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FIXED POINT THEOREMS FOR ASYMPTOTICALLY
NONEXPANSIVE MAPPINGS IN UNIFORMLY CONVEX
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Abstract. In this paper we obtain strong and weak convergence theorems for
the Mann type doubly sequence iteration process with errors using asymptoti-
cally nonexpansive mappings in uniformly convex Banach spaces. Our new re-
sults improve, generalize and extend some recent results (see e.g. [6], [7] and [19]).
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1. INTRODUCTION

Let X be a Banach space with dual X∗, and let C be a nonempty subset of
X. Also, we let J : X → 2X∗ denote the normalized duality mapping defined
by

(1) J(x) = {f ∈ X∗ : 〈x , f〉 = ‖x‖2 = ‖f‖2}, x ∈ X.

A mapping T : C → C is said to be uniformly L-Lipschitzian if there exists a
constant L > 0 such that

(2) ‖Tnx− Tny‖ ≤ L‖x− y‖ ∀ x, y ∈ C and each n ≥ 0.

A mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ ∀ x, y ∈ C.

A self mapping T : C → C is said to be asymptotically nonexpansive if there
exists a sequence {kn} ⊂ [1,∞), kn → 1 as n →∞ such that

(3) ‖Tnx− Tny‖ ≤ kn‖x− y‖ ∀ x, y ∈ C and each n ≥ 1.

Goebel and Kirk [11] proved that if C is a nonempty closed convex subset of
a real uniformly convex Banach space and T is an asymptotically nonexpan-
sive self-mapping on C, then T has a fixed point. One of the most important
directions in the study of fixed points is the iteration technique. Iterative
techniques for approximating fixed point of nonexpansive self-mappings have
been studied by various authors (see e.g. [3], [4], [13], [14], [16], [17] and
others) using the Mann iteration process or the Ishikawa iteration process.
For nonexpansive mappings, some authors (see e.g.[12] and [18]) have stud-
ied the strong and weak convergence theorems in Hilbert spaces or uniformly
convex Banach spaces. In 1991, Schu [17] introduced a modified Mann it-
eration process to approximate fixed points of asymptotically nonexpansive
self-mappings in Hilbert spaces. On the other hand, there are some attempts
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in the sense of doubly sequence settings (see e.g. [1] and [15]). The concept of
non-self asymptotically nonexpansive mappings was introduced by Chidume
[7] in 2003 as the generalization of asymptotically nonexpansive self-mappings.
The non-self asymptotically nonexpansive mapping is defined as follows:

Definition 1. [7] Let C be a nonempty subset of a real Banach space X
and let P : X → C be the nonexpansive retraction of X onto C. A non-
self mapping T : C → X is called asymptotically nonexpansive if there exist
sequences {kn} ⊂ [1,∞), kn → 1 as n →∞ such that

(4) ‖T (PT )n−1x−T (PT )n−1y‖ ≤ kn‖x−y‖, ∀ x, y ∈ C and each n ≥ 1.

T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such
that

(5) ‖T (PT )n−1x−T (PT )n−1y‖ ≤ L‖x−y‖, ∀ x, y ∈ C and each n ≥ 1.

By the following iteration process:

(6) x1 ∈ C, xn+1 = P ((1− αn)xn + αnT (PT )n−1xn),

Chidume [7] proved some strong and weak convergence theorems for non-self
asymptotically nonexpansive mappings. For more information about fixed
points by asymptotically nonexpansive mappings we refer to [5, 8, 10] and
others. Wang [19], generalized the iteration scheme (6) by giving the following
scheme: 

x1 ∈ C

xn+1 = P ((1− αn)xn + αnT1(PT1)n−1yn)

yn = P ((1− βn)xn + βnT2(PT2)n−1xn), n ≥ 1

(7)

where {αn} and {βn} are two sequences in [0,1) with

lim
n→∞

αn = lim
n→∞

βn = 0, 0 ≤ αn, βn ≤ 1.

Recently, Moore [15] generalized the Mann type iteration in the doubly se-
quence setting. Very recently, we studied the main results of Moore [15] using
the Mann type doubly sequence iterates with errors (see [1]). In the present
paper we will extend the results of Chidume [7] and Wang [19] in the doubly
sequence setting by adding the errors for their iteration schemes. Now sup-
pose that X be a real uniformly convex Banach space and C be a nonempty
closed convex subset of X, which is also a nonexpansive retract of X with re-
traction P. Let T1, T2 : C → X are two non-self asymptotically nonexpansive
mappings. For approximating the common fixed points of two non-self asymp-
totically nonexpansive mappings, we further generalize the iteration scheme
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(7) as follows:
x1,1 ∈ C

xk,n+1 = P ((1− αn)xk,n + αnT1(PT1)n−1yk,n + αnvk,n)

yk,n = P ((1− βn)xk,n + βnT2(PT2)n−1xk,n + βnuk,n), k, n ≥ 1

(8)

where {αn} and {βn} are two sequence in [0,1). If T1 = T2, βn = 0 and vk,n =
uk,n = 0 for all k, n ≥ 1, the iteration scheme (8) will be the generalization
of the scheme (6) in double sequence setting.

