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ENTIRE UNBOUNDED FUNCTIONS ON BANACH SPACES
WITH A MONOTONE SCHAUDER BASIS

JOSÉ M. ANSEMIL, RICHARD M. ARON and SOCORRO PONTE

Abstract. It is well-known that on any complex infinite dimensional Banach
space there is an entire function that is unbounded on some ball. Here we shall
give an explicit construction of such entire functions on any infinite dimensional
complex normed space with a monotone Schauder basis.
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1. INTRODUCTION

From the 1970’s, a property of infinite dimensional holomorphy that has
attracted the attention of several people is the fact that in such a situation
there are always entire functions which are not bounded on balls (see [1, 4]).
This fact deeply depends on the Josefson-Nissenzweig theorem [3], which as-
serts that in the dual of any infinite dimensional Banach space E there exists
a sequence {ϕn} such that ||ϕn‖ = 1 for all n and lim

n→∞
ϕn(z) = 0 for every z

in E. Then, as it is proved in [5, p. 157], the function

f(z) =
∞∑
n=1

ϕnn(z)

is entire and it is unbounded on some ball of E.
In what follows E will denote an infinite dimensional complex normed space.

For a function f defined on a subset B of E we use the notation: ‖f‖B =
sup {|f(z)| : z ∈ B}. We recall that a function f : E → C is entire if it is
Fréchet differentiable at every point in E.

In this paper we restrict our attention to normed spaces with a monotone
Schauder basis and construct in a natural way entire functions, which are
bounded on a given ball and unbounded on another given ball not included in
the first ball.

We recall that a monotone Schauder basis in a normed space E is a sequence
{ek} such that for every z ∈ E there is a unique sequence {zk} in C such that
z =

∑∞
k=1 zkek in E and ‖

∑n
k=1 zkek‖ ≤ ‖z‖ for every n. It is normalized if

‖en‖ = 1 for all n. The coordinate functions φk(z) = zk are continuous. This
kind of Schauder basis has been well studied among others by Singer in his
book [6]. For instance the “saw-tooth” functions form a monotone Schauder
basis for C[0, 1] (with the sup norm), the Haar basis of Lp[0, 1], p ≥ 1, is also a
monotone Schauder basis. (C(K), ‖ ‖∞), with K a compact metric space, has
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a monotone Schauder basis ([6, p. 215]). The canonical bases of the spaces co
and lp, 1 ≤ p <∞, are monotone.

Any normalized Schauder basis in a normed space can be monotonized in
the sense that there is an equivalent norm ||| · ||| such that the new normed
space has a monotone Schauder basis ([6], p. 250). This norm is defined by:

‖|z‖| = sup
n
‖

n∑
k=1

zkek‖, where z =
∞∑
k=1

zkek.

However, this is not very convenient for our purposes. We will return to this
later on.

2. THE RESULTS

We start by proving a lemma concerning the existence of certain functionals
on Banach spaces with a monotone Schauder basis.

Lemma 1. Let E be a normed space with a monotone Schauder basis {en}.
If for a given ko ∈ N the vector zo =

∑k0
k=1 zkek has norm 1 and we define M

as the closed subspace of E spanned by the vectors ek, k > ko, then there exists
ϕ ∈ E′ such that

‖ϕ‖ = 1, ϕ(z0) = 1 and ϕ(z) = 0 for every z in M.

Proof. First note that each element m in M has a unique representation as
m =

∑∞
k=k0+1mkek. Indeed, as the coordinate projections are continuous, no

linear combinations of the ek with k = 1, ..., ko can appear in the sum that
represents m. So zo does not belong to M and so, by a consequence of the
Hahn-Banach theorem (see [2, p. 232]), there exists ϕ ∈ E′ such that ‖ϕ‖ = 1,
ϕ(z0) = dist(z0,M) and ϕ(z) = 0, for every z in M.

Let us compute dist(z0,M). Given m =
∑∞

k=k0+1mkek in M , keeping in
mind that our basis is monotone, we have

‖z0 −m‖ =

∥∥∥∥∥∥
k0∑
k=1

zkek −
∞∑

k=k0+1

mkek

∥∥∥∥∥∥ ≥
∥∥∥∥∥
k0∑
k=1

zkek

∥∥∥∥∥ = ‖z0‖.

On the other hand, 0 ∈M , so

dist(z0,M) = inf{‖z0 −m‖, m ∈M} ≤ ‖z0‖ = 1.

