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COEFFICIENT ESTIMATES AND THE CONVEX HULL
PROBLEM FOR MEROMORPHIC FUNCTIONS

B. BHOWMIK, S. PONNUSAMY and K.-J. WIRTHS

Abstract. We consider the class S(p) of meromorphic univalent functions in the
unit disk D having a simple pole at p ∈ (0, 1). Let Σs(p, w0) consist of functions

f ∈ S(p) for which C\f(D) is a starlike set with respect to a point w0 6= 0,∞. In
this paper, we find a sharp estimate for the real part of the constant coefficient
in the Laurent expansion of functions in S(p). Also we prove a result on the
closed convex hull of Σs(p, w0). Lastly, we obtain certain coefficient estimates in
the Laurent expansion for functions in Σs(p, w0).
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1. INTRODUCTION

Let D := {z : |z| < 1} be the open unit disk. Let S denote the class
of analytic univalent functions f in D with standard normalization f(0) =
f ′(0) − 1 = 0. The class S(p) of meromorphic and univalent functions in D,
having a simple pole at z = p ∈ (0, 1) with the standard normalization at
the origin and its subclasses have renewed their interest in function theory.
We refer to [1, 2, 3, 4, 10] for the latest development. Another related class
of interest lies in Σs(p, w0), the class of meromorphically starlike functions f
satisfying

(i) f ∈ S(p),
(ii) C \ f(D) is a starlike set with respect to a point w0 6= 0,∞.

Characterization and results about Σs(p, w0) can be obtained from [3, 4, 5, 7,
8, 9]. Clearly, each f ∈ S(p) has the Laurent expansion

(1) f(z) =
a−1

z − p
+

∞∑

n=0

an(f)(z − p)n, |z − p| < 1− p.

We now recall a familiar result of Zemyan [11] on the set of variability of
the residue a−1 for functions in S(p).

Theorem A. Let Ωp = {a−1 : a−1 = Resz=pf(z), f ∈ S(p)}. Then

(2) Ωp = {−p2(1− p2)ε : |ε| ≤ 1}.
A function f belongs to the class Co(p), called the class of concave functions,

if and only if
(i) f ∈ S(p),
(ii) C \ f(D) is a convex set.
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Results about Taylor and Laurent coefficients, and the closed convex hull of
the family of concave functions can be obtained from [1, 2, 3, 4, 7, 9, 10].

Theorem B. [7, Theorem 4] If f is a member of Co(p) with expansion (1)
then

(3)
∣∣∣∣p +

a0(f)(1− p2)
a−1(f)

∣∣∣∣ ≤
1 + p2

p

and the inequality is sharp.

We will indicate in the proof of Theorem 1 that the estimate in Theorem B
holds for f ∈ S(p) as well.

In [3, Theorem 3.1], the following representation formula for functions in
the class Σs(p, w0) has been obtained.

Theorem C. For 0 < p < 1, let f ∈ Σs(p, w0). Then there exists a function
ω holomorphic in D such that ω(D) ⊂ D, ω(0) = −1

2

(
1

w0
+ p + 1

p

)
and

(4) f(z) = w0 +
pw0(1 + zω(z))2

(z − p)(1− zp)
, z ∈ D.

Now we recall the lower bound for the modulus of the residue for functions
in Σs(p, w0).

Theorem D. [3, Theorem 3.3] If f ∈ Σs(p, w0) and has the Laurent expan-
sion (1), then we have

(5) |a−1| ≥ p(1− p)
1 + p

|w0|.
The inequality is sharp for the function

g(z) =
−zp

(z − p)(1− pz)
= w0 +

pw0

(z − p)(1− pz)
(1− z)2 ∈ Σs(p, w0)

where w0 = −p
(1−p)2

.

The present article is organized as follows: In Section 2 we use Theorems A
and B to obtain a sharp estimate for the real part of a0(f) for functions in S(p)
for certain values of p in (0, 1). In Section 3 we prove that, for all p ∈ (0, 1) and
for certain values of w0, the closed convex hull of Σs(p, w0) is a proper subset of
the closed convex hull of the family of functions defined by the representation
formula (4) in the topology of uniform convergence on compact subsets of
D \ {p} (see [12]).

2. AN ESTIMATE FOR THE REAL PART OF a0(f), f ∈ s(p)

Theorem 1. Let f ∈ S(p) have the expansion (1). Then

Re (a0(f)) ≥ −p

(1− p2)2
, p ∈ (0,

√
1− e−π),

√
1− e−π ≈ 0.97.

Furthermore, the above inequality is sharp.
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Proof. For f ∈ S(p) let

h(z) =
−a−1

(1− p2)f
(

p−z
1−pz

) .

