SOME SUFFICIENT CONDITIONS FOR UNIVALENCE AND SUBORDINATION RESULTS OF CERTAIN ANALYTIC AND UNIVALENT FUNCTIONS

B.A. FRASIN, M. DARUS and S. SIREGAR

Abstract

Very recently, Frasin and Darus [2] introduced the class $\mathcal{B}(\alpha)$ of analytic functions and gave some properties for this class. The aim of this paper is to obtain some sufficient conditions for univalence and subordination results for functions of the class $\mathcal{B}(\alpha)$.

MSC 2000. 30C45.
Key words. Analytic functions, univalent functions, starlike functions and convex functions, subordination.

1. INTRODUCTION AND DEFINITIONS

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathcal{U}=\{z:|z|<1\}$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathcal{U}. A function f belonging to \mathcal{S} is said to be starlike of order α if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathcal{U}) \tag{2}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by \mathcal{S}_{α}^{*} the subclass of \mathcal{A} consisting of functions which are starlike of order α in \mathcal{U}. Also, a function f belonging to \mathcal{S} is said to be convex of order α if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(z \in \mathcal{U}) \tag{3}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by \mathcal{K}_{α} the subclass of \mathcal{A} consisting of functions which are convex of order α in \mathcal{U}.

A function f belonging to \mathcal{S} is said to be close-to-convex of order α if there exists a function g belonging to \mathcal{S}_{α}^{*} such that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)}\right)>\alpha \quad(z \in \mathcal{U}) \tag{4}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by \mathcal{C}_{α} the subclass of \mathcal{A} consisting of functions which are close-to-convex of order α in \mathcal{U}. Let the functions f and
g be analytic in \mathcal{U}. Then we say that the function f is subordinate to g in \mathcal{U} if there exists an analytic function w in \mathcal{U} with $w(0)=0$ and $|w|<1(z \in \mathcal{U})$ such that $f(z)=g(w(z))$. We denote this subordination by $f(z) \prec g(z)$ or, shortly, $f \prec g$.

A function $f \in \mathcal{A}$ is said to be a member of the class $\mathcal{B}(\alpha)$ if and only if

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1-\alpha . \tag{5}
\end{equation*}
$$

Note that the condition (5) implies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}\right\}>\alpha . \tag{6}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$ and for all $z \in \mathcal{U}$.
Frasin and Darus [2] have defined the class $\mathcal{B}(\alpha)$ and investigated some interesting properties for this class. In this paper we shall give new additional results for functions of the class $\mathcal{B}(\alpha)$.

2. SOME PROPERTIES Of the class $\mathcal{B}(\alpha)$

In order to prove our main results, we recall the following lemmas:
Lemma 1. ([3]) Let w be analytic in \mathcal{U} and such that $w(0)=0$. If the map $z \in \mathcal{U} \mapsto|w(z)| \in \mathbb{R}$ attains its maximum value on the circle $|z|=r<1$ at a point $z_{0} \in \mathcal{U}$, then we have

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right), \tag{7}
\end{equation*}
$$

where $k \geq 1$ is a real number.
Lemma 2. ([8]) Let $f \in \mathcal{A}$ satisfy the condition

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1 \quad(z \in \mathcal{U}) \tag{8}
\end{equation*}
$$

Then f is univalent in \mathcal{U}.
Lemma 3. ([6]) Let p be an analytic function in \mathcal{U} with $p(0)=1$ and $p(z) \neq 0(z \in \mathcal{U})$. If there exists a point $z_{0} \in \mathcal{U}$ such that

$$
\begin{equation*}
|\arg p(z)|<\frac{\pi}{2} \eta \quad \text { for }|z|<\left|z_{0}\right| \tag{9}
\end{equation*}
$$

and

$$
\left|\arg p\left(z_{0}\right)\right|=\frac{\pi}{2} \eta
$$

with $0<\eta \leq 1$, then we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=\mathrm{i} k \eta
$$

where

$$
\begin{aligned}
k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \geq 1, \quad \text { when } \arg p\left(z_{0}\right)=\frac{\pi}{2} \eta, \\
k \leq-\frac{1}{2}\left(a+\frac{1}{a}\right) \leq-1, \quad \text { when } \arg p\left(z_{0}\right)=-\frac{\pi}{2} \eta,
\end{aligned}
$$

