THE SECOND HANKEL DETERMINANT $H_2(n)$ FOR ODD STARLIKE AND CONVEX FUNCTIONS

TOSHIO HAYAMI and SHIGEYOSHI OWA

Abstract. For odd starlike and convex functions f defined on the open unit disk \mathbb{U} , the upper bounds of the functional $|a_n a_{n+2} - a_{n+1}^2|$, defined by using the second Hankel determinant $H_2(n)$ due to J. W. Noonan and D. K. Thomas (see [4]), are studied. Furthermore, applying the second Hankel determinant $H_2(n)$, a new operator \mathcal{H} is introduced and the properties of new functions $\mathcal{H}f$ are discussed.

MSC 2010. 34C40.

Key words. Hankel determinant, odd analytic function, odd starlike function, odd convex function.

1. INTRODUCTION AND PRELIMINARIES

Let \mathcal{A} be the class of functions f of the form

(1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic on the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. Furthermore, let \mathcal{P} denote the class of functions p of the form

(2)
$$p(z) = 1 + \sum_{k=1}^{\infty} c_k z^k,$$

which are analytic on \mathbb{U} and satisfy

Re
$$p(z) > 0$$
 $(z \in \mathbb{U}).$

Every element $p \in \mathcal{P}$ is called a *Carathéodory function* (cf. [1]).

If $f \in \mathcal{A}$ satisfies the following inequality

(3)
$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \qquad (z \in \mathbb{U})$$

for some α ($0 \leq \alpha < 1$), then f is said to be *starlike of order* α *in* \mathbb{U} . We denote by $\mathcal{S}^*(\alpha)$ the subclass of \mathcal{A} consisting of all functions f which are starlike of order α in \mathbb{U} .

Similarly, we say that f is a member of the class $\mathcal{K}(\alpha)$ of convex functions of order α in \mathbb{U} if $f \in \mathcal{A}$ satisfies the following inequality

(4)
$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha \quad (z \in \mathbb{U})$$

for some α ($0 \le \alpha < 1$).

Also, let $\mathcal{A}_{\text{odd}} \subset \mathcal{A}$ be the class of odd functions f normalized by

(5)
$$f(z) = z + \sum_{m=1}^{\infty} a_{2m+1} z^{2m+1},$$

which are analytic on \mathbb{U} . Moreover, we define the following subclasses of \mathcal{A}_{odd}

$$\mathcal{S}_{\mathrm{odd}}^*(\alpha) = \mathcal{A}_{\mathrm{odd}} \cap \mathcal{S}^*(\alpha), \quad \mathcal{K}_{\mathrm{odd}}(\alpha) = \mathcal{A}_{\mathrm{odd}} \cap \mathcal{K}(\alpha).$$

A function $f \in S^*_{\text{odd}}(\alpha)$ is called an *odd starlike function of order* α , while an element $f \in \mathcal{K}_{\text{odd}}(\alpha)$ is a *convex function of order* α .

For simplicity we write

$$\mathcal{S}_{\text{odd}}^* = \mathcal{S}_{\text{odd}}^*(0) \text{ and } \mathcal{K}_{\text{odd}} = \mathcal{K}_{\text{odd}}(0).$$

REMARK 1. Let $f \in \mathcal{A}_{odd}$. Then

$$f(z) \in \mathcal{K}_{odd}(\alpha)$$
 if and only if $zf'(z) \in \mathcal{S}^*_{odd}(\alpha)$

and

$$f(z) \in \mathcal{S}^*_{\text{odd}}(\alpha)$$
 if and only if $\int_0^z \frac{f(\zeta)}{\zeta} d\zeta \in \mathcal{K}_{\text{odd}}(\alpha).$

EXAMPLE 2. The function f defined by

$$f(z) = \frac{z}{(1 - z^2)^{1 - \alpha}}$$

belongs to $\mathcal{S}^*_{\text{odd}}(\alpha)$, while the function g given by

$$g(z) = z_2 F_1\left(\frac{1}{2}, 1-\alpha; \frac{3}{2}; z^2\right)$$

where ${}_{2}F_{1}(a, b; c; z)$ represents the hypergeometric function, lies in $\mathcal{K}_{\text{odd}}(\alpha)$.

In [4], Noonan and Thomas introduced the q-th Hankel determinant as

$$H_q(n) = \det \begin{pmatrix} a_n & a_{n+1} & \cdots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n+q-1} & a_{n+q} & \cdots & a_{n+2q-2} \end{pmatrix} \qquad (n,q \in \mathbb{N} = \{1,2,3,\cdots\}).$$

This determinant has been discussed by several authors. For example, it is known that the Fekete and Szegö functional $|a_3 - a_2^2|$ is equal to $|H_2(1)|$ (see, [2]), and that the functional $|a_2a_4 - a_3^2|$ is equivalent to $|H_2(2)|$.

