ONE TOPIC ON WAVELET ALGORITHM BY USING ONE DIMENSIONAL HAAR WAVELETS

MAHMOUD AFSHARI

Abstract

In this paper we obtain an algorithm to compute a fast wavelet transform and use this algorithm to analyze and synthesize a signal or function f. We consider a sample point $\left(t_{j}, s_{j}\right)$ that includes a value $s_{j}=f\left(t_{j}\right)$ at height s_{j} and abscissa (time or location) t_{j}, and apply wavelet decomposition by using shifts and dilations of the basic Haar transform. Some relationship between wavelet coefficients are investigated.

MSC 2010. 42C40, 65 T 60.
Key words. Haar wavelets, fast wavelets, wavelet algorithm, estimation, discreet wavelet, multiresolution analysis.

1. INTRODUCTION

Wavelets are regarded by many as primarily a new subject in pure and applied mathematics. Indeed, many papers published on wavelets contain esoteric-looking theorems with complicated proofs. Wavelet analysis was led by Ingrid Daubechies [4], and many colleagues contributed in different ways: Meyer [7], Walter [10], Vidakovic [9], Cohen et al. [3], Antoniadis et al. [1], Clyed et al. [2].

Perhaps one of the most common application of wavelets is in signal processing. A signal, broadly defined, is a sequence of numerical measurements, typically obtained electronically.

To analyze and synthesize a signal, which can be any array of data in terms of simple wavelets, we employ shifts and dilations of a mathematical function, but we do not involve either calculus or linear algebra. The first step in applying wavelets to any signal consists is representing the signal under consideration by a mathematical function f. For example, a sound, the values $s=f(t)$ measure the sound at each time t at a fixed location.

The first step in the analysis of a signal with wavelets consists in approximating its function by means of sample alone. One of the simplest methods of approximation uses a horizontal stair step extended through each sample point. The resulting steps form a new function denote by \tilde{f} and called a step function, which approximates the sampled function $s=f(t)$. The analysis of the approximating function \tilde{f} in terms of wavelets requires a precise labeling

[^0]of each step, by means of shifts and dilations of the basic unit step function, denoted by $\varphi_{[0,1)}$.

If a sample point $\left(t_{j}, s_{j}\right)$ includes a value $s_{j}=f\left(t_{j}\right)$ at height s_{j} and abscissa (time or location) t_{j}, then the sample point corresponds to the step function $s_{j} \cdot \varphi_{\left[t_{j}, t_{j j+1)}\right)}(t)$, which approximates f at height s_{j} on the interval $\left[t_{j}, t_{[j+1)}\right)$, where φ_{A} denote the indicator function of set A.

Adding all the step functions approximating corresponding to all the points in the sample, yields the simple step function below:

$$
\begin{equation*}
\tilde{f}=\sum_{j=0}^{n-1} s_{j} \cdot \varphi_{\left[t_{j}, t_{[j+1)}\right)}(t) \tag{1}
\end{equation*}
$$

To facilitate comparisons between different signals, and to allow for the use of common algorithms, simple wavelets pertain to the interval $t \in[0,1)$, so that one unit corresponds to the entire length of the signal. Thus, $t=\frac{1}{2}$ denotes the middle of the signal, and $t=\frac{7}{8}$ denotes the location at the seventh eighth of the signal.

Haar basic transformation expresses the approximating function \tilde{f} with wavelets by replacing and adjacent pair of steps by one wider step and one wavelet. The sum of two adjacent steps with width $\frac{1}{2}$ produces the basic unit step function $\varphi_{[0,1)}$ and the difference of two such narrower steps gives the corresponding basic wavelet as following:

$$
\varphi_{[0,1)}=\varphi_{\left[0, \frac{1}{2}\right)}+\varphi_{\left[\frac{1}{2}, 1\right)} \quad \text { and } \quad \psi_{[0,1)}=\varphi_{\left[0, \frac{1}{2}\right)}-\varphi_{\left[\frac{1}{2}, 1\right)} .
$$

It is clear that we have

$$
\begin{equation*}
\frac{1}{2}\left(\varphi_{[0,1)}+\psi_{[0,1)}\right)=\varphi_{\left[0, \frac{1}{2}\right)} \quad \text { and } \quad \frac{1}{2}\left(\varphi_{[0,1)}-\psi_{[0,1)}\right)=\varphi_{\left[\frac{1}{2}, 1\right)} \tag{2}
\end{equation*}
$$

2. FAST WAVELETS TRANSFORM AND ALGORITHM

To analyze a signal or function in term of wavelets, the Fast Haar wavelet transform begins with initialization of an array with 2^{n} entries, and then proceeds with n iterations of the basic transform explained in (1).