and

$$
p\left(z_{0}\right)^{\frac{1}{\eta}}= \pm a \mathrm{i}, \quad(a>0)
$$

Lemma 4. ([7]) If $f \in \mathcal{A}$ satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha-\beta \quad(z \in \mathcal{U}) \tag{10}
\end{equation*}
$$

for $\alpha \geq 0,0<\beta \leq 1 / 2(1-\gamma)$, and $\gamma=\alpha /(1+\beta)$, then f belongs to the class \mathcal{C}_{ρ}, where $\rho=(1+\beta) /[(1+\beta)(1+2 \beta)-2 \alpha \beta]$. Therefore f is close-to-convex of order ρ in \mathcal{U}.

Applying Lemma 1, we prove
Theorem 1. Let $f \in \mathcal{A}$. If

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{2 z f^{\prime}(z)}{f(z)}+1\right|<\frac{1-\alpha}{2 \alpha} \quad(z \in \mathcal{U}) \tag{11}
\end{equation*}
$$

where $\frac{1}{2} \leq \alpha<1$, then $f \in \mathcal{B}(\alpha)$.
Proof. We define $w(z)$ by

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}=\frac{1+(1-2 \alpha) w(z)}{1-w(z)} \quad(w(z) \neq 1) \tag{12}
\end{equation*}
$$

and note that w is regular in \mathcal{U} and $w(0)=0$. By logarithmic differentiation we get from (12) that

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{2 z f^{\prime}(z)}{f(z)}+2=\frac{(1-2 \alpha) z w^{\prime}(z)}{1+(1-2 \alpha) w(z)}+\frac{z w^{\prime}(z)}{1-w(z)} \tag{13}
\end{equation*}
$$

It follows from (12) and (13) that

$$
\begin{aligned}
& \frac{z^{2} f^{\prime}(z)}{f^{2}(z)}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{2 z f^{\prime}(z)}{f(z)}+2= \\
& =\frac{1+(1-2 \alpha) w(z)}{1-w(z)}+\frac{(1-2 \alpha) z w^{\prime}(z)}{1+(1-2 \alpha) w(z)}+\frac{z w^{\prime}(z)}{1-w(z)}
\end{aligned}
$$

or, equivalently,

$$
\begin{align*}
& \frac{z^{2} f^{\prime}(z)}{f^{2}(z)}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{2 z f^{\prime}(z)}{f(z)}+1= \\
& =\frac{2(1-\alpha) w(z)}{1-w(z)}\left(1+\frac{z w^{\prime}(z)}{[1+(1-2 \alpha) w(z)] w(z)}\right) \tag{14}
\end{align*}
$$

Suppose there exists $z_{o} \in \mathcal{U}$ such that

$$
\max _{|z|<\left|z_{o}\right|}|w(z)|=\left|w\left(z_{o}\right)\right|=1 \quad\left(w\left(z_{o}\right) \neq-1\right) .
$$

Then, by Lemma 1, we have

$$
z_{o} w^{\prime}(z)=k w\left(z_{o}\right),
$$

where $k \geq 1$ is a real number. From (14) we get

$$
\begin{aligned}
\left\lvert\, \frac{z_{o}^{2} f^{\prime}\left(z_{o}\right)}{f^{2}\left(z_{o}\right)}\right. & \left.+\frac{z_{o} f^{\prime \prime}\left(z_{o}\right)}{f^{\prime}\left(z_{o}\right)}-\frac{2 z_{o} f^{\prime}\left(z_{o}\right)}{f\left(z_{o}\right)}+1 \right\rvert\,= \\
& =\left|\frac{2(1-\alpha) w\left(z_{o}\right)}{1-w\left(z_{o}\right)}\left(1+\frac{z_{o} w^{\prime}\left(z_{o}\right)}{\left[1+(1-2 \alpha) w\left(z_{o}\right)\right] w\left(z_{o}\right)}\right)\right| \geq \\
& \geq\left|\frac{2(1-\alpha) w\left(z_{o}\right)}{1-w\left(z_{o}\right)}\right|\left|\frac{z_{o} w^{\prime}\left(z_{o}\right)}{\left[1+(1-2 \alpha) w\left(z_{o}\right)\right] w\left(z_{o}\right)}\right| \geq \\
& \geq \frac{(1-\alpha) k}{2 \alpha} \geq \\
& \geq \frac{1-\alpha}{2 \alpha},
\end{aligned}
$$

which contradicts our assumption (11). Therefore $|w(z)|<1$ holds for all $z \in \mathcal{U}$. We finally conclude that $f \in \mathcal{B}(\alpha)$.