2. PRELIMINARIES

For clearness , we start by the following concepts and results:

Definition 2. (see e.g [15]) Let N denote the set of all natural numbers
and let X be a real Banach space. A double sequence in X is meant a function
f : N× N → X defined by f(n, m) = xn,m ∈ X.

The double sequence {xn,m} is said to converge strongly to x∗ if for a given
ε > 0 there exist integers N,M > 0 such that ∀ n ≥ N, m ≥ M, we have
that

‖xn,m − x∗‖ < ε.

If ∀ n, r ≥ N, m, t ≥ M, we have that

‖xn,r − xm,t‖ < ε,

then the double sequence is said to be Cauchy. Furthermore, if for each fixed n,
we have that xn,m → x∗n as m →∞, then x∗n → x∗ as n →∞, so xn,m → x∗

as n, m →∞.
Let X be a Banach space with dimension X ≥ 2. The modulus of convexity
of X is a function δ from (0,2] into (0,1] defined by

δ(ε) = inf{1− 1
2
‖x− y‖, x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε},

the Banach space X is uniformly convex if and only if δ(ε) > 0 for all ε > 0
and ε ∈ (0, 2].
A subset C of X is said to be retract if there exists a continuous mapping
P : X → C such that Px = x for all x ∈ C. Every closed convex subset of a
Banach space is retract.
A mapping P : X → X is said to be retraction if P 2 = P.
Now we define the Opial’s condition using doubly sequence sense.

Definition 3. A Banach space X is said to satisfy Opial’s condition if for
any sequence {xk,n} in X, xk,n ⇀ x implies that

lim
k,n→∞

sup ‖xk,n − x‖ < lim
k,n→∞

sup ‖xk,n − y‖ ∀ y ∈ X with y 6= x,

where xk,n ⇀ x denotes that {xk,n} converges weakly to x.
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Definition 4. A mapping T : C → X is said to be semi-compact if, for
any sequence {xk,n} in C such that ‖xk,n−Txk,n‖ → 0 (n →∞), there exists
subsequence {xk,nj

} of {xk,n} such that {xk,nj
} converges strongly to x∗ ∈ C.

Definition 5. A mapping T with domain D(T ) and range R(T ) in X is
said to be demi-closed at p if whenever {xk,n} is a sequence in D(T ) such
that {xk,n} converges weakly to x∗ ∈ D(T ) and {Txk,n} converges strongly to
p, then Tx∗ = p.

Lemma 1. [18] Let αn and tn be two nonnegative sequences satisfying

αn+1 ≤ αn + tn ∀ n ≥ 1.

If
∑∞

n=1 tn < ∞, then limn→∞ αn exists.

Lemma 2. Let X be a real uniformly convex Banach space and let
0 ≤ p ≤ tn ≤ q < 1 for all positive integer n ≥ 1. Also suppose that
{xn} and {yn} are two sequences of X such that limk,n→∞ sup ‖xk,n‖ ≤ r,
limk,n→∞ sup ‖yk,n‖ ≤ r and limk,n→∞ ‖tnxk,n + (1 − tn)yk,n‖ = r, hold for
some r ≥ 0, then

lim
k,n→∞

‖xk,n − yk,n‖ = 0.

Proof. The proof of this lemma is very similar to the correspondence one in
[17].

Lemma 3. [7] Let X be a real uniformly convex Banach space and let C
be a non-empty closed subset of X. Suppose that T : C → X be a non-self
asymptotically nonexpansive mapping with sequence {kn} ⊂ [1,∞) and kn → 1
as n →∞. Then I − T is demi-closed at zero.

Let S := {x ∈ X : ‖x‖ = 1} denote the unite sphere of the Banach space
X. Then, X is said to have a Gâteaux differentiable norm if the limit

lim
n→∞

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ S, and we call X smooth. Also, X is said to have a
uniformly Gâteaux differentiable norm if for each y ∈ S the limit is attained
uniformly for (x, y) ∈ S×S. It is known that if X is smooth, then any duality
mapping on X is single-valued, and if X has a uniformly Gâteaux differentiable
norm, then the duality mapping is norm-to-weak∗ continuous (see [9]).
Let C be a nonempty closed convex and bounded subset of the Banach space
X, and let the diameter of C be defined by

d(C) := sup{‖x− y‖ : x, y ∈ C}.
For each x ∈ C, let

r(x,C) := sup{‖x− y‖ : x, y ∈ C} and let r(C) := inf{r(x,C) : x ∈ C}
denote the Chebyshev radius of C relative to itself. The normal structure
coefficient N(X) of X is defined by
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N(X) := inf
{d(C)

r(C) : d(C) > 0
}
, where C is a closed convex and bounded

subset of X.
A space X such that N(X) > 1 is said to have a uniform normal structure.
It is known that every space with a uniform normal structure is reflexive, and
that all uniformly convex and uniformly smooth Banach spaces have uniform
normal structure (see [2]).

