MATHEMATICA, Tome 50 (73), N° 1, 2008, pp. 39–49

SOME SUFFICIENT CONDITIONS FOR UNIVALENCE AND SUBORDINATION RESULTS OF CERTAIN ANALYTIC AND UNIVALENT FUNCTIONS

B.A. FRASIN, M. DARUS and S. SIREGAR

Abstract. Very recently, Frasin and Darus [2] introduced the class $\mathcal{B}(\alpha)$ of analytic functions and gave some properties for this class. The aim of this paper is to obtain some sufficient conditions for univalence and subordination results for functions of the class $\mathcal{B}(\alpha)$.

MSC 2000. 30C45.

Key words. Analytic functions, univalent functions, starlike functions and convex functions, subordination.

1. INTRODUCTION AND DEFINITIONS

Let \mathcal{A} denote the class of functions of the form

(1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disk $\mathcal{U} = \{z : |z| < 1\}$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathcal{U} . A function f belonging to \mathcal{S} is said to be starlike of order α if it satisfies

(2)
$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \quad (z \in \mathcal{U})$$

for some α ($0 \leq \alpha < 1$). We denote by \mathcal{S}^*_{α} the subclass of \mathcal{A} consisting of functions which are starlike of order α in \mathcal{U} . Also, a function f belonging to \mathcal{S} is said to be convex of order α if it satisfies

(3)
$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha \quad (z \in \mathcal{U})$$

for some α ($0 \leq \alpha < 1$). We denote by \mathcal{K}_{α} the subclass of \mathcal{A} consisting of functions which are convex of order α in \mathcal{U} .

A function f belonging to S is said to be close-to-convex of order α if there exists a function g belonging to S^*_{α} such that

(4)
$$\operatorname{Re}\left(\frac{zf'(z)}{g(z)}\right) > \alpha \quad (z \in \mathcal{U})$$

for some α ($0 \leq \alpha < 1$). We denote by C_{α} the subclass of \mathcal{A} consisting of functions which are close-to-convex of order α in \mathcal{U} . Let the functions f and

g be analytic in \mathcal{U} . Then we say that the function f is subordinate to g in \mathcal{U} if there exists an analytic function w in \mathcal{U} with w(0) = 0 and |w| < 1 $(z \in \mathcal{U})$ such that f(z) = g(w(z)). We denote this subordination by $f(z) \prec g(z)$ or, shortly, $f \prec g$.

A function $f \in \mathcal{A}$ is said to be a member of the class $\mathcal{B}(\alpha)$ if and only if

(5)
$$\left| \frac{z^2 f'(z)}{f^2(z)} - 1 \right| < 1 - \alpha.$$

Note that the condition (5) implies

(6)
$$\operatorname{Re}\left\{\frac{z^2f'(z)}{f^2(z)}\right\} > \alpha.$$

for some α ($0 \le \alpha < 1$) and for all $z \in \mathcal{U}$.

Frasin and Darus [2] have defined the class $\mathcal{B}(\alpha)$ and investigated some interesting properties for this class. In this paper we shall give new additional results for functions of the class $\mathcal{B}(\alpha)$.

2. Some properties of the class $\mathcal{B}(\alpha)$

In order to prove our main results, we recall the following lemmas:

LEMMA 1. ([3]) Let w be analytic in \mathcal{U} and such that w(0) = 0. If the map $z \in \mathcal{U} \mapsto |w(z)| \in \mathbb{R}$ attains its maximum value on the circle |z| = r < 1 at a point $z_0 \in \mathcal{U}$, then we have

(7)
$$z_0 w'(z_0) = k w(z_0),$$

where $k \geq 1$ is a real number.

LEMMA 2. ([8]) Let $f \in \mathcal{A}$ satisfy the condition

(8)
$$\left|\frac{z^2 f'(z)}{f^2(z)} - 1\right| < 1 \qquad (z \in \mathcal{U}).$$

Then f is univalent in \mathcal{U} .

