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A MULTIPLICITY RESULT FOR A
DOUBLE EIGENVALUE P-LAPLACIAN EQUATION

ON UNBOUNDED DOMAIN

ILDIKÓ ILONA MEZEI

Abstract. We present a multiplicity result concerning a class of quasilinear
eigenvalue problems with nonlinear boundary conditions on unbounded domain.
The proofs are based on the Mountain Pass theorem applied to weighted Sobolev
spaces. Our paper completes the results obtained in this direction (see for in-
stance [1], [3], [5], [6], [8]).
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1. PRELIMINARIES

The eigenvalue problems involving the p-Laplacian operator have been in-
tensively studied by many authors in the last decade. This is motivated by
the importance of their applications to mathematical physics.

Let Ω ⊂ RN be an unbounded domain with smooth boundary Γ. We assume
throughout this paper that m, p, q and α1, α2 are real numbers satisfying

(1) 1 < p < N, p ≤ q ≤ pN

N − p
, −N < α1 ≤ q · N − p

p
−N,

(2) p ≤ m ≤ p · N − 1
N − p

and −N < α2 ≤ m · N − p

N
−N + 1.

We define the weighted Sobolev space E as the completion of C∞
0 (Ω) in the

norm

||u||E =
(∫

Ω
(|∇u(x)|p +

1
(1 + |x|)p |u(x)|p)dx

) 1
p

.

We denote by Lq(Ω; w1) and by Lm(Γ;w2) the weighted Lebesgue spaces
with respect to

(3) wi(x) = (1 + |x|)αi , i = 1, 2

and norms

||u||qq,w1
=

∫
Ω

w1(x)|u(x)|qdx and ||u||mm,w2
=

∫
Γ

w2(x)|u(x)|mdΓ.
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We shall use in our paper the following embedding result from [7].

Proposition 1. Assume that (1) holds.
Then the embedding E ↪→ Lq(Ω; w1) is continuous. If the upper bound for q

in (1) is strict, then the embedding is compact. Suppose that the inequalities
in (2) are satisfied. Then the trace operator E → Lm(Γ;w2) is continuous. If
the upper bound for m in (2) is strict, then the trace operator is compact.

Notations: The best embedding constant of E ↪→ Lq(Ω; w1) will be denoted
by Cq,w1 and that of E ↪→ Lm(Γ;w2) by Cm,w2 .

We assume throughout this paper that a ∈ L∞(Ω) and b ∈ L∞(Γ) such that

(4) a(x) ≥ a0 > 0 for a.e. x ∈ Ω

and

(5)
c

(1 + |x|)p−1 ≤ b(x) ≤ C

(1 + |x|)p−1 for a.e. x ∈ Γ,

where c, C > 0 are constants.

Remark 1. Note, that

||u||pb =
∫

Ω
a(x)|∇u(x)|pdx +

∫
Γ

b(x)|u(x)|pdΓ

defines an equivalent norm on E, see [6], Lemma 2.

The main result of this paper is based on the following Mountain Pass
Theorem.

Theorem 1. Let f : E → R be a C1 functional satisfying the Palais-Smale
condition and verifying the hypotheses

(a) there exist constants α > 0 and ρ > 0 such that f(u) ≥ α, for every
||u|| = ρ;

(b) there is e ∈ E with ||e|| > ρ and f(e) ≤ α.
Then the number

c = inf
g∈Γ

max
v∈[0,e]

f(g(v)),

where [0, e] is the closed line segment in E joining 0 and e and

Γ = {c ∈ C([0, e], X) : g(0) = 0, g(e) = e},

is a critical value of f with c ≥ α.

2. MAIN RESULT

For λ > 0 and µ ∈ R we consider the problem
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(Pλ,µ)


−div(a(x)|∇u|p−2∇u) = λf(x, u) in Ω,

a(x)|∇u|p−2∇u · n + b(x)|u|p−2u = λµg(x, u) on Γ

u 6= 0 in Ω,

where n denotes the unit outward normal on Γ, and f : Ω × R → R is a
Carathéodory function.

