THE WILSON VERSION OF D'ALEMBERT'S FUNCTIONAL EQUATION ON A CLASS OF 2-DIVISIBLE NILPOTENT GROUPS

ILIE COROVEI and VASILE POP

Abstract

Consider the functional equation

$$
\begin{equation*}
f, g, h, k: G \rightarrow K, \quad f(x y)+g\left(x y^{-1}\right)=h(x) k(y) \tag{*}
\end{equation*}
$$

where G is a group and K a field with char $K \neq 2$.
Wilson [13] and Aczél [1] have solved the equation (*) where G is the additive group of real numbers \mathbb{R} and $K=\mathbb{R}$.

In the present paper we obtain the general solution of the equation $(*)$ when G belongs to a special class of nilpotent or generalized nilpotent groups.
MSC 2000. 39B52, 20B99.
Key words. Functional equation, nilpotent group, Lie group.

INTRODUCTION

Consider the functional equation

$$
\begin{equation*}
f, g, h, k: G \rightarrow K, \quad f(x y)+g\left(x y^{-1}\right)=h(x) k(y), \tag{1.1}
\end{equation*}
$$

where G is a group and K a field. This equation is called sometimes Wilson's second generalization of d'Alembert's functional equation (see [1, §3.2.2]).

Several papers deal with the equation (1.1). In Wilson [13], and cf. also Aczél $[1, \S 3.2 .2$], equation (1.1) is solved when G is the additive group of real numbers \mathbb{R} and $K=\mathbb{R}$. Vincze [12] has solved equation (1.1) when G is a subgroup of the additive group of complex numbers \mathbb{C} and $K=\mathbb{C}$. In [2] Aczél and Vincze study an equation of the type (1.1) where G is a subgroup of the additive group of \mathbb{C} and K is a field of characteristic equal to zero.

The equation (1.1) was solved by the author in [7] when G is a generalized nilpotent group provided that all its element have the odd order and K is a field with char $K=0$.

Friis [9] solved Wilson's functional equation when G is a connected nilpotent Lie group, except the case when it is the Jensen equation. He also pointed out the role of the class \mathcal{N} that we introduce below.

Investigations of the particular cases of the equation (1.1) on non-abelian groups revealed that other solutions than the classical ones sometimes occur.

Definition 1. A group G is said to be a generalized nilpotent group (see [3]) if

$$
G=\bigcup_{\alpha<\gamma} Z_{\alpha},
$$

where

$$
\{e\}=Z_{0} \subset Z_{1} \subset \cdots \subset Z_{\alpha} \subset \ldots, \quad \alpha<\gamma
$$

is the ascending central chain of the group G (α and γ are ordinal numbers). The groups Z_{α} are defined as follows: suppose Z_{β} are defined for $\beta<\alpha$; if $\alpha-1$ exists we have

$$
Z_{\alpha} / Z_{\alpha-1}=Z\left(G / Z_{\alpha-1}\right)
$$

if α is a limit-ordinal, then

$$
Z_{\alpha}=\bigcup_{\beta<\alpha} Z_{\beta}
$$

The group G is said to be nilpotent if it is swept out by its ascending central chain, i.e.,

$$
\{e\}=Z_{0} \subset Z_{1} \subset \cdots \subset Z_{m}=G
$$

where m is a non-negative integer and $Z_{1}=Z(G)$ is the center of the group G.

Definition 2. The group G is said to be divisible by 2 if $G=\left\{x^{2} \mid x \in G\right\}$.
Definition 3. We denote by \mathcal{N} the class of nilpotent or generalized nilpotent groups for which the condition $G \in \mathcal{N}$ implies that G and Z_{α}, are 2divisible and $G / Z_{\alpha} \in \mathcal{N}$.

Note. All generalized nilpotent groups all of whose elements are of odd order, and connected nilpotent Lie groups belong to the class \mathcal{N}. Theorem 7 below is a generalization of Theorem 17 of [7] and Theorem 2 is a generalization of Theorem 3.4 of [9].

1. FORMULAS AND RELATIONS

If h or k are zero functions and G is 2-divisible group then the functions f and g are constant functions.

In this case the equation (1.1) has the following solutions:

$$
\begin{gathered}
f(x)=A, g(x)=-A \\
h(x)=0 \quad(\text { resp. } k(x)=0), \quad x \in G
\end{gathered}
$$

and k (resp. h) is any K-valued function.
Because these two cases occur many times during proofs we skip them.
Definition 4. The system of functions (f, g, h, k) is called the solution of the equation (1.1) if it verifies the equation (1.1) and the mappings h and k are not zero function.

First we will derive results about equation (1.1) that are valid on any group, then we solve equation (1.1) on the class \mathcal{N}.

Taking $y=e$ in (1.1) and then $x=e$, we have

$$
\begin{equation*}
f(x)+g(x)=\operatorname{Lh}(x), \quad L=k(e) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x)+g\left(x^{-1}\right)=E k(x), \quad E=h(e) \tag{1.3}
\end{equation*}
$$

We split a function $f: G \rightarrow K$ into its even and odd components

$$
f(x)=f_{1}(x)+f_{2}(x), \quad x \in G,
$$

where

$$
f_{1}(x)=f_{1}\left(x^{-1}\right)
$$

and

$$
f_{2}(x)=-f_{2}\left(x^{-1}\right) .
$$

Setting y^{-1} for y in (1.1), adding the equality such obtained with (1.1) and considering (1.2), we have

$$
\begin{equation*}
L\left[h(x y)+h\left(x y^{-1}\right)\right]=2 h(x) k_{1}(y) . \tag{1.4}
\end{equation*}
$$

If $L \neq 0$ then (1.4) becomes the Wilson equation

$$
\begin{equation*}
h(x y)+h\left(x y^{-1}\right)=2 h(x) l(y), \tag{1.5}
\end{equation*}
$$

where $l(y)=k_{1}(y) / L$. If $l(y)=1$ for all $y \in G$ we get the Jensen equation

$$
\begin{equation*}
h(x y)+h\left(x y^{-1}\right)=2 h(x) . \tag{1.6}
\end{equation*}
$$

Remark 1. If $L=0$ then $k_{1}(x)=0$ for all $x \in G$.
Replacing y first by x and then by x^{-1} in (1.1), we find

$$
\begin{equation*}
f\left(x^{2}\right)=h(x) k(x)-C, \quad C=g(e) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(x^{2}\right)=h(x) k\left(x^{-1}\right)-A, \quad A=f(e) . \tag{1.8}
\end{equation*}
$$

Let H be a subgroup of G and let $\pi: G \rightarrow G / H$ be the canonical projection. We say that a function $f: G \rightarrow K$ is a function on G / H if it can be written in the form $f=F \circ \pi$ for some function $F: G / H \rightarrow K$, i.e., $f(x)=f(x u)$ for all $x \in G$ and $u \in H$, and $F(\bar{x})=f(x)$, where $\bar{x}=x H$ (this means that the function f takes the same value on the residue class $\bar{x}=x H$).