LEMMA 3. ([6]) Let p be an analytic function in \mathcal{U} with p(0) = 1 and $p(z) \neq 0$ ($z \in \mathcal{U}$). If there exists a point $z_0 \in \mathcal{U}$ such that

(9)
$$|\arg p(z)| < \frac{\pi}{2}\eta \quad for \ |z| < |z_0|$$

and

$$|\arg p(z_0)| = \frac{\pi}{2}\eta$$

with $0 < \eta \leq 1$, then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = \mathrm{i}k\eta,$$

where

$$k \ge \frac{1}{2} \left(a + \frac{1}{a} \right) \ge 1, \qquad \text{when } \arg p(z_0) = \frac{\pi}{2} \eta,$$
$$k \le -\frac{1}{2} \left(a + \frac{1}{a} \right) \le -1, \qquad \text{when } \arg p(z_0) = -\frac{\pi}{2} \eta.$$

and

$$p(z_0)^{\frac{1}{\eta}} = \pm ai, \quad (a > 0).$$

LEMMA 4. ([7]) If $f \in \mathcal{A}$ satisfies the condition

(10)
$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha - \beta \qquad (z \in \mathcal{U})$$

for $\alpha \geq 0$, $0 < \beta \leq 1/2(1-\gamma)$, and $\gamma = \alpha/(1+\beta)$, then f belongs to the class C_{ρ} , where $\rho = (1+\beta)/[(1+\beta)(1+2\beta)-2\alpha\beta]$. Therefore f is close-to-convex of order ρ in \mathcal{U} .

Applying Lemma 1, we prove

THEOREM 1. Let $f \in \mathcal{A}$. If

(11)
$$\left| \frac{z^2 f'(z)}{f^2(z)} + \frac{z f''(z)}{f'(z)} - \frac{2z f'(z)}{f(z)} + 1 \right| < \frac{1-\alpha}{2\alpha} \qquad (z \in \mathcal{U}),$$

where $\frac{1}{2} \leq \alpha < 1$, then $f \in \mathcal{B}(\alpha)$.

Proof. We define w(z) by

(12)
$$\frac{z^2 f'(z)}{f^2(z)} = \frac{1 + (1 - 2\alpha)w(z)}{1 - w(z)} \quad (w(z) \neq 1)$$

and note that w is regular in \mathcal{U} and w(0) = 0. By logarithmic differentiation we get from (12) that

(13)
$$\frac{zf''(z)}{f'(z)} - \frac{2zf'(z)}{f(z)} + 2 = \frac{(1-2\alpha)zw'(z)}{1+(1-2\alpha)w(z)} + \frac{zw'(z)}{1-w(z)}.$$

It follows from (12) and (13) that

$$\begin{aligned} &\frac{z^2 f'(z)}{f^2(z)} + \frac{z f''(z)}{f'(z)} - \frac{2z f'(z)}{f(z)} + 2 = \\ &= \frac{1 + (1 - 2\alpha)w(z)}{1 - w(z)} + \frac{(1 - 2\alpha)zw'(z)}{1 + (1 - 2\alpha)w(z)} + \frac{zw'(z)}{1 - w(z)}, \end{aligned}$$

or, equivalently,

(14)
$$\frac{z^2 f'(z)}{f^2(z)} + \frac{z f''(z)}{f'(z)} - \frac{2z f'(z)}{f(z)} + 1 = \\ = \frac{2(1-\alpha)w(z)}{1-w(z)} \left(1 + \frac{zw'(z)}{[1+(1-2\alpha)w(z)]w(z)}\right).$$

$$\max_{|z| < |z_o|} |w(z)| = |w(z_o)| = 1 \quad (w(z_o) \neq -1)$$

Then, by Lemma 1, we have

$$z_o w'(z) = k w(z_o),$$

where $k \ge 1$ is a real number. From (14) we get

$$\begin{aligned} \left| \frac{z_o^2 f'(z_o)}{f^2(z_o)} + \frac{z_o f''(z_o)}{f'(z_o)} - \frac{2z_o f'(z_o)}{f(z_o)} + 1 \right| = \\ &= \left| \frac{2(1-\alpha)w(z_o)}{1-w(z_o)} \left(1 + \frac{z_o w'(z_o)}{[1+(1-2\alpha)w(z_o)]w(z_o)} \right) \right| \ge \\ &\ge \left| \frac{2(1-\alpha)w(z_o)}{1-w(z_o)} \right| \left| \frac{z_o w'(z_o)}{[1+(1-2\alpha)w(z_o)]w(z_o)} \right| \ge \\ &\ge \frac{(1-\alpha)k}{2\alpha} \ge \\ &\ge \frac{1-\alpha}{2\alpha}, \end{aligned}$$

which contradicts our assumption (11). Therefore |w(z)| < 1 holds for all $z \in \mathcal{U}$. We finally conclude that $f \in \mathcal{B}(\alpha)$.