We consider the following assumptions:

(F1) f(·, 0) = 0 and |f(x, s)| ≤ f0(x) + f1(x)|s|r−1, where p < r <
pN

N − p
,

and f0, f1 are measurable functions which satisfy

0 < f0(x) ≤ Cfw1(x), and 0 ≤ f1(x) ≤ Cfw1(x) a.e. x ∈ Ω,

f0 ∈ L
r

r−1 (Ω; w
1

1−r

1 ).

(F2) lim
s→0

f(x, s)
f0(x)|s|p−1 = 0, uniformly in x ∈ Ω;

(F3) lim sup
s→+∞

1
f0(x)|sp|

F (x, s) ≤ 0, uniformly for x ∈ Ω, max
|s|≤M

F (·, s) ∈

L1(Ω) for all M > 0, where F denotes the primitive function of f with

respect to the second variable, i.e. F (x, u) =
∫ u

0
f(x, s)ds;

(F4) there exist x0 ∈ Ω, R0 > 0 and s0 ∈ R such that min
|x−x0|<R0

F (x, s0) > 0.

(G1) Let g : Γ× R → R be a a Carathéodory function such that g(·, 0) = 0
and

|g(x, s)| ≤ g0(x) + g1(x)|s|m−1,

where p ≤ m < p·N − 1
N − p

, and g0, g1 are measurable functions satisfying

0 < g0(x) ≤ Cgw2(x) and 0 ≤ g1(x) ≤ Cgw2(x), a.e. x ∈ Γ,

g0 ∈ L
q

q−1 (Γ;w
1

1−q

2 );

(G2)

lim
s→0

g(x, s)
g0(x)|s|p−1 = 0, uniformly in x ∈ Γ;

(G3) lim sup
s→+∞

1
g0(x)|sp|

G(x, s) ≤ 0, uniformly for x ∈ Γ, max
|s|≤M

G(·, s) ∈ L1(Γ)

for all M > 0, where G is the primitive function of g with respect to

the second variable, i.e. G(x, u) =
∫ u

0
g(x, s)ds.



200 I. I. Mezei 4

We introduce the functionals JF , JG, Jµ : E → R, defined by

JF (u) =
∫

Ω
F (x, u(x))dx, JG(u) =

∫
Γ

G(x, u(x))dΓ,

Jµ(u) = JF (u) + µJG(u).

A standard argument, which is based on the embedding results from Propo-
sition 1 and the assumptions (F1), (G1) shows that the functionals JF , JG

hence Jµ too, are well defined, are of class C1 and their directional derivative
in direction v ∈ E are

〈JF (u), v〉 =
∫

Ω
F (x, u(x))v(x)dx, 〈JG(u), v〉 =

∫
Γ

G(x, u(x))v(x)dΓ,

〈Jµ(u), v〉 =
∫

Ω
F (x, u(x))v(x)dx + µ

∫
Γ

G(x, u(x))v(x)dΓ,

for each u ∈ E (see for instance [10], Lemma 3.10).
Now, we can define the energy functional Eλ,µ : E → R corresponding to

(Pλ,µ) as follows

Eλ,µ(u) =
1
p

∫
Ω

a(x)|∇u(x)|pdx +
1
p

∫
Γ

b(x)|u(x)|pdΓ− λJF (u)− λµJG(u).

Eλ,µ is well defined and the solutions of problem (Pλ,µ) will be found as critical
points of Eλ,µ. Therefore, a function u ∈ E is a solution of problem (Pλ,µ)
provided that, for any v ∈ E,

〈E ′λ,µ(u), v〉 =
∫

Ω
a(x)|∇u(x)|p−2∇u(x)∇v(x)dx

+
∫

Γ
b(x)|u(x)|p−2u(x)v(x)dΓ

− λ

∫
Ω

f(x, u(x))v(x)dx + λµ

∫
Γ

g(x, u(x))v(x)dΓ = 0.