That is, ϕ(z0) = 1. �

Lemma 2. Let E be a normed space with a Schauder basis {ek}. Given
zo ∈ E with ‖zo‖ = 1 and a real number s > 0, there exists z1 ∈ E, which is a
finite linear combination of the ek, ‖z1‖ = 1, and z1 ∈ B(z0, s).

Proof. Since

zo = lim
n→∞

n∑
k=1

zkek and lim
n→∞

∥∥∥∥∥
n∑
k=1

zkek

∥∥∥∥∥ = ‖zo‖ = 1,
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there exists k0 such that∥∥∥∥∥z0 −
k0∑
k=1

zkek

∥∥∥∥∥ < min
{s

2
, 1
}

and

∣∣∣∣∣1−
∥∥∥∥∥
k0∑
k=1

zkek

∥∥∥∥∥
∣∣∣∣∣ < s

2
.

Let us define

z∗1 =

k0∑
k=1

zkek and z1 =
z∗1
‖z∗1‖

.

Then z1 is a finite linear combination of ek, (k = 1, ..., ko), has norm 1 and

‖z1 − z0‖ ≤ ‖z1 − z∗1‖+ ‖z∗1 − z0‖ < ‖z∗1‖
∣∣∣∣ 1

‖z∗1‖
− 1

∣∣∣∣+
s

2
< s.

�

Proposition 3. Let E be a complex normed space with a monotone nor-

malized Schauder basis {ek}. Then, for every z0 =
∑k0

k=1 λkek with norm 1,
and for every r ∈ (0, 1) and s > 0 there exists an entire function h on E such
that

‖h‖B(0,r) <∞ and ‖h‖B(z0,s) =∞.

Proof. For every k ∈ N, the coordinate function φk satisfies 1 ≤ ‖φk‖ ≤ 2.

Indeed, if we define Tk(z) =
∑k

j=1 zjej , then, since the basis is monotone,

‖Tk(z)‖ ≤ ‖z‖. This implies that

|φk(z)| = ‖φk(z)ek‖ = ‖Tk(z)− Tk−1(z)‖ ≤ 2‖z‖
and, therefore, ‖φk‖ ≤ 2. On the other hand, φk(ek) = 1, and so ‖φk‖ ≥ 1.

Fix t ∈ (1,+∞) such that tr < 1 and consider a natural number γ such
that 1

2st
γ+1 > 1. By Lemma 1 we obtain ϕ ∈ E′ such that ‖ϕ‖ = 1, ϕ(z0) = 1

and ϕ(z) = 0 for every z in the closed span of ek, k > ko. Let us check how
the mapping

h(z) =

∞∑
k=k0+1

(
[tϕ(z)]γ ·tφk(z)

‖φk‖

)k
satisfies the required conditions.

Let us see why h is entire on E. For any z =
∞∑
k=1

zkek ∈ E, φk(z) = zk → 0

and then, since the coordinate functions are uniformly bounded (by 2), we get
that φn → 0 uniformly on the compact subsets of E. Let K be an arbitrary
compact subset of E. Then for every z ∈ K,

∞∑
k=k0+1

∣∣∣∣[tϕ(z)]γ ·tφk(z)
‖φk‖

∣∣∣∣k ≤ ∞∑
k=k0+1

(
(t ‖ϕ‖K)γ

t

‖φk‖
‖φk‖K

)k
.

As

lim
k→∞

(t ‖ϕ‖K)γ
t

‖φk‖
‖φk‖K = 0 (note that ‖φk‖) ≥ 1),
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the series which defines h is uniformly convergent on K and then h is entire
on E.

Now we show that h is bounded on B(0, r). Indeed, for all z ∈ B(0, r),

|h(z)| ≤
∞∑

k=k0+1

∣∣∣∣[tϕ(z)]γ ·tφk(z)
‖φk‖

∣∣∣∣k ≤ ∞∑
k=k0+1

(t‖z‖)(γ+1)k

≤
∞∑

k=k0+1

[
(tr)(γ+1)

]k
<∞

since tr < 1.
Now we prove that ‖h‖B(z0,s) =∞. For that we consider the vectors,

z0 +
s

2
‖φm‖ em ∈ B(z0, s),

where m is any fixed natural number bigger than k0. We have that

h
(
z0 +

s

2
‖φm‖ em

)
=

∞∑
k=k0+1

[(
tϕ
(
z0 +

s

2
‖φm‖ em

))γ
·t φk
‖φk‖

(
z0 +

s

2
‖φm‖ em

)]k
=

(
tγ+1 1

2
s

)m
.