Putting $\alpha = \frac{1}{2}$ in Theorem 1, we get

COROLLARY 2.1. Let $f \in \mathcal{A}$. If

(15)
$$\left| \frac{z^2 f'(z)}{f^2(z)} + \frac{z f''(z)}{f'(z)} - \frac{2z f'(z)}{f(z)} + 1 \right| < \frac{1}{2} \qquad (z \in \mathcal{U}).$$

then $f \in \mathcal{B}(\frac{1}{2})$.

Next, we prove

THEOREM 2. Let $f \in \mathcal{B}(\alpha)$ for some $0 \le \alpha \le \frac{1}{2}$ such that $f \in \mathcal{K}_{\beta}$ for some $0 \le \beta < 1$. Then the following inequality holds for every $z \in \mathcal{U}$

(16)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} \ge \frac{(\beta+1) - 4(1-\alpha)(\beta+1)|z| + (\beta+1)(1-\alpha)|z|^2}{2(1-|z|)(1-(1-2\alpha)|z|)}.$$

Proof. Since $f \in \mathcal{B}(\alpha)$, we can write

(17)
$$\frac{z^2 f'(z)}{f^2(z)} = \frac{1 + (1 - 2\alpha)w(z)}{1 - w(z)}$$

for some analytic map w in \mathcal{U} with w(0) = 0 and |w(z)| < 1 ($z \in \mathcal{U}$). Applying the Schwarz Lemma, (17) can be written as

(18)
$$\frac{z^2 f'(z)}{f^2(z)} = \frac{1 + (1 - 2\alpha) z \Phi(z)}{1 - \Phi(z)} \qquad (z \in \mathcal{U}),$$

where Φ is analytic in \mathcal{U} and satisfies $|\Phi(z)| \leq 1$ for $z \in \mathcal{U}$. Differentiating both sides of (18) logarithmically, we obtain

(19)
$$\frac{zf'(z)}{f(z)} = \frac{zf''(z)}{2f'(z)} + 1 - \frac{(1-\alpha)(z\Phi'(z) + z\Phi(z))}{(1-z\Phi(z))(1+(1-2\alpha)z\Phi(z))},$$

or, equivalently,

(20)
$$\frac{zf'(z)}{f(z)} = \frac{1}{2} \left\{ \frac{zf''(z)}{f'(z)} + 1 \right\} + \frac{1}{2} - \frac{(1-\alpha)(z\Phi'(z) + z\Phi(z))}{(1-z\Phi(z))(1+(1-2\alpha)z\Phi(z))}.$$

From [5, p. 168] we see that

(21)
$$|\Phi'(z)| \le \frac{1 - |\Phi(z)|^2}{1 - |z|^2} \qquad (z \in \mathcal{U}).$$

Therefore, from (20) and (21), it follows that

$$\begin{aligned} \operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} &\geq \\ &\geq \frac{1}{2}\operatorname{Re}\left\{\frac{zf''(z)}{f'(z)} + 1\right\} + \frac{1}{2} - \frac{(1-\alpha)(|z\Phi'(z)| + |z\Phi(z)|)}{(1-|z\Phi(z)|)(1-(1-2\alpha)|z\Phi(z)|)} \geq \\ &\geq \frac{\beta+1}{2} - \frac{(1-\alpha)|z|(|z| + |\Phi(z)|)}{(1-|z|^2)(1-(1-2\alpha)|z\Phi(z)|)} \geq \\ &\geq \frac{\beta+1}{2} - \frac{(1-\alpha)|z|}{(1-|z|)(1-(1-2\alpha)|z|)} = \\ &= \frac{(\beta+1)(1-|z|)(1-(1-2\alpha)|z|) - 2(1-\alpha)|z|}{2(1-|z|)(1-(1-2\alpha)|z|)} = \\ &= \frac{(\beta+1) - 4(1-\alpha)(\beta+1)|z| + (\beta+1)(1-\alpha)|z|^2}{2(1-|z|)(1-(1-2\alpha)|z|)} \end{aligned}$$

which completes the proof of Theorem 2.