Assume furthermore that H is a normal subgroup of G. It is easy to see that if the system of the functions (f, g, h, k) is a solution of the equation (1.1) and f, g, h, k are functions on G / H then (f, g, h, k) is a solution of (1.1) on G / H, too.

We denote by $Z_{1}=Z(G)$ the center of the group G.
Lemma 1. Let G be a group with the 2 -divisible center Z_{1} and (f, g, h, k) a solution of the equation (1.1). If h is a function on $G / Z_{1}, k_{1}(y)=L$ and $k_{2}(y)=0, y \in Z_{1}$, then f, g, h, k are functions on G / Z_{1} and (f, g, h, k) is a solution of (1.1) on G / Z_{1}.

Proof. From (1.1) and (1.2) we get

$$
\begin{equation*}
f(x y)-f\left(x y^{-1}\right)=h(x) k(y)-\operatorname{Lh}\left(x y^{-1}\right) . \tag{1.9}
\end{equation*}
$$

Set $y \in Z_{1}$; because $k_{2}(y)=0$ and $k_{1}(y)=L$ we have

$$
f(x y)=f\left(x y^{-1}\right) \text { for all } x \in G \text { and } y \in Z_{1} .
$$

Taking $x y$ for x in the above equality we obtain

$$
f\left(x y^{2}\right)=f(x) \text { for all } x \in G, y \in Z_{1} .
$$

Since Z_{1} is 2-divisible, f is a function on G / Z_{1}.
Setting in (1.9) the element $y u$ for $y, u \in Z_{1}$, since f and h are functions on G / Z_{1}, we get

$$
h(x) k(y)=h(x) k(y u) .
$$

Therefore

$$
k(y u)=k(y) \text { for all } y \in G, u \in Z_{1} .
$$

Consequently k is a function on G / Z_{1}.
Now, it is easy to see from (1.2) that g is a function on G / Z_{1} and that (f, g, h, k) is a solution of (1.1) on G / Z_{1}. This completes the proof.

Putting $\left(y^{-1}, x\right),\left(y, x^{-1}\right)$ and $\left(x^{-1}, y^{-1}\right)$ in (1.1) instead of (x, y), adding the resulting identities with (1.1), we get, using (1.3), that

$$
\begin{aligned}
& E\left[k(x y)+k\left(y^{-1} x\right)+k\left(y x^{-1}\right)+k\left(x^{-1} y^{-1}\right)\right]= \\
& \quad=h(x) k(y)+h\left(y^{-1}\right) k(x)+h(y) k\left(x^{-1}\right)+h\left(x^{-1}\right) k\left(y^{-1}\right) .
\end{aligned}
$$

Interchanging x and y in this equality and subtracting the equality such obtained from this, we have

$$
\begin{aligned}
E[k(x y) & -k\left(y^{-1} x^{-1}\right)+k\left(y^{-1} x\right)-k\left(x^{-1} y\right)+k\left(y x^{-1}\right)- \\
& \left.-k\left(x y^{-1}\right)+k\left(x^{-1} y^{-1}\right)-k(y x)\right]= \\
& =\left[h(x)-h\left(x^{-1}\right)\right]\left[k(y)-k\left(y^{-1}\right)\right]-\left[h(y)-h\left(y^{-1}\right)\right]\left[k(x)-k\left(x^{-1}\right)\right] .
\end{aligned}
$$

Using in this relation the even and odd component of h and k, we find

$$
\begin{array}{r}
E\left[k_{2}(x y)+k_{2}\left(y^{-1} x\right)+k_{2}\left(y x^{-1}\right)+k_{2}\left(x^{-1} y^{-1}\right)\right]= \tag{1.10}\\
=2\left[h_{2}(x) k_{2}(y)-h_{2}(y) k_{2}(x)\right] .
\end{array}
$$

For $y \in Z_{1}$ we then obtain

$$
\begin{equation*}
h_{2}(x) k_{2}(y)=h_{2}(y) k_{2}(x), \quad x \in G, y \in Z_{1} . \tag{1.11}
\end{equation*}
$$

It will be convenient to record the following fact, because it will be used a couple of times during proofs.

Remark 2. If there exists $y_{0} \in Z_{1}$, such that $h_{2}\left(y_{0}\right) \neq 0$ or $E=0$ and there exists $y_{0} \in G$ such that $h_{2}\left(y_{0}\right) \neq 0$, then

$$
\begin{equation*}
k_{2}(x)=N h_{2}(x), \forall x \in G, \tag{1.12}
\end{equation*}
$$

where $N=k_{2}\left(y_{0}\right) / h_{2}\left(y_{0}\right)$.
Remark 3. If $h_{2}(u)=0$ for all $u \in Z_{1}$ and there exists $x \in G$ such that $h_{2}(x) \neq 0$ it follows that

$$
\begin{equation*}
k_{2}(u)=0 \text { for all } u \in Z_{1} . \tag{1.13}
\end{equation*}
$$

Lemma 2. Let G be a 2-divisible group and let (h, l) be a solution of the equation (1.5). If
a) $k_{1}(u)=L, u \in Z_{1}, L \neq 0$ and there exists $x \in G$ such that $k_{1}(x) \neq L$ or
b) $k_{1}(x)=L, x \in G, L \neq 0$ and $h_{2}(u)=0$ for all $u \in Z_{1}$,
then h and l are functions on G / Z_{1} and (h, l) is a solution of (1.5) on G / Z_{1}.
Proof. a) This is [5, Lemma 2] or [9, Lemma 3.3].
b) The function h verifies the Jensen's equation (1.6), hence $h(x)=h_{2}(x)+$ E and

$$
\begin{equation*}
h_{2}(x y)+h_{2}\left(x y^{-1}\right)=2 h_{2}(x) . \tag{1.14}
\end{equation*}
$$

Interchanging x and y in this equality and adding the resulting identity with (1.14), we get

$$
\begin{equation*}
h_{2}(x y)+h_{2}(y x)=2 h_{2}(x)+2 h_{2}(y) . \tag{1.15}
\end{equation*}
$$

If $y=u \in Z_{1}$ we obtain $h_{2}(x u)=h_{2}(x)$ for all $x \in G$ and $u \in Z_{1}$. Hence h is a function on G / Z_{1}.