Putting $\alpha=\frac{1}{2}$ in Theorem 1, we get
Corollary 2.1. Let $f \in \mathcal{A}$. If

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{2 z f^{\prime}(z)}{f(z)}+1\right|<\frac{1}{2} \quad(z \in \mathcal{U}) . \tag{15}
\end{equation*}
$$

then $f \in \mathcal{B}\left(\frac{1}{2}\right)$.
Next, we prove
Theorem 2. Let $f \in \mathcal{B}(\alpha)$ for some $0 \leq \alpha \leq \frac{1}{2}$ such that $f \in \mathcal{K}_{\beta}$ for some $0 \leq \beta<1$. Then the following inequality holds for every $z \in \mathcal{U}$

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geq \frac{(\beta+1)-4(1-\alpha)(\beta+1)|z|+(\beta+1)(1-\alpha)|z|^{2}}{2(1-|z|)(1-(1-2 \alpha)|z|)} . \tag{16}
\end{equation*}
$$

Proof. Since $f \in \mathcal{B}(\alpha)$, we can write

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}=\frac{1+(1-2 \alpha) w(z)}{1-w(z)} \tag{17}
\end{equation*}
$$

for some analytic map w in \mathcal{U} with $w(0)=0$ and $|w(z)|<1(z \in \mathcal{U})$. Applying the Schwarz Lemma, (17) can be written as

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}=\frac{1+(1-2 \alpha) z \Phi(z)}{1-\Phi(z)} \quad(z \in \mathcal{U}) \tag{18}
\end{equation*}
$$

where Φ is analytic in \mathcal{U} and satisfies $|\Phi(z)| \leq 1$ for $z \in \mathcal{U}$. Differentiating both sides of (18) logarithmically, we obtain

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{z f^{\prime \prime}(z)}{2 f^{\prime}(z)}+1-\frac{(1-\alpha)\left(z \Phi^{\prime}(z)+z \Phi(z)\right)}{(1-z \Phi(z))(1+(1-2 \alpha) z \Phi(z))} \tag{19}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{1}{2}\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right\}+\frac{1}{2}-\frac{(1-\alpha)\left(z \Phi^{\prime}(z)+z \Phi(z)\right)}{(1-z \Phi(z))(1+(1-2 \alpha) z \Phi(z))} \tag{20}
\end{equation*}
$$

From [5, p. 168] we see that

$$
\begin{equation*}
\left|\Phi^{\prime}(z)\right| \leq \frac{1-|\Phi(z)|^{2}}{1-|z|^{2}} \quad(z \in \mathcal{U}) \tag{21}
\end{equation*}
$$

Therefore, from (20) and (21), it follows that

$$
\begin{aligned}
\operatorname{Re} & \left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geq \\
& \geq \frac{1}{2} \operatorname{Re}\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right\}+\frac{1}{2}-\frac{(1-\alpha)\left(\left|z \Phi^{\prime}(z)\right|+|z \Phi(z)|\right)}{(1-|z \Phi(z)|)(1-(1-2 \alpha)|z \Phi(z)|)} \geq \\
& \geq \frac{\beta+1}{2}-\frac{(1-\alpha)|z|(|z|+|\Phi(z)|)}{\left(1-|z|^{2}\right)(1-(1-2 \alpha)|z \Phi(z)|)} \geq \\
& \geq \frac{\beta+1}{2}-\frac{(1-\alpha)|z|}{(1-|z|)(1-(1-2 \alpha)|z|)}= \\
& =\frac{(\beta+1)(1-|z|)(1-(1-2 \alpha)|z|)-2(1-\alpha)|z|}{2(1-|z|)(1-(1-2 \alpha)|z|)}= \\
& =\frac{(\beta+1)-4(1-\alpha)(\beta+1)|z|+(\beta+1)(1-\alpha)|z|^{2}}{2(1-|z|)(1-(1-2 \alpha)|z|)}
\end{aligned}
$$