Lemma 4. [6] In a Banach space X, there holds the inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y , j(x + y)〉, x, y ∈ X,(9)

where j(x + y) ∈ J(x + y).

Lemma 5. [20] Let {an}∞n=0 be a sequence of non-negative real numbers
satisfying the property

an+1 ≤ (1− γn)an + γn

∑
n

, n ≥ 0,

where {γn}∞n=0 ⊂ (0, 1) and
{∑

n

}∞
n=0

are such that
(i) limn→∞ γn = 0 and

∑∞
n=0 γn = ∞,

(ii) either lim supn→∞
∑

n ≤ 0 or
∑∞

n=0 |γn
∑

n | < ∞.
Then {an}∞n=0 converges to zero.

In 2004, Chidume et al [7] proved the following theorems:

Theorem 1. Let X be a real Banach space with a uniformly Gâteaux dif-
ferentiable norm possessing uniform normal structure, let C be a non-empty
closed convex and bounded subset of X, T : C → C be an asymptotically
nonexpansive mapping with the sequence {kn} ⊂ [1,∞). Let u ∈ C be fixed,
{tn}n ⊂ (0, 1) be such that limn→∞ tn = 1, and limn→∞

kn−1
kn−tn

= 0. Then,
(i) for each integer n ≥ 0, there is a unique xn ∈ C such that

xn = (1− tn
kn

)u +
tn
kn

Tnxn ;

and if, in addition, limn→∞ ‖xn − Txn‖ = 0, then,
(ii) the sequence {xn}n converges strongly to a fixed point of T.

Theorem 2. Let X be a real Banach space with a uniformly Gâteaux dif-
ferentiable norm possessing uniform normal structure, C a non-empty closed
convex and bounded subset of X, T : C → C be an asymptotically nonexpansive
mapping with sequence {kn}n ⊂ [1,∞). Let u ∈ C be fixed, {tn}n ⊂ (0, 1) be
such that limn→∞ tn = 1, tnkn < 1 and limn→∞

kn−1
kn−tn

= 0. Define the sequence
{zn}n iteratively by z0 ∈ C,

zn+1 = (1− tn
kn

)u +
tn
kn

Tnzn n = 0, 1, 2, ... .(10)
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Then,
(i) for each integer n ≥ 0, there is a unique xn ∈ C such that

xn = (1− tn
kn

)u +
tn
kn

Tnxn;(11)

and if, in addition, limn→∞ ‖xn − Txn‖ = 0, limn→∞ ‖zn − Tzn‖ = 0 then,
(ii) {zn}n converges strongly to a fixed point of T .

3. NON-SELF ASYMPTOTICALLY NONEXPANSIVE MAPS

Suppose that C be a nonempty closed convex nonexpansive retract of a
real uniformly convex Banach space X. Let T1, T2 : C → X, be two non-self
asymptotically nonexpansive mappings with sequences {kn}, {ln} ⊂ [1,∞),
limn→∞ kn = limn→∞ ln = 1 and

F (T1) ∩ F (T2) = {x ∈ C : T1x = T2x = x} 6= ∅, respectively.

Suppose {xk,n} is generated iterative by
x1,1 ∈ C

xk,n+1 = P ((1− αn)xk,n + αnT1(PT1)n−1yk,n + αnvk,n)

yk,n = P ((1− βn)xk,n + βnT2(PT2)n−1xk,n + βnuk,n), k, n ≥ 1

where {αn} and {βn} are two sequences in [0, 1).
In this section :
(1) Strong convergence theorems of {xk,n} to some q ∈ F (T1) ∩ F (T2) are
obtained under conditions that one of T1 and T2 is completely continuous or
demi-compact and

∞∑
n=1

(kn − 1) < ∞, ,
∞∑

n=1

(ln − 1) < ∞.

(2) If X is real uniformly convex Banach space satisfying Opial’s condition,
then the weak convergence of {xk,n} to some q ∈ F (T1) ∩ F (T2) is obtained.
Now, we will prove the following lemmas.

Lemma 6. Let C be a non-empty closed convex subset of a normed space X,
and let T1, T2 : C → X are two non-self asymptotically nonexpansive mappings
with sequences {kn}, {ln} ⊂ [1,∞) such that
∞∑

n=1

(kn − 1) < ∞,

∞∑
n=1

(ln − 1) < ∞, kn → 1, ln → 1 as n →∞, respectively.