Lemma 3. Let G and Z_{1} be 2-divisible and (f, g, h, k) a solution of the equation (1.1). If
a) $k_{1}(u)=L, u \in Z_{1}$ and there exists $x \in G$ such that $k_{1}(x) \neq L$ and $L \neq 0$, or
b) $k_{1}(x)=L, x \in G, L \neq 0, h_{2}(u)=0$ for all $u \in Z_{1}$ and there exists $x \in G$ such that $h_{2}(x) \neq 0$,
then f, g, h, k are functions on G / Z_{1} and (f, g, h, k) is a solution of (1.1) on G / Z_{1}.

Proof. Since (h, l) is a solution of the equation (1.5) it follows from Lemma 2 that h and k_{1} are functions on G / Z_{1}.

If there exists $y_{0} \in Z_{1}$ such that $h_{2}\left(y_{0}\right) \neq 0$ then from (1.12) follows that k_{2} is a function on G / Z_{1} consequently and k is a function on G / Z_{1}. From (1.7) we obtain $f\left(x^{2} u^{2}\right)=f\left(x^{2}\right)$ for all $x \in G$ and $u \in Z_{1}$, but G and Z_{1} are divisible by 2 , hence $f(x u)=f(x)$ and f is a function on G / Z_{1}. Similarly we deduce from (1.8) that g is a function on G / Z_{1}.

If $h_{2}(u)=0, u \in Z_{1}$ and there exists $x \in G$ such that $h(x) \neq 0$ then we get using Remark 3 that $k_{2}(u)=0$ for all $u \in Z_{1}$ and from Lemma 1 follows that Lemma 3 is true. This completes the proof.

It is left to discuss the case when $h_{2}(x)=0$ for all $x \in G$.
Lemma 4. Let G be a 2-divisible group. If $k_{1}(x)=L, x \in G, L \neq 0$ and $h_{2}(x)=0, x \in G$, then the solution (f, g, h, k) of (1.1) has the form

$$
\begin{cases}f(x)=\frac{E}{2} \beta(x)+A, & g(x)=-\frac{E}{2} \beta(x)+C \tag{1.16}\\ h(x)=E, & k(x)=L+\beta(x)\end{cases}
$$

where β is a homomorphism from G into the additive group of K, and A, C, E, L are arbitrary elements of K and $A+C=E L$.

Proof. From (1.5) we have

$$
h_{1}(x y)+h_{1}\left(x y^{-1}\right)=2 h_{1}(x) .
$$

Putting $x=e$, we get $h_{1}(x)=E$. Because $h(x)=E$, (1.2) can be written as

$$
f(x)+g(x)=E L .
$$

This equality yields

$$
\begin{equation*}
f_{1}(x)+g_{1}(x)=E L \tag{1.17}
\end{equation*}
$$

and

$$
f_{2}(x)+g_{2}(x)=0 .
$$

From (1.3) we get

$$
f(x)+g\left(x^{-1}\right)=E L+E k_{2}(x),
$$

consequently

$$
f_{2}(x)-g_{2}(x)=E k_{2}(x) .
$$

Hence

$$
f_{2}(x)=\frac{E}{2} k_{2}(x)=-g_{2}(x) .
$$

Because $h_{2}(x)=0$, from (1.1) we find

$$
f(x y)+g\left(x y^{-1}\right)=h_{1}(x) k(y) .
$$

Replacing x by x^{-1} in this equality, because the right hand side remains unchanged, we have

$$
f(x y)+g\left(x y^{-1}\right)=f\left(x^{-1} y\right)+g\left(x^{-1} y^{-1}\right) .
$$

Putting $y=x$, yields

$$
f\left(x^{2}\right)+C=g\left(x^{-2}\right)+A .
$$

Hence

$$
f(x)-g\left(x^{-1}\right)=A-C .
$$

It is easy to see that $f_{1}(x)-g_{1}(x)=A-C$. Using (1.17), we get $f_{1}(x)=A$ and $g_{1}(x)=C$. Taking these relations in (1.1), we obtain

$$
A+\frac{E}{2} k_{2}(x y)+C-\frac{E}{2} k_{2}\left(x y^{-1}\right)=E\left[L+k_{2}(y)\right] .
$$

Hence

$$
\begin{equation*}
k_{2}(x y)-k_{2}\left(x y^{-1}\right)=2 k_{2}(y) . \tag{1.18}
\end{equation*}
$$

This is a variant of Jensen's equation. Now we use the following result.
Lemma 5. (see [10], eq. 2.14) The solutions $f: G \rightarrow K$ of (1.18) are the functions of the form

$$
k_{2}(x)=\beta(x),
$$

where β is a homomorphism from G into the additive group of K.

Consequently the solution (f, g, h, k) of (1.1) has the form (1.16).
Lemma 6. Suppose $G \in \mathcal{N}$ and let (f, g, h, k) be a solution of the equation (1.1). If:
a) for certain $\alpha<\gamma, k_{1}(x)=L, x \in Z_{\alpha}$ and there exists $x \in G$ such that $k_{1}(x) \neq L, L \neq 0$,
or
b) $k_{1}(x)=L, L \neq 0, x \in G$, and for certain $\alpha<\gamma, h_{2}(x)=0, x \in Z_{\alpha}$ and there exists $x \in G$ such that $h_{2}(x) \neq 0$,
then f, g, h, k are functions on G / Z_{α} and (f, g, h, k) is a solution of (1.1) on G / Z_{α}.

Proof. We will prove Lemma 6 by transfinite induction on α.
The case $\alpha=1$ reduces to Lemma 3. The proof for α is the same as the proof of Lemma 6 from [7] so we will omit it.

If (h, l) is a solution of the equation (1.5) then l verifies d'Alembert's long functional equation (Lemma 1 from [5])

$$
\begin{equation*}
l(x y)+l(y x)+l\left(x y^{-1}\right)+l\left(y^{-1} x\right)=4 l(x) l(y), \quad x, y \in G . \tag{1.19}
\end{equation*}
$$

Theorem 1. Let $G \in \mathcal{N}$ and let K be a quadratically closed field of char $K \neq$ 2. If $l: G \rightarrow K$ is a non-zero solution of the equation (1.19) then it has the form

$$
l(x)=A \frac{Q(x)+Q^{*}(x)}{2},
$$

where Q is a homomorphism from G into the multiplicative group of K.
The proof is analogous as that of Theorem 3 from [4] if we use Lemma 7 below instead of Lemma 3 from [5].