COROLLARY 1. Let $0 \leq \alpha \leq \frac{1}{2}$ and suppose that $f \in \mathcal{B}(\alpha)$ is a convex function. Then, for every $z \in \mathcal{U}$,

(22)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} \ge \frac{1 - 4(1 - \alpha)|z| + (1 - \alpha)|z|^2}{2(1 - |z|)(1 - (1 - 2\alpha)|z|)}.$$

Next, we prove

THEOREM 3. Let $f \in \mathcal{A}$ and suppose that $z^2 f'(z)/f^2(z) \neq \delta$ in \mathcal{U} . If $\left| z^2 f'(z) \left(z f''(z) + 2^z f'(z) \right) \right| = \pi \xi \quad (0 \leq \xi \leq 1)$

(23)
$$\left| \arg \left\{ \frac{z f(z)}{f^2(z)} \left(\frac{z f(z)}{f'(z)} + 2 \frac{z f(z)}{f(z)} \right) \right\} \right| < \frac{\pi \xi}{2} \quad (0 < \xi \le 1),$$

then

(24)
$$\arg \left| \left(\frac{z^2 f'(z)}{f^2(z)} - \delta \right) \right| < \frac{\pi \eta}{2} \quad (0 \le \delta \le 1),$$

where $\eta~(0<\eta\leq 1)$ is the solution of the equation

(25)
$$\xi = \eta + \frac{2}{\pi} \tan^{-1} \left(\frac{\eta - 2\delta(1-\delta) |a| \sin \frac{\pi}{2} \eta}{2 + 2\delta(1-\delta) |a| \cos \frac{\pi}{2} \eta} \right).$$

Proof. Put

(26)
$$p(z) = \frac{1}{1-\delta} \left(\frac{z^2 f'(z)}{f^2(z)} - \delta \right).$$

Then p is analytic \mathcal{U} with p(0) = 1 and $p(z) \neq 0$ in \mathcal{U} . By logarithmic differentiations of both sides of (26), we get

(27)
$$\frac{zf''(z)}{f'(z)} + 2\frac{zf'(z)}{f(z)} = \frac{(1-\delta)zp'(z)}{\delta + (1-\delta)p(z)} + 2.$$

Therefore we obtain

(28)
$$\frac{z^2 f'(z)}{f^2(z)} \left(\frac{z f''(z)}{f'(z)} + 2 \frac{z f'(z)}{f(z)} \right) = (1 - \delta) p(z) \left(\frac{z p'(z)}{p(z)} + \frac{2\delta(1 - \delta)}{p(z)} + 2 \right).$$

Suppose there exists a point $z_0 \in \mathcal{U}$ such that

$$|\arg p(z)| < \frac{\pi}{2}\eta$$
, for $|z| < |z_0|$,

and

$$|\arg p(z_0)| = \frac{\pi}{2}\eta.$$

Then, applying Lemma 3, we can write that

$$\frac{z_0 p'(z_0)}{p(z_0)} = \mathrm{i}k\eta,$$

where

$$k \ge \frac{1}{2}\left(a + \frac{1}{a}\right) \ge 1,$$
 when $\arg p(z_0) = \frac{\pi}{2}\eta_2$

$$k \leq -\frac{1}{2}\left(a+\frac{1}{a}\right) \leq -1, \quad \text{when } \arg p(z_0) = -\frac{\pi}{2}\eta,$$