Suppose that {xk,n} is defined by (8), where {αn}, {βn} are two sequences
in [0, 1). If F (T1) ∩ F (T2) 6= ∅, then, limk,n→∞ ‖xk,n − q‖ exists for each
q ∈ F (T1) ∩ F (T2).
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Proof. Setting kn = 1 + λn, ln = 1 + γn. Since
∞∑

n=1

(kn − 1) < ∞,
∞∑

n=1

(ln − 1) < ∞,

then
∞∑

n=1

λn < ∞ and
∞∑

n=1

γn < ∞.

For any q ∈ F (T1) ∩ F (T2), by (8) we have

‖xk,n+1 − q‖ = ‖(1− αn)(xk,n − q) + αn(T1(PT1)n−1yk,n − q) + αnvk,n‖
≤ (1− αn)‖xk,n − q‖+ αn(1 + λn)‖yk,n − q‖+ αn‖vk,n‖
= (1− αn)‖xk,n − q‖+ αn[(1 + λn)‖yk,n − q‖+ ‖vk,n‖],

where

‖yk,n − q‖ = ‖(1− βn)(xk,n − q) + βn(T2(PT2)n−1xk,n − q) + βnuk,n‖
≤ (1− βn)‖xk,n − q‖+ βn(1 + γn)‖xk,n − q‖+ βn‖uk,n‖
≤ (1 + βnγn)‖xk,n − q‖+ βn‖uk,n‖.

Thus

‖xk,n+1 − q‖ ≤ (1− αn)‖xk,n − q‖+ αn(1 + λn)‖yk,n − q‖+ αn‖vk,n‖
≤ (1− αn)‖xk,n − q‖+ αn(1 + λn)(1 + βnγn)‖xk,n − q‖
+ αnβn(1 + λn)‖uk,n‖+ αn‖vk,n‖
≤ [1 + αn(λn + βnγn + λnβnγn)]‖xk,n − q‖
+ αnβn(1 + λn)‖uk,n‖+ αn‖vk,n‖
< exp

∑∞
n=1(λn+γn+λnγn) ‖x1,1 − q‖+ (1 + λn)‖uk,n‖+ ‖vk,n‖,

where 1 + x < ex ∀x > 0 and
∑∞

n=1(λn + γn + λnγn) < ∞, then {xk,n} is
bounded. It implies that there exists a constant M > 0 such that ‖xk,n−q‖ ≤
M for all n ≥ 1 so,

‖xk,n+1 − q‖ = ‖xk,n − q‖+ (λn + γn + λnγn)M + M1(12)

where, M1 = (1 + λn)‖uk,n‖+ ‖vk,n‖,
∞∑

n=1

uk,n <

∞∑
n=1

vk,n < ∞.

It follows from Lemma 1 that limk,n→∞ ‖xk,n−q‖ exists. The proof is therefore
completed.

Lemma 7. Let C be a non-empty closed convex subset of a uniformly convex
Banach space X, and let T1, T2 : C → X are two non-self asymptotically
nonexpansive mappings with sequences {kn}, {ln} ⊂ [1,∞) such that
∞∑

n=1

(kn − 1) < ∞,
∞∑

n=1

(ln − 1) < ∞, kn → 1, ln → 1 as n →∞, respectively.
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Suppose that {xk,n} is defined by (8), where {αn}, {βn} are two sequences in
[0, 1) , limn→∞ βn = 1. If F (T1) ∩ F (T2) 6= ∅, then

lim
k,n→∞

‖xk,n − T1xk,n‖ = ‖xk,n − T2xk,n‖ = 0.

Proof. Setting kn = 1 + λn, ln = 1 + γn, q ∈ F (T1) ∩ F (T2), then by using
Lemma 6, we see that limk,n→∞ ‖xk,n − q‖ exists. Assume limk,n→∞ ‖xk,n −
q‖ = c. From (8), we have

‖yk,n − q‖ ≤ (1 + βnγn)‖xk,n − q‖+ βn‖uk,n‖.(13)

Taking lim sup on both sides in (13), we obtain

(14) lim
k,n→∞

sup ‖yk,n − q‖ = lim
k,n→∞

sup[(1 + γn)‖xk,n − q‖+ βn‖uk,n‖] < c.

Since T1 is asymptotically nonexpansive mapping, then

‖T1(PT1)n−1yk,n − q‖ ≤ kn‖yk,n − q‖,

taking lim sup on both sides in this inequality, we have

lim
k,n→∞

sup ‖T1(PT1)n−1yk,n − q‖ ≤ c.(15)

Since limk,n→∞ sup ‖xk,n+1 − q‖ = c, then

lim
k,n→∞

‖(1− αn)(xk,n − q) + αn(T1(PT1)n−1yk,n − q) + αnvk,n‖ ≤ c.

By Lemma 2, we have

lim
k,n→∞

‖xk,n − T1(PT1)n−1yk,n‖ = 0.(16)

In addition,

‖xk,n − q‖ ≤ ‖xk,n − T1(PT1)n−1yk,n‖+ ‖T1(PT1)n−1yk,n − q‖
≤ ‖xk,n − T1(PT1)n−1yk,n‖+ (1 + λn)‖yk,n − q‖.