Lemma 7. Let G and Z_{1} be 2-divisible, K a field with char $K \neq 2$ and $l a$ solution of the equation (1.19). If $l^{2}(x)=1, \forall x \in Z_{1}$, then $l(x)=1$ for all $x \in Z_{1}$.

Proof. It is easy to see that l verifies the equality $l\left(x^{2}\right)+1=2 l^{2}(x), x \in G$, hence $l\left(x^{2}\right)=1, \forall x \in Z_{1}$. Since Z_{1} is 2-divisible, we have $l(x)=1, x \in Z_{1}$.

2. SOLUTIONS WHEN $L \neq 0$

In this section we first obtain the solution of the Wilson's equation (1.5) and after that of the equation (1.1) in the case where $L \neq 0$.

Theorem 2. Let $G \in \mathcal{N}$, let K be a quadratically closed field of char $K \neq 2$ and $\left(h, k_{1}\right), h, k_{1}: G \rightarrow K$ a solution of the equation (1.5). If there exists $x \in G$, such that $k_{1}(x) \neq L, L \neq 0$, then h and k_{1} have the form

$$
\begin{equation*}
h(x)=A \frac{Q(x)+Q^{*}(x)}{2}+B \frac{Q(x)-Q^{*}(x)}{2} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{1}(x)=L \frac{Q(x)+Q^{*}(x)}{2}, \tag{2.2}
\end{equation*}
$$

where Q is a homomorphism of G into the multiplicative group of K, A, B and L are arbitrary elements of K and $Q^{*}(x)=[Q(x)]^{-1}$.

The proof of this theorem is analogous as that of Theorem 3 from [5] case i) if we use Theorem 1 and Lemma 7 instead of Lemma 3 from [5], so we will omit it.

The commutator subgroup of G, i.e. the subgroup generated by the commutators $[x, y]=x y x^{-1} y^{-1}, x, y \in G$, will be denoted by $[G, G]$. The group G is said to be step 2 nilpotent if $[G, G] \subseteq Z(G)$.

The investigations of Jensen's functional equation revealed that other solutions than classical ones sometimes occur. Stetkaer [11] showed that any solution of Jensen's functional equation on any group G is a function on the quotient group $G /[G,[G, G]]$. This quotient group is always step 2-nilpotent, so the study of Jensen's functional equation reduces to a study of it on step 2 -nilpotent groups.

We will determine solutions of the equation (1.1) using homomorphisms and odd solution of Jensen's equation.

Lemma 8. (see [6], Proposition 1.5). Let G be an arbitrary group and H an abelian group divisible by 2. The functional equation

$$
\begin{equation*}
\varphi(x y)+\varphi(y x)=2 \varphi(x)+2 \varphi(y), \quad \varphi: G \rightarrow H, \tag{2.3}
\end{equation*}
$$

is equivalent with Jensen's equation

$$
\begin{equation*}
\varphi(x y)+\varphi\left(x y^{-1}\right)=2 \varphi(x) . \tag{2.4}
\end{equation*}
$$

Proof. Due to the fact that φ is odd, interchanging x and y in (2.4) and adding the resulting identity with (2.4) we get (2.3).

Conversely, it is easy to see that from (2.3) we have

$$
\varphi(e)=0, \quad \varphi(x)=-\varphi\left(x^{-1}\right) \quad \text { and } \quad \varphi\left(x^{2}\right)=2 \varphi(x)
$$

for all $x \in G$. Using (2.3) in the expression $4[\varphi(x)+\varphi(y)+\varphi(u)+\varphi(v)]$, we have

$$
\begin{aligned}
& \varphi(x y u v)+\varphi(u v x y)+\varphi(y x v u)+\varphi(v u y x)= \\
& \quad=\varphi(x u v y)+\varphi(v y x u)+\varphi(u x y v)+\varphi(y v u x) .
\end{aligned}
$$

Replacing x by y and v by e in this identity we find

$$
\varphi\left(x^{2} u\right)+\varphi\left(u x^{2}\right)=2 \varphi(x u x),
$$

which, together with (2.3), yield

$$
\varphi(x u x)=2 \varphi(x)+\varphi(u) .
$$

Setting $u x^{-1}$ for u in this identity, we obtain

$$
\varphi(x u)=2 \varphi(x)+\varphi\left(u x^{-1}\right)=2 \varphi(x)-\varphi\left(x u^{-1}\right) .
$$

Consequently φ is a solution of (2.4).
Theorem 3. Let $G \in \mathcal{N}$ and let K be a quadratically closed field of char $K \neq$ 2. If $f, g, h, k: G \rightarrow K$ and there exists $x \in G$ such that $k_{1}(x) \neq L$ and $L \neq 0$, then the solution (f, g, h, k) of equation (1.1) is of the following form:

$$
\left\{\begin{array}{l}
f(x)=A \frac{Q(x)+Q^{*}(x)}{2}+B \frac{Q(x)-Q^{*}(x)}{2}+\gamma \tag{2.5}\\
g(x)=C \frac{Q(x)+Q^{*}(x)}{2}+D \frac{Q(x)-Q^{*}(x)}{2}-\gamma \\
h(x)=E \frac{Q(x)+Q^{*}(x)}{2}+F \frac{Q(x)-Q^{*}(x)}{2} \\
k(x)=L \frac{Q(x)+Q^{*}(x)}{2}+M \frac{Q(x)-Q^{*}(x)}{2},
\end{array}\right.
$$

where Q is a homomorphism from G in the multiplicative group of K and $A, B, C, D, E, F, L, M, \gamma$ are arbitrary elements in K, which verify the following relations

$$
2 A=E L+F M, 2 B=L F+E M, 2 C=E L-F M, 2 D=F L-E M .
$$

Proof. This is [7, Theorem 11].
Theorem 4. Suppose G belongs to \mathcal{N} and K is a field of char $K \neq 2$. If $k_{1}(x)=L, L \neq 0$, for all x in G, then the solution (f, g, h, k) of equation (1.1) has the form (1.16) or the following form

$$
\left\{\begin{array}{l}
f(x)=\frac{N}{4} \beta^{2}(x)+\frac{L+E N}{2} \beta(x)+A \tag{2.6}\\
g(x)=-\frac{N}{4} \beta^{2}(x)+\frac{L-E N}{2} \beta(x)+C \\
h(x)=\beta(x)+E, \quad k(x)=N \beta(x)+L
\end{array}\right.
$$

where β is a homomorphism from G into the additive group of K and A, C, E, L, N are elements of K which satisfy the relation

$$
A+C=E L,
$$

or

$$
\begin{cases}f(x)=\frac{L}{2} \varphi(x)+A, & g(x)=\frac{L}{2} \varphi(x)+C \tag{2.7}\\ h(x)=\varphi(x)+E, & k(x)=L\end{cases}
$$

where φ is an odd solution of Jensen's equation (1.6) and A, C, E, L are arbitrary constants which verify the relation $A+C=E L$.

