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ON QUASI-HADAMARD PRODUCTS OF SOME FAMILIES OF
STARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS

M.K. AOUF

Abstract. The objective of the present paper is to show quasi-Hadamard prod-
ucts of some families of starlike functions with negative coefficients in the open
unit disc. Our results generalize corresponding results of Aouf and Srivastava.
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1. INTRODUCTION

Let A(j) denote the class of functions of the form:

(1) f(z) = z +
∞∑

k=j+1

akz
k (j ∈ N = {1, 2, ..}),

which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1}. For a
function f(z) in A(j), we define

(2) D0f(z) = f(z) ,

(3) D1f(z) = Df(z) = zf
′
(z) ,

and

(4) Dnf(z) = D(Dn−1f(z)) (n ∈ N) .

The differential operator Dn was introduced by Salagean [6]. With the help
of the differential operator Dn, we say that a function f(z) belonging to A(j)
is in the class C(j, λ, α, n) if and only if

(5) Re

{
(1− λ)z(Dnf(z))

′
+ λz(Dn+1f(z))

′

(1− λ)Dnf(z) + λDn+1f(z)

}
> α (n ∈ No = N ∪ {0})

for some α(0 ≤ α < 1) and λ(0 ≤ λ ≤ 1), and for all z ∈ U .
Let T (j) denote the subclass of A(j) consisting of functions of the form:

(6) f(z) = z −
∞∑

k=j+1

akz
k (ak ≥ 0; j ∈ N) .

Further, we define the class P (j, λ, α, n) by

(7) P (j, λ, α, n) = C(j, λ, α, n) ∩ T (j) .

The class P (j, λ, α, n) was studied by Aouf and Srivastava [2].
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We note that, by specializing the parameters j, λ, α and n, we obtain the
following subclasses studied by various authors:

(i) P (j, λ, α, 0) = P (j, λ, α) (Altintas [1]);
(ii) P (1, 0, α, 0) = T ∗(α) and P (1, 1, α, 0) = P (1, 0, α, 1) = C(α) (Silverman

[7]);
(iii) P (j, 0, α, 0) = Tα(j) and P (j, 1, α, 0) = P (j, 0, α, 1) = Cα(j) (Chatter-

jea [3] and Srivastava et al. [8]);
(iv) P (j, 0, α, n) = P (j, α, n) and P (j, 1, α, n) = P (j, α, n + 1) (Aouf and

Srivastava [2]).
Let f`(z)(` = 1, 2) be defined by

(8) f`(z) = z −
∞∑

k=j+1

ak,`z
k (ak,` ≥ 0).

Then the quasi-Hadamard product (f1 ∗ f2)(z) of f1(z) and f2(z) is given by

(9) (f1 ∗ f2)(z) = z −
∞∑

k=j+1

ak,1ak,2z
k .

For the quasi-Hadamard product, Aouf and Srivastava [2] have shown that:

Theorem A. If f`(z) ∈ P (j, λ, α, n)(` = 1, 2), then (f1∗f2)(z) ∈ P (j, λ, β, n),
where

(10) β = 1− j(1− α)2

(j + 1)n(λj + 1)(j + 1− α)2 − (1− α)2
.

The result is sharp.

Corollary A. If f`(z) ∈ P (j, λ, α, n)(` = 1, 2, 3), then (f1 ∗ f2 ∗ f3)(z) ∈
P (j, λ, β, n), where

(11) β = 1− j(1− α)3

(j + 1)2n(λj + 1)2(j + 1− α)3 − (1− α)3
.

The result is sharp.
In the present paper, we generalize Theorem A and Corollary A using the

technique of Owa [5].

2. QUASI-HADAMARD PRODUCTS

To prove our main result of quasi-Hadamard products, we need the following
lemma given by Aouf and Srivastava [2].