which completes the proof of Theorem 2.
Corollary 1. Let $0 \leq \alpha \leq \frac{1}{2}$ and suppose that $f \in \mathcal{B}(\alpha)$ is a convex function. Then, for every $z \in \mathcal{U}$,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geq \frac{1-4(1-\alpha)|z|+(1-\alpha)|z|^{2}}{2(1-|z|)(1-(1-2 \alpha)|z|)} \tag{22}
\end{equation*}
$$

Next, we prove
Theorem 3. Let $f \in \mathcal{A}$ and suppose that $z^{2} f^{\prime}(z) / f^{2}(z) \neq \delta$ in \mathcal{U}. If

$$
\begin{equation*}
\left|\arg \left\{\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+2 \frac{z f^{\prime}(z)}{f(z)}\right)\right\}\right|<\frac{\pi \xi}{2} \quad(0<\xi \leq 1) \tag{23}
\end{equation*}
$$

then

$$
\begin{equation*}
\arg \left|\left(\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-\delta\right)\right|<\frac{\pi \eta}{2} \quad(0 \leq \delta \leq 1) \tag{24}
\end{equation*}
$$

where $\eta(0<\eta \leq 1)$ is the solution of the equation

$$
\begin{equation*}
\xi=\eta+\frac{2}{\pi} \tan ^{-1}\left(\frac{\eta-2 \delta(1-\delta)|a| \sin \frac{\pi}{2} \eta}{2+2 \delta(1-\delta)|a| \cos \frac{\pi}{2} \eta}\right) \tag{25}
\end{equation*}
$$

Proof. Put

$$
\begin{equation*}
p(z)=\frac{1}{1-\delta}\left(\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-\delta\right) \tag{26}
\end{equation*}
$$

Then p is analytic \mathcal{U} with $p(0)=1$ and $p(z) \neq 0$ in \mathcal{U}. By logarithmic differentiations of both sides of (26), we get

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+2 \frac{z f^{\prime}(z)}{f(z)}=\frac{(1-\delta) z p^{\prime}(z)}{\delta+(1-\delta) p(z)}+2 \tag{27}
\end{equation*}
$$

Therefore we obtain
(28) $\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+2 \frac{z f^{\prime}(z)}{f(z)}\right)=(1-\delta) p(z)\left(\frac{z p^{\prime}(z)}{p(z)}+\frac{2 \delta(1-\delta)}{p(z)}+2\right)$.

Suppose there exists a point $z_{0} \in \mathcal{U}$ such that

$$
|\arg p(z)|<\frac{\pi}{2} \eta, \quad \text { for } \quad|z|<\left|z_{0}\right|
$$

and

$$
\left|\arg p\left(z_{0}\right)\right|=\frac{\pi}{2} \eta
$$

Then, applying Lemma 3, we can write that

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=\mathrm{i} k \eta
$$

where

$$
\begin{gathered}
k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \geq 1, \quad \text { when } \arg p\left(z_{0}\right)=\frac{\pi}{2} \eta, \\
k \leq-\frac{1}{2}\left(a+\frac{1}{a}\right) \leq-1, \quad \text { when } \arg p\left(z_{0}\right)=-\frac{\pi}{2} \eta,
\end{gathered}
$$

and

$$
p\left(z_{0}\right)^{\frac{1}{\eta}}= \pm a \mathrm{i} \quad(a>0)
$$

Suppose first that $p\left(z_{0}\right)^{\frac{1}{\eta}}=a \mathrm{i}(a>0)$. Then we obtain