The main result of this paper is the following:

Theorem 2. We suppose that the functions f : Ω×R → R and g : Γ×R →
R satisfy the conditions (F1)− (F4) and (G1)− (G3) respectively. Then there
exists λ0 > 0 such that to every λ ∈]λ0,+∞[ it corresponds a nonempty open
interval Iλ ⊂ R such that for every µ ∈ Iλ the problem (Pλ,µ) has at least two
distinct, nontrivial weak solutions uλ,µ and vλ,µ, with the property

Eλ,µ(uλ, µ) < 0 < Eλ,µ(vλ, µ).
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3. PROOF OF THE MAIN THEOREM

We start with some auxiliary results.
Lemma 1. [5, Lemma 3.3] Suppose that the conditions (F1), (F3), (G1)

and (G3) are satisfied. Then, for every λ ≥ 0 and µ ∈ R the functional Eλ,µ

is coercive on E.

Lemma 2. Eλ,µ : E → R satisfies the Palais-Smale condition.

Proof. Let {un} ⊂ E be a (PS)-sequence for the function Eλ,µ, i.e.
(1) {Eλ,µ(un)} is bounded;
(2) E ′λ,µ(un) → 0.
Since Eλ,µ is coercive, we have that {un} is bounded. The reflexivity of

the Banach space E implies the existence of a subsequence notated also by
{un} such that {un} is weakly convergent to an element u ∈ E. Because
the inclusion E ↪→ Lp(Ω, w1) is compact, we have that un → u strongly in
Lp(Ω, w1). We want to prove, that un converges strongly to u in E. For this
end, we will use the following inequalities from ([2], Lemma 4.10)

(6) |ξ − ζ|p ≤ M1(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ), for p ≥ 2

(7) |ξ − ζ|2 ≤ M2(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ)(|ξ|+ |ζ|)2−p, for p ∈]1, 2[,

where M1 and M2 are some positive constants. We separate two cases. In the
first case let p ≥ 2. Then we have:

||un − u||pb =
∫

Ω
a(x)|∇un(x)−∇u(x)|pdx +

∫
Γ

b(x)|un(x)− u(x)|pdΓ

≤ M1

∫
Ω

a(x)
[
|∇un(x)|p−2∇un(x)− |∇u(x)|p−2∇u(x)

]
(∇un(x)−∇u(x))dx

+ M1

∫
Γ

b(x)
[
|un(x)|p−2un(x)− |u(x)|p−2u(x)

]
(un(x)− u(x))dΓ

= M1(〈E ′λ,µ(un), un − u〉 − 〈E ′λ,µ(u), un − u〉+ λ〈J ′F (un)− J ′F (u), un − u〉
+ λµ〈J ′G(un)− J ′G(u), un − u〉)
≤ M1(||E ′λ,µ(un)||+ λ||J ′F (un)− J ′F (u)||+ λµ||J ′G(un)− J ′G(u)||) · ||un − u||b
−M1〈E ′λ,µ(u), un − u〉.

Since un → u weakly in E and J ′F , J ′G are compact (see [6]), we have that
||J ′F (un)−J ′F (u)|| → 0 and ||J ′G(un)−J ′G(u)|| → 0. Moreover E ′λ,µ(u) = 0 and
||E ′λ,µ(un)|| → 0, so ||un − u||b → 0, i.e. un converges strongly to u in E.

In the second case, when 1 < p < 2, we use the following result: for all
s ∈ (0,∞) there is a constant Cs > 0 such that

(8) (x + y)s ≤ Cs(xs + ys), for any x, y ∈ (0,∞).
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Then we obtain
(9)

||un − u||2b =
(∫

Ω
a(x)|∇un(x)−∇u(x)|pdx +

∫
Γ

b(x)|un(x)− u(x)|pdΓ
) 2

p

≤ Cp

[(∫
Ω

a(x)|∇un(x)−∇u(x)|pdx

) 2
p

+
(∫

Γ
b(x)|un(x)− u(x)|pdΓ

) 2
p

]
.