Proof. The function h verifies Jensen's equation (1.6), hence it has the form

$$
\begin{equation*}
h(x)=\varphi(x)+E \tag{2.8}
\end{equation*}
$$

where φ is an odd solution of Jensen's equation.
We distinguish two cases:
a) There exist $x \in G$ such that $h_{2}(x)=\varphi(x) \neq 0$
and
b) $h_{2}(x)=0, x \in G$.
a) If there exists $y_{0} \in Z_{1}$ such that $h_{2}\left(y_{0}\right) \neq 0$, then we have (1.12). Hence k has the form

$$
\begin{equation*}
k(x)=N \varphi(x)+L \tag{2.9}
\end{equation*}
$$

If $h_{2}(x)=0$ for certain $\alpha<\gamma$ and there exists $y_{0} \in Z_{\alpha+1}$ such that $h_{2}\left(y_{0}\right) \neq 0$, then from Lemma 6 case b) there exist the functions $F_{\alpha}, G_{\alpha}, H_{\alpha}, K_{\alpha}: G / Z_{\alpha} \rightarrow$ K which verify the equation (1.1) on G / Z_{α}.

Hence between $H_{\alpha_{2}}$ and $K_{\alpha_{2}}$ the relation (1.11) holds and there exists $y_{0}^{(\alpha)}=$ $y_{0} Z_{\alpha} \in Z\left(G / Z_{\alpha}\right)$ such that $H_{\alpha_{2}}\left(y_{0}^{(\alpha)}\right)=h_{2}\left(y_{0}\right) \neq 0$. Using Remark 2 , we have (1.12) for $H_{\alpha_{2}}$ and $K_{\alpha_{2}}$, therefore we have (1.12) and for h_{2} and k_{2} too, hence

$$
k_{2}(x)=N \varphi(x)
$$

and k has the form (2.9).
Replacing the expression of h and k in (1.7) and (1.8), respectively, using the equality $\varphi\left(x^{2}\right)=2 \varphi(x)$ and due to the fact that G is 2-divisible, we obtain that (f, g, h, k) have the form

$$
\left\{\begin{array}{l}
f(x)=\frac{N}{4} \varphi^{2}(x)+\frac{L+E N}{2} \varphi(x)+A \tag{2.10}\\
g(x)=-\frac{N}{4} \varphi^{2}(x)+\frac{L-E N}{2} \varphi(x)+C \\
h(x)=\varphi(x)+E, \quad k(x)=N \varphi(x)+L
\end{array}\right.
$$

where φ is an odd solution of Jensen's equation and A, C, E, L, N are elements of K.

Conversely, assume that the system of the functions f, g, h, k of the form (2.10) is a solution of the equation (1.1). Putting these expressions in (1.1), a simple computation gives us

$$
N[\varphi(x)+E]\left[\varphi(x y)-\varphi\left(x y^{-1}\right)-2 \varphi(y)\right]=0
$$

Because h is non-zero function from this equality we have

$$
\varphi(x y)-\varphi\left(x y^{-1}\right)=2 \varphi(y)
$$

This is the equation (1.18). By Lemma 5 we have that its solution is $\varphi(x)=$ $\beta(x)$, where β is a homomorphism from G into the additive group of K. In this case we obtain the solution of the form (2.6).

If $N=0$, we have the solution (f, g, h, k) of the form (2.7).
b) The hypotheses of Lemma 4 are satisfied, hence (f, g, h, k) has the form (1.16).

3. SOLUTIONS WHEN $L=0$

First we deduce a Wilson's equation that may be used to obtain the solution of the equation (1.1) in the case that $k(e)=L=0$ and $h(e)=E \neq 0$.

Lemma 9. Let G be an arbitrary group, K a field of char $K \neq 2$ and let (f, g, h, k) be a solution of the equation (1.1). If $L=0, E \neq 0$, and there exists $u \in Z_{1}$ such that $k_{2}(u) \neq 0$, then we have

$$
\begin{equation*}
h(x y)+h\left(x y^{-1}\right)=2 h(x) m(y), \text { for all } x, y \in G, \tag{3.1}
\end{equation*}
$$

where $m(y)=h_{1}(y) / E$.
Proof. This is [7, Lemma 14].
It is left to consider the case $L=0$ and $E=0$.
Lemma 10. Let G be a group with $Z_{1} \neq\{e\}$. If (f, g, h, k) is a solution of the equation (1.1), there exists $y_{0} \in Z_{1}$ such that $k_{2}\left(y_{0}\right) \neq 0, L=0$ and $E=0$, then the function k_{2} verifies the sine equation

$$
\begin{equation*}
k_{2}(x y) k_{2}\left(x y^{-1}\right)=k_{2}^{2}(x)-k_{2}^{2}(y) . \tag{4.1}
\end{equation*}
$$

Proof. This is [7, Lemma 16].
Theorem 5. Let G be a 2-divisible group such that the commutator subgroup $[G, G]$ is divisible by 2 . Let K be a quadratically closed field of char $K \neq 2$. The general solutions $k_{2}: G \rightarrow K$ of the sine functional equation (4.1) are given by

$$
\begin{equation*}
k_{2}(x)=M \frac{Q(x)-Q^{*}(x)}{2} \tag{4.2}
\end{equation*}
$$

or

$$
\begin{equation*}
k_{2}(x)=\beta(x), \tag{4.3}
\end{equation*}
$$

where Q is a homomorphism from G in the multiplicative group of K and β is a homomorphism from G in the additive group of K.