For each index $j \in\{1,2, \ldots, n\}$, before iteration number J, the array will consist of $2^{n-(j-1)}$ coefficients of $2^{n-(j-1)}$ step function $\varphi_{k, n-(j-1)}$, defined below. After iteration number j, the array will consist of half as many, 2^{n-j} coefficient of 2^{n-j} step function $\varphi_{k, n-j}$ and 2^{n-j} coefficient $\psi_{k, n-j}$, such as

$$
\begin{align*}
\varphi_{k, n-j}(t) & =\varphi_{[0,1)}\left(2^{n-j}\left[t-k 2^{j-n}\right]\right) \tag{3}\\
\psi_{k, n-j}(t) & =\psi_{[0,1)}\left(2^{n-j}\left[t-k 2^{j-n}\right]\right) . \tag{4}
\end{align*}
$$

Algorithm. For Haar wavelets the initialization consists only on establishing a one dimensional array

$$
\begin{align*}
\overrightarrow{\mathbf{v}}_{(n)} & =\left(v_{0, n}, v_{1, n}, \ldots, v_{2^{n}-2, n}, v_{2^{n}-1, n}\right) \\
& =\left(s_{0}, s_{1}, \ldots, s_{j}, \ldots, s_{2^{n}-2}, s_{2^{n}-1}\right) \tag{5}\\
& =\vec{s} .
\end{align*}
$$

With the total number of sample values equal to an integral power of two, say 2^{n}. Though indices ranging from 1 through 2^{n} would also serve the same purpose, indices ranging from 0 through $2^{n}-1$ will accommodate a binary encoding with only n binary digits. The array corresponds to the sampled step function

$$
\begin{equation*}
\hat{f}_{n}=\sum_{k=0}^{2^{n}-1} v_{k, n} \varphi_{k, n}(t) \tag{6}
\end{equation*}
$$

In general, the j th sweep of the basic transform begins with an array of $2^{n-(j-1)}$ values

$$
\begin{equation*}
\overrightarrow{\mathbf{v}}_{n-(j-1)}=\left(v_{0, n-(j-1)}, \cdots, v_{2^{n-(j-1)}-1, n-(j-1)}\right) \tag{7}
\end{equation*}
$$

It means that lists the values $v_{k, n-(j-1)}$ of a simple step function $\tilde{f}_{(n-(j-1))}$ that approximates f with $2^{(n-(j-1)}$ steps of narrower width $2^{(n-(j-1))}$ as following:

$$
\begin{equation*}
\tilde{f}_{n-(j-1)}=\sum_{k=0}^{2^{n-(j-1)}-1} v_{k, n-(j-1)} \varphi_{k, n-(j-1)}(t) \tag{8}
\end{equation*}
$$

We apply the basic transform to each pair $\left(v_{2 n, n-(j-1)}, v_{2 n+1, n-(j-1)}\right)$, which gives two new wavelets coefficients

$$
\begin{aligned}
& v_{k,(n-j)}=\frac{v_{2 k, n-(j-1)}+v_{2 k+1, n-(j-1)}}{2} \\
& c_{k,(n-j)}=\frac{v_{2 k, n-(j-1)}-v_{2 k+1, n-(j-1)}}{2}
\end{aligned}
$$

These $2^{(n-j)}$ pairs of new coefficients represented the result of the j th sweep

$$
\begin{gathered}
\overrightarrow{\mathbf{v}}_{n-j}=\left(v_{0, n-j}, v_{1, n-j}, \cdots, v_{k, n-j}, \cdots, v_{2^{n-j}-1, n-j}\right) \\
\overrightarrow{\mathbf{c}}_{n-j}=\left(c_{0, n-j}, c_{1, n-j}, \cdots, c_{k, n-j}, \cdots, c_{2^{n-j}-1, n-j}\right)
\end{gathered}
$$