Janteng, Halim, and Darus showed in [3] the following theorems.

THEOREM 3. Let $f \in S^*$. Then

$$|a_2a_4 - a_3^2| \le 1.$$

Equality is attained for functions of the following form

$$f(z) = \frac{z}{(1-z)^2} = z + 2z^2 + 3z^3 + 4z^4 + \cdots$$

and

$$f(z) = \frac{z}{1-z^2} = z + z^3 + z^5 + z^7 + \cdots$$

THEOREM 4. Let $f \in \mathcal{K}$. Then

$$|a_2a_4 - a_3^2| \le \frac{1}{8}.$$

The present paper is motivated by these results and the purpose of this investigation is to find upper bounds of the functional $|a_n a_{n+2} - a_{n+1}^2| = |H_2(n)|$, given by the second Hankel determinant, for functions f in the class $S_{\text{odd}}^*(\alpha)$ and $\mathcal{K}_{\text{odd}}(\alpha)$, respectively.

2. PROPERTIES OF THE CLASSES $\mathcal{S}^*_{ODD}(\alpha)$ and $\mathcal{K}_{ODD}(\alpha)$

In this section, we derive upper bounds of $|a_{2m+1}|$ for functions f in $\mathcal{S}^*_{\text{odd}}(\alpha)$ and $\mathcal{K}_{\text{odd}}(\alpha)$. We apply the following lemmas to obtain our results.

LEMMA 5. The equality

$$1 + \sum_{l=1}^{m} \frac{\prod_{j=1}^{l} (j-\alpha)}{l!} = \frac{\prod_{j=2}^{m+1} (j-\alpha)}{m!}$$

holds for any $m \ (m = 1, 2, 3, ...)$.

Proof. For the case m = 1, noting that $1 + \prod_{j=1}^{1} (j - \alpha) = \prod_{j=2}^{2} (j - \alpha) = 2 - \alpha$, the assertion of the lemma holds true. Next, we suppose that the equality

$$1 + \sum_{l=1}^{M} \frac{\prod_{j=1}^{l} (j-\alpha)}{l!} = \frac{\prod_{j=2}^{M+1} (j-\alpha)}{M!}$$

is valid for some M ($M \ge 1$). Then

$$1 + \sum_{l=1}^{M+1} \frac{\prod_{j=1}^{l} (j-\alpha)}{l!} = 1 + \sum_{l=1}^{M} \frac{\prod_{j=1}^{l} (j-\alpha)}{l!} + \frac{\prod_{j=1}^{M+1} (j-\alpha)}{(M+1)!}$$
$$= \frac{\prod_{j=2}^{M+1} (j-\alpha)}{M!} + \frac{\prod_{j=1}^{M+1} (j-\alpha)}{(M+1)!}$$
$$= \frac{\prod_{j=2}^{M+1} (j-\alpha)}{M!} \left(1 + \frac{1-\alpha}{M+1}\right) = \frac{\prod_{j=2}^{M+2} (j-\alpha)}{(M+1)!}.$$

The statement follows now by mathematical induction.

The following result is fundamental for Carathéodory functions.

LEMMA 6. (cf. [1], [5]) If a function p, defined by $p(z) = 1 + \sum_{k=1}^{\infty} c_k z^k$, belongs to \mathcal{P} , then $|c_k| \leq 2$ for each k (k = 1, 2, 3, ...). Equality holds for

$$p(z) = \frac{1+z}{1-z} = 1 + \sum_{k=1}^{\infty} 2z^k.$$

From this lemma, we deduce immediately the following result.

LEMMA 7. If an even function $p(z) = 1 + \sum_{k=1}^{\infty} c_{2k} z^{2k}$ satisfies Re $p(z) > \alpha$ $(z \in \mathbb{U})$

for some α ($0 \le \alpha < 1$), then $|c_{2k}| \le 2(1-\alpha)$ for each k (k = 1, 2, 3, ...), with equality for

$$p(z) = \frac{1 + (1 - 2\alpha)z^2}{1 - z^2} = 1 + \sum_{k=1}^{\infty} 2(1 - \alpha)z^{2k}.$$