Now, using the (7) and the Hölder inequalities we get∫
Ω a(x)|∇un(x)−∇u(x)|pdx =

∫
Ω a(x)(|∇un(x)−∇u(x)|2)

p
2 dx

≤ M2

∫
Ω a(x)

(
(|∇un(x)|p−2∇un(x)− |∇u(x)|p−2∇u(x))(∇un(x)

−∇u(x)))
p
2 (|∇un(x)|+ |∇u(x)|)

p(2−p)
2 dx

= M2

∫
Ω

[
a(x)(|∇un(x)|p−2∇un(x)− |∇u(x)|p−2∇u(x))(∇un(x)−∇u(x))

] p
2

· [a(x)(|∇un(x)|+ |∇u(x)|)p]
2−p
2 dx

≤ M̃2

(∫
Ω a(x)|∇un(x)|pdx +

∫
Ω a(x)|∇u(x)|pdx

) 2−p
2

·
(∫

Ω a(x)(|∇un(x)|p−2∇un(x)− |∇u(x)|p−2∇u(x))(∇un(x)−∇u(x))dx
) p

2

≤ M2

[(∫
Ω a(x)|∇un(x)|pdx

) 2−p
2 +

(∫
Ω a(x)|∇u(x)|pdx

) 2−p
2

]
·
(∫

Ω a(x)(|∇un(x)|p−2∇un(x)− |∇u(x)|p−2∇u(x))(∇un(x)−∇u(x))dx
) p

2

≤ M̂2

(
||un||

(2−p)p
2

b + ||u||
(2−p)p

2
b

)
·
[∫

Ω a(x)(|∇un(x)|p−2∇un(x)− |∇u(x)|p−2∇u(x)) · (∇un(x)−∇u(x))dx
] p

2 .
Then using again the relation (8) and the above inequality we have:(∫

Ω
a(x)|∇un(x)−∇u(x)|pdx

) 2
p

(10)

≤ M ′
2

(
||un||2−p

b + ||u||2−p
b

)
·
∫

Ω
a(x)(|∇un(x)|p−2∇un(x)− |∇u(x)|p−2∇u(x))(∇un(x)−∇u(x))dx.

In a similar way we obtain the following estimate

(11)
(∫

Γ
b(x)|un(x)− u(x)|pdΓ

) 2
p

≤ M ′
2 ·

(∫
Γ

b(x)(|un(x)|p−2un(x)− |u(x)|p−2u(x))(un(x)− u(x))dΓ
)
·(

||un||2−p
b + ||u||2−p

b

)
.

We introduce the following notation: I(u) = 1
p ||u||

p
b . As we used before, the

directional derivative of I, in the direction v ∈ E is

〈I ′(u), v〉 =
∫

Ω
a(x)|∇u(x)|p−2∇u(x)∇v(x)dx +

∫
Γ

b(x)|u(x)|p−2u(x)v(x)dΓ.
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Using the inequalities (9), (10), (11) we have

||un − u||2b < M ′
2 · 〈I ′(un)− I ′(u), un − u〉 · (||un||p−2

b + ||u||2−p
b ).

Since un is bounded, the same argument as in the first case (when p ≥ 2)
shows that un converges to u strongly in E.

Thus Eλ,µ satisfy the (PS) condition for all λ > 0 and µ ∈ R. �

Using the assumption (F4) one can prove the existence of an element u0 ∈ E
such that JF (u0) > 0 (see [5], Lemma 3.2).

Let us define m =
∫

Γ
|G(x, u0(x))|dΓ,

λ0 =
I(u0)

JF (u0)
> 0 and µ∗λ =

1
λ(1 + m)

· (λ− λ0)JF (u0) > 0.

Lemma 3. For λ > λ0 and |µ| ∈]0, µ∗λ] we have

inf
u∈E

Eλ,µ(u) < 0.

Proof. It is sufficient to prove, that, for λ > λ0 and |µ| ∈]0, µ∗λ] we have
Eλ,µ(u0) < 0. Indeed,

Eλ,µ(u0) = I(u0)− λJf (u0)− λµJG(u0)
≤ λ0JF (u0)− λJF (u0) + λ|µ|m
= (λ0 − λ)JF (u0) + λ|µ|m

= (λ0 − λ)
λ(1 + m)µ∗λ

λ− λ0
+ λ|µ|m

= −(1 + m)λµ∗λ + λ|µ|m
= −λµ∗λ −mλ(µ∗λ − |µ|) < 0.

for all λ > λ0 and |µ| ∈]0, µ∗λ]. �

Lemma 4. For every λ > λ0 and µ ∈]0, µ∗λ], the functional Eλ,µ satisfies the
Mountain Pass geometry.

