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ON MULTIFUNCTION SPACE θL(X)

RITU SEN and BISHWAMBHAR ROY

Abstract. In 1982, Christensen [1] studied upper semicontinuous functions and
compact valued set-valued mappings. Following that we have introduced the
notion of θ-upper (θ-lower) semicontinuous functions. In this paper our main
interest of study is θL(X), the collection of all θ-cusco maps from a Urysohn, H-
closed space X to the space R of real numbers. We first define the multifunction
space θL(X) and then prove an important embedding theorem.
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1. INTRODUCTION

Historically, there have been two hyperspace topologies of particular impor-
tance: the Vietoris topology and the Hausdorff metric topology, as considered
by Michael [6] in his fundamental article on hyperspaces. Hausdorff [5] first
defined a metric on the collection of all nonempty closed subsets of X, where
X is a bounded metric space. Another very important and classical hyper-
space topology is the Fell topology introduced by J. M. G. Fell [3]. After that,
much of the work has been done on hyperspace topology. In [4] the authors
have introduced a new hyperspace topology on the collection of all θ-closed
subsets of X.

In this paper our main interest of study is θL(X), the collection of all θ-
cusco maps from a Urysohn, H-closed space X to the space R of real numbers.
θL(X) can be considered as a subset of θ(X × R) of all nonempty θ-closed
subsets of X × R, by identifying each θ-cusco map with its graph. So θL(X)
can inherit the hyperspace topologies from θ(X × R). Here we first define
the multifunction space θL(X) and investigate its relationship with the real-
valued θ-semicontinuous functions. We introduce some hyperspace topologies
and then prove an important embedding theorem that shows that θ(X) can
be considered as a subspace of θL(X) with these hyperspace topologies.

2. THE SPACE θL(X) AND θ-SEMICONTINUOUS FUNCTIONS

In this section we study the basic notions of the space θL(X) of multifunc-
tions on a topological space X. We then examine the relationship between the
space θL(X) and the real-valued θ-semicontinuous functions.
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Definition 1. Let X and Y be nonempty sets. A set-valued mapping or
multifunction from X to Y is a mapping that assigns to each element of X, a
(possibly empty) subset of Y . If T is a set-valued mapping from X to Y , then
its graph is G(T ) = {(x, y) ∈ X × Y : y ∈ T (x)}.

Also, if F is a subset of X × Y and x ∈ X, then define F (x) = {y ∈ Y :
(x, y) ∈ F}. To each subset F of X × Y , a set-valued mapping from X to Y
is defined which assigns F (x) to each point x ∈ X. Then F is the graph of a
set-valued mapping. Thus, each subset of X × Y is viewed as a multifunction
and every multifunction is viewed as a subset of X × Y by identifying it with
its graph.

Definition 2. Let X and Y be two topological spaces and let T be a set-
valued mapping from X to Y . Then T is said to be θ-upper semicontinuous
(θ-usc) at x ∈ X, if whenever V is an open subset of Y containing T (x), then
V contains T (z) for each z ∈ clU , where U is a neighbourhood of x. T is said
to be θ-upper semicontinuous on X if it is θ-usc at each point x ∈ X.

Definition 3 ([8]). A T2 space X is called H-closed if any open cover of
X by means of open sets in X has a finite proximate subcover i.e., a finite
collection whose union is dense in X.

A set A ⊆ X is called an H-set if any open cover {Uα : α ∈ Λ} of A
by open sets of X has a finite subfamily {Uαi : i = 1, 2, ...., n} such that
A ⊆

⋃n
i=1 clUαi .

Definition 4. A multifunction T from X to Y is said to be θ-usco on X
if T is a θ-usc map such that T (x) is a nonempty H-set in Y for each x ∈ X.
T is said to be θ-cusc on X if T is a θ-usc map such that T (x) is a nonempty

θ-connected subset of Y for each x ∈ X (a subset A of X is called θ-connected
[7] if it is connected in (X, clθ)).
T is said to be θ-cusco on X if T is both θ-cusc and θ-usco.

The family of all θ-cusco maps from a Urysohn H-closed space X to the
space R of real numbers is denoted by θL(X).