Proof. See [8, Theorem 3].
Lemma 11. Let $G \in \mathcal{N}$ and let (f, g, h, k) be a solution of the equation (1.1). If $L=0$ and there exists $\alpha<\gamma$ such that $k_{2}(x)=0$ for all $x \in Z_{\alpha}$, then f, g, h, k are functions on G / Z_{α} and (f, g, h, k) is a solution of (1.1) on G / Z_{α}.

Proof. If $L=0$, from (1.2) we have $g(x)=-f(x)$ and, using Remark 1, $k_{1}(x) \equiv 0$, the equation (1.1) can be rewritten as

$$
\begin{equation*}
f(x y)-f\left(x y^{-1}\right)=h(x) k_{2}(y) . \tag{4.4}
\end{equation*}
$$

We will prove Lemma 11 by transfinite induction on α. Suppose that $\alpha=1$.
If $k_{2}(y)=0, y \in Z_{1}$, we get $f(x y)=f\left(x y^{-1}\right)$. Setting $x y$ for x we have $f\left(x y^{2}\right)=f(x)$, hence $f(x u)=f(x)$ for all $x \in G, u \in Z_{1}$. Setting $x u$ for x in (4.4) we obtain

$$
h(x u) k_{2}(y)=h(x) k_{2}(y) ;
$$

because $k_{2} \neq 0$, it follows that $h(x u)=h(x)$. Replacing y by $y u$ in (4.4), we have $k_{2}(y u)=k_{2}(y)$ for all $y \in G, u \in Z_{1}$.

Hence f, g, h, k are functions on G / Z_{1} and they verify the equation (1.1) on G / Z_{1}. Thus Lemma 11 is true for $\alpha=1$. We shall prove it for α and admit therefore that $k_{2}(x)=0$ for all $x \in Z_{\alpha}$.

Case i). If $\alpha-1$ exists, we have the functions $F_{\alpha-1}, H_{\alpha-1}, K_{\alpha-1,2}: G / Z_{\alpha-1} \rightarrow$ K which verify equation (4.4) on $G / Z_{\alpha-1}$.

Since $Z_{\alpha} / Z_{\alpha-1}=Z\left(G / Z_{\alpha-1}\right)$, for all $x Z_{\alpha-1} \in Z_{\alpha} / Z_{\alpha-1}, x \in Z_{\alpha}$, we have $K_{\alpha-1,2}\left(x Z_{\alpha-1}\right)=k_{2}(x)=0$. We can apply the case $\alpha=1$ to get new functions $F^{*}, H^{*}, K_{2}^{*}: G / Z_{\alpha-1} / Z_{\alpha} / Z_{\alpha-1}$ with

$$
F^{*}\left(x^{(\alpha-1)} Z_{\alpha} / Z_{\alpha-1}\right)=F_{\alpha-1}\left(x^{(\alpha-1)}\right)=f(x) \text { for all } x^{(\alpha-1)} \in G / Z_{\alpha-1}
$$

and analogously for H^{*} and K_{2}^{*}.
By the isomorphism theorem there exists an isomorphism

$$
\psi: G / Z_{\alpha} \rightarrow\left(G / Z_{\alpha-1}\right) /\left(Z_{\alpha} / Z_{\alpha-1}\right) .
$$

For the function $F_{\alpha}=F^{*} \circ \psi$ we get

$$
F_{\alpha}\left(x^{(\alpha)}\right)=F_{\alpha}\left(x Z_{\alpha}\right)=F^{*}\left(x^{(\alpha-1)} Z_{\alpha}\left(Z_{\alpha-1}\right)=f(x) .\right.
$$

In a similar way we obtain $H_{\alpha}\left(x^{(\alpha)}\right)=h(x)$ and $K_{2, \alpha}\left(x^{(\alpha)}\right)=k_{2}(x), x \in G$.
Case ii). If α is a limit-ordinal consider first two elements x, x^{\prime} in the same residue class of Z_{α}. We have $x^{\prime}=x z$ with $z \in Z_{\alpha}$; one can find, by definition of $Z_{\alpha}, \beta<\alpha$ such that $z \in Z_{\beta}$. Applying the induction hypothesis to Z_{β} we obtain

$$
f(x z)=F_{\beta}\left(x z Z_{\beta}\right)=F_{\beta}\left(x Z_{\beta}\right)=f(x),
$$

that is $f\left(x^{\prime}\right)=f(x)$.
In a similar way we deduce that the function g, h and k are functions on G / Z_{α}.

Theorem 6. Suppose that $G \in \mathcal{N}$ and $[G, G]$ is divisible by 2 and $Z(G) \neq$ $\{e\}$. If $E=L=0$ then the solution (f, g, h, k) of (1.1) has the form (2.5) or the following form

$$
\begin{cases}f(x)=C \beta(x)+A, & g(x)=-C \beta^{2}(x)-A \tag{4.5}\\ h(x)=\frac{C}{4} \beta(x), & k(x)=\beta(x),\end{cases}
$$

where β is a homomorphism from G into the additive group of K.
Proof. From Remark 1 we have $k_{1}(x)=0$ for all $x \in G$, hence the function k_{2} is different from the identically zero function. If there exists $x \in Z_{1}$ such that $k_{2}(x) \neq 0$, then, using Lemma 10 , the function k_{2} verifies the sine equation, hence it follows from Theorem 5 that k_{2} has the form (4.2) or (4.3). If for $\alpha<\gamma, k_{2}(x)=0$ for all $x \in Z_{\alpha}$, and there exists $y_{0} \in Z_{\alpha+1}$ such that $k_{2}\left(y_{0}\right) \neq 0$, then, using Lemma 11, we infer that (f, g, h, k) is a solution of the equation (1.1) on G / Z_{α}.

We have $K_{\alpha 2}\left(y_{0}^{(\alpha)}\right)=k_{2}\left(y_{0}\right) \neq 0$ for $y_{0}^{(\alpha)}=y_{0} Z_{\alpha}$. By Lemma 10 the function $K_{\alpha_{2}}$ verifies the sine equation and from Theorem 5 we find that it has one of the forms (4.2) or (4.3), consequently k_{2} is of the same forms.