Proof. From the assumptions (F1),(F2), (G1) and (G2) results the existence
of c1(ε), c2(ε) > 0 for every ε > 0, such that

(12) |F (x, u(x))| ≤ εf0(x)|u(x)|p + c1(ε)(f0(x) + f1(x))|u(x)|r,

(13) |G(x, u(x))| ≤ εg0(x)|u(x)|p + c2(ε)(g0(x) + g1(x))|u(x)|m,

where r ∈]p, p∗[ and m ∈
[
p, pN−1

N−p

]
. Using again the (F1) and (G1) assump-

tions, we get

(14) |F (x, u(x))| ≤ εw1(x)Cf |u(x)|p + 2c1(ε)Cfw1(x))|u(x)|r,
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(15) |G(x, u(x))| ≤ εw2(x)Cg|u(x)|p + 2c2(ε)Cgw2(x)|u(x)|m.

Fix λ > λ0 and µ ∈]0, µ∗λ[, then using the (14) and (15) inequalities for every
u ∈ E we have

Eλ,µ(u) =
1
p
||u||pb − λJµ(u)

≥ 1
p
||u||pb − λ

∫
Ω
|F (x, u(x))|dx− λ|µ|

∫
Γ
|G(x, u(x))|dΓ

≥ 1
p
||u||pb − λεCf

∫
Ω

w1(x)|u(x)|pdx− 2λc1(ε)Cf

∫
Ω

w1(x)|u(x)|rdx

−λ|µ|εCg

∫
Γ

w2(x)|u(x)|pdΓ− 2λ|µ|c2(ε)Cg

∫
Γ

w2(x)|u(x)|mdΓ

=
1
p
||u||pb − λεCf ||u||pp,w1

− 2λc1(ε)Cf ||u||rr,w1

−λ|µ|εCg||u||pp,w2
− 2λ|µ|c2(ε)Cg||u||mm,w2

≥
(

1
p
− λεCfCp

p,w1
− λ|µ|εCgC

p
p,w2

)
||u||pb

−2λc1(ε)CfCr
r,w1

||u||rb − 2λ|µ|c2(ε)CgC
m
m,w2

||u||mb .

Using the notations

A =
(

1
p
− λεCfCp

p,w1
− λ|µ|εCgC

p
p,w2

)
,

B = 2λc1(ε)CfCr
r,w1

, C = 2λ|µ|c2(ε)CgC
m
m,w2

,

we get
Eλ,µ(u) ≥ (A−B||u||r−p

b − C||u||m−p
b )||u||pb .

We choose ε ∈
]
0, 1

2p
1

λ(εCf Cp
p,w1

+|µ|εCgCp
p,w2

)

[
, so A > 0. Now, let l : R+ → R

be the function defined by l(t) = A−Btr−p−Ctm−p. We can see, that l(0) =
A > 0, so because l is continuous, there exists an ε∗ > 0 such that l(t) > 0,
for every t ∈]0, ε∗[. Then for every u ∈ E, with ||u|| = ε∗∗ < min{ε∗, ||u0||},
we have Eλ,µ(u) ≥ η(λ, µ, ε∗) > 0. From Lemma 3 we have Eλ,µ(u0) < 0.

Therefore the functional Eλ,µ satisfies the hypotheses of the Mountain Pass
theorem 1. �

Proof of theorem 2.
Fix λ > λ0 and µ ∈]0, µ∗λ[= Iλ. From the lemma 2 we have that the func-

tional Eλ,µ satisfies the (PS)-condition, from the lemma 1 we have the coer-
civeness of Eλ,µ. Then there exists an element uλ,µ ∈ E such that Eλ,µ(uλ,µ) =
inf
v∈E

Eλ,µ(v) (see [9]). By using lemma 3 we have Eλ,µ(uλ,µ) < 0. On the other

hand by lemma 4 and the Mountain Pass Theorem 1, there exists an element
vλ,µ ∈ E such that E ′λ,µ(vλ,µ) = 0 and Eλ,µ(vλ,µ) ≥ η(λ, µ, ε∗) > 0, which
completes the proof. 2
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