$$
\begin{aligned}
\arg & \left\{\frac{z_{0}^{2} f^{\prime}\left(z_{0}\right)}{f^{2}\left(z_{0}\right)}\left(\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}+2 \frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right)\right\}= \\
& =\arg \left\{(1-\delta) p\left(z_{0}\right)\left(\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}+\frac{2 \delta(1-\delta)}{p\left(z_{0}\right)}+2\right)\right\}= \\
& =\arg p\left(z_{0}\right)+\arg \left(\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}+\frac{2 \delta(1-\delta)}{p\left(z_{0}\right)}+2\right)= \\
& =\arg p\left(z_{0}\right)+\arg \left(\mathrm{i} \eta k+2 \delta(1-\delta)(\mathrm{i} a)^{-\eta}+2\right)= \\
& =\frac{\pi \eta}{2}+\tan ^{-1}\left(\frac{\eta k-2 \delta(1-\delta)|a| \sin \frac{\pi}{2} \eta}{2+2 \delta(1-\delta)|a| \cos \frac{\pi}{2} \eta}\right) \geq \\
& \geq \frac{\pi \eta}{2}+\tan ^{-1}\left(\frac{\eta-2 \delta(1-\delta)|a| \sin \frac{\pi}{2} \eta}{2+2 \delta(1-\delta)|a| \cos \frac{\pi}{2} \eta}\right)= \\
& =\frac{\pi}{2} \xi
\end{aligned}
$$

where ξ is given by (25). This contradicts assumption (24) of our theorem.
Next suppose that $p\left(z_{0}\right)^{\frac{1}{\eta}}=-a \mathrm{i}(a>0)$. Applying the same method as above, we obtain

$$
\begin{aligned}
\arg & \left\{\frac{z_{0}^{2} f^{\prime}\left(z_{0}\right)}{f^{2}\left(z_{0}\right)}\left(\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}+2 \frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right)\right\} \leq \\
& \leq-\frac{\pi \eta}{2}-\tan ^{-1}\left(\frac{\eta-2 \delta(1-\delta)|a| \sin \frac{\pi}{2} \eta}{2+2 \delta(1-\delta)|a| \cos \frac{\pi}{2} \eta}\right)= \\
& =-\frac{\pi}{2} \xi
\end{aligned}
$$

where ξ is given by (25). This contradicts assumption (24). This finishes the proof of Theorem 3 .

Putting $\delta=0$ in Theorem 3, we get
Corollary 2. Let $f \in \mathcal{A}$ and suppose that $z^{2} f^{\prime}(z) / f^{2}(z) \neq 0$ in \mathcal{U}. If

$$
\begin{equation*}
\left|\arg \left\{\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+2 \frac{z f^{\prime}(z)}{f(z)}\right)\right\}\right|<\frac{\pi \xi}{2} \quad(0<\xi \leq 1) \tag{29}
\end{equation*}
$$

then $f \in \mathcal{B}(\eta)$, where $\eta(0<\eta \leq 1)$ is the solution of the equation

$$
\begin{equation*}
\xi=\eta+\frac{2}{\pi} \tan ^{-1} \frac{\eta}{2} \tag{30}
\end{equation*}
$$

Applying Lemma 4, we next prove
THEOREM 4. Let the function f be in the class $\mathcal{B}(\alpha)$. If $f \in \mathcal{S}_{\alpha}^{*}$ and

$$
\begin{equation*}
\left|w^{\prime}(z)\right| \leq \frac{\alpha(\beta+\alpha-3)}{1-\alpha} \tag{31}
\end{equation*}
$$

where w is analytic in \mathcal{U} with $w(0)=0,|w(z)|<1(z \in \mathcal{U}), \alpha>0,0<$ $\beta \leq 1 / 2(1-\gamma)$, and $\gamma=\alpha /(1+\beta)$, then f belongs to the class \mathcal{C}_{δ}, where $\delta=(1+\beta) /[(1+\beta)(1+2 \beta)-2 \alpha \beta]$. Therefore f is close-to-convex of order δ in \mathcal{U}.

