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ONE TOPIC ON WAVELET ALGORITHM
BY USING ONE DIMENSIONAL HAAR WAVELETS

MAHMOUD AFSHARI

Abstract. In this paper we obtain an algorithm to compute a fast wavelet
transform and use this algorithm to analyze and synthesize a signal or function
f . We consider a sample point (tj , sj) that includes a value sj = f(tj) at height
sj and abscissa (time or location) tj , and apply wavelet decomposition by using
shifts and dilations of the basic Haar transform. Some relationship between
wavelet coefficients are investigated.
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1. INTRODUCTION

Wavelets are regarded by many as primarily a new subject in pure and
applied mathematics. Indeed, many papers published on wavelets contain
esoteric-looking theorems with complicated proofs. Wavelet analysis was led
by Ingrid Daubechies [4], and many colleagues contributed in different ways:
Meyer [7], Walter [10], Vidakovic [9], Cohen et al. [3], Antoniadis et al. [1],
Clyed et al. [2].

Perhaps one of the most common application of wavelets is in signal pro-
cessing. A signal, broadly defined, is a sequence of numerical measurements,
typically obtained electronically.

To analyze and synthesize a signal, which can be any array of data in
terms of simple wavelets, we employ shifts and dilations of a mathematical
function, but we do not involve either calculus or linear algebra. The first step
in applying wavelets to any signal consists is representing the signal under
consideration by a mathematical function f . For example, a sound, the values
s = f(t) measure the sound at each time t at a fixed location.

The first step in the analysis of a signal with wavelets consists in approxi-
mating its function by means of sample alone. One of the simplest methods
of approximation uses a horizontal stair step extended through each sample
point. The resulting steps form a new function denote by f̃ and called a step
function, which approximates the sampled function s = f(t). The analysis of

the approximating function f̃ in terms of wavelets requires a precise labeling
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2 One dimensional Haar wavelets 17

of each step, by means of shifts and dilations of the basic unit step function,
denoted by ϕ[0,1).

If a sample point (tj , sj) includes a value sj = f(tj) at height sj and abscissa
(time or location) tj , then the sample point corresponds to the step function
sj · ϕ[tj ,t[j+1))(t), which approximates f at height sj on the interval [tj , t[j+1)),

where ϕA denote the indicator function of set A.
Adding all the step functions approximating corresponding to all the points

in the sample, yields the simple step function below:

f̃ =
n−1∑
j=0

sj · ϕ[tj ,t[j+1))(t).(1)

To facilitate comparisons between different signals, and to allow for the use of
common algorithms, simple wavelets pertain to the interval t ∈ [0, 1), so that
one unit corresponds to the entire length of the signal. Thus, t = 1

2 denotes

the middle of the signal, and t = 7
8 denotes the location at the seventh eighth

of the signal.
Haar basic transformation expresses the approximating function f̃ with

wavelets by replacing and adjacent pair of steps by one wider step and one
wavelet. The sum of two adjacent steps with width 1

2 produces the basic unit
step function ϕ[0,1) and the difference of two such narrower steps gives the
corresponding basic wavelet as following:

ϕ[0,1) = ϕ[0, 12) + ϕ[ 12 ,1)
and ψ[0,1) = ϕ[0, 12) − ϕ[ 12 ,1)

.

It is clear that we have

1

2
(ϕ[0,1) + ψ[0,1)) = ϕ[0, 12) and

1

2
(ϕ[0,1) − ψ[0,1)) = ϕ[ 12 ,1)

.(2)

2. FAST WAVELETS TRANSFORM AND ALGORITHM

To analyze a signal or function in term of wavelets, the Fast Haar wavelet
transform begins with initialization of an array with 2n entries, and then
proceeds with n iterations of the basic transform explained in (1).

For each index j ∈ {1, 2, ..., n}, before iteration number J , the array will

consist of 2n−(j−1) coefficients of 2n−(j−1) step function ϕk,n−(j−1), defined

below. After iteration number j, the array will consist of half as many, 2n−j

coefficient of 2n−j step function ϕk,n−j and 2n−j coefficient ψk,n−j , such as

ϕk,n−j(t) = ϕ[0,1)(2
n−j [t− k2j−n]),(3)

ψk,n−j(t) = ψ[0,1)(2
n−j [t− k2j−n]).(4)
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Algorithm. For Haar wavelets the initialization consists only on estab-
lishing a one dimensional array

~v(n) = (v0,n, v1,n, ..., v2n−2,n, v2n−1,n)

= (s0, s1, ..., sj , ..., s2n−2, s2n−1)(5)

= ~s.