Taking lim inf on both sides in the above inequality and using (16), we obtain

lim
k,n→∞

inf ‖yk,n − q‖ ≥ c.(17)

Thus, it follows from (14) and (17) that limk,n→∞ inf ‖yk,n − q‖ = c, which
implies that

lim
k,n→∞

‖(1− βn)(xk,n − q) + βn(T2(PT2)n−1xk,n − q) + βnuk,n‖ = c.

Then by Lemma 2, we obtain

lim
k,n→∞

‖xk,n − T2(PT2)n−1xk,n‖ = 0.(18)

Further, by (8), we have

lim
k,n→∞

‖yk,n − T2(PT2)n−1xk,n‖ = 0.(19)
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We now prove that

lim
k,n→∞

‖xk,n − T2(PT2)n−1xk,n‖ = 0.

Since,

‖xk,n − T1(PT1)n−1xk,n‖
= ‖xk,n − T1(PT1)n−1yk,n + T1(PT1)n−1yk,n − T1(PT1)n−1xk,n‖
≤ ‖xk,n − T1(PT1)n−1yk,n‖+ kn‖xk,n − yk,n‖.
≤ ‖xk,n − T1(PT1)n−1yk,n‖+ kn‖βn(xk,n − T2(PT2)n−1xk,n − uk,n)‖.

Thus by (16) and (18), we have

lim
k,n→∞

‖xk,n − T1(PT1)n−1xk,n‖ = 0.(20)

Further, it follows from (18) and (20) that

lim
k,n→∞

‖T1(PT1)n−1xk,n − T2(PT2)n−1xk,n‖ = 0.(21)

By (8) and (16), we still have

lim
k,n→∞

‖xk,n+1 − T1(PT1)n−1yk,n‖ = 0.(22)

Since T1 is asymptotically nonexpansive mapping, then T1 is uniformly L-
Lipschitzian for some L > 0. Hence

‖xk,n − T1xk,n‖ = ‖xk,n − T1(PT1)n−1xk,n + T1(PT1)n−1xk,n − T1xk,n‖
≤ ‖xk,n − T1(PT1)n−1xk,n‖
+ ‖T1(PT1)n−1xk,n − T1(PT1)n−1yk,n−1‖
+ ‖T1(PT1)n−1yk,n−1 − T1xk,n‖
≤ ‖xk,n − T1(PT1)n−1xk,n‖+ kn‖xk,n − yk,n−1‖
+ L‖T1(PT1)n−2yk,n − xk,n‖.

It follows from (22) that

lim
k,n→∞

‖T1(PT1)n−2yk,n−1 − xk,n‖ = 0.(23)

In addition,

‖xk,n+1 − yk,n‖ = ‖xk,n+1 − T1(PT1)n−1yk,n + T1(PT1)n−1yk,n − yk,n‖(24)

≤ ‖xk,n+1 − T1(PT1)n−1yk,n‖+ ‖yk,n − xk,n‖+ ‖xk,n − T1(PT1)n−1yk,n‖
≤ ‖xk,n+1 − T1(PT1)n−1yk,n‖+ βn‖T2(PT2)n−1xk,n − xk,n‖
+ ‖xk,n − T1(PT1)n−1yk,n‖+ βn‖uk,n‖.

Using (16), (18) and (22), we obtain

lim
k,n→∞

‖xk,n+1 − yk,n‖ = 0.(25)
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By (20), (21) and (24), it follows from (18) that

lim
k,n→∞

‖xk,n − T1xk,n‖ = 0.

Similarly, we may show that

lim
k,n→∞

‖xk,n − T2xk,n‖ = 0.

The proof is completed. �

Theorem 3. Let C be a non-empty closed convex subset of a uniformly con-
vex Banach space X, and let T1, T2 : C → X are two non-self asymptotically
nonexpansive mappings with sequences {kn}, {ln} ⊂ [1,∞) such that
∞∑

n=1

(kn − 1) < ∞,
∞∑

n=1

(ln − 1) < ∞, kn → 1, ln → 1 as n →∞, respectively.

Suppose that {xk,n} is defined by (8), where {αn}, {βn} are two sequences in
[0, 1). If one of T1 and T2 is completely continuous, and F (T1) ∩ F (T2) 6= ∅,
then, {xk,n} converges strongly to a common fixed point of T1 and T2.

Proof. By Lemma 6, {xk,n} is bounded. In addition, by Lemma 7,

lim
k,n→∞

‖xk,n − T1xk,n‖ = 0

also, limk,n→∞ ‖xk,n − T2xk,n‖ = 0, then {T1xx,n}, and {T2xx,n} are also
bounded. If T1 is completely continuous, there exists subsequence {T1xx,nj}
of {T1xx,n} such that T1xx,nj → p as j →∞. It follows from Lemma 7 that

lim
j→∞

‖xk,nj
− T1xk,nj

‖ = lim
j→∞

‖xk,nj
− T2xk,nj

‖ = 0.