Then h can easily seen to be a member of S(p). Keeping in account the fact
that h is analytic in D \ {p} with simple pole at z = p, it is a simple exercise
to see that

h(z) = z +
(

p +
(1− p2)a0

a−1

)
z2 + · · · , |z| < p.

Now by Jenkin’s inequality (see [6]), we have

|h′′(0)| ≤ 2(1 + p2)
p

.

This shows that the estimate (3) of Theorem B continues to hold for functions
in S(p). Consequently, for any f ∈ S(p) there exists a number τ ∈ D such
that

(6) a0(f) =
a−1(f)
1− p2

(
− p + τ

1 + p2

p

)
.

It suffices to consider the points τ on the boundary of unit disk. Set τ = eiφ

and ε = reiθ, r ∈ (0, 1], in Theorem A. Then, by (2), (6) can be rewritten as

(7) a0(f) = Y J,

where

Y =
−p2(1− p2)r cos θ

(1− p2)
, J = (1− p2)ir sin θ

(
− p + eiφ 1 + p2

p

)
.

It follows easily that
−p2

(1− p2)2
≤ Y ≤ −p2.

Now, we need to compute extremum of the real part of J . To this end we have

ReJ =
(
− p +

1 + p2

p
cosφ

)
cos

((
log(1− p2)

)
r sin θ

)
(8)

− 1 + p2

p
sinφ sin

((
log(1− p2)

)
r sin θ

)
.

Now, let x =
(

log(1− p2)
)
r sin θ, θ ∈ [0, 2π]. Then x ∈ [−α, α], where

α = log
( 1

1− p2

)
> 0.

From (8) we obtain that

ReJ = Q(x, φ) =
1 + p2

p
cos(x + φ)− p cosx, φ ∈ [0, 2π].
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In view of this simple form, we need to find the extremum for the function
Q(x, φ). To do this, consider the expression

R(a, b) =
1 + p2

p
a− pb,

where a = cos(x + φ) and b = cosx. As φ ∈ [0, 2π] and cosine is a peri-
odic function of period 2π, we see that the variables a and b are indepen-
dent. Clearly, −1 ≤ b ≤ 1. Now, let for a fixed α > 0, the minimum
value of b be “t”. Hence, the corners of the rectangle where (a, b) varies
are A(1, 1), B(1, t), C(−1, t), D(−1, 1) (see Fig. 1).

a

b

O

(−1,1)D A (1,1)

B (1,t)(−1,t)C

Fig. 1

1−1

Here we note that the maximum is attained at the corner B for certain values
of p in (0, 1). A little calculation shows that t = −1 is possible only for
the interval p ∈ [

√
1− e−π, 1]. For the maximum of R(a, b) in the remaining

interval, we have

maxR(a, b) = R(1, 1) =
1
p

for p ∈ (0,
√

1− e−π).

Using this, we get from (7)

Re (a0(f)) ≥ −p

(1− p2)2
for p ∈ (0,

√
1− e−π).

The above estimate is sharp for the function

f(z) =
−zp

(z − p)(1− pz)
.

¤

Remark 1. Since the equality t = −1 can hold only for p ∈ [
√

1− e−π, 1),
we have

maxR(a, b) = R(1,−1) =
1 + 2p2

p
, p ∈ [

√
1− e−π, 1).

We also see that the minimum is attained at the corner D. Hence,

minR(a, b) = R(−1, 1) = −1 + 2p2

p
, p ∈ (0, 1).
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Hence we get

Re (a0(f)) ≥ −p(1 + 2p2)
(1− p2)2

, p ∈ [
√

1− e−π, 1).

Now using the estimate for minimum of R(a, b) and (7) we get

Re (a0(f)) ≤ p(1 + 2p2), p ∈ (0, 1).

Remark 2. We note that the bounds obtained above for the real part of
a0(f) are the same as the bounds for the real part of a0(f) in any direction,
i.e., the bounds which are true for Re (a0(f)) are also valid for Re(eiβa0(f))
for some fixed parameter β ∈ [0, 2π).

Corollary 1. Let f ∈ S(p) have the expansion (1). Then

−p(1 + 2p2)
(1− p2)2

≤ Im (a0(f)) ≤ p(1 + 2p2), p ∈ [
√

1− e−π/2, 1).

The strict inequality holds in the above estimate for p ∈ (0,
√

1− e−π/2).