With the total number of sample values equal to an integral power of two,
say 2n. Though indices ranging from 1 through 2n would also serve the same
purpose, indices ranging from 0 through 2n − 1 will accommodate a binary
encoding with only n binary digits. The array corresponds to the sampled
step function

f̂n =

2n−1∑
k=0

vk,nϕk,n(t).(6)

In general, the jth sweep of the basic transform begins with an array of
2n−(j−1) values

~vn−(j−1) = (v0,n−(j−1), · · · , v2n−(j−1)−1,n−(j−1)).(7)

It means that lists the values vk,n−(j−1) of a simple step function f̃(n−(j−1)) that

approximates f with 2(n−(j−1) steps of narrower width 2(n−(j−1)) as following:

f̃n−(j−1) =
2n−(j−1)−1∑

k=0

vk,n−(j−1)ϕk,n−(j−1)(t).(8)

We apply the basic transform to each pair (v2n,n−(j−1), v2n+1,n−(j−1)), which
gives two new wavelets coefficients

vk,(n−j) =
v2k,n−(j−1) + v2k+1,n−(j−1)

2
,

ck,(n−j) =
v2k,n−(j−1) − v2k+1,n−(j−1)

2
.

These 2(n−j) pairs of new coefficients represented the result of the jth sweep

~vn−j = (v0,n−j , v1,n−j , · · · , vk,n−j , · · · , v2n−j−1,n−j),

~cn−j = (c0,n−j , c1,n−j , · · · , ck,n−j , · · · , c2n−j−1,n−j).

It means that lists the values vk,(n−j) of a simple step function f̃(n−j)) that

approximates f with 2(n−j) steps of narrower width 2(n−j):

f̂n−j =
2n−j−1∑
k=0

vk,n−jϕk,n−j(t),(9)

f̌n−j =

2n−j−1∑
k=0

ck,n−jψk,n−j(t).(10)



4 One dimensional Haar wavelets 19

The wavelets given by second new array, ~cn−j , represent the difference be-

tween the finer steps of the initial estimation f̌n−(j−1) and the coarser steps of

f̌n− j. so the initial approximation f̂n−(j−1) still equals the sum of two new

approximations, f̂n−j and f̌n−j , so we have

f̂n−(j−1) = f̌n−j + f̂n−j .(11)

Repeating these sweeps, the approximation of functionf is complete.

Example 1. Let the signal or physical phenomena consist in representing
the signal under consideration by mathematical function f(t) = s, where t ∈
[0, 1). For the approximation of f , suppose we choose sample as following:

j : 0 1 2 3 4 5 6 7
sj : 1 5 4 6 9 5 3 7
tj : 0 1

8
2
8

3
8

4
8

5
8

6
8

7
8

According to this algorithm, our sample size is 8 = 2n. Thus,

n = 3⇒ ~v3 = ~s = (1, 5, 4, 6, 9, 5, 3, 7).

The first sweep:

~v3−1 =

(
1 + 5

2
,
4 + 6

2
,
9 + 5

2
,
3 + 7

2

)
= (3, 5, 7, 5),

~c3−1 =

(
1− 5

2
,
4− 6

2
,
9− 5

2
,
3− 7

2

)
= (−2,−1, 2,−2).

So we have

~s3−1 = (~v3−1;~c3−1) = (3,5,7,5,−2,−1, 2,−2).

The second sweep:

v̄3−1 = (3,5,7,5) ,

~v3−2 =

(
3 + 5

2
,
7 + 5

2

)
= (4,6),

~c3−2 =

(
3− 5

2
,
7− 5

2

)
= (−1, 1).

Now we have

~s3−2 = (v̄3−1;~c3−2;~c3−1) = (4,6,−1, 1,−2,−1, 2,−1).

The third sweep:

~v3−2 = (4,6),

~v3−3 =

(
4 + 6

2

)
= (5),

~c3−3 =

(
2− 8

2

)
= (−2)
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can be written as follows:

~s3−3 = (v̄3−3;~c3−3;~c3−2;~c3−1) = (5;−2;−1, 1;−2,−1, 2,−1).(12)

3. RESULTS

1. According to equation (9), the initial array ~v3 = (1, 5, 4, 6, 9, 5, 3, 7)

represents the approximation function f̂ by its sample values,

f̂ = 1ϕ[0, 18) + 5ϕ[ 18 ,
2
8) + 4ϕ[ 28 ,

3
8) + 6ϕ[ 38 ,

4
8)

+ 9ϕ[ 48 ,
5
8) + 5ϕ[ 58 ,

6
8) + 3ϕ[ 68 ,

7
8) + 7ϕ[ 78 ,1)