Since tγ+1 1
2s > 1, we conclude that

sup
m>k0

∣∣∣h(z0 +
s

2
‖φm‖ em

)∣∣∣ =∞

and thus ‖h‖B(z0,s) = ‖h‖B(z0,s)
=∞. �

Proposition 4. Let E be a normed space with a monotone normalized
Schauder basis. Then, for every R > 0, every Z0 ∈ E with ‖Zo‖ > R, and
every S > 0 there is an entire function F on E such that

‖F‖B(0,R) <∞ and ‖F‖B(Zo,S) =∞.

Proof. Let r = R
‖Z0‖ , s = S

‖Z0‖ and z0 = Zo
‖Z0‖ . If we apply Lemma 2 to z0

and s we obtain z1 ∈ E, which is a finite combination of elements of the basis
such that ‖z1‖ = 1 and z1 ∈ B(z0, s). If we apply Proposition 3 with z1, r and
s′ such that B(z1, s

′) ⊂ B(z0, s), we have the existence of an entire function f
on E such that

‖f‖B(0,r) <∞ and ‖f‖B(z1,s′) =∞.

If we define F (z) = f( z
‖Z0‖), then F is an entire function on E, ‖F‖B(0,R) =

‖f‖B(0,r) <∞ and ‖F‖B(Z0,S) = ‖f‖B(z0,s) ≥ ‖f‖B(z1,s′) =∞. �
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Theorem 5. Let E be a normed space with a monotone Schauder basis.
Then, for every B(z1, r1), every point z2 ∈ E\B(z1, r1), every r2 > 0 and
every ε > 0 there is an entire function f on E such that

‖f‖B(z1,r1) < ε

and

‖f‖B(z2,r2) =∞.

Proof. Let us translate z1 to the origin using the mapping z 7→ z − z1.
The point z′2 = z2 − z1 does not belong to B(0, r1). If we apply the above
proposition, we obtain an entire function F on E such that

‖F‖B(0,r1) <∞ and ‖F‖B(z′2,r2) =∞.

Then f(z) = F (z−z1)
2‖F‖B(0,r1)

ε satisfies the requirements of the theorem. �

Let us construct an example to see how our technique works. Let E be
any of the spaces co or lp, 1 ≤ p < ∞ with the usual basis {ek}. Consider
z1 = 0, z2 = e2, r = 9

10 and s = 1
10 . Then the function h defined by

h(z) =
∞∑
k=3

[(
11

10
z2

)31 11

10
zk

]k
, z = {zk} ∈ E,

is bounded on B
(
0, 9

10

)
and unbounded on B

(
e2,

1
10

)
.

If we have a non-monotone basis on a Banach space and we renorm the
space in such a way that the basis is now monotone, a constant C appears so
that

‖z‖ ≤ ‖|z‖| ≤ C‖z‖ for every z ∈ E.
C is bigger than 1 and is obtained using the open mapping theorem. In this
situation the following result can be obtained: Given a ball B(z1, r1), s > 0
and z2 such that z2 /∈ E\B(z1, Cr1), there is an entire function f on E such
that

‖f‖B(z1,r1) <∞ and ‖f‖B(z2,s) =∞
(all balls are in E with its original norm).

A similar result to the above Theorem 5 can be obtained for Hilbert spaces.
If a Hilbert space is separable then it is isometric to l2, which has a monotone
Schauder basis, but this is not the case for non-separable Hilbert spaces.

For a Hilbert spaceH let us consider a maximal orthonormal system {uα}α∈Λ.
Then every z ∈ H can be written as a countable sum of < x, uα > uα. With
minor modifications of the proof of the above Lemma 1 we can obtain the
following lemma:

Lemma 6. Let us fix a point z0 =
∑j0

j=1

〈
z0, uαj

〉
uαj ∈ H with norm 1 and

consider a countable set {uα∗n ;n ∈ N}, where none of the uαj , j = 1, ..., j0, is
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included. Let M be the closed subspace of E spanned by the vectors uα∗n , n ∈ N.
Then there is ϕ ∈ H ′ such that

‖ϕ‖ = 1, ϕ(x0) = 1 and ϕ(z) = 0 for every z ∈M.

From this lemma, using a similar technique to that in the above results, the
following result can be obtained:

Theorem 7. For any complex Hilbert space H and for every balls B1 and
B2, such that B2 is not contained in B1, and every ε > 0 there is an entire
function f on H such that ‖f‖B1 < ε and ‖f‖B2 =∞.
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28040 Madrid, Spain

E-mail: socorro ponte@mat.ucm.es