So be the continuity of T1 and Lemma 6, we get that limk,n→∞ ‖xk,n − p‖
exists. Thus limk,n→∞ ‖xk,n − p‖ = 0. The proof is completed. �

Theorem 4. Let C be a non-empty closed convex subset of a uniformly
convex Banach space X, and let T1, T2 : C → X are two non-self asymptoti-
cally nonexpansive mappings with sequences {kn}, {ln} ⊂ [1,∞) such that

∞∑
n=1

(kn − 1) < ∞,
∞∑

n=1

(ln − 1) < ∞, kn → 1, ln → 1 as n →∞, respectively.

Suppose that {xk,n} is defined by (8), where {αn}, {βn} are two sequences
in [0, 1). If one of T1 and T2 is demi-compact, and F (T1) ∩ F (T2) 6= ∅, then,
{xk,n} converges strongly to a common fixed point of T1 and T2.

Proof. Since one of T1 and T2 is demi-compact, {xk,n} is bounded and

lim
k,n→∞

‖xk,n − T1xk,n‖ = lim
k,n→∞

‖xk,n − T2xk,n‖ = 0,

then there exists subsequence {xk,nj
} converges strongly to q. It follows from

Lemma 3 that q ∈ F (T1)∩F (T2). Thus, limk,n→∞ ‖xk,n− q‖ exists by Lemma
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6. Since the subsequence {xk,nj
} of {xk,n} such {xk,nj

} converges strongly to
q, then {xk,n} converges strongly to a common fixed point q ∈ F (T1)∩F (T2).
The proof is therefore completed. �

Theorem 5. Let C be a non-empty closed convex subset of a uniformly
convex Banach space X, satisfying Opial’s condition. Suppose T1, T2 : C → X
are two non-self asymptotically nonexpansive mappings with sequences {kn},
{ln} ⊂ [1,∞) such that
∞∑

n=1

(kn − 1) < ∞,

∞∑
n=1

(ln − 1) < ∞, kn → 1, ln → 1 as n →∞, respectively.

Let {xk,n} be defined by (8), where {αn}, {βn} are two sequences in [0, 1). If
F (T1) ∩ F (T2) 6= ∅, then, {xk,n} converges weakly to a common fixed point of
T1 and T2.

Proof. For any q ∈ F (T1) ∩ F (T2), it follows from Lemma 6 that the limit
limk,n→∞ ‖xk,n − q‖ exists. We now prove that {xk,n} has a unique weak
subsequential limit in F (T1) ∩ F (T2). Firstly, let q1 and q2 are weak limits
of subsequences {xk,ni

} and {xk,nj
} and of {xk,n}, respectively. By Lemmas

3 and 7, we know that q1, q2 ∈ F (T1) ∩ F (T2). Since one of T1 and T2 is
demi-compact, {xk,n} is bounded and

lim
k,n→∞

‖xk,n − T1xk,n‖ = lim
k,n→∞

‖xk,n − T2xk,n‖ = 0,

then there exists a subsequence {xk,nj
} converges strongly to q. It follows from

Lemma 3 that q ∈ F (T1)∩F (T2). Thus, limk,n→∞ ‖xk,n− q‖ exists by Lemma
6. Since the subsequence {xk,nj

} of {xk,n} such {xk,nj
} converges strongly to

q, then {xk,n} converges strongly to a common fixed point q ∈ F (T1)∩F (T2).
The proof is completed. �

4. ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

In this section we will prove, under appropriate conditions on C (where C
be a nonempty closed convex and bounded subset of a real Banach space with
a uniformly Gâteaux differentiable norm possessing uniform normal structure)
that a sequence defined iteratively by: z0,0 ∈ C and

zk,n+1 = (1− tn
kn

)u +
tn
kn

Tnzk,n +
tn
kn

vk,n n = 0, 1, 2, ...(26)

converges strongly to a fixed point of the asymptotically nonexpansive map T.

Theorem 6. Let X be a real Banach space with a uniformly Gâteaux dif-
ferentiable norm possessing uniform normal structure, C a nonempty closed
convex and bounded subset of X, T : C → C be an asymptotically nonexpan-
sive mapping with sequence {kn} ⊂ [1,∞). Let u ∈ C be fixed, {tn}n ⊂ (0, 1)
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be such that limn→∞ tn = 1, and limn→∞
kn−1
kn−tn

= 0. Then,
(i) for each integer n ≥ 0, there is a unique xk,n ∈ C such that

xk,n = (1− tn
kn

)u +
tn
kn

Tnxk,n +
tn
kn

vk,n;

and if, in addition, limk,n→∞ ‖xk,n − Txk,n‖ = 0, then
(ii) the sequence {xk,n}k,n converges strongly to a fixed point of T .