.
(13)

2. In contrast, the wavelet coefficient ~c3−j produced by the consecutive

sweeps of basic transforms expresses the same approximating function f̂ in
terms of consecutively lower frequencies, ending with a constant step across
entire interval. According to equation (10), we estimate f by sample size 8 as
following:

f̂ = (−2)ψ[0, 14) + (−1)ψ[ 14 ,
2
4) + 2ψ[ 24 ,

3
4) + (−1)ψ[ 34 ,1)

+ (−1)ψ[0, 12) + 1ψ[ 12 ,1)
(14)

+ (−2)ψ[0,1) + 5ϕ[0,1).

3. Coefficient 5 of 5ϕ[0,1) means that the sample has average value equal to
5. Coefficient −2 of −2ψ[0,1) means that the sample undergoes a jump 3 times
the size of and in the opposite direction from the wavelet ψ[0,1) with jump of
size equal 4. The other coefficients are explained similarly.

4. For each pair (v2k,n−(j−1), v2k+1,n−(j−1)), instead of placing its results in
two additional arrays, the jth sweep can replace the pair

(v2k,n−(j−1), v2k+1,n−(j−1))

by the new entries (vk,n−j , vk,n−j) as Example 1, so we have

~v3 = ~s = (1, 5, 4, 6, 9, 5, 3, 7),

then

~s3−1 = (v0,3−1, c0,3−1, v1,3−1, c1,3−1, v2,3−1, c2,3−1, v3,3−1, c3,3−1)

=

(
1 + 5

2
,
1− 5

2
,
4 + 6

2
,
4− 6

2
,
9 + 5

2
,
9− 5

2
,
3 + 7

2
,
3− 7

2

)
= (3,−2,5,−1,7, 2,5,−2) ,

~s3−2 =

(
3 + 5

2
,−2,

3− 5

2
,−1,

7 + 5

2
, 2,

7− 5

2
,−2

)
= (4,−2,−1,−1,6, 2, 1,−2),
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~s3−3 =

(
4 + 6

2
,−2,−1,−1,

4− 6

2
, 2, 1− 2

)
(15)

= (5,−2,−1,−1,−1, 2, 1,−2).

We can see that equation (12) and (15) give the same approximation for f .

4. TWO SCALE RELATIONSHIP

In this section we define a function space, vj , j ∈ Z to be {vj = f ∈
L2(R) : f is piecewise constant on [k2−j , (k + 1)2−j ], k ∈ Z}. If this sequence
of subspaces has the following properties:

1. · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · .
2.
⋂

j∈Z Vj = 0,
⋃

j∈Z Vj = L2(R).

3. f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1.
4. f(x) ∈ V0 =⇒ f(x− k) ∈ V0 ∀k ∈ Z.
5. There is a function ϕ(x) ∈ V0 such that {ϕ0,k(x) = ϕ(x − k), k ∈ Z}

constitutes an orthonormal basis for V0.

then we say that (vj)j∈Z form a multiresolution analysis (MRA) of L2(R),
which is vj = span{ϕj,k, k ∈ Z}, Wj = span{ψj,k, k ∈ Z}. For any function
f ∈ L2(R) we can write (see [4]):

(16) f =
∑
k∈Z

vm,kϕm,k +

∞∑
j=m

∑
k∈Z

cj,kψj,k,

where the functions

ϕm,k(x) = 2
m
2 φ(2mx− k), ψj,k(x) = 2

j
2ψ(2jx− k)(17)

constitute an (inhomogeneous) orthonormal basis of L2(R). Here ϕ(x) and
ψ(x) are the scale function and the orthogonal wavelet, respectively.

It is clear that for Haar wavelet

ϕ(x) =
1√
2
ϕ1,0(x) +

1√
2
ϕ1,1(x), ψ(x) =

1√
2
ϕ1,0(x)− 1√

2
ϕ1,1(x).(18)

So, we can write

ϕm,k(x) =
ϕj+1,2k(x) + ϕj+1,2k+1(x)√

2
, ψj,k(x) =

ϕj+1,2k(x)− ϕj+1,2k+1(x)√
2

.

Note that ϕ ∈ v0, therefore ϕ ∈ v1 since v0 ⊂ v1. Since {ϕ1,k(x), k ∈ Z} is
an orthonormal basis for V1, there exists a sequence bk such that

ϕ(x) =
∑
k∈Z

bkϕ1,k(x)(19)

Theorem 1. For equation (19) we have
(I)

∑
k bk =

√
2,

(II)
∑

k b
2
k = 1.
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Proof. According to equation (17) we can write ϕm,k(x) =
√

2ϕ(2x − k),
which implies∫

ϕ(x)dx =
√

2
∑
k

bk

∫
ϕ(2x− k)dx =

√
2

2

∑
k

bk

∫
ϕ(x)dx.