It means that lists the values $v_{k,(n-j)}$ of a simple step function $\tilde{f}_{(n-j))}$ that approximates f with $2^{(n-j)}$ steps of narrower width $2^{(n-j)}$:

$$
\begin{align*}
\hat{f}_{n-j} & =\sum_{k=0}^{2^{n-j}-1} v_{k, n-j} \varphi_{k, n-j}(t), \tag{9}\\
\check{f}_{n-j} & =\sum_{k=0}^{2^{n-j}-1} c_{k, n-j} \psi_{k, n-j}(t) .
\end{align*}
$$

The wavelets given by second new array, $\overrightarrow{\mathbf{c}}_{n-j}$, represent the difference between the finer steps of the initial estimation $\breve{f}_{n-(j-1)}$ and the coarser steps of $\check{f} n-j$. so the initial approximation $\hat{f}_{n-(j-1)}$ still equals the sum of two new approximations, \hat{f}_{n-j} and \check{f}_{n-j}, so we have

$$
\begin{equation*}
\hat{f}_{n-(j-1)}=\check{f}_{n-j}+\hat{f}_{n-j} . \tag{11}
\end{equation*}
$$

Repeating these sweeps, the approximation of function f is complete.
Example 1. Let the signal or physical phenomena consist in representing the signal under consideration by mathematical function $f(t)=s$, where $t \in$ $[0,1)$. For the approximation of f, suppose we choose sample as following:

$$
\begin{array}{llllllllll}
j & : & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
s_{j} & : & 1 & 5 & 4 & 6 & 9 & 5 & 3 & 7 \\
t_{j} & : & 0 & \frac{1}{8} & \frac{2}{8} & \frac{3}{8} & \frac{4}{8} & \frac{5}{8} & \frac{6}{8} & \frac{7}{8}
\end{array}
$$

According to this algorithm, our sample size is $8=2^{n}$. Thus,

$$
n=3 \Rightarrow \overrightarrow{\mathbf{v}}_{3}=\overrightarrow{\mathbf{s}}=(1,5,4,6,9,5,3,7) .
$$

The first sweep:

$$
\begin{aligned}
& \overrightarrow{\mathbf{v}}_{3-1}=\left(\frac{1+5}{2}, \frac{4+6}{2}, \frac{9+5}{2}, \frac{3+7}{2}\right)=(3,5,7,5), \\
& \overrightarrow{\mathbf{c}}_{3-1}=\left(\frac{1-5}{2}, \frac{4-6}{2}, \frac{9-5}{2}, \frac{3-7}{2}\right)=(-2,-1,2,-2) .
\end{aligned}
$$

So we have

$$
\overrightarrow{\mathbf{s}}_{3-1}=\left(\overrightarrow{\mathbf{v}}_{3-1} ; \overrightarrow{\mathbf{c}}_{3-1}\right)=(\mathbf{3}, \mathbf{5}, \boldsymbol{7}, \mathbf{5},-2,-1,2,-2) .
$$

The second sweep:

$$
\begin{aligned}
\overline{\mathbf{v}}_{3-1} & =(\mathbf{3}, \mathbf{5}, \mathbf{7}, \mathbf{5}) \\
\overrightarrow{\mathbf{v}}_{3-2} & =\left(\frac{3+5}{2}, \frac{7+5}{2}\right)=(\mathbf{4}, \mathbf{6}), \\
\overrightarrow{\mathbf{c}}_{3-2} & =\left(\frac{3-5}{2}, \frac{7-5}{2}\right)=(-1,1) .
\end{aligned}
$$

Now we have

$$
\overrightarrow{\mathbf{s}}_{3-2}=\left(\overline{\mathbf{v}}_{3-1} ; \overrightarrow{\mathbf{c}}_{3-2} ; \overrightarrow{\mathbf{c}}_{3-1}\right)=(\mathbf{4}, \mathbf{6},-1,1,-2,-1,2,-1) .
$$

