THE SECOND HANKEL DETERMINANT $H_{2}(n)$ FOR ODD STARLIKE AND CONVEX FUNCTIONS

TOSHIO HAYAMI and SHIGEYOSHI OWA

Abstract

For odd starlike and convex functions f defined on the open unit disk \mathbb{U}, the upper bounds of the functional $\left|a_{n} a_{n+2}-a_{n+1}^{2}\right|$, defined by using the second Hankel determinant $H_{2}(n)$ due to J. W. Noonan and D. K. Thomas (see [4]), are studied. Furthermore, applying the second Hankel determinant $H_{2}(n)$, a new operator \mathcal{H} is introduced and the properties of new functions $\mathcal{H} f$ are discussed. MSC 2010. 34C40. Key words. Hankel determinant, odd analytic function, odd starlike function, odd convex function.

1. INTRODUCTION AND PRELIMINARIES

Let \mathcal{A} be the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic on the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$.
Furthermore, let \mathcal{P} denote the class of functions p of the form

$$
\begin{equation*}
p(z)=1+\sum_{k=1}^{\infty} c_{k} z^{k} \tag{2}
\end{equation*}
$$

which are analytic on \mathbb{U} and satisfy

$$
\operatorname{Re} p(z)>0 \quad(z \in \mathbb{U})
$$

Every element $p \in \mathcal{P}$ is called a Carathéodory function (cf. [1]).
If $f \in \mathcal{A}$ satisfies the following inequality

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U}) \tag{3}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$, then f is said to be starlike of order α in \mathbb{U}. We denote by $\mathcal{S}^{*}(\alpha)$ the subclass of \mathcal{A} consisting of all functions f which are starlike of order α in \mathbb{U}.

Similarly, we say that f is a member of the class $\mathcal{K}(\alpha)$ of convex functions of order α in \mathbb{U} if $f \in \mathcal{A}$ satisfies the following inequality

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathbb{U}) \tag{4}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$.

Also, let $\mathcal{A}_{\text {odd }} \subset \mathcal{A}$ be the class of odd functions f normalized by

$$
\begin{equation*}
f(z)=z+\sum_{m=1}^{\infty} a_{2 m+1} z^{2 m+1} \tag{5}
\end{equation*}
$$

which are analytic on \mathbb{U}. Moreover, we define the following subclasses of $\mathcal{A}_{\text {odd }}$

$$
\mathcal{S}_{\text {odd }}^{*}(\alpha)=\mathcal{A}_{\text {odd }} \cap \mathcal{S}^{*}(\alpha), \quad \mathcal{K}_{\text {odd }}(\alpha)=\mathcal{A}_{\text {odd }} \cap \mathcal{K}(\alpha)
$$

A function $f \in \mathcal{S}_{\text {odd }}^{*}(\alpha)$ is called an odd starlike function of order α, while an element $f \in \mathcal{K}_{\text {odd }}(\alpha)$ is a convex function of order α.

For simplicity we write

$$
\mathcal{S}_{\text {odd }}^{*}=\mathcal{S}_{\text {odd }}^{*}(0) \quad \text { and } \quad \mathcal{K}_{\text {odd }}=\mathcal{K}_{\text {odd }}(0)
$$

Remark 1. Let $f \in \mathcal{A}_{\text {odd }}$. Then

$$
f(z) \in \mathcal{K}_{\text {odd }}(\alpha) \quad \text { if and only if } \quad z f^{\prime}(z) \in \mathcal{S}_{\text {odd }}^{*}(\alpha)
$$

and

$$
f(z) \in \mathcal{S}_{\text {odd }}^{*}(\alpha) \quad \text { if and only if } \quad \int_{0}^{z} \frac{f(\zeta)}{\zeta} \mathrm{d} \zeta \in \mathcal{K}_{\text {odd }}(\alpha)
$$