From (1.10) for $E=0$ we find

$$
h_{2}(x) k_{2}(y)=h_{2}(y) k_{2}(x) \text { for all } x, y \in G .
$$

Taking $y=y_{0}$, we get

$$
\begin{equation*}
h_{2}(x)=M k_{2}(x), \tag{4.6}
\end{equation*}
$$

where $M=h_{2}\left(y_{0}\right) / k_{2}\left(y_{0}\right)$.
The functions $F_{\alpha}, H_{\alpha}, K_{\alpha 2}$ verify the equation (4.4) on G / Z_{α}, that is

$$
F_{\alpha}\left(x^{(\alpha)} y^{(\alpha)}\right)-F_{\alpha}\left(x^{(\alpha)} y^{-(\alpha)}\right)=H_{\alpha}\left(x^{(\alpha)}\right) K_{\alpha 2}\left(y^{(\alpha)}\right) .
$$

Interchanging $x^{(\alpha)}$ and $y^{(\alpha)}$ and replacing $x^{(\alpha)}$ by $x^{-(\alpha)}$, due to the fact that F_{α} is even, we conclude

$$
F_{\alpha}\left(y^{-(\alpha)} x^{(\alpha)}\right)-F_{\alpha}\left(y^{(\alpha)} x^{(\alpha)}\right)=H_{\alpha}\left(x^{-(\alpha)}\right) K_{\alpha 2}\left(y^{(\alpha)}\right) .
$$

Adding these two equations and supposing that $y^{(\alpha)} \in Z_{\alpha+1} / Z_{\alpha}$, we have

$$
H_{\alpha 1}\left(x^{(\alpha)}\right) K_{\alpha 2}\left(y^{(\alpha)}\right)=0,
$$

hence

$$
H_{\alpha 1}\left(x^{(\alpha)}\right)=h_{1}(x)=0, \quad x \in G .
$$

Setting $y=x$ in (4.4), we get

$$
\begin{equation*}
f\left(x^{2}\right)=h_{2}(x) k_{2}(x)+A . \tag{4.7}
\end{equation*}
$$

If k_{2} has the form (4.2), then from (4.6) we obtain the function h_{2} and from (4.7) we find the function f. Therefore the solution (f, g, h, k) has the form (2.5).

If k_{2} has the form (4.3) in a similar way we obtain that the solution (f, g, h, k) of (1.1) has the form (4.5).

4. MAIN RESULT

By help of the previous Lemmata and Theorems we now describe the complete solution of (1.1) under the assumption that $G \in \mathcal{N}$.

Theorem 7. Let $G \in \mathcal{N}$ and let K be a quadratically closed field of char $K \neq$ 2. Furthermore suppose that $[G, G]$ is divisible by 2 . If (f, g, h, k) is a solution of the equation (1.1), then it has one of the following forms (1.16), (2.5), (2.6), (2.7) or (4.5).

Proof. Distinguish three cases: i) $L \neq 0$, ii) $L=0, E \neq 0$ and iii) $L=0$, $E=0$.

Case i). From Theorem 3 and Theorem 4 infer that the solution has the forms (2.5), (1.16), (2.6) or (2.7).

Case ii). If $L=0$, then Remark 1 yields that $k_{1}(x)=0$ for all $x \in G$.
First we find the functions h and $k=k_{2}$. For this we consider two cases.
a) There exists $x \in G$ such that $h_{2}(x) \neq 0$. If there exists $u \in Z_{1}$ such that $h_{2}(u) \neq 0$, then, by Remark 3, it follows that $k_{2}(u) \neq 0$. According to Lemma 9 the functions h and h_{1} verify Wilson's equation (3.1). Now we can apply Theorem 2. If $h_{1}(x) \neq E, E \neq 0$, then h has the form (2.1).

If $h_{1}(x)=E, E \neq 0$, then the equation (3.1) becomes Jensen's equation, hence h has the form

$$
\begin{equation*}
h(x)=\varphi(x)+E \tag{5.1}
\end{equation*}
$$

where φ is an odd solution of Jensen's equation and E is an arbitrary element of K. Now, using Remark 2 we find that

$$
\begin{equation*}
k(x)=k_{2}(x)=M \frac{Q(x)-Q^{*}(x)}{2} \tag{5.2}
\end{equation*}
$$

or

$$
\begin{equation*}
k(x)=k_{2}(x)=N \varphi(x) \tag{5.3}
\end{equation*}
$$

Replacing the form (2.1) of h and (5.2) of k in (1.7) and (1.8), respectively, we obtain the functions f and g claimed in (2.5). In a similar way we get from (5.1) and (5.3) that the system (f, g, h, k) has the form (2.10). From Theorem 4 we find that the solution (f, g, h, k) has the form (2.6) or (2.7).

We prove by induction on α that the solution (f, g, h, k) has the forms (2.5), (2.6) or (2.7). First we consider $\alpha=1$.

If $h_{2}(u)=0, u \in Z_{1}$, then from Remark 3 we deduce that $k_{2}(u)=0$ for all $u \in Z_{1}$. By Lemma 11 there exist functions $F_{1}, H_{1}, K_{12}: G / Z_{1} \rightarrow K$ which verify the equation (4.4). If there exists $u^{(1)} \in Z_{2} / Z_{1}$ such that $H_{12}\left(u^{(1)}\right) \neq$ 0 and because between H_{12} and K_{12} there exists relation (1.11), Remark 3 implies that $K_{12}\left(u^{(1)}\right) \neq 0$. As above we obtain in this case that H_{1} and K_{12} have the forms (2.1) and (5.2), or (5.1) and (5.3), respectively. Consequently h and k have those forms. The solution (f, g, h, k) of (1.1) has form (2.5), (2.6) or (2.7) in this case. Therefore for $\alpha=1$ the statement is true.

According to the inductive hypothesis the solution (f, g, h, k) has the forms (2.5), (2.6) or (2.7) or there exists $\alpha<\gamma$ such that $k_{2}(x)=0$ for all $x \in Z_{\alpha}$ and there exists $u \in Z_{\alpha+1}$ such that $h_{2}(u) \neq 0$ and $k_{2}(u) \neq 0$.

Lemma 11 tells us that there exist the functions $F_{\alpha}, H_{\alpha}, K_{\alpha 2}: G / Z_{\alpha} \rightarrow K$ which verify the equation (4.4).