The third sweep:

$$
\begin{aligned}
\overrightarrow{\mathbf{v}}_{3-2} & =(\mathbf{4}, \mathbf{6}), \\
\overrightarrow{\mathbf{v}}_{3-3} & =\left(\frac{4+6}{2}\right)=(\mathbf{5}), \\
\overrightarrow{\mathbf{c}}_{3-3} & =\left(\frac{2-8}{2}\right)=(-2)
\end{aligned}
$$

can be written as follows:

$$
\begin{equation*}
\overrightarrow{\mathbf{s}}_{3-3}=\left(\overline{\mathbf{v}}_{3-3} ; \overrightarrow{\mathbf{c}}_{3-3} ; \overrightarrow{\mathbf{c}}_{3-2} ; \overrightarrow{\mathbf{c}}_{3-1}\right)=(\mathbf{5} ;-2 ;-1,1 ;-2,-1,2,-1) . \tag{12}
\end{equation*}
$$

3. RESULTS

1. According to equation (9), the initial array $\overrightarrow{\mathbf{v}}_{3}=(1,5,4,6,9,5,3,7)$ represents the approximation function \hat{f} by its sample values,

$$
\begin{align*}
\hat{f} & =1 \varphi_{\left[0, \frac{1}{8}\right)}+5 \varphi_{\left[\frac{1}{8}, \frac{2}{8}\right)}+4 \varphi_{\left[\frac{2}{8}, \frac{3}{8}\right)}+6 \varphi_{\left[\frac{3}{8}, \frac{4}{8}\right)} \tag{13}\\
& +9 \varphi_{\left[\frac{[8}{8}, \frac{5}{8}\right]}+5 \varphi_{\left[\frac{5}{8}, \frac{6}{8}\right)}+3 \varphi_{\left[\frac{6}{8}, \frac{7}{8}\right)}+7 \varphi_{\left[\frac{7}{8}, 1\right)} .
\end{align*}
$$

2. In contrast, the wavelet coefficient $\overrightarrow{\mathbf{c}}_{3-j}$ produced by the consecutive sweeps of basic transforms expresses the same approximating function \hat{f} in terms of consecutively lower frequencies, ending with a constant step across entire interval. According to equation (10), we estimate f by sample size 8 as following:

$$
\begin{align*}
\hat{f} & =(-2) \psi_{\left[0, \frac{1}{4}\right)}+(-1) \psi_{\left[\frac{1}{4}, \frac{2}{4}\right)}+2 \psi_{\left[\frac{2}{4}, \frac{3}{4}\right)}+(-1) \psi_{\left[\frac{3}{4}, 1\right)} \\
& +(-1) \psi_{\left[0, \frac{1}{2}\right)}+1 \psi_{\left[\frac{1}{2}, 1\right)} \tag{14}\\
& +(-2) \psi_{[0,1)}+5 \varphi_{[0,1)} .
\end{align*}
$$

3. Coefficient 5 of $5 \varphi_{[0,1)}$ means that the sample has average value equal to 5. Coefficient -2 of $-2 \psi_{[0,1)}$ means that the sample undergoes a jump 3 times the size of and in the opposite direction from the wavelet $\psi_{[0,1)}$ with jump of size equal 4 . The other coefficients are explained similarly.
4. For each pair $\left(v_{2 k, n-(j-1)}, v_{2 k+1, n-(j-1)}\right)$, instead of placing its results in two additional arrays, the j th sweep can replace the pair

$$
\left(v_{2 k, n-(j-1)}, v_{2 k+1, n-(j-1)}\right)
$$

by the new entries ($v_{k, n-j}, v_{k, n-j}$) as Example 1, so we have

$$
\overrightarrow{\mathbf{v}}_{3}=\overrightarrow{\mathbf{s}}=(1,5,4,6,9,5,3,7),
$$

then

$$
\begin{aligned}
\overrightarrow{\mathrm{s}}_{3-1} & =\left(v_{0,3-1}, c_{0,3-1}, v_{1,3-1}, c_{1,3-1}, v_{2,3-1}, c_{2,3-1}, v_{3,3-1}, c_{3,3-1}\right) \\
& =\left(\frac{1+5}{2}, \frac{1-5}{2}, \frac{4+6}{2}, \frac{4-6}{2}, \frac{9+5}{2}, \frac{9-5}{2}, \frac{3+7}{2}, \frac{3-7}{2}\right) \\
& =(\mathbf{3},-2, \mathbf{5},-1, \mathbf{7}, 2, \mathbf{5},-2), \\
\overrightarrow{\mathrm{s}}_{3-2} & =\left(\frac{3+5}{2},-2, \frac{3-5}{2},-1, \frac{7+5}{2}, 2, \frac{7-5}{2},-2\right) \\
& =(\mathbf{4},-2,-1,-1, \mathbf{6}, 2,1,-2),
\end{aligned}
$$

$$
\begin{align*}
\overrightarrow{\mathbf{s}}_{3-3} & =\left(\frac{4+6}{2},-2,-1,-1, \frac{4-6}{2}, 2,1-2\right) \tag{15}\\
& =(5,-2,-1,-1,-1,2,1,-2)
\end{align*}
$$

We can see that equation (12) and (15) give the same approximation for f.