Example 2. The function f defined by

$$
f(z)=\frac{z}{\left(1-z^{2}\right)^{1-\alpha}}
$$

belongs to $\mathcal{S}_{\text {odd }}^{*}(\alpha)$, while the function g given by

$$
g(z)=z_{2} F_{1}\left(\frac{1}{2}, 1-\alpha ; \frac{3}{2} ; z^{2}\right)
$$

where ${ }_{2} F_{1}(a, b ; c ; z)$ represents the hypergeometric function, lies in $\mathcal{K}_{\text {odd }}(\alpha)$.
In [4], Noonan and Thomas introduced the q-th Hankel determinant as

$$
H_{q}(n)=\operatorname{det}\left(\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2}
\end{array}\right) \quad(n, q \in \mathbb{N}=\{1,2,3, \cdots\})
$$

This determinant has been discussed by several authors. For example, it is known that the Fekete and Szegö functional $\left|a_{3}-a_{2}^{2}\right|$ is equal to $\left|H_{2}(1)\right|$ (see, [2]), and that the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ is equivalent to $\left|H_{2}(2)\right|$.

Janteng, Halim, and Darus showed in [3] the following theorems.
Theorem 3. Let $f \in \mathcal{S}^{*}$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1
$$

Equality is attained for functions of the following form

$$
f(z)=\frac{z}{(1-z)^{2}}=z+2 z^{2}+3 z^{3}+4 z^{4}+\cdots
$$

and

$$
f(z)=\frac{z}{1-z^{2}}=z+z^{3}+z^{5}+z^{7}+\cdots
$$

Theorem 4. Let $f \in \mathcal{K}$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{8}
$$

The present paper is motivated by these results and the purpose of this investigation is to find upper bounds of the functional $\left|a_{n} a_{n+2}-a_{n+1}^{2}\right|=$ $\left|H_{2}(n)\right|$, given by the second Hankel determinant, for functions f in the class $\mathcal{S}_{\text {odd }}^{*}(\alpha)$ and $\mathcal{K}_{\text {odd }}(\alpha)$, respectively.

2. PROPERTIES OF THE CLASSES $\mathcal{S}_{\mathrm{ODD}}^{*}(\alpha)$ AND $\mathcal{K}_{\mathrm{ODD}}(\alpha)$

In this section, we derive upper bounds of $\left|a_{2 m+1}\right|$ for functions f in $\mathcal{S}_{\text {odd }}^{*}(\alpha)$ and $\mathcal{K}_{\text {odd }}(\alpha)$. We apply the following lemmas to obtain our results.

Lemma 5. The equality

$$
1+\sum_{l=1}^{m} \frac{\prod_{j=1}^{l}(j-\alpha)}{l!}=\frac{\prod_{j=2}^{m+1}(j-\alpha)}{m!}
$$

holds for any $m(m=1,2,3, \ldots)$.
Proof. For the case $m=1$, noting that $1+\prod_{j=1}^{1}(j-\alpha)=\prod_{j=2}^{2}(j-\alpha)=2-\alpha$, the assertion of the lemma holds true. Next, we suppose that the equality

$$
1+\sum_{l=1}^{M} \frac{\prod_{j=1}^{l}(j-\alpha)}{l!}=\frac{\prod_{j=2}^{M+1}(j-\alpha)}{M!}
$$

is valid for some $M(M \geq 1)$. Then

$$
\begin{aligned}
1+\sum_{l=1}^{M+1} \frac{\prod_{j=1}^{l}(j-\alpha)}{l!} & =1+\sum_{l=1}^{M} \frac{\prod_{j=1}^{l}(j-\alpha)}{l!}+\frac{\prod_{j=1}^{M+1}(j-\alpha)}{(M+1)!} \\
& =\frac{\prod_{j=2}^{M+1}(j-\alpha) \prod_{j=1}^{M+1}(j-\alpha)}{M!}+\frac{\prod_{j}}{(M+1)!} \\
& =\frac{\prod_{j=2}^{M+1}(j-\alpha)}{M!}\left(1+\frac{1-\alpha}{M+1}\right)=\frac{\prod_{j=2}^{M+2}(j-\alpha)}{(M+1)!}
\end{aligned}
$$

The statement follows now by mathematical induction.