and

$$p(z_0)^{\frac{1}{\eta}} = \pm ai \quad (a > 0).$$

$$\operatorname{rg}\left\{\frac{\frac{\partial v(z_0)}{f^2(z_0)}}{f^2(z_0)}\left(\frac{\frac{\partial v(z_0)}{f'(z_0)}+2\frac{\partial v(z_0)}{f(z_0)}}{p(z_0)}+\frac{2\delta(1-\delta)}{p(z_0)}+2\right)\right\} = \\ = \arg \left\{(1-\delta)p(z_0)\left(\frac{z_0p'(z_0)}{p(z_0)}+\frac{2\delta(1-\delta)}{p(z_0)}+2\right)\right\} = \\ = \arg p(z_0) + \arg \left(\frac{i\eta k+2\delta(1-\delta)(ia)^{-\eta}+2}{p(z_0)}+2\right) = \\ = \frac{\pi\eta}{2} + \tan^{-1}\left(\frac{\eta k-2\delta(1-\delta)|a|\sin\frac{\pi}{2}\eta}{2+2\delta(1-\delta)|a|\cos\frac{\pi}{2}\eta}\right) \ge \\ \ge \frac{\pi\eta}{2} + \tan^{-1}\left(\frac{\eta-2\delta(1-\delta)|a|\sin\frac{\pi}{2}\eta}{2+2\delta(1-\delta)|a|\cos\frac{\pi}{2}\eta}\right) = \\ = \frac{\pi}{2}\xi,$$

where ξ is given by (25). This contradicts assumption (24) of our theorem.

Next suppose that $p(z_0)^{\frac{1}{\eta}} = -ai$ (a > 0). Applying the same method as above, we obtain

$$\arg\left\{\frac{z_0^2 f'(z_0)}{f^2(z_0)} \left(\frac{z_0 f''(z_0)}{f'(z_0)} + 2\frac{z_0 f'(z_0)}{f(z_0)}\right)\right\} \le \\ \le -\frac{\pi\eta}{2} - \tan^{-1}\left(\frac{\eta - 2\delta(1-\delta)|a|\sin\frac{\pi}{2}\eta}{2+2\delta(1-\delta)|a|\cos\frac{\pi}{2}\eta}\right) = \\ = -\frac{\pi}{2}\xi,$$

where ξ is given by (25). This contradicts assumption (24). This finishes the proof of Theorem 3.

Putting $\delta = 0$ in Theorem 3, we get

COROLLARY 2. Let $f \in \mathcal{A}$ and suppose that $z^2 f'(z)/f^2(z) \neq 0$ in \mathcal{U} . If

(29)
$$\left| \arg \left\{ \frac{z^2 f'(z)}{f^2(z)} \left(\frac{z f''(z)}{f'(z)} + 2 \frac{z f'(z)}{f(z)} \right) \right\} \right| < \frac{\pi \xi}{2} \quad (0 < \xi \le 1),$$

then $f \in \mathcal{B}(\eta)$, where $\eta(0 < \eta \leq 1)$ is the solution of the equation

(30)
$$\xi = \eta + \frac{2}{\pi} \tan^{-1} \frac{\eta}{2}.$$

Applying Lemma 4, we next prove

THEOREM 4. Let the function f be in the class $\mathcal{B}(\alpha)$. If $f \in \mathcal{S}^*_{\alpha}$ and

(31)
$$|w'(z)| \le \frac{\alpha(\beta + \alpha - 3)}{1 - \alpha},$$

where w is analytic in \mathcal{U} with w(0) = 0, |w(z)| < 1 $(z \in \mathcal{U})$, $\alpha > 0$, $0 < \beta \leq 1/2(1-\gamma)$, and $\gamma = \alpha/(1+\beta)$, then f belongs to the class C_{δ} , where $\delta = (1+\beta)/[(1+\beta)(1+2\beta)-2\alpha\beta]$. Therefore f is close-to-convex of order δ in \mathcal{U} .

Proof. Let $f \in \mathcal{B}(\alpha)$, then

(32)
$$\frac{z^2 f'(z)}{f^2(z)} = 1 + (1 - \alpha)w(z) \qquad (z \in \mathcal{U}),$$

where w is analytic in \mathcal{U} with w(0) = 0 and |w(z)| < 1 ($z \in \mathcal{U}$). By logarithmic differentiation we get from (32) that

(33)
$$1 + z \frac{f''(z)}{f'(z)} = \frac{(1-\alpha)zw'(z)}{1+(1-\alpha)w(z)} + 2\left(\frac{zf'(z)}{f(z)} - 1\right) + 1.$$