Lemma. A function f(z) given by (6) is in the class P (j, λ, α, n) if and
only if

(12)
∞∑

k=j+1

kn(k − α)(λk − λ+ 1)ak ≤ 1− α .
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Applying the above lemma, we derive:

Theorem 1. If f`(z)(` = 1, 2, ...,m) belong to the class P (j, λ, α`, n) for
each ` = 1, 2, ...,m, then (f1 ∗ f2 ∗ ... ∗ fm)(z) ∈ P (j, λ, β, n), where

(13) β = 1−
j
m∏
`=1

(1− α`)

(j + 1)n(m−1)(λj + 1)m−1
m∏
`=1

(j + 1− α`)−
m∏
`=1

(1− α`)
.

The result is sharp for the functions

(14) f`(z) = z − 1− α`
(j + 1)n(λj + 1)(j + 1− α`)

zj+1(` = 1, 2, ...,m).

Proof. For m = 1, we have that β = α1. For m = 2, Lemma gives that

(15)
∞∑

k=j+1

kn(k − α`)(λk − λ+ 1)
1− α`

ak,` ≤ 1(` = 1, 2).

Note that, from (15),

(16)
∞∑

k=j+1

kn(λk − λ+ 1)

√√√√ 2∏
`=1

(
k − α`
1− α`

)
ak,`

 ≤ 1 (` = 1, 2) .

To prove the case when m = 2, we have to find the largest β such that

(17)
∞∑

k=j+1

kn(k − β)(λk − λ+ 1)
1− β

ak,1ak,2 ≤ 1

or, such that

(18)
(
k − β
1− β

)
√
ak,1, ak,2 ≤

√√√√ 2∏
`=1

(
k − α`
1− α`

)
(k ≥ j + 1) .

Further, by using (16), we need to find the largest β such that

(19)
k − β
1− β

≤ kn(λk − λ+ 1)
2∏
`=1

(
k − α`
1− α`

)
(k ≥ j + 1) ,
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which is equivalent to

β ≤
kn(λk − λ+ 1)

2∏
`=1

(k − α`)− k
2∏
`=1

(1− α`)

kn(λk − λ+ 1)
2∏
`=1

(k − α`)−
2∏
`=1

(1− α`)

= 1−
(k − 1)

2∏
`=1

(1− α`)

kn(λk − λ+ 1)
2∏
`=1

(k − α`)−
2∏
`=1

(1− α`)
(k ≥ j + 1) .

Defining the function ϕ(k) by

(20) ϕ(k) = 1−
(k − 1)

2∏
`=1

(1− α`)

kn(λk − λ+ 1)
2∏
`=1

(k − α`)−
2∏
`=1

(1− α`)
(k ≥ j + 1) ,

we see that ϕ
′
(k) ≥ 0 for k ≥ j + 1. This implies that

(21) β ≤ ϕ(j + 1) = 1−
j

2∏
`=1

(1− α`)

(j + 1)n(λj + 1)
2∏
`=1

(j + 1− α`)−
2∏
`=1

(1− α`)
.

Therefore, the result is true for m = 2. Next, suppose that the result is true
for any positive integer m. Then we have

(f1 ∗ f2 ∗ ... ∗ fm ∗ fm+1)(z) ∈ P (j, λ, γ, n) ,

where
(22)

γ = 1− j(1− β)(1− αm+1)
(j + 1)n(λj + 1)(j + 1− β)(j + 1− αm+1)− (1− β)(1− αm+1)

,

where β is given by (13). It follows from (22) that

(23) γ = 1−
j
m+1∏
`=1

(1− α`)

(j + 1)nm(λj + 1)m
m+1∏
`=1

(j + 1− α`)−
m+1∏
`=1

(1− α`)
.

Thus, the result is true for m + 1. Therefore, by using the mathematical
induction, we conclude that the result is true for any positive integer m.
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Finally, taking the functions f`(z) given by (14), we see that

(f1 ∗ f2 ∗ ... ∗ fm)(z) = z −

{
m∏
`=1

(
1− α`

(j + 1)n(λj + 1)(j + 1− αj)

)}
zj+1

= z −Aj+1 z
j+1 ,

where

Aj+1 =
m∏
`=1

(
1− α`

(j + 1)n(λj + 1)(j + 1− αj)

)
.