4. TWO SCALE RELATIONSHIP

In this section we define a function space, $\mathbf{v}_{j}, j \in Z$ to be $\left\{\mathbf{v}_{j}=f \in\right.$ $L^{2}(R): f$ is piecewise constant on $\left.\left[k 2^{-j},(k+1) 2^{-j}\right], k \in Z\right\}$. If this sequence of subspaces has the following properties:

1. $\cdots \subset \mathbf{V}_{-2} \subset \mathbf{V}_{-1} \subset \mathbf{V}_{0} \subset \mathbf{V}_{1} \subset \cdots$.
2. $\bigcap_{j \in Z} \mathbf{V}_{j}=0, \overline{\bigcup_{j \in Z} \mathbf{V}_{j}}=L^{2}(R)$.
3. $f(x) \in \mathbf{V}_{j} \Longleftrightarrow f(2 x) \in \mathbf{V}_{j+1}$.
4. $f(x) \in \mathbf{V}_{0} \Longrightarrow f(x-k) \in \mathbf{V}_{0} \forall k \in Z$.
5. There is a function $\varphi(x) \in \mathbf{V}_{0}$ such that $\left\{\varphi_{0, k}(x)=\varphi(x-k), k \in Z\right\}$ constitutes an orthonormal basis for \mathbf{V}_{0}.
then we say that $\left(\mathbf{v}_{j}\right)_{j \in Z}$ form a multiresolution analysis (MRA) of $L^{2}(R)$, which is $\mathbf{v}_{j}=\operatorname{span}\left\{\varphi_{j, k}, k \in Z\right\}, \mathbf{W}_{j}=\operatorname{span}\left\{\psi_{j, k}, k \in Z\right\}$. For any function $f \in L^{2}(R)$ we can write (see [4]):

$$
\begin{equation*}
f=\sum_{k \in Z} v_{m, k} \varphi_{m, k}+\sum_{j=m}^{\infty} \sum_{k \in Z} c_{j, k} \psi_{j, k}, \tag{16}
\end{equation*}
$$

where the functions

$$
\begin{equation*}
\varphi_{m, k}(x)=2^{\frac{m}{2}} \phi\left(2^{m} x-k\right), \psi_{j, k}(x)=2^{\frac{j}{2}} \psi\left(2^{j} x-k\right) \tag{17}
\end{equation*}
$$

constitute an (inhomogeneous) orthonormal basis of $L^{2}(R)$. Here $\varphi(x)$ and $\psi(x)$ are the scale function and the orthogonal wavelet, respectively.

It is clear that for Haar wavelet

$$
\begin{equation*}
\varphi(x)=\frac{1}{\sqrt{2}} \varphi_{1,0}(x)+\frac{1}{\sqrt{2}} \varphi_{1,1}(x), \psi(x)=\frac{1}{\sqrt{2}} \varphi_{1,0}(x)-\frac{1}{\sqrt{2}} \varphi_{1,1}(x) . \tag{18}
\end{equation*}
$$

So, we can write

$$
\varphi_{m, k}(x)=\frac{\varphi_{j+1,2 k}(x)+\varphi_{j+1,2 k+1}(x)}{\sqrt{2}}, \psi_{j, k}(x)=\frac{\varphi_{j+1,2 k}(x)-\varphi_{j+1,2 k+1}(x)}{\sqrt{2}}
$$

Note that $\varphi \in \mathbf{v}_{0}$, therefore $\varphi \in \mathbf{v}_{1}$ since $\mathbf{v}_{0} \subset \mathbf{v}_{1}$. Since $\left\{\varphi_{1, k}(x), k \in Z\right\}$ is an orthonormal basis for \mathbf{V}_{1}, there exists a sequence b_{k} such that

$$
\begin{equation*}
\varphi(x)=\sum_{k \in Z} b_{k} \varphi_{1, k}(x) \tag{19}
\end{equation*}
$$

Theorem 1. For equation (19) we have
(I) $\sum_{k} b_{k}=\sqrt{2}$,
(II) $\sum_{k} b_{k}^{2}=1$.