Proof. Let $f \in \mathcal{B}(\alpha)$, then

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}=1+(1-\alpha) w(z) \quad(z \in \mathcal{U}) \tag{32}
\end{equation*}
$$

where w is analytic in \mathcal{U} with $w(0)=0$ and $|w(z)|<1(z \in \mathcal{U})$. By logarithmic differentiation we get from (32) that

$$
\begin{equation*}
1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{(1-\alpha) z w^{\prime}(z)}{1+(1-\alpha) w(z)}+2\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)+1 \tag{33}
\end{equation*}
$$

From (33), we obtain

$$
\begin{aligned}
\left|1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| & \leq\left|\frac{(1-\alpha) z w^{\prime}(z)}{1+(1-\alpha) w(z)}\right|+2\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|+1 \\
& \leq \frac{(1-\alpha)}{\alpha}\left|w^{\prime}(z)\right|+2(1-\alpha)+1 \\
& \leq \beta-\alpha
\end{aligned}
$$

and so

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha-\beta \quad(z \in \mathcal{U}) \tag{34}
\end{equation*}
$$

Lemma 4 yields that $f \in \mathcal{C}_{\delta}$, where $\delta=(1+\beta) /[(1+\beta)(1+2 \beta)-2 \alpha \beta]$.
Now, we prove
Theorem 5. Let $f \in \mathcal{B}(\alpha)$. If $f \in \mathcal{K}_{\alpha}$, then

$$
\left|z w^{\prime}(z)\right|< \begin{cases}6(1-\alpha), & \text { if } 0 \leq \alpha \leq \frac{1}{2} \tag{35}\\ 6 \alpha, & \text { if } \frac{1}{2} \leq \alpha<1\end{cases}
$$

where w is analytic in \mathcal{U} with $w(0)=0$ and $|w(z)|<1$.
Proof. We define $w(z)$ by

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}=\frac{1+(1-2 \alpha) w(z)}{1-w(z)} \tag{36}
\end{equation*}
$$

Then w is analytic in \mathcal{U} with $w(0)=0$ and $|w(z)|<1$. By logarithmic differentiation we get from (36) that

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{2 z f^{\prime}(z)}{f(z)}+2=\frac{2(1-\alpha) z w^{\prime}(z)}{(1-w(z))(1+(1-2 \alpha) w(z))} \tag{37}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left|\frac{2(1-\alpha) z w^{\prime}(z)}{(1-w(z))(1+(1-2 \alpha) w(z))}\right| \leq\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|+2\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \tag{38}
\end{equation*}
$$

Since $f \in \mathcal{K}_{\alpha} \subset \mathcal{S}_{\alpha}^{*}$, relation (38) implies

$$
\begin{equation*}
\left|\frac{2(1-\alpha) z w^{\prime}(z)}{(1-w(z))(1+(1-2 \alpha) w(z))}\right| \leq 1-\alpha+2(1-\alpha), \tag{39}
\end{equation*}
$$

or, equivalently,

$$
\begin{aligned}
\left|z w^{\prime}(z)\right| & \leq \frac{3}{2}|(1-w(z))||1+(1-2 \alpha) w(z)| \\
& \leq 3|1+(1-2 \alpha) w(z)| \\
& \leq \begin{cases}6(1-\alpha), & \text { if } 0 \leq \alpha \leq \frac{1}{2} \\
6 \alpha, & \text { if } \frac{1}{2} \leq \alpha<1 .\end{cases}
\end{aligned}
$$

3. SUBORDINATION RESULTS

In order to prove our subordination results, we shall make use of the following results given in [1].

Lemma 5. Let p and h be analytic functions in \mathcal{U} such that $p(0)=h(0)=1$. Assume that h is convex and univalent in \mathcal{U} satisfying the condition $\operatorname{Re}\{\beta h(z)+$ $\gamma\}>0$ for complex numbers β, γ and for all $z \in \mathcal{U}$. If p, h, β and γ satisfy the Briot-Bouquet differential equation

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma}=h(z), \tag{40}
\end{equation*}
$$

then $p(z) \prec h(z)(z \in \mathcal{U})$.

Lemma 6. Under the hypothesis of Lemma 5, if the Briot-Bouquet differential equation

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma}=h(z) \quad(q(0)=1) \tag{41}
\end{equation*}
$$

has a univalent solution q, then $p(z) \prec q(z) \prec h(z)$. Furthermore, q is the best dominant.