Proof. Put $q(z) = \frac{p(z) - \alpha}{1 - \alpha}$. Then $q(z) = 1 + \sum_{k=1}^{\infty} \frac{c_{2k}}{1 - \alpha} z^{2k}$, hence $q \in \mathcal{P}$. Thus, it follows from Lemma 6 that

$$\left|\frac{c_{2k}}{1-\alpha}\right| \le 2 \qquad (k=1,2,3,\dots)$$

or, equivalently,

$$|c_{2k}| \le 2(1-\alpha)$$
 $(k = 1, 2, 3, ...).$

From these, we derive now the following important preliminary results. THEOREM 8. Let $f \in S^*_{odd}(\alpha)$. Then

$$|a_{2m+1}| \le \frac{\prod_{j=1}^{m} (j-\alpha)}{m!}$$
 $(m = 1, 2, 3, ...),$

with equality for

$$f(z) = \frac{z}{(1-z^2)^{1-\alpha}} = z + \sum_{m=1}^{\infty} \frac{\prod_{j=1}^{m} (j-\alpha)}{m!} z^{2m+1}.$$

Proof. Since $f \in \mathcal{S}^*_{\text{odd}}(\alpha)$, there is a function p of the form

$$p(z) = 1 + \sum_{k=1}^{\infty} c_{2k} z^{2k}$$

85

satisfying Re $p(z) > \alpha$ ($z \in \mathbb{U}$) and such that

(6)
$$f'(z) = \frac{f(z)}{z}p(z).$$

Equation (6) is equivalent to

(7)
$$1 + \sum_{m=1}^{\infty} (2m+1)a_{2m+1}z^{2m} = 1 + \sum_{m=1}^{\infty} \left(\sum_{l=0}^{m} a_{2l+1}c_{2(m-l)}\right) z^{2m},$$

where $a_1 = c_0 = 1$. Equalizing the coefficient of z^{2m} on both sides of the above equality for each m, and applying Lemma 7, we obtain the following inequality

$$|a_{2m+1}| = \frac{1}{2m} \left| \sum_{l=0}^{m-1} a_{2l+1} c_{2(m-l)} \right| \le \frac{1}{2m} \sum_{l=0}^{m-1} |a_{2l+1}| \cdot |c_{2(m-l)}|$$
$$\le \frac{1-\alpha}{m} \sum_{l=0}^{m-1} |a_{2l+1}|.$$

Since $a_1 = 1$, we get that $|a_3| \le (1 - \alpha)|a_1| = 1 - \alpha$,

$$|a_5| \le \frac{1-\alpha}{2} \left(|a_1| + |a_3| \right) \le \frac{1-\alpha}{2} \left(1 + (1-\alpha) \right) = \frac{(1-\alpha)(2-\alpha)}{2},$$

and

$$|a_{7}| \leq \frac{1-\alpha}{3} \left(|a_{1}|+|a_{3}|+|a_{5}|\right)$$

$$\leq \frac{1-\alpha}{3} \left(1+(1-\alpha)+\frac{(1-\alpha)(2-\alpha)}{2}\right) = \frac{(1-\alpha)(2-\alpha)(3-\alpha)}{6}.$$

$$\prod_{i=1}^{m} (j-\alpha)$$

Therefore, we expect that $|a_{2m+1}| \leq \frac{\prod_{j=1}^{m} (j-\alpha)}{m!}$ (m = 1, 2, 3, ...). Actually, supposing $|a_{2m+1}| \leq \frac{\prod_{j=1}^{m} (j-\alpha)}{m!}$ (m = 1, 2, 3, ..., M) and using Lemma 5, we derive

$$\begin{aligned} |a_{2(M+1)+1}| &\leq \frac{1-\alpha}{M+1} \sum_{l=0}^{M} |a_{2l+1}| \\ &\leq \frac{1-\alpha}{M+1} \left\{ 1 + \sum_{l=1}^{M} \frac{\prod_{j=1}^{l} (j-\alpha)}{l!} \right\} \\ &= \frac{1-\alpha}{M+1} \frac{\prod_{j=2}^{M+1} (j-\alpha)}{M!} = \frac{\prod_{j=1}^{M+1} (j-\alpha)}{(M+1)!}. \end{aligned}$$

The inequality to be proved follows now by mathematical induction. Equality is attained for $f \in S^*_{\text{odd}}(\alpha)$ given by

$$\frac{zf'(z)}{f(z)} = \frac{1 + (1 - 2\alpha)z^2}{1 - z^2}.$$

Taking $\alpha = 0$ in Theorem 8, we get the following result.

COROLLARY 9. Let $f \in \mathcal{S}^*_{\text{odd}}$. Then

$$|a_{2m+1}| \le 1$$
 $(m = 1, 2, 3, ...),$

with equality for $% \left(f_{i} \right) = \int_{\partial \Omega} \left(f_{i} \right) \left(f_{i} \right$

$$f(z) = \frac{z}{1-z^2} = z + \sum_{m=1}^{\infty} z^{2m+1}.$$

We can obtain similarly upper bounds of $|a_{2m+1}|$ for odd convex functions f.