Proof. According to equation (17) we can write $\varphi_{m, k}(x)=\sqrt{2} \varphi(2 x-k)$, which implies

$$
\int \varphi(x) \mathrm{d} x=\sqrt{2} \sum_{k} b_{k} \int \varphi(2 x-k) \mathrm{d} x=\frac{\sqrt{2}}{2} \sum_{k} b_{k} \int \varphi(x) \mathrm{d} x
$$

Since $\int \varphi(x) \mathrm{d} x \neq 0$, we have $\sum_{k} b_{k}=\sqrt{2}$.
For the proof of (II), we know that

$$
\begin{equation*}
\int \varphi(x) \varphi(x-l) \mathrm{d} x=1 \text { for } l=0 \tag{20}
\end{equation*}
$$

By using equations (20) and (17), we obtain

$$
\begin{aligned}
\int \varphi(x) \varphi(x-l) \mathrm{d} x & =\int \sqrt{2} \sum_{k} b_{k} \varphi(2 x-k) \varphi(x-l) \mathrm{d} x \\
& =\int \sqrt{2} \sum_{k} b_{k} \varphi(2 x-k) \sqrt{2} \sum_{m} b_{k} \varphi(2(x-l)-m) \mathrm{d} x \\
& =2 \sum_{k} b_{k}\left[\sum_{m} b_{m} \frac{1}{2} \int \varphi(2 x-k) \varphi(2 x-2 l-m) \mathrm{d}(2 x)\right] \\
& =\sum_{k} \sum_{m} b_{k} b_{m} \int \varphi(2 x-k) \varphi(2 x-2 l-m) \mathrm{d}(2 x) \\
& =\sum_{k} b_{k} b_{k-2 l} .
\end{aligned}
$$

The last line is obtained by taking $k=2 l+m$. By replacing $l=0$ in equation (21), the proof of the second part is complete.

REmark 1. The coefficient b_{k} may be written

$$
\begin{equation*}
b_{k}=\int \varphi(x) \varphi_{1, k}(x) \mathrm{d} x \tag{22}
\end{equation*}
$$

$\left\{b_{k}\right\}$ is a square-summable sequence, that is, we say $\left\{b_{k}\right\} \in l^{2} Z$, if $\sum_{k \in Z} b_{k}^{2}<$ ∞. For the Haar basis, it was seen that $b_{k}=2^{-1 / 2}$ for $k=0,1$ and it is zero otherwise. In this multiresolution context, this same sequence that relates scaling function at two levels of b_{k} can be used to define the mother wavelet:

$$
\begin{equation*}
\psi(x)=\sum_{k \in Z}(-1)^{k} b_{-k+1} \varphi_{1, k}(x) \tag{23}
\end{equation*}
$$

A special case of this construction was seen in (18).
Theorem 2. The wavelet spaces $\left\{\mathbf{W}_{j}, j \in Z\right\}$ and scale space $\left\{\mathbf{v}_{j}, j \in Z\right\}$ are mutually orthogonal.

Proof. First we prove that the scaling function and wavelet are orthogonal.

$$
\begin{aligned}
\prec \psi, \varphi \succ & =\int \psi(x) \varphi(x) \mathrm{d} x=\int\left(\sum_{k}(-1)^{k} b_{-k+1} \varphi_{1, k}(x)\right) \varphi(x) \mathrm{d} x \\
& =\sum_{k}(-1)^{k} b_{-k+1} \int \varphi_{1, k}(x) \varphi(x) \mathrm{d} x=\sum_{k}(-1)^{k} b_{-k+1} b_{k}=0 .
\end{aligned}
$$

The last step follows since the summand for k is the opposite of the summand for $1-k$, so each term is negated. It can be seen similarly that each integer translation of the mother wavelet ψ is also orthogonal to φ :

$$
\begin{aligned}
\prec \psi_{0, l}, \varphi \succ & =\int \psi(x-l) \varphi(x) \mathrm{d} x=\int\left(\sum_{k}(-1)^{k} b_{-k+1} \varphi_{1, k}(x-l)\right) \varphi(x) \mathrm{d} x \\
& =\sum_{k}(-1)^{k} b_{-k+1} \int \varphi_{1,2 l+k}(x) \varphi(x) \mathrm{d} x=\sum_{k}(-1)^{k} b_{-k+1} b_{2 l+k} \\
& =0 .
\end{aligned}
$$

The last step follows since the summand for k is the opposite of the summand for $1-k-2 l$, so each term is negated, because of the square sumability of the sequence b_{k}.

