K 6= M for any proper submodule K of M/K
singular. Moreover, Zhou introduced the following fully invariant submodule
of a module M

δ(M) =
⋂
{N ≤M : M/N is singular simple}.

Then δ(M) is the sum of all δ(M)-small submodules of M by [15, Lemma 1.5].
A pair (P, ρ) is called a projective δ-cover of the module M if P is projective

and ρ is an epimorphism of P onto M with Ker(ρ)�δ P (see [15]).

Lemma 3.1 ([15, Lemma 2.4]). Let P be a projective module and N a sub-
module of P . Then the following are equivalent:

(1) P/N has a projective δ-cover.
(2) P = P1 ⊕ P2 for some P1 and P2 with P1 ⊆ N and P2 ∩N �δ P .

Theorem 3.1. Let R be a local ring and M be a projective R-module. Then
the following are equivalent:

(1) M is δ-semiregular;
(2) For every N ∼= Mn

K for some n ∈ N and finitely generated K ⊆ Mn, N
has a projective δ-cover.

(3) For every finitely generated submodule K of M , M/K has a projective
δ-cover.

Proof. (1) ⇒ (2) Let N ∼= Mn

K for some n ∈ N and finitely generated
K ⊆ Mn. Since M is δ-semiregular, Mn is δ-semiregular by Theorem 2.1.
Thus, by Lemma 3.1, N has a projective δ-cover.

(2)⇒ (3) is clear.
(3)⇒ (1) By Lemma 3.1, M is δ-semiregular. �

Corollary 3.1. Let R be a local ring. Then the following are equivalent:
(1) R is δ-semiregular;
(2) For every finitely generated right ideal I of R, R/I has a projective

δ-cover.
(3) Every finitely presented right R-module has a projective δ-cover.
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Lemma 3.2 (See [12, Lemma 2.22]). Let P be a projective module and N ≤
P . Then the following are equivalent:

(1) P/N has a projective Soc-cover;
(2) P = P1 ⊕ P2 for some P1 and P2 with P1 ≤ N and P2 ∩N ⊆ Soc(P ).

Theorem 3.2. Let R be a local ring and let M be a projective R-module.
Then the following are equivalent:

(1) M is Soc-semiregular;
(2) For every N ∼= Mn

K for some n ∈ N and finitely generated K ⊆ Mn, N
has a projective Soc-cover.

(3) For every finitely generated submodule K of M , M/K has a projective
Soc-cover.

Proof. (1) ⇒ (2) Let N ∼= Mn

K for some n ∈ N and finitely generated
K ⊆ Mn. Since M is Soc-semiregular, Mn is Soc-semiregular by Theorem
2.1. Thus, by Lemma 3.2, N has a projective Soc-cover.

(2)⇒ (3) is clear.
(3)⇒ (1) By Lemma 3.2, M is Soc-semiregular. �

Corollary 3.2. Let R be a local ring. Then the following are equivalent:
(1) R is Soc-semiregular;
(2) For every finitely generated right ideal I of R, R/I has a projective

Soc-cover.
(3) Every finitely presented right R-module has a projective Soc-cover.
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