The following result is fundamental for Carathéodory functions.
Lemma 6. (cf. [1], [5]) If a function p, defined by $p(z)=1+\sum_{k=1}^{\infty} c_{k} z^{k}$, belongs to \mathcal{P}, then $\left|c_{k}\right| \leq 2$ for each $k(k=1,2,3, \ldots)$. Equality holds for

$$
p(z)=\frac{1+z}{1-z}=1+\sum_{k=1}^{\infty} 2 z^{k} .
$$

From this lemma, we deduce immediately the following result.
Lemma 7. If an even function $p(z)=1+\sum_{k=1}^{\infty} c_{2 k} z^{2 k}$ satisfies

$$
\operatorname{Re} p(z)>\alpha \quad(z \in \mathbb{U})
$$

for some $\alpha(0 \leq \alpha<1)$, then $\left|c_{2 k}\right| \leq 2(1-\alpha)$ for each $k(k=1,2,3, \ldots)$, with equality for

$$
p(z)=\frac{1+(1-2 \alpha) z^{2}}{1-z^{2}}=1+\sum_{k=1}^{\infty} 2(1-\alpha) z^{2 k} .
$$

Proof. Put $q(z)=\frac{p(z)-\alpha}{1-\alpha}$. Then $q(z)=1+\sum_{k=1}^{\infty} \frac{c_{2 k}}{1-\alpha} z^{2 k}$, hence $q \in \mathcal{P}$. Thus, it follows from Lemma 6 that

$$
\left|\frac{c_{2 k}}{1-\alpha}\right| \leq 2 \quad(k=1,2,3, \ldots)
$$

or, equivalently,

$$
\left|c_{2 k}\right| \leq 2(1-\alpha) \quad(k=1,2,3, \ldots)
$$

From these, we derive now the following important preliminary results.
Theorem 8. Let $f \in \mathcal{S}_{\text {odd }}^{*}(\alpha)$. Then

$$
\left|a_{2 m+1}\right| \leq \frac{\prod_{j=1}^{m}(j-\alpha)}{m!} \quad(m=1,2,3, \ldots),
$$

with equality for

$$
f(z)=\frac{z}{\left(1-z^{2}\right)^{1-\alpha}}=z+\sum_{m=1}^{\infty} \frac{\prod_{j=1}^{m}(j-\alpha)}{m!} z^{2 m+1} .
$$

Proof. Since $f \in \mathcal{S}_{\text {odd }}^{*}(\alpha)$, there is a function p of the form

$$
p(z)=1+\sum_{k=1}^{\infty} c_{2 k} z^{2 k}
$$

satisfying $\operatorname{Re} p(z)>\alpha(z \in \mathbb{U})$ and such that

$$
\begin{equation*}
f^{\prime}(z)=\frac{f(z)}{z} p(z) . \tag{6}
\end{equation*}
$$

Equation (6) is equivalent to

$$
\begin{equation*}
1+\sum_{m=1}^{\infty}(2 m+1) a_{2 m+1} z^{2 m}=1+\sum_{m=1}^{\infty}\left(\sum_{l=0}^{m} a_{2 l+1} c_{2(m-l)}\right) z^{2 m}, \tag{7}
\end{equation*}
$$

where $a_{1}=c_{0}=1$. Equalizing the coefficient of $z^{2 m}$ on both sides of the above equality for each m, and applying Lemma 7, we obtain the following inequality

$$
\begin{aligned}
\left|a_{2 m+1}\right| & =\frac{1}{2 m}\left|\sum_{l=0}^{m-1} a_{2 l+1} c_{2(m-l)}\right| \leq \frac{1}{2 m} \sum_{l=0}^{m-1}\left|a_{2 l+1}\right| \cdot\left|c_{2(m-l)}\right| \\
& \leq \frac{1-\alpha}{m} \sum_{l=0}^{m-1}\left|a_{2 l+1}\right| .
\end{aligned}
$$