Definition 5. Let X be a Urysohn space. A subset F of X × R is said
to be θ-locally bounded at x ∈ X if there exist some positive b ∈ R and a
neighbourhood U of x such that F (x) ⊆ [−b, b], for all z ∈ clU . F is said to
be θ-locally bounded on X if it is θ-locally bounded at each x ∈ X.

Definition 6 ([8]). A point x ∈ X is said to be a θ-contact point of a set
A ⊆ X if for every neighbourhood U of x, we get clU ∩A 6= ∅.

The set of all θ-contact points of a set A is called the θ-closure of A, and
we denote this set by clθA. A set A ⊆ X is called θ-closed if A = clθA. A set
A is called θ-open if X \A is θ-closed.

The collection of all θ-open sets in X forms a topology τθ on X which is
coarser than the original topology of X. We shall denote θ(X) = {A ⊆ X : A
is nonempty θ-closed}.
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Theorem 1. [2] In an H-closed Urysohn space, every H-set is θ-closed and
every θ-closed set is an H-set.

Proposition 1. Let X be a Urysohn, H-closed space. A subset F of X×R
is the graph of a θ-usco map if and only if F is θ-closed and θ-locally bounded
with F (x) nonempty for each x ∈ X.

Proof. First suppose that F is the graph of a θ-usco map. Let (x, y) ∈ clθF .
If possible, let(x, y) 6∈ F i.e., y 6∈ F (x). Since X is H-closed, Urysohn and
F (x) is an H-set, it is θ-closed. Thus there exist some open set V containing
F (x) and W containing y such that V ∩ clW = ∅. Since F is θ-usco, there
exists a neighbourhood U of x such that F (z) ⊆ V , for all z ∈ clU . Thus
(clU × clW ) ∩ F = ∅ ⇒ cl (U ×W ) ∩ F = ∅ which contradicts the fact that
(x, y) ∈ clθF . Hence (x, y) ∈ F and so F is θ-closed. Also, since for each
x ∈ X, F (x) is an H-set of R and F is θ-usco, F is θ-locally bounded on X.

Conversely, suppose that F is a θ-closed, θ-locally bounded subset of X×R
with F (x) nonempty for each x ∈ X. We have to prove that F is the graph
of a θ-usco map at each x ∈ X. If not, then F is not the graph of a θ-usco
map at some x ∈ X. Since F is θ-locally bounded at x, there exist some
positive b ∈ R and some neighbourhood Ux of x such that F (z) ⊆ [−b, b], for
all z ∈ clUx. Also, since F is not θ-usco at x, there exists some open set V of
R such that F (x) ⊆ V ⊆ [−b, b] and for every neighbourhood U of x contained
in Ux, there exists some xU ∈ clU with yU ∈ F (xU ) \ V . Then the net {yU}
is contained in [−b, b] \ V and so has a θ-cluster point y in [−b, b] \ V . Hence
{(xU , yU )} is a net in F having a θ-cluster point (x, y) with (x, y) 6∈ F . This
contradicts the fact that F is θ-closed and so F is the graph of a θ-usco map.
Since for each x ∈ X, F (x) is θ-closed, F (x) is an H-set (since R is Urysohn,
every θ-closed set is an H-set). Hence F is the graph of a θ-usco map. �

Corollary 1. Let X be a Urysohn, H-closed space. The set θL(X) is the
same as the set of all θ-closed, θ-locally bounded subsets A of X ×R such that
A(x) is an interval in R.

We next study some basic properties of real-valued θ-semicontinuous func-
tions and investigate their relationship with the space θL(X).

Definition 7. A real-valued function defined on a topological space X is
called θ-lower (respectively, θ-upper) semicontinuous if for every x ∈ X and
every real number r satisfying the inequality f(x) > r (respectively, f(x) < r),
there exists a neighbourhood U of x in X such that f(z) > r (respectively,
f(z) < r), for all z ∈ clU .

Definition 8. A topological space X is said to be countably H-closed if
for any countable θ-open cover {Un : n ∈ N} of X, there exists a finite subcol-
lection {Ui : i = 1, 2, ..., p} such that X = cl (

⋃p
i=1 Ui).
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Proposition 2. A topological space X is countably H-closed if and only if
every θ-lower (respectively, θ-upper) semicontinuous function on X is bounded
below (respectively, bounded above).