Since
∫
ϕ(x)dx 6= 0, we have

∑
k bk =

√
2.

For the proof of (II), we know that∫
ϕ(x)ϕ(x− l)dx = 1 for l = 0.(20)

By using equations (20) and (17), we obtain∫
ϕ(x)ϕ(x− l)dx =

∫ √
2
∑
k

bkϕ(2x− k)ϕ(x− l)dx

=

∫ √
2
∑
k

bkϕ(2x− k)
√

2
∑
m

bkϕ(2(x− l)−m)dx

= 2
∑
k

bk

[∑
m

bm
1

2

∫
ϕ(2x− k)ϕ(2x− 2l −m)d(2x)

]
(21)

=
∑
k

∑
m

bkbm

∫
ϕ(2x− k)ϕ(2x− 2l −m)d(2x)

=
∑
k

bkbk−2l.

The last line is obtained by taking k = 2l+m. By replacing l = 0 in equation
(21), the proof of the second part is complete. �

Remark 1. The coefficient bk may be written

bk =

∫
ϕ(x)ϕ1,k(x)dx.(22)

{bk} is a square-summable sequence, that is, we say {bk} ∈ l2Z, if
∑

k∈Z b
2
k <

∞. For the Haar basis, it was seen that bk = 2−1/2 for k = 0, 1 and it is zero
otherwise. In this multiresolution context, this same sequence that relates
scaling function at two levels of bk can be used to define the mother wavelet:

ψ(x) =
∑
k∈Z

(−1)kb−k+1ϕ1,k(x).(23)

A special case of this construction was seen in (18).

Theorem 2. The wavelet spaces {Wj , j ∈ Z} and scale space {vj , j ∈ Z}
are mutually orthogonal.
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Proof. First we prove that the scaling function and wavelet are orthogonal.

≺ ψ,ϕ � =

∫
ψ(x)ϕ(x)dx =

∫ (∑
k

(−1)kb−k+1ϕ1,k(x)

)
ϕ(x)dx

=
∑
k

(−1)kb−k+1

∫
ϕ1,k(x)ϕ(x)dx =

∑
k

(−1)kb−k+1bk = 0.

The last step follows since the summand for k is the opposite of the summand
for 1 − k, so each term is negated. It can be seen similarly that each integer
translation of the mother wavelet ψ is also orthogonal to ϕ:

≺ ψ0,l, ϕ � =

∫
ψ(x− l)ϕ(x)dx =

∫ (∑
k

(−1)kb−k+1ϕ1,k(x− l)

)
ϕ(x)dx

=
∑
k

(−1)kb−k+1

∫
ϕ1,2l+k(x)ϕ(x)dx =

∑
k

(−1)kb−k+1b2l+k

= 0.

The last step follows since the summand for k is the opposite of the summand
for 1−k− 2l, so each term is negated, because of the square sumability of the
sequence bk.

A straightforward extension of this argument will show that ψ0,l⊥ϕ0,k, for
all k, l ∈ Z, and similarly it can be seen that ψj,l⊥ϕj,k, for all k, l ∈ Z. Thus
we completed the proof. �

Theorem 3. Suppose that vm,k are scaling coefficients and cj,k are wavelet

coefficients. Then vm,k =
∑

k∈Z bk−2l vm+1,k and cj,k =
∑

k∈Z(−1)kb−k+2l−1 vm+1,k.

Proof.

vm,l =

∫
ϕm,l(x)f(x)dx =

∫ ∑
k∈Z

bk2
m
2 ϕ1,k(2mx− l)f(x)dx

=

∫ ∑
k∈Z

bk2
m+1

2 ϕ(2m+1x− 2l − k)f(x)dx

=

∫ ∑
k∈Z

bkϕm+1,k+2l(x)f(x)dx =

∫ ∑
k∈Z

bk−2lϕm+1,k(x)f(x)dx

=
∑
k∈Z

bk−2l

∫
ϕm+1,k(x)f(x)dx =

∑
k∈Z

bk−2lvm+1,k.

Similarly, from two-scale relationship for any ψj,k to the ϕj+1,l in equation
(23), we can write the wavelet coefficient ci,j as follows:

cj,k =
∑
k∈Z

(−1)kb−k+2l−1vm+1,k.(24)

�
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