Since $a_{1}=1$, we get that $\left|a_{3}\right| \leq(1-\alpha)\left|a_{1}\right|=1-\alpha$,

$$
\left|a_{5}\right| \leq \frac{1-\alpha}{2}\left(\left|a_{1}\right|+\left|a_{3}\right|\right) \leq \frac{1-\alpha}{2}(1+(1-\alpha))=\frac{(1-\alpha)(2-\alpha)}{2},
$$

and

$$
\begin{aligned}
\left|a_{7}\right| & \leq \frac{1-\alpha}{3}\left(\left|a_{1}\right|+\left|a_{3}\right|+\left|a_{5}\right|\right) \\
& \leq \frac{1-\alpha}{3}\left(1+(1-\alpha)+\frac{(1-\alpha)(2-\alpha)}{2}\right)=\frac{(1-\alpha)(2-\alpha)(3-\alpha)}{6} .
\end{aligned}
$$

Therefore, we expect that $\left|a_{2 m+1}\right| \leq \frac{\prod_{j=1}^{m}(j-\alpha)}{m!} \quad(m=1,2,3, \ldots)$. Actually, supposing $\left|a_{2 m+1}\right| \leq \frac{\prod_{j=1}^{m}(j-\alpha)}{m!} \quad(m=1,2,3, \ldots, M)$ and using Lemma 5 , we derive

$$
\begin{aligned}
\left|a_{2(M+1)+1}\right| & \leq \frac{1-\alpha}{M+1} \sum_{l=0}^{M}\left|a_{2 l+1}\right| \\
& \leq \frac{1-\alpha}{M+1}\left\{1+\sum_{l=1}^{M} \frac{\prod_{j=1}^{l}(j-\alpha)}{l!}\right\} \\
& =\frac{1-\alpha}{M+1} \frac{\prod_{j=2}^{M+1}(j-\alpha)}{M!}=\frac{\prod_{j=1}^{M+1}(j-\alpha)}{(M+1)!} .
\end{aligned}
$$

The inequality to be proved follows now by mathematical induction. Equality is attained for $f \in \mathcal{S}_{\text {odd }}^{*}(\alpha)$ given by

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{1+(1-2 \alpha) z^{2}}{1-z^{2}}
$$

Taking $\alpha=0$ in Theorem 8 , we get the following result.
Corollary 9. Let $f \in \mathcal{S}_{\text {odd }}^{*}$. Then

$$
\left|a_{2 m+1}\right| \leq 1 \quad(m=1,2,3, \ldots)
$$

with equality for

$$
f(z)=\frac{z}{1-z^{2}}=z+\sum_{m=1}^{\infty} z^{2 m+1}
$$

We can obtain similarly upper bounds of $\left|a_{2 m+1}\right|$ for odd convex functions f.

Theorem 10. Let $f \in \mathcal{K}_{\text {odd }}(\alpha)$. Then

$$
\left|a_{2 m+1}\right| \leq \frac{\prod_{j=1}^{m}(j-\alpha)}{(2 m+1) m!} \quad(m=1,2,3, \ldots)
$$

with equality for

$$
f(z)=z_{2} F_{1}\left(\frac{1}{2}, 1-\alpha ; \frac{3}{2} ; z^{2}\right)=z+\sum_{m=1}^{\infty} \frac{\prod_{j=1}^{m}(j-\alpha)}{(2 m+1) m!} z^{2 m+1} .
$$

Proof. By Remark 1, it is clear that if $f \in \mathcal{K}_{\text {odd }}(\alpha)$, then

$$
(2 m+1)\left|a_{2 m+1}\right| \leq \frac{\prod_{j=1}^{m}(j-\alpha)}{m!}
$$

or, equivalently,

$$
\left|a_{2 m+1}\right| \leq \frac{\prod_{j=1}^{m}(j-\alpha)}{(2 m+1) m!}
$$

For $\alpha=0$ in Theorem 10 we obtain the next result.
Corollary 11. Let $f \in \mathcal{K}_{\text {odd }}$. Then

$$
\left|a_{2 m+1}\right| \leq \frac{1}{2 m+1} \quad(m=1,2,3, \ldots)
$$

with equality for

$$
f(z)=\frac{1}{2} \log \left(\frac{1+z}{1-z}\right)=z+\sum_{m=1}^{\infty} \frac{1}{2 m+1} z^{2 m+1}
$$

3. MAIN RESULTS

Applying Theorem 8 and Theorem 10, we get upper bounds for the second Hankel determinant $\left|H_{2}(n)\right|=\left|a_{n} a_{n+2}-a_{n+1}^{2}\right|$ for functions in $\mathcal{S}_{\text {odd }}^{*}(\alpha)$ and $\mathcal{K}_{\text {odd }}(\alpha)$.