Thus, we know that
∞∑

k=j+1

kn(k − β)(λk − λ+ 1)
1− β

Ak

=
(j + 1)n(λj + 1)(j + 1− β)

1− β

{
m∏
`=1

(
1− α`

(j + 1)n(λj + 1)(j + 1− αj)
)

}
= 1 .

Consequently, the result is sharp for functions f`(z) given by (14). �

Letting α` = α (` = 1, 2, ...,m), we have:

Corollary 1. If f`(z) ∈ P (j, λ, α, n) (` = 1, 2, ...,m), then (f1 ∗ f2 ∗ ... ∗
fm)(z) ∈ P (j, λ, β, n), where

(24) β = 1− j(1− α)m

(j + 1)n(m−1)(λj + 1)m−1(j + 1− α)m − (1− α)m
.

The result is sharp for functions

(25) f`(z) = z − 1− α
(j + 1)n(λj + 1)(j + 1− α)

zj+1 (` = 1, 2, ...,m) .

Putting j = 1, we have:

Corollary 2. If f`(z) ∈ P (1, λ, α`, n) (` = 1, 2, ..., n), then (f1 ∗ f2 ∗ ... ∗
fm)(z) ∈ P (1, λ, β, n), where

(26) β = 1−

m∏
`=1

(1− α`)

2n(m−1)(λ+ 1)m−1
m∏
`=1

(2− α`)−
m∏
`=1

(1− α`)
.

The result is sharp for functions

(27) f`(z) = z − 1− α`
2n(λ+ 1)(2− α`)

z2 (` = 1, 2, ...,m) .

Putting λ = 1
j , we have:
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Corollary 3. If f`(z) ∈ P (j, 1
j , α`, n) for all ` = 1, 2, ...,m, then (f1 ∗ f2 ∗

... ∗ fm)(z) ∈ P (j, 1
j , β, n), where

(28) β = 1−
j
m∏
`=1

(1− α`)

2m−1(j + 1)n(m−1)
m∏
`=1

(j + 1− α`)−
m∏
`=1

(1− α`)
.

The result is sharp for functions

(29) f`(z) = z − 1− α`
2(j + 1)n(j + 1− α`)

zj+1 (` = 1, 2, ...,m) .

Putting λ = 0, we have:

Corollary 4. If f`(z) ∈ P (j, 0, α`, n) = P (j, α`, n)(` = 1, 2, ...,m), then
(f1 ∗ f2 ∗ ... ∗ fm)(z) ∈ P (j, β, n), where

(30) β = 1−
j
m∏
`=1

(1− α`)

(j + 1)n(m−1)
m∏
`=1

(j + 1− α`)−
m∏
`=1

(1− α`)
.

The result is sharp for functions

(31) f`(z) = z − 1− α`
(j + 1)n(j + 1− α`)

zj+1 (` = 1, 2, ...,m) .

Putting λ = 1, we have:

Corollary 5. If f`(z) ∈ P (j, 1, α`, n) = P (j, α`, n + 1)(` = 1, 2, ...,m),
then (f1 ∗ f2 ∗ ... ∗ fm)(z) ∈ P (j, β, n+ 1), where
(2.24)

β = 1−
j
m∏
`=1

(1− α`)

(j + 1)(m−1)(n+1)
m∏
`=1

(j + 1− α`)−
m∏
`=1

(1− α`)
(` = 1, 2, ...,m).

The result is sharp for functions

(32) f`(z) = z − 1− α`
(j + 1)n+1(j + 1− α`)

zj+1 (` = 1, 2, ...,m) .

Remark 1. (i) Putting n = 0 in Theorem 1, Corollary 1, Corollary 2, and
Corollary 3, we obtain the results obtained by Kim et al. [4];

(ii) Putting m = 2 in Corollary 1, then we have Theorem A obtained by
Aouf and Srivastava [2].

(iii) Putting m = 3 in Corollary 1, then we have Corollary A obtained by
Aouf and Srivastava [2].
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