Proof. In view of Theorem 2 of [21] and Theorem 3.1 of [7], our theorem is
easy to prove. �

Corollary 1. Let X be a real reflexive Banach space with a uniformly
Gâteaux differentiable norm, C a nonempty closed convex and bounded subset
of X, T : C → C a completely continuous, asymptotically nonexpansive
mapping with sequence {kn} ⊂ [1,∞). Let u ∈ C be fixed, {tn}n ⊂ (0, 1) be
such that limn→∞ tn = 1, and limn→∞

kn−1
kn−tn

= 0. Then,
(i) for each integer n ≥ 0, there is a unique xk,n ∈ C such that

xk,n = (1− tn
kn

)u +
tn
kn

Tnxk,n +
tn
kn

vk,n

and if, in addition, limk,n→∞ ‖xk,n − Txk,n‖ = 0, then,
(ii) the sequence {xk,n}k,n converges strongly to a fixed point of T .

Proof. For each integer n ≥ 0, the mapping fn : C → C defined for each
x ∈ C by fnx : = (1 − tn

kn
)u + tn

kn
Tnx + tn

kn
vk,n is a contraction. It follows

that there exists a unique xk,n ∈ C such that fnxk,n = xk,n. Since T is
completely continuous there is a subsequence {Txki,nj

}i,j of {Txk,n}k,n that
converges strongly to some y∗ ∈ C, and since ‖xki,nj

−Txki,nj
‖ → 0 as i, j →

∞, we have that y∗ = Ty∗. The rest of the proof follows as in the proof of
Theorem 6. �

Theorem 7. Let X be a real Banach space with a uniformly Gâteaux differ-
entiable norm possessing uniform normal structure, C be a nonempty closed
convex and bounded subset of X, T : C → C be an asymptotically nonexpan-
sive mapping with sequence {kn}n ⊂ [1,∞). Let u ∈ C be fixed, {tn}n ⊂ (0, 1)
be such that limn→∞ tn = 1, tnkn < 1 and limn→∞

kn−1
kn−tn

= 0. Define the
sequence {zk,n}k,n iteratively by z0,0 ∈ C,

zk,n+1 = (1− tn
kn

)u +
tn
kn

Tnzk,n +
tn
kn

vk,n n = 0, 1, 2, ...(27)

Then,
(i) for the integers k, n ≥ 0, there is a unique xk,n ∈ C such that

(28) xk,n = (1− tn
kn

)u +
tn
kn

Tnxk,n +
tn
kn

vk,n;

and if, in addition,

lim
k,n→∞

‖xk,n − Txk,n‖ = 0, lim
k,n→∞

‖zk,n − Tzk,n‖ = 0
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then,
(ii) the sequence {zk,n}k,n converges strongly to a fixed point of T.

Proof. From (27), we have

xk,m − zk,n = (1− tm
km

)(u− zk,n) +
tm
km

(Tmxk,m − zk,n) +
tm
km

vk,m.

Applying inequality (9), we estimate as follows:

‖xk,m − zk,n‖2

= ‖(1− tm
km

)(u− zk,n) +
tm
km

(Tmxk,m − zk,n) +
tm
km

vk,m‖2

≤ t2m
k2

m

‖Tmxk,m − zk,n + vk,m‖2 + 2(1− tm
km

)〈u− zk,n , j(xk,m − zk,n)〉

≤ t2m
k2

m

‖Tmxk,m − zk,n‖2 + 2‖Tmxk,m − zk,n‖‖vk,m‖

+ ‖vm‖2 + 2(1− tm
km

)[〈u− xk,m , j(xk,m − zk,n)〉+ k2
m‖xk,m − zk,n‖2]

≤ t2m
k2

m

[‖Tmxk,m − Tmzk,n‖+ ‖Tmzk,m − zk,n‖]2

+ 2‖Tmxk,m − zk,n‖ ‖vk,m‖

+ ‖vk,m‖2 + 2(1− tm
km

)[〈u− xk,m , j(xk,m − zk,n)〉+ k2
m‖xk,m − zk,n‖2],

which implies that

‖xk,m − zk,n‖2 ≤ t2m
k2

m

[k2
m‖xk,m − zk,n‖

+ 2km‖xk,m − zk,n‖ ‖Tmzk,n − zk,n‖
+ ‖Tmzk,n − zk,n‖2] + 2‖Tmxk,m − zk,n‖‖vk,m‖+ ‖vk,m‖2

+ 2(1− tm
km

)[〈u− xk,m , j(xk,m − zk,n)〉+ k2
m‖xk,m − zk,n‖2]

≤ (1− (1− tm
km

))2k2
m‖xk,m − zk,n‖2 + ‖Tmzk,n − zk,n‖[2km‖xk,m − zk,n‖

+ ‖Tmzk,n − zk,n‖+ 2‖vm‖] + 2km‖xk,m − zk,n‖ ‖vk,m‖

+ 2(1− tm
km

)[〈u + vk,m − xk,m , j(xk,m − zk,n)〉+ k2
m‖xk,m − zk,n‖2]