Proof. We prove the result for θ-lower semicontinuous functions. The case
of θ-upper semicontinuous functions can be done similarly. First let X be
countably H-closed and f be a θ-lower semicontinuous function. Now, by θ-
lower semicontinuity of f , U = {f−1(−n,∞) : n ∈ N} is a countable θ-open
cover of X and since X is countably H-closed, there exists m ∈ N such that
{f−1[−i,∞) : i = 1, 2, ...,m} covers X. Thus, for each x ∈ X, f(x) ≥ −m
and hence f is bounded below.

Conversely, let every θ-lower semicontinuous function on X be bounded
below. We now prove that X is countably H-closed. Let {Un : n ∈ N} be a
countable θ-open cover of X. Without loss of generality, let us assume that
Un ⊆ Un+1 for each n ∈ N. Let U0 = ∅. Define a function f : X → R by
f(x) = −n if x ∈ clUn \ clUn−1. Then f is clearly a θ-lower semicontinuous
function, and hence it is bounded below. Therefore there exists m ∈ N such
that for each n ≥ m, clUn = clUm = X. Hence X is countably H-closed. �

Definition 9. Let A ∈ θL(X). The real-valued functions a1 and a2 on
X are said to be the θ-lower and θ-upper boundaries for A respectively, if for
each x ∈ X, a1(x) = min{t : t ∈ A(x)} and a2(x) = max{t : t ∈ A(x)}.

Lemma 1. The real-valued functions a1 and a2 defined on X are the θ-lower
and θ-upper boundaries, respectively, for an A ∈ θL(X) if and only if a1 ≤ a2
and a1 and a2 are θ-lower and θ-upper semicontinuous, respectively.

Proof. Let a1 and a2 be the θ-lower and θ-upper boundaries for an A ∈
θL(X). Let x ∈ X. We shall show that a2 is θ-upper semicontinuous at
x. The argument that a1 is θ-lower semicontinuous at x is similar. Since
A ∈ θL(X) is θ-locally bounded at x, there exist a neighbourhood U ′ of x and
a positive b ∈ R such that for every x′ ∈ clU ′, A(x′) ⊆ [−b, b]. If possible, let
a2 be not θ-upper semicontinuous at x. Then there exists ε > 0 such that for
every neighbourhood U of x contained in U ′, there exists some xU ∈ clU with
a2(xU ) ≥ a2(x) + ε. Then the net {(a2(xU )} is contained in [a2(x) + ε, b] and
so it has a θ-cluster point t ≥ a2(x) + ε. Then (x, t) is a θ-accumulation point
of A, so that t ∈ A(x) i.e., t ≤ a2(x), which is a contradiction. Hence a2 is
θ-upper semicontinuous at x.

Conversely, let a1 and a2 be respectively θ-lower and θ-upper semicontinuous
functions such that a1 ≤ a2. Define A = {(x, t) ∈ X ×R : a1(x) ≤ t ≤ a2(x)}.
We shall first show that A is θ-locally bounded. Let x ∈ X. Then by the
definitions of θ-lower and θ-upper semicontinuity, there exists a neighbourhood
U of x such that for every x′ ∈ clU , a1(x)− 1 < a1(x

′) ≤ a2(x
′) < a2(x) + 1.

Hence A is θ-locally bounded at x. Next we show that A is θ-closed. Let
{(xi, yi)} be a net in A θ-converging to (x, y) in X×R. If (x, y) 6∈ A, then either
y < a1(x) or y > a2(x), say the latter. Let s ∈ R be such that a2(x) < s < y.
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Then x has a neighbourhood U such that for every x′ ∈ clU , a2(x
′) < s. But

as {xi} is cofinally in clU , y ≤ s, a contradiction. Therefore A is θ-closed and
so A ∈ θL(X) having a1 and a2 as its θ-lower and θ-upper boundaries. �

Definition 10. By M(X), we denote the set of all pairs (f, g) where f, g
are real-valued functions defined on X such that for each x ∈ X, f(x) < g(x).
For (f, g) ∈M(X), we define the set

W (f, g) = {(x, t) ∈ X × R : f(x) < t < g(x)}.