Theorem 12. Let $f \in \mathcal{S}_{\text {odd }}^{*}(\alpha)$. Then

$$
\left|H_{2}(n)\right|=\left|a_{n} a_{n+2}-a_{n+1}^{2}\right| \leq \begin{cases}1-\alpha & (n=1) \\ \frac{\prod_{j=1}^{m}(j-\alpha)^{2}}{(m!)^{2}} & (n=2 m) \\ \frac{\left(\prod_{j=1}^{m}(j-\alpha)^{2}\right)(m+1-\alpha)}{m!(m+1)!} & (n=2 m+1)\end{cases}
$$

where $m=1,2,3, \ldots$, with equality for

$$
f(z)=\frac{z}{\left(1-z^{2}\right)^{1-\alpha}}=z+\sum_{m=1}^{\infty} \frac{\prod_{j=1}^{m}(j-\alpha)}{m!} z^{2 m+1}
$$

Proof. Since $f \in \mathcal{S}_{\text {odd }}^{*}(\alpha)$, it follows that

$$
\left|a_{n} a_{n+2}-a_{n+1}^{2}\right|= \begin{cases}\left|a_{1} a_{3}-a_{2}^{2}\right|=\left|a_{1}\right| \cdot\left|a_{3}\right| & (n=1) \\ \left|a_{2 m} a_{2(m+1)}-a_{2 m+1}^{2}\right|=\left|a_{2 m+1}\right|^{2} & (n=2 m) \\ \left|a_{2 m+1} a_{2 m+3}-a_{2(m+1)}^{2}\right|=\left|a_{2 m+1}\right| \cdot\left|a_{2 m+3}\right| & (n=2 m+1)\end{cases}
$$

where $m=1,2,3, \ldots$ By Theorem 8 we obtain the asserted inequalities.
When $\alpha=0$ we get the following particular result.
Corollary 13. Let $f \in \mathcal{S}_{\text {odd }}^{*}$. Then

$$
\left|H_{2}(n)\right|=\left|a_{n} a_{n+2}-a_{n+1}^{2}\right| \leq 1 \quad(n=1,2,3, \ldots)
$$

with equality for

$$
f(z)=\frac{z}{1-z^{2}}=z+\sum_{m=1}^{\infty} z^{2 m+1}
$$

We also derive the following results for odd convex functions f by applying Theorem 10.

Theorem 14. Let $f \in \mathcal{K}_{\text {odd }}(\alpha)$. Then

$$
\left|H_{2}(n)\right|=\left|a_{n} a_{n+2}-a_{n+1}^{2}\right| \leq \begin{cases}\frac{1-\alpha}{3} & (n=1), \\ \frac{\prod_{j=1}^{m}(j-\alpha)^{2}}{(2 m+1)^{2}(m!)^{2}} & (n=2 m), \\ \frac{\left(\prod_{j=1}^{m}(j-\alpha)^{2}\right)(m+1-\alpha)}{(2 m+1)(2 m+3) m!(m+1)!} & (n=2 m+1),\end{cases}
$$

where $m=1,2,3, \ldots$, with equality for

$$
f(z)=z_{2} F_{1}\left(\frac{1}{2}, 1-\alpha ; \frac{3}{2} ; z^{2}\right)=z+\sum_{m=1}^{\infty} \frac{\prod_{j=1}^{m}(j-\alpha)}{(2 m+1) m!} z^{2 m+1} .
$$

Setting $\alpha=0$, we get the following particular result.
Corollary 15. Let $f \in \mathcal{K}_{\text {odd }}$. Then

$$
\left|H_{2}(n)\right|=\left|a_{n} a_{n+2}-a_{n+1}^{2}\right| \leq \begin{cases}\frac{1}{4 m^{2}-1} & (n=2 m-1), \\ \frac{1}{(2 m+1)^{2}} & (n=2 m),\end{cases}
$$

with equality for

$$
f(z)=\frac{1}{2} \log \left(\frac{1+z}{1-z}\right)=z+\sum_{m=1}^{\infty} \frac{1}{2 m+1} z^{2 m+1} .
$$

4. APPLICATIONS AND OPEN PROBLEMS

We consider now a new operator related to the second Hankel determinant $H_{2}(n)$.