From (33), we obtain

$$\begin{aligned} \left| 1 + z \frac{f''(z)}{f'(z)} \right| &\leq \left| \frac{(1-\alpha)zw'(z)}{1+(1-\alpha)w(z)} \right| + 2 \left| \frac{zf'(z)}{f(z)} - 1 \right| + 1 \\ &\leq \frac{(1-\alpha)}{\alpha} \left| w'(z) \right| + 2(1-\alpha) + 1 \\ &\leq \beta - \alpha \end{aligned}$$

and so

(34)
$$\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}\right\} > \alpha - \beta \qquad (z \in \mathcal{U}).$$

Lemma 4 yields that $f \in \mathcal{C}_{\delta}$, where $\delta = (1+\beta)/[(1+\beta)(1+2\beta)-2\alpha\beta]$. \Box

Now, we prove

THEOREM 5. Let $f \in \mathcal{B}(\alpha)$. If $f \in \mathcal{K}_{\alpha}$, then

(35)
$$|zw'(z)| < \begin{cases} 6(1-\alpha), & \text{if } 0 \le \alpha \le \frac{1}{2} \\ 6\alpha, & \text{if } \frac{1}{2} \le \alpha < 1 \end{cases}$$

where w is analytic in \mathcal{U} with w(0) = 0 and |w(z)| < 1.

Proof. We define w(z) by

(36)
$$\frac{z^2 f'(z)}{f^2(z)} = \frac{1 + (1 - 2\alpha)w(z)}{1 - w(z)}$$

Then w is analytic in \mathcal{U} with w(0) = 0 and |w(z)| < 1. By logarithmic differentiation we get from (36) that

(37)
$$\frac{zf''(z)}{f'(z)} - \frac{2zf'(z)}{f(z)} + 2 = \frac{2(1-\alpha)zw'(z)}{(1-w(z))(1+(1-2\alpha)w(z))},$$

hence

(38)
$$\left|\frac{2(1-\alpha)zw'(z)}{(1-w(z))(1+(1-2\alpha)w(z))}\right| \le \left|\frac{zf''(z)}{f'(z)}\right| + 2\left|\frac{zf'(z)}{f(z)} - 1\right|.$$

Since $f \in \mathcal{K}_{\alpha} \subset \mathcal{S}_{\alpha}^*$, relation (38) implies

(39)
$$\left|\frac{2(1-\alpha)zw'(z)}{(1-w(z))(1+(1-2\alpha)w(z))}\right| \le 1-\alpha+2(1-\alpha),$$

or, equivalently,

$$\begin{aligned} |zw'(z)| &\leq \frac{3}{2} |(1-w(z))| \, |1+(1-2\alpha)w(z)| \\ &\leq 3 |1+(1-2\alpha)w(z)| \\ &\leq \begin{cases} 6(1-\alpha), & \text{if } 0 \leq \alpha \leq \frac{1}{2} \\ 6\alpha, & \text{if } \frac{1}{2} \leq \alpha < 1. \end{cases} \end{aligned}$$

3. SUBORDINATION RESULTS

In order to prove our subordination results, we shall make use of the following results given in [1].

LEMMA 5. Let p and h be analytic functions in \mathcal{U} such that p(0) = h(0) = 1. Assume that h is convex and univalent in \mathcal{U} satisfying the condition $\operatorname{Re}\{\beta h(z) + \gamma\} > 0$ for complex numbers β, γ and for all $z \in \mathcal{U}$. If p, h, β and γ satisfy the Briot-Bouquet differential equation

(40)
$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} = h(z)$$

then $p(z) \prec h(z) \ (z \in \mathcal{U})$.

LEMMA 6. Under the hypothesis of Lemma 5, if the Briot-Bouquet differential equation

(41)
$$q(z) + \frac{zq'(z)}{\beta q(z) + \gamma} = h(z) \quad (q(0) = 1)$$

. . .

has a univalent solution q, then $p(z) \prec q(z) \prec h(z)$. Furthermore, q is the best dominant.

We prove first the following subordination result.