THEOREM 10. Let $f \in \mathcal{K}_{odd}(\alpha)$. Then

$$|a_{2m+1}| \le \frac{\prod_{j=1}^{m} (j-\alpha)}{(2m+1)\,m!} \qquad (m=1,2,3,\dots),$$

with equality for

$$f(z) = z_2 F_1\left(\frac{1}{2}, 1-\alpha; \frac{3}{2}; z^2\right) = z + \sum_{m=1}^{\infty} \frac{\prod_{j=1}^m (j-\alpha)}{(2m+1)m!} z^{2m+1}.$$

Proof. By Remark 1, it is clear that if $f \in \mathcal{K}_{odd}(\alpha)$, then

$$(2m+1)|a_{2m+1}| \le \frac{\prod_{j=1}^{m} (j-\alpha)}{m!}$$

or, equivalently,

$$|a_{2m+1}| \le \frac{\prod_{j=1}^{m} (j-\alpha)}{(2m+1)m!}.$$

For $\alpha = 0$ in Theorem 10 we obtain the next result.

COROLLARY 11. Let
$$f \in \mathcal{K}_{odd}$$
. Then
 $|a_{2m+1}| \leq \frac{1}{2m+1}$ $(m = 1, 2, 3, ...),$

with equality for

$$f(z) = \frac{1}{2} \log\left(\frac{1+z}{1-z}\right) = z + \sum_{m=1}^{\infty} \frac{1}{2m+1} z^{2m+1}.$$

3. MAIN RESULTS

Applying Theorem 8 and Theorem 10, we get upper bounds for the second Hankel determinant $|H_2(n)| = |a_n a_{n+2} - a_{n+1}^2|$ for functions in $\mathcal{S}^*_{\text{odd}}(\alpha)$ and $\mathcal{K}_{\text{odd}}(\alpha)$.

THEOREM 12. Let $f \in \mathcal{S}^*_{\text{odd}}(\alpha)$. Then

$$|H_2(n)| = |a_n a_{n+2} - a_{n+1}^2| \le \begin{cases} 1 - \alpha & (n = 1), \\ \frac{\prod_{j=1}^m (j - \alpha)^2}{(m!)^2} & (n = 2m), \\ \frac{\left(\prod_{j=1}^m (j - \alpha)^2\right)(m + 1 - \alpha)}{m! (m + 1)!} & (n = 2m + 1), \end{cases}$$

where $m = 1, 2, 3, \ldots$, with equality for

$$f(z) = \frac{z}{(1-z^2)^{1-\alpha}} = z + \sum_{m=1}^{\infty} \frac{\prod_{j=1}^{m} (j-\alpha)}{m!} z^{2m+1}.$$

Proof. Since $f \in \mathcal{S}^*_{\text{odd}}(\alpha)$, it follows that

$$|a_n a_{n+2} - a_{n+1}^2| = \begin{cases} |a_{2m} a_{2(m+1)} - a_{2m+1}^2| = |a_{2m+1}|^2 & (n = 2m), \end{cases}$$

 $\left(|a_{2m+1}a_{2m+3} - a_{2(m+1)}^2| = |a_{2m+1}| \cdot |a_{2m+3}| \quad (n = 2m+1),$

where $m = 1, 2, 3, \ldots$ By Theorem 8 we obtain the asserted inequalities. \Box

When $\alpha = 0$ we get the following particular result.

COROLLARY 13. Let $f \in \mathcal{S}^*_{\text{odd}}$. Then

$$|H_2(n)| = |a_n a_{n+2} - a_{n+1}^2| \le 1$$
 $(n = 1, 2, 3, ...),$

with equality for

$$f(z) = \frac{z}{1-z^2} = z + \sum_{m=1}^{\infty} z^{2m+1}.$$

We also derive the following results for odd convex functions f by applying Theorem 10.

THEOREM 14. Let $f \in \mathcal{K}_{odd}(\alpha)$. Then

$$|H_2(n)| = |a_n a_{n+2} - a_{n+1}^2| \le \begin{cases} \frac{1-\alpha}{3} & (n=1), \\ \prod_{j=1}^m (j-\alpha)^2 \\ \overline{(2m+1)^2(m!)^2} & (n=2m), \\ \frac{\left(\prod_{j=1}^m (j-\alpha)^2\right)(m+1-\alpha)}{(2m+1)(2m+3)m!(m+1)!} & (n=2m+1) \end{cases}$$

where $m = 1, 2, 3, \ldots$, with equality for

$$f(z) = z_2 F_1\left(\frac{1}{2}, 1-\alpha; \frac{3}{2}; z^2\right) = z + \sum_{m=1}^{\infty} \frac{\prod_{j=1}^m (j-\alpha)}{(2m+1)m!} z^{2m+1}.$$

Setting $\alpha = 0$, we get the following particular result.