Lemma 2. Let (f, g) ∈ M(X). Then f is θ-upper semicontinuous and g is
θ-lower semicontinuous if and only if W (f, g) is a θ-open subset of X × R.

Proof. Similar to that of Lemma 1. �

Proposition 3. For each real-valued continuous function f defined on X,
and a θ-open set W of X×R containing f , there exist a θ-upper semicontinuous
function g and a θ-lower semicontinuous function h on X such that f ⊆
W (g, h) ⊆W .

Proof. For each x ∈ X, since (x, f(x)) ∈W , we can find an open subset Ux
of X and a positive rx < 1 such that (x, f(x)) ∈ clUx× [f(x)−rx, f(x)+rx] ⊆
W and f(clUx) ⊆ [f(x) − rx, f(x) + rx]. Define W0 =

⋃
{clUx × [f(x) −

rx, f(x) + rx] : x ∈ X}. Then W0 is a θ-open subset of X × R such that
for each x ∈ X, W0(x) is an interval in R. Also, for every x ∈ X, W0(x) =
∪{[f(z) − rz, f(z) + rz] : z ∈ X and x ∈ clUz} ⊆ [f(x) − 2, f(x) + 2], which
shows that W0(x) is bounded for each x ∈ X. Let g and h denote respectively
the θ-lower and θ-upper boundaries of W0 i.e., for each x ∈ X, g(x) = inf
W0(x) and h(x) = sup W0(x). Then W0 = W (g, h) and so by Lemma 2, g is
θ-upper semicontinuous and h is θ-lower semicontinuous on X. �

3. EMBEDDING THEOREM IN HYPERSPACE TOPOLOGY

In this section we first introduce new hyperspace topologies on the collection
θ(X) of all nonempty θ-closed subsets of X. We then give a very important
embedding theorem.

Definition 11. Let (X, τ) be a topological space. For U ⊆ X, define
U+ = {A ∈ θ(X) : A ⊆ U} and U− = {A ∈ θ(X) : A ∩ U 6= ∅}. Then:

(i) The sets of the form V −1 ∩ V
−
2 ∩ ... ∩ V −n ∩ V

+
0 where V1, V2,...,Vn are

open sets and V0 is a θ-open set, is a base for some topology τV on θ(X).
(ii) The sets of the form V −1 ∩V

−
2 ∩ ...∩V −n ∩V

+
0 where V1, V2,...,Vn are open

sets and V0 is a θ-open set with X \ V0 an H-set, is a base for some topology
τF on θ(X) [4].

(iii) The topology τV − on θ(X) is generated by a subbase consisting of
all sets of the form G− where G is open in X. Similarly, the topology τV +

(respectively, co-H-set topology τH) is generated by all sets of the form V +,
where V is θ-open in X (respectively, whose complement is an H-set in X).
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The supremum τV − ∨ τV + (respectively, τV − ∨ τH) is the topology τV (re-
spectively, τF ) on θ(X).

Note that since θL(X) ⊆ θ(X × R), θL(X) can inherit each of the afore-
mentioned hyperspace topologies from θ(X × R).

Theorem 2. The following statements hold:

(i) The space θτV + (X) is embeddable in θLτV + (X).
(ii) The space θτV − (X) is embeddable in θLτV − (X).
(iii) The space θτV (X) is embeddable in θLτV (X).
(iv) The space (θ(X) ∪ {∅})τH is embeddable in θLτH (X).
(v) The space θτH (X) is embeddable in θLτH (X).
(vi) The space θτF (X) is embeddable in θLτF (X).
(vii) The space (θ(X) ∪ {∅})τF is embeddable in θLτF (X).

Proof. For each E ∈ θ(X) ∪ {∅}, define

FE = (X × {0}) ∪ (E × [0, 1])

and the sets F = {FE : E ∈ θ(X)} and F∅ = {FE : E ∈ θ(X)∪ {∅}}. Then F
and F∅ are contained in θL(X). Define Φ : θ(X)∪{∅} → θL(X) by Φ(E) = FE
for each E ∈ θ(X)∪ {∅} and denote the restriction of Φ to θ(X) by Φ0. Then
Φ and Φ0 are one-to-one.