≤ (1 + (1− tm
km

)2)k2
m‖xk,m − zk,n‖2 + ‖Tmzk,n − zk,n‖M

+ 2km‖xk,m − zk,n‖ ‖vk,m‖+ 2(1− tm
km

)〈u− xk,m , j(xk,m − zk,n)〉,
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for some constant M > 0. It follows that

lim
k,n→∞

sup〈u− xk,m, j(zk,n − xk,m)〉

≤
[k2

m − 1 + k2
m(1− tm

km
)2]

2(1− tm
km

)
lim

k,n→∞
sup ‖xk,m − zk,n‖

+ lim
k,n→∞

sup
M‖zk,n − Tmzk,n‖

(1− tm
km

)
.

Observe that
[k2

m−1+k2
m(1− tm

km
)2]

2(1− tm
km

)
= km(km+1)

2 [ km−1
km−tm

]+ k2
m
2 (1− tm

km
) → 0, m →∞.

Since {zk,n} and {xk,m} are bounded, {Tmzk,n} is bounded and
‖zk,n − Tzk,n‖ → 0 as k, n →∞, it follows from the last inequality that

lim
k,m→∞

sup lim
k,n→∞

sup〈u− xk,m , j(zk,n − xk,m)〉 ≤ 0.(29)

But by Theorem 6 we have that xk,m → x∗ ∈ F (T ) as k, m → ∞. Moreover,
j is norm to weak∗ uniformly continuous on bounded sets. Therefore, there
exists N > 0 such that

|〈x∗ − xk,m , j(zk,n − xk,m)〉| < ε

2
and

|〈u− x∗ , j(zk,n − xk,m)− j(zk,n − x∗)〉| < ε

2
,

for all n, m ≥ N. This implies that

|〈u− xk,m , j(zk,n − xk,m)〉 − 〈u− x∗ , j(zk,n − x∗)〉|(30)
≤ |〈u− xk,m , j(zk,n − xk,m)〉 − 〈u− x∗ , j(zk,n − x∗)〉|
+|〈u− x∗ , j(zk,n − xk,m)〉 − 〈u− x∗ , j(zk,n − x∗)〉|
= |〈x∗ − xk,m , j(zk,n − xk,m)〉
+〈u− x∗ , j(zk,n − xk,m)− j(zk,n − x∗)〉| < ε

for all n, m ≥ N. Thus, from (29) and (30),

lim
k,n→∞

sup〈u− x∗ , j(zk,n − x∗)〉

≤ lim
k,m→∞

sup lim
k,n→∞

sup〈u− xk,m , j(zk,n − xk,m)〉+ ε.

Since ε > 0 is arbitrary, we obtain that

lim
k,n→∞

sup〈u− x∗ , j(zk,n − x∗)〉 ≤ 0.

Now from the iteration procedure (27) and inequality (9) we have that

‖zk,n+1 − x∗‖2 ≤ t2n
k2

n

‖Tnzk,n − x∗‖2 + 2(1− tn
kn

)〈u− x∗ , j(zk,n+1 − x∗)〉.

≤ tn
kn
‖zk,n − x∗‖2 + 2(1− tn

kn
)〈u− x∗ , j(zk,n+1 − x∗)〉,

≤ (1− αn)‖zk,n − x∗‖2 + 2αnβn
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where αn = (1− tn
kn

). So βn := 〈u− x∗ , j(zk,n+1 − x∗)〉, and hence
lim supαnβn ≤ 0. Now it follows from Lemma 1 that zk,n → x∗ as k, n →∞,
completing the proof. �

Corollary 2. Let X be a real reflexive Banach space with a uniformly
Gâteaux differentiable norm, and let C be a nonempty closed convex and
bounded subset of X, and let T : C → C be a completely continuous, asymptot-
ically nonexpansive mapping with sequence {kn} ⊂ [1,∞). Let u ∈ C be fixed,
{tn}n ⊂ (0, 1) be such that limn→∞ tn = 1, tnkn < 1 and limn→∞

kn−1
kn−tn

= 0.

Define the sequence {zk,n}k,n iteratively by z0,0 ∈ C,

zk,n+1 = (1− tn
kn

)u +
tn
kn

Tnzk,n +
tn
kn

vk,n n = 0, 1, 2, ...(31)

Then,
(i) for the integers k, n ≥ 0, there is a unique xk,n ∈ C such that

xk,n = (1− tn
kn

)u +
tn
kn

Tnxk,n +
tn
kn

vk,n

and if, in addition,

lim
k,n→∞

‖xk,n − Txk,n‖ = 0, and lim
k,n→∞

‖zk,n − Tzk,n‖ = 0, , then

(ii) the sequence {zk,n}k,n converges strongly to a fixed point of T.

Proof. As in the proof of Corollary 1 there exists y∗ ∈ C such that Ty∗ = y∗.
The rest of the proof follows as in Theorem 7. �
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