Definition 16. For $f \in \mathcal{A}$ with $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ define

$$
\mathcal{H} f(z)=z+\sum_{n=2}^{\infty}\left(a_{n}^{2}-a_{n-1} a_{n+1}\right) z^{n}=z-\sum_{n=2}^{\infty} H_{2}(n-1) z^{n} .
$$

Note that the above operator \mathcal{H}, applied to a function $f \in \mathcal{A}$, can be written as

$$
\mathcal{H} f(z)=(f * f)(z)-\left(z f * \frac{f}{z}\right)(z)
$$

where $*$ means the convolution (or Hadamard) product of two functions.
We recall now the following result due to Robertson [6].
Lemma 17. Let $f \in \mathcal{K}(\alpha)$. Then

$$
\left|a_{n}\right| \leq \frac{\prod_{j=2}^{n}(j-2 \alpha)}{n!} \quad(n=2,3,4, \ldots)
$$

In particular, for $\alpha=0$, if $f \in \mathcal{K}$, then

$$
\left|a_{n}\right| \leq 1 \quad(n=2,3,4, \ldots)
$$

Using the operator \mathcal{H} given by Definition 16 and taking into account Corollary 13 , we can conjecture that the new function $\mathcal{H} f$ may be in the class \mathcal{K} if $f \in \mathcal{S}_{\text {odd }}^{*}$. But this is not true, as it is shown by the following counter-example.

REMARK 18. Let $f(z)=z+\frac{1}{3} z^{3} \in \mathcal{A}_{\text {odd }}$. A simple computation gives us

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)=\operatorname{Re}\left(\frac{1+z^{2}}{1+\frac{1}{3} z^{2}}\right)>0 \quad(z \in \mathbb{U})
$$

Therefore, $f \in \mathcal{S}_{\text {odd }}^{*}$. On the other hand, we see that

$$
g(z)=\mathcal{H} f(z)=z-\frac{1}{3} z^{2}+\frac{1}{9} z^{3} \notin \mathcal{K}
$$

because for the point $z_{0}=\frac{231+33 \sqrt{95} \mathrm{i}}{400} \in \mathbb{U}\left(\left|z_{0}\right|=\frac{99}{100}<1\right)$ we have

$$
\operatorname{Re}\left(1+\frac{z_{0} g^{\prime \prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}\right)=-\frac{994883}{31204889}<0
$$

Inspired by the above result, we formulate an interesting problem below.
Problem 1. Find the class \mathcal{M} of functions satisfying the property that if $f \in \mathcal{S}_{\text {odd }}^{*}$, then the new function $\mathcal{H} f \in \mathcal{M}$.

Moreover, we can also formulate the following generalized problem.

Problem 2. Find the class $\mathcal{N}(\alpha)$ of functions satisfying the property that if $f \in \mathcal{S}^{*}(\alpha)$, then the new function $\mathcal{H} f \in \mathcal{N}(\alpha)$.

REFERENCES

[1] Duren, P.L., Univalent functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[2] Fekete, M. and Szegö, G., Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc., 8 (1933), 85-89.
[3] Janteng, A., Halim, S.A. and Darus, M., Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1 (2007), 619-625.
[4] Noonan, J.W. and Thomas, D.K., On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223 (2) (1976), 337-346.
[5] Pommerenke, Ch., Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[6] Robertson, M.S., On the theory of univalent functions, Ann. of Math., 37 (1936), 374-408.

Kinki University
Department of Mathematics
Higashi-Osaka, Osaka 577-8502, Japan
E-mail: ha_ya_to112@hotmail.com
E-mail: owa@math.kindai.ac.jp