COROLLARY 15. Let $f \in \mathcal{K}_{odd}$. Then

$$|H_2(n)| = |a_n a_{n+2} - a_{n+1}^2| \le \begin{cases} \frac{1}{4m^2 - 1} & (n = 2m - 1), \\ \frac{1}{(2m + 1)^2} & (n = 2m), \end{cases}$$

with equality for

$$f(z) = \frac{1}{2} \log\left(\frac{1+z}{1-z}\right) = z + \sum_{m=1}^{\infty} \frac{1}{2m+1} z^{2m+1}.$$

4. APPLICATIONS AND OPEN PROBLEMS

We consider now a new operator related to the second Hankel determinant $H_2(n)$.

DEFINITION 16. For $f \in \mathcal{A}$ with $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ define $\mathcal{H}f(z) = z + \sum_{n=2}^{\infty} \left(a_n^2 - a_{n-1}a_{n+1}\right) z^n = z - \sum_{n=2}^{\infty} H_2(n-1)z^n.$ Note that the above operator \mathcal{H} , applied to a function $f \in \mathcal{A}$, can be written as

$$\mathcal{H}f(z) = (f * f)(z) - \left(zf * \frac{f}{z}\right)(z),$$

where * means the convolution (or Hadamard) product of two functions. We recall now the following result due to Robertson [6].

LEMMA 17. Let $f \in \mathcal{K}(\alpha)$. Then

$$a_n| \le \frac{\prod_{j=2}^n (j-2\alpha)}{n!}$$
 $(n=2,3,4,\dots).$

In particular, for $\alpha = 0$, if $f \in \mathcal{K}$, then

$$|a_n| \le 1$$
 $(n = 2, 3, 4, \dots)$

Using the operator \mathcal{H} given by Definition 16 and taking into account Corollary 13, we can conjecture that the new function $\mathcal{H}f$ may be in the class \mathcal{K} if $f \in \mathcal{S}^*_{\text{odd}}$. But this is not true, as it is shown by the following counter-example.

REMARK 18. Let $f(z) = z + \frac{1}{3}z^3 \in \mathcal{A}_{odd}$. A simple computation gives us

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) = \operatorname{Re}\left(\frac{1+z^2}{1+\frac{1}{3}z^2}\right) > 0 \quad (z \in \mathbb{U}).$$

Therefore, $f \in \mathcal{S}^*_{\text{odd}}$. On the other hand, we see that

$$g(z) = \mathcal{H}f(z) = z - \frac{1}{3}z^2 + \frac{1}{9}z^3 \notin \mathcal{K},$$

because for the point $z_0 = \frac{231 + 33\sqrt{95}i}{400} \in \mathbb{U}\left(|z_0| = \frac{99}{100} < 1\right)$ we have

$$\operatorname{Re}\left(1 + \frac{z_0 g''(z_0)}{g'(z_0)}\right) = -\frac{994883}{31204889} < 0.$$

Inspired by the above result, we formulate an interesting problem below.

PROBLEM 1. Find the class \mathcal{M} of functions satisfying the property that if $f \in \mathcal{S}^*_{\text{odd}}$, then the new function $\mathcal{H}f \in \mathcal{M}$.

Moreover, we can also formulate the following generalized problem.

PROBLEM 2. Find the class $\mathcal{N}(\alpha)$ of functions satisfying the property that if $f \in \mathcal{S}^*(\alpha)$, then the new function $\mathcal{H}f \in \mathcal{N}(\alpha)$.

REFERENCES

- DUREN, P.L., Univalent functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
- [2] FEKETE, M. and SZEGÖ, G., Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc., 8 (1933), 85–89.
- [3] JANTENG, A., HALIM, S.A. and DARUS, M., Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1 (2007), 619–625.
- [4] NOONAN, J.W. and THOMAS, D.K., On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223 (2) (1976), 337–346.
- [5] POMMERENKE, CH., Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
- [6] ROBERTSON, M.S., On the theory of univalent functions, Ann. of Math., 37 (1936), 374–408.

Kinki University Department of Mathematics Higashi-Osaka, Osaka 577-8502, Japan E-mail: ha_ya_to112@hotmail.com E-mail: owa@math.kindai.ac.jp