(i) We prove that Φ0 is a homeomorphism from θτV + (X) to θLτV + (X). Let

A ∈ θ(X) and let W+ be an open neighbourhood of FA in θLτV + (X), where W
is θ-open in X×R. Since [0, 1] is an H-set, there exists an open subset U of X
such that A ⊆ U and U × [0, 1] ⊆W . Now let B ∈ U+∩ θ(X). Then Φ0(B) =
FB ∈W+. Hence Φ0 is continuous on θτV + (X). Next let A ∈ θ(X) and U be

a θ-open subset of X such that A ∈ U+. Then W = (X× (−1
2 ,

1
2))∪ (U×R) is

a θ-open set in R such that FA ∈W+ and W+ ∩Φ0(θ(X)) ⊆ Φ0(U
+). Hence

Φ0 is a homeomorphism from θτV + (X) to θLτV + (X).
(ii) We show that Φ0 is a homeomorphism from θτV − (X) to θLτV − (X). Let

A ∈ θ(X) and W− be an open neighbourhood of FA in θLτV − (X), where W

is open in X × R. Let (x, t) ∈ W ∩ FA. If t = 0, then Φ0(θ(X)) ⊆ W−. So
let t 6= 0 and choose an open neighbourhood U of x and an open interval V
containing t such that (x, t) ∈ U × V ⊆ W . Then if B ∈ U− ∩ θ(X), then
FB ∈ W−. Similarly, if U− is an open neighbourhood of A ∈ θ(X), then
(U × (12 , 2))− ∩ Φ0(θ(X)) ⊆ Φ0(U

−). Hence Φ0 is a homeomorphism from
θτV − (X) to θLτV − (X).

(iii) It follows from (i) and (ii).
(iv) We show that Φ is a homeomorphism from (θ(X)∪{∅})τH to θLτH (X).

Let E ∈ θ(X) ∪ {∅} and let K be an H-set of X × R such that FE ∩K = ∅.
Without loss of generality, let K ⊆ X × [0, 1]. Then X(K) = {x ∈ X : (x, t) ∈
K for t ∈ [0, 1]} is an H-set.
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Let A ∈ (X \ X(K))+. Then by definition of X(K), for any x ∈ A and
t ∈ [0, 1], (x, t) 6∈ K. Again since FE ∩ K = ∅, (X × {0}) ∩ K = ∅. Hence
FA ∈ (Kc)+ (whereKc denotes the complement ofK) and thus Φ is continuous
on (θ(X)∪{∅})τH . To show that Φ is open, let K0 be an H-set in X and let E ∈
(X \K0)

+∩θ(X). Let K = K0×{1}. Then FE ∈ (Kc)+∩F∅ ⊆ Φ((X \K0)
+).

Hence Φ is a homeomorphism from (θ(X) ∪ {∅})τH to θLτH (X).
(v) It follows from (iv) above.
(vi) It follows from (ii) and (v).
(vii) We prove that Φ is a homeomorphism from (θ(X)∪{∅})τF to θLτF (X).

Note that for ∅, any basic open neighbourhood G+∩G−∩F∅ = G+∩F∅, where
G is a subset of X ×R with Gc an H-set and F∅ ⊆ G and G is a finite family
of open subsets of X × R such that F∅ ∈ G−. Then arguing in the same way
as in (iv), Φ becomes continuous. Also, by (ii) and (iv), Φ is continuous at
each E ∈ θ(X). In a similar way, Φ is an open map from (θ(X) ∪ {∅})τF to
θLτF (X). �
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[8] Veličko, N. V., H-closed topological spaces, Mat. Sb., 70 (1966), 98–112.

Received November 8, 2014

Accepted April 8, 2015

S. A. Jaipuria College

Department of Mathematics

10, Raja Naba Krishna Street

Kolkata-700 005, India

E-mail: ritu sen29@yahoo.co.in

Women’s Christian College

Department of Mathematics

6, Greek Church Row

Kolkata-700 026, India

E-mail: bishwambhar roy@yahoo.co.in