A straightforward extension of this argument will show that $\psi_{0, l} \perp \varphi_{0, k}$, for all $k, l \in Z$, and similarly it can be seen that $\psi_{j, l} \perp \varphi_{j, k}$, for all $k, l \in Z$. Thus we completed the proof.

THEOREM 3. Suppose that $v_{m, k}$ are scaling coefficients and $c_{j, k}$ are wavelet coefficients. Then $v_{m, k}=\sum_{k \in Z} b_{k-2 l} v_{m+1, k}$ and $c_{j, k}=\sum_{k \in Z}(-1)^{k} b_{-k+2 l-1} v_{m+1, k}$.

Proof.

$$
\begin{aligned}
v_{m, l} & =\int \varphi_{m, l}(x) f(x) \mathrm{d} x=\int \sum_{k \in \mathbf{Z}} b_{k} 2^{\frac{m}{2}} \varphi_{1, k}\left(2^{m} x-l\right) f(x) \mathrm{d} x \\
& =\int \sum_{k \in \mathbf{Z}} b_{k} 2^{\frac{m+1}{2}} \varphi\left(2^{m+1} x-2 l-k\right) f(x) \mathrm{d} x \\
& =\int \sum_{k \in \mathbf{Z}} b_{k} \varphi_{m+1, k+2 l}(x) f(x) \mathrm{d} x=\int \sum_{k \in \mathbf{Z}} b_{k-2 l} \varphi_{m+1, k}(x) f(x) \mathrm{d} x \\
& =\sum_{k \in \mathbf{Z}} b_{k-2 l} \int \varphi_{m+1, k}(x) f(x) \mathrm{d} x=\sum_{k \in \mathbf{Z}} b_{k-2 l} v_{m+1, k}
\end{aligned}
$$

Similarly, from two-scale relationship for any $\psi_{j, k}$ to the $\varphi_{j+1, l}$ in equation (23), we can write the wavelet coefficient $c_{i, j}$ as follows:

$$
\begin{equation*}
c_{j, k}=\sum_{k \in Z}(-1)^{k} b_{-k+2 l-1} v_{m+1, k} \tag{24}
\end{equation*}
$$

REFERENCES

[1] Antoniadis, A., Gregoire, G. and McKeague, I., Wavelet methods for curve estimation, J. Amer. Statist. Assoc., 89 (1994), 1340-1353.
[2] Clyed, M.A., Parmigiana, G. and Vidakovic, B., Multiple Shrinkage and Subset Selection in Wavelets, Springer Verlag, New York, 1998.
[3] Cohen, A., Daubechies, I. and Vial, P., Wavelets on the interval and fast wavelet transform, Appl. Comput. Harmon. Anal., 1 (1993), 54-81.
[4] Daubechies, I., Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 8 (1988), 909-996.
[5] Haar, A., Zur Theorie der Orthogonalen Funktionen-system, Math. Ann., 69 (1910), 331-371.
[6] Hardle, W., Kerkyacharian, G., Picard, D. and Tsybabov, A., Wavelets Approximation and Statistical Applications, Springer-Verlag, New York, 1998.
[7] Meyer, Y., Ondelettes et Operateurs, Hermann, Paris, 1990.
[8] Sardy, S., Percival, D.B., Bruce, A.G., Gao, H.Y. and Stuetzle, W., Wavelet de-noising for unequally spaced data, Statist. Comput., 9 (1999), 65-75.
[9] Vidakovic, B., Statistical Modeling by Wavelets, Wiley, New York, 1999.
[10] Walter, G., A new tool in applied mathematics, UMPA J., 2 (1993), 155-178.

Persian Gulf University
Department of Mathematics and Statistics
Bushehr 7516913798, Iran
E-mail: afshar@pgu.ac.ir

[^0]: The support of Research Committee of Persian Gulf University is greatly acknowledged.