THEOREM 6. Let h be a convex and univalent function in \mathcal{U} such that h(0) = 1 and Re $\{h(z)\} > 0$ for $z \in \mathcal{U}$. If $f \in \mathcal{A}$ satisfies

(42)
$$\frac{z^2 f'(z)}{f^2(z)} - z^2 \left(\frac{z}{f(z)}\right)'' \prec h(z) \qquad (z \in \mathcal{U}),$$

then

(43)
$$\frac{z^2 f'(z)}{f^2(z)} \prec h(z) \qquad (z \in \mathcal{U}).$$

Proof. Define the function p by

(44)
$$\frac{z^2 f'(z)}{f^2(z)} = p(z) \qquad (z \in \mathcal{U}).$$

Then p is analytic in \mathcal{U} with p(0) = 1. Differentiating both sides in (44), we obtain

(45)
$$-z^2 \left(\frac{z}{f(z)}\right)'' = zp'(z).$$

From (44) and (45) we get

(46)
$$\frac{z^2 f'(z)}{f^2(z)} - z^2 \left(\frac{z}{f(z)}\right)'' = p(z) + zp'(z).$$

Taking $\beta = 0$ and $\gamma = 1$ in Lemma 5, we finish the proof of Theorem 6.

Putting $h(z) = [1 + (1 - 2\alpha)z]/(1 - z)$ in Theorem 6, we obtain

COROLLARY 3. If $f \in \mathcal{A}$ satisfies

(47)
$$\frac{z^2 f'(z)}{f^2(z)} - z^2 \left(\frac{z}{f(z)}\right)'' \prec \frac{1 + (1 - 2\alpha)z}{1 - z} \qquad (z \in \mathcal{U}),$$

then $f \in \mathcal{B}(\alpha)$.

By making use of Corollary 5 and Lemma 2, we have

COROLLARY 4. If $f \in \mathcal{A}$ satisfies

(48)
$$\frac{z^2 f'(z)}{f^2(z)} - z^2 \left(\frac{z}{f(z)}\right)'' \prec \frac{1+z}{1-z} \qquad (z \in \mathcal{U}),$$

then f is univalent in \mathcal{U} .

By replacing p(z) by $z^2 f'(z)/f^2(z)$ and taking $\beta = 0$ and $\gamma = 1$ in Lemma 5 and Lemma 6, we can easily obtain

THEOREM 7. Under the hypothesis of Theorem 6, if the Briot-Bouquet differential equation

$$q(z) + zq'(z) = h(z)$$
 $(q(0) = 1)$

has a univalent solution, then

(49)
$$\frac{z^2 f'(z)}{f^2(z)} \prec q(z) \prec h(z)$$

Furthermore, q is the best dominant.

Acknowledgements. The work presented here was partially supported by SAGA: STGL-012-2006, Academy of Sciences, Malaysia. The authors would like to thank the referee for some suggestions to improve the paper.

REFERENCES

- EENIGENBURG, P.J., MILLER, S.S., MOCANU, P.T. and READE, M.O., On a Briot-Bouquet differential subordination, Rev. Roumaine Math. Pures Appl., 29 (1984), 567– 573.
- [2] FRASIN, B.A. and DARUS, M., On certain analytic univalent functions, Internat. J. Math. and Math. Sci., 25 (5) (2001), 305–310.
- [3] JACK, I.S., Functions starlike and convex of order α, J. London. Math. Soc., 3 (1971), 469–474.
- [4] MILLER, S.S. and MOCANU, P.T., Second order differential inequalities in the complex plane, J. Math. Ana. Appl., 65 (1978), 289–305.
- [5] Z. NEHARI, Conformal Mapping, McGraw-Hill, New York, 1952.
- [6] NUNOKAWA, M., On some angular estimates of analytic functions, Math. Japonica, 41 (1995), 447–452.
- [7] OWA, S., The order of close-to-convexity for certain univalent functions, J. Math. Ana. Appl., 138 (1989), 393–396.
- [8] OZAKI, S. and NUNOKAWA, M., The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc., 33 (2) (1972), 392–394.

Received June 16, 2005

B.A. Frasin Al al-Bayt University Department of Mathematics Mafraq, Jordan E-mail: bafrasin@yahoo.com

M. Darus and S. Siregar School of Mathematical Sciences Faculty of Science and Technology University Kebangsaan Malaysia Bangi 43600, Malaysia E-mail: maslina@pkrisc.cc.ukm.my