Proof. We have from (7) that a0(f) = Y J . Now a little computation of the
imaginary part of J reveals that

ImJ = −p sinx +
1 + p2

p
sin(x + φ),

where x and φ are as in Theorem 1. We observe that −1 ≤ sinx ≤ 1 whenever
p ∈ [

√
1− e−π/2, 1), and that on the complement part p ∈ (0,

√
1− e−π/2),

we have −1 < sinx < 1. Now the proof follows easily. ¤
Corollary 2. If g ∈ S has the expansion

g(z) =
∞∑

n=0

bn(z − p)n, |z − p| < 1− p,

then
Re

(
b2

(b0

b1

)2
− b0

)
≥ −p

(1− p2)2
, p ∈ (0,

√
1− e−π).

The above estimate is sharp for the Koebe function z
(1−z)2

.

Proof. If g ∈ S, then

f(z) =
g(p)g(z)

g(p)− g(z)
is in S(p). Now using the Laurent expansion (1) of f at p, we easily get that

a0(f) =
g(p)2g′′(p)

2g′(p)2
− g(p).

Noting that g(p) = b0, g
′(p) = b1, g

′′(p) = 2b2 and using the estimate for the
real part of a0(f) from Theorem 1, we get the desired estimate for functions in
S. It is not difficult to see that the estimate is sharp for the Koebe function.

¤
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3. CLOSED CONVEX HULL AND THE LAURENT COEFFICIENTS OF Σs(p, w0)

The closed convex hull of the family of functions defined by the represen-
tation formula (4) in Theorem C consists of all functions each of which are
limits (in the topology of uniform convergence) of functions of the form

{
w0 +

pw0

(z − p)(1− zp)

n∑

i=1

ti(1 + zωi(z))2 : ωi : D→ D, ωi is holomorphic

and ωi(0) = −1
2

(
p +

1
p

+
1
w0

)
, n = 1, 2, · · ·

}
.

In the next theorem we prove a containment relation between the closed convex
hull of Σs(p, w0) and the closed convex hull of family of functions defined by
(4). We will use Theorem D to get this result .

Theorem 2. Let p ∈ (0, 1) and w0 ∈
[

−p
(1−p)2

, −p
(1+p)2

]
. Then the closed

convex hull of Σs(p, w0) is a proper subset of the closed convex hull of the
family of functions defined by (4).

Proof. First we observe that the coefficients a−1(f) of the functions f in
the closed convex hull of Σs(p, w0) satisfy the inequality (5) of Theorem D.
Next let us consider the following Taylor expansion for ω at z = p

(9) ω(z) =
∞∑

n=0

cn(z − p)n, |z − p| < 1− p.

Now a computation of a−1(f), using the representation formula (4) and the
expansions (1) and (9), yields

(10) a−1(f) =
pw0

1− p2
[1 + p2c2

0 + 2pc0].

We insert into (4) the functions

(11) ωx(z) =
−

(
z−p
1−pz

)
− x

1 + x
(

z−p
1−pz

) , z ∈ D,

x ∈ (0, 1) fixed. The Taylor expansion of ωx, at the point p, gives c0 = −x.
Using this value of c0, we get from (10)

a−1(f) =
p(1− p)
(1 + p)

(
1− px

1− p

)2

w0.

It is easy to see that (
1− px

1− p

)2

> 1
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for all p ∈ (0, 1) and x ∈ (0, 1). Hence for w0 ∈
[

−p
(1−p)2

, −p
(1+p)2

]
, we have

a−1(f) < −p(1− p)
(1 + p)

|w0|.

So the functions f in (4) got by inserting ωx(z) do not belong to the closed
convex hull of Σs(p, w0). This finishes the proof. ¤

In view of the refined estimate [3, (3.6)], we can formulate the corrected
version of the corollary after [7, Theorem 9]:

Corollary 3. Let p ∈ (0, 1) and f ∈ Σs(p, w0) have the expansion (1).
Then

(i) |a0 − w0| ≤ p(2+p)
(1−p)2

|w0|,
(ii) |a1| ≤ p|w0|

(1−p)3(1+p)
.

The estimate (ii) is sharp for

f(z) =
−zp

(z − p)(1− pz)

with w0 = −p
(1+p)2

.

Remark 3. We observe that the extremal function f of [7, Theorem 8]
belongs to Σs(p, w0) if and only if w0 = −p

(1−p)2
. This is a direct consequence

of the fact that

f ′(z) = −(1− p)2
(

1 + z

1− z

)
f(z)− w0

(z − p)(1− zp)
,

and f ′(0) = 1. Hence, the inequality (i) for the above corollary cannot be
sharp since the inequality [3, (3.6)] is sharp for (−zp)/ ((1− zp)(z − p)) with
w0 = −p

(1+p)2
. But this is not the case with estimate (ii) of the above corollary,

as the estimate [7, (5.5)] is not involved with the point w0.
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