We prove first the following subordination result.
Theorem 6. Let h be a convex and univalent function in \mathcal{U} such that $h(0)=$ 1 and $\operatorname{Re}\{h(z)\}>0$ for $z \in \mathcal{U}$. If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-z^{2}\left(\frac{z}{f(z)}\right)^{\prime \prime} \prec h(z) \quad(z \in \mathcal{U}) \tag{42}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)} \prec h(z) \quad(z \in \mathcal{U}) . \tag{43}
\end{equation*}
$$

Proof. Define the function p by

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}=p(z) \quad(z \in \mathcal{U}) \tag{44}
\end{equation*}
$$

Then p is analytic in \mathcal{U} with $p(0)=1$. Differentiating both sides in (44), we obtain

$$
\begin{equation*}
-z^{2}\left(\frac{z}{f(z)}\right)^{\prime \prime}=z p^{\prime}(z) \tag{45}
\end{equation*}
$$

From (44) and (45) we get

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-z^{2}\left(\frac{z}{f(z)}\right)^{\prime \prime}=p(z)+z p^{\prime}(z) \tag{46}
\end{equation*}
$$

Taking $\beta=0$ and $\gamma=1$ in Lemma 5, we finish the proof of Theorem 6.
Putting $h(z)=[1+(1-2 \alpha) z] /(1-z)$ in Theorem 6 , we obtain
Corollary 3. If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-z^{2}\left(\frac{z}{f(z)}\right)^{\prime \prime} \prec \frac{1+(1-2 \alpha) z}{1-z} \quad(z \in \mathcal{U}) \tag{47}
\end{equation*}
$$

then $f \in \mathcal{B}(\alpha)$.
By making use of Corollary 5 and Lemma 2, we have
Corollary 4. If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-z^{2}\left(\frac{z}{f(z)}\right)^{\prime \prime} \prec \frac{1+z}{1-z} \quad(z \in \mathcal{U}) \tag{48}
\end{equation*}
$$

then f is univalent in \mathcal{U}.
By replacing $p(z)$ by $z^{2} f^{\prime}(z) / f^{2}(z)$ and taking $\beta=0$ and $\gamma=1$ in Lemma 5 and Lemma 6, we can easily obtain

Theorem 7. Under the hypothesis of Theorem 6, if the Briot-Bouquet differential equation

$$
q(z)+z q^{\prime}(z)=h(z) \quad(q(0)=1)
$$

has a univalent solution, then

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)} \prec q(z) \prec h(z) \tag{49}
\end{equation*}
$$

Furthermore, q is the best dominant.

Acknowledgements. The work presented here was partially supported by SAGA: STGL-012-2006, Academy of Sciences, Malaysia. The authors would like to thank the referee for some suggestions to improve the paper.

REFERENCES

[1] Eenigenburg, P.J., Miller, S.S., Mocanu, P.T. and Reade, M.O., On a BriotBouquet differential subordination, Rev. Roumaine Math. Pures Appl., 29 (1984), 567573.
[2] Frasin, B.A. and Darus, M., On certain analytic univalent functions, Internat. J. Math. and Math. Sci., 25 (5) (2001), 305-310.
[3] Jack, I.S., Functions starlike and convex of order α, J. London. Math. Soc., 3 (1971), 469-474.
[4] Miller, S.S. and Mocanu, P.T., Second order differential inequalities in the complex plane, J. Math. Ana. Appl., 65 (1978), 289-305.
[5] Z. Nehari, Conformal Mapping, McGraw-Hill, New York, 1952.
[6] Nunokawa, M., On some angular estimates of analytic functions, Math. Japonica, 41 (1995), 447-452.
[7] Owa, S., The order of close-to-convexity for certain univalent functions, J. Math. Ana. Appl., 138 (1989), 393-396.
[8] Ozaki, S. and Nunokawa, M., The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc., 33 (2) (1972), 392-394.

Received June 16, 2005

B.A. Frasin
Al al-Bayt University
Department of Mathematics Mafraq, Jordan
E-mail: bafrasin@yahoo.com

M. Darus and S. Siregar

School of Mathematical Sciences
Faculty of Science and Technology
University Kebangsaan Malaysia
Bangi 43600, Malaysia
E-mail: maslina@pkrisc.cc.ukm.my