Because $K_{\alpha 2}\left(u^{(\alpha)}\right)=k_{2}(u) \neq 0$, where $u^{(\alpha)} \in Z_{\alpha+1} / Z_{\alpha}=Z\left(G / Z_{\alpha}\right)$, the hypotheses of Lemma 9 are satisfied, consequently $\left(H_{\alpha}, H_{\alpha 1}\right)$ is a solution of Wilson's equation (3.1). By Theorem 2, if $H_{\alpha 1}\left(x^{(\alpha)}\right) \neq E, x^{(\alpha)} \in G / Z_{\alpha}$, then H_{α} has the form (2.1), if $H_{\alpha 1}\left(x^{(\alpha)}\right)=E$ for all $x^{(\alpha)} \in G / Z_{\alpha}$, then H_{α} has the form (5.1). The functions $H_{\alpha 2}$ and $K_{\alpha 2}$ verify the relation (1.11) and there exists $u \in Z\left(G / Z_{\alpha}\right)$ such that $K_{\alpha 2}\left(u^{(\alpha)}\right) \neq 0$, hence $K_{\alpha 2}$ is given by (1.12). As above we conclude that the solution (f, g, h, k) has the forms (2.5), (2.6) or (2.7).
b) If $h_{2}(x)=0$ for all $x \in G, h(x)=h_{1}(x)$, then the equation (4.4) becomes

$$
\begin{equation*}
f(x y)-f\left(x y^{-1}\right)=h_{1}(x) k_{2}(y) . \tag{5.4}
\end{equation*}
$$

If there exists $u \in Z_{1}$ such that $k_{2}(u) \neq 0$, then the function h_{1} verifies the Wilson equation

$$
\begin{equation*}
h_{1}(x y)+h_{1}\left(x y^{-1}\right)=h_{1}(x) \frac{h_{1}(y)}{E} . \tag{5.5}
\end{equation*}
$$

Using Theorem 2, if there exist $y \in G$ such that $h_{1}(y) \neq E$, we get

$$
\begin{equation*}
h_{1}(x)=E \frac{Q(x)+Q^{*}(x)}{2}=h(x) \text {, } \tag{5.6}
\end{equation*}
$$

where Q is a homomorphism from G into the multiplicative group of K.
First we will obtain the function k_{2}.
Taking $x=e$ in (5.4), we get

$$
f_{2}(y)=\frac{E}{2} k_{2}(y) .
$$

Since h_{1} is an even function, putting x^{-1} for x, the right hand side of (5.4) remains unchanged and

$$
f(x y)-f\left(x y^{-1}\right)=f\left(x^{-1} y\right)-f\left(x^{-1} y^{-1}\right) .
$$

Setting $y=x$ in this equality, we obtain

$$
f\left(x^{2}\right)-A=A-f\left(x^{-2}\right) .
$$

Because G is 2-divisible one gets $f(x)+f\left(x^{-1}\right)=2 A$, therefore $f_{1}(x)=A$, and $f(x)=\frac{E}{2} k_{2}(x)+A$. From this equality and (5.4) we deduce

$$
\begin{equation*}
E\left[k_{2}(x y)-k_{2}\left(x y^{-1}\right)\right]=2 h_{1}(x) k_{2}(y) . \tag{5.7}
\end{equation*}
$$

Permuting x and y in this equality and adding the equality such obtained with (5.7), we have

$$
\begin{equation*}
\frac{E}{2}\left[k_{2}(x y)+k_{2}(y x)\right]=h_{1}(x) k_{2}(y)+h_{1}(y) k_{2}(x) \tag{5.8}
\end{equation*}
$$

In view of (5.6) we obtain

$$
\begin{equation*}
k_{2}(x y)+k_{2}(y x)=\left[Q(x)+Q^{*}(x)\right] k_{2}(y)+\left[Q(y)+Q^{*}(y)\right] k_{2}(x) \tag{5.9}
\end{equation*}
$$

Because $h_{1}(x) \neq E$, there exists $\alpha<\gamma$ such that $h_{1}(x)=E$ for all $x \in Z_{\alpha}$ and there exists $u \in Z_{\alpha+1}$ such that $h_{1}(x) \neq E$. Using Lemma 2 and Lemma 6 , cases a) for Wilson's equation (5.5) instead of the Wilson equation (1.5), we get that there exist the functions H_{α} and $H_{\alpha 1}$ which verify the Wilson's equation (5.5) on G / Z_{α}. Hence $K_{\alpha 2}$ satisfies the equation (5.9), which is equation (1.12) from [5]. To conclude that $K_{\alpha 2}$ has the form (4.2) is necessary to show that there exists $u^{(\alpha)} \in Z\left(G / Z_{\alpha}\right)$, such that $Q^{2}\left(u^{(\alpha)}\right) \neq 1$. Indeed, if $u^{(\alpha)} \in Z_{\alpha+1} / Z_{\alpha}, Q^{2}\left(u^{(\alpha)}\right)=Q\left(\left(u^{(\alpha)}\right)^{2}\right)=1$, then $Q\left(u^{(\alpha)}\right)=1$ implies $Q(u)=1$, i.e., $h_{1}(u)=E, u \in Z_{\alpha+1}$ contradicting our hypothesis. Therefore k_{2} has the form (4.2).

It is easy to see that in this case the solution (f, g, h, k) has the form (2.5). If $h_{1}(x)=E$ for all $x \in G$, the equation (5.7) can be written as

$$
\begin{equation*}
k_{2}(x y)-k_{2}\left(x y^{-1}\right)=2 k_{2}(y) \tag{5.10}
\end{equation*}
$$

This is equation (2.9). If G is 2 -divisible, then the solution can be obtained very easy.

Set $y=x$ in (5.10), thus

$$
k_{2}\left(x^{2}\right)=2 k_{2}(x)
$$

Taking $x y$ for x in (5.10), yields

$$
k_{2}\left(x y^{2}\right)=2 k_{2}(y)+k_{2}(x)=k_{2}(x)+k_{2}\left(y^{2}\right)
$$

Consequently, G being divisible by $2, k_{2}(x)=\beta(x)$, where β is a homomorphism from G into additive group of K.

We have the solution (f, g, h, k) of (1.1) in this case of the form

$$
\begin{cases}f(x)=\frac{E}{2} \beta(x)+A, & g(x)=-\frac{E}{2} \beta(x)-A \\ h(x)=E, & k(x)=\beta(x)\end{cases}
$$

where β is a homomorphism from G into the additive group of K and A, E are arbitrary elements of K.
iii) We distinguish two cases:
a) If $E=0, L=0$ and there exists $y_{0} \in Z_{1}$ such that $k_{2}\left(y_{0}\right) \neq 0$, then according to Lemma 10 the function k_{2} verifies the sine equation (4.1). Using

Theorem 5, we obtain that k_{2} has the forms (4.2) or (4.3). Taking $L=0$ in (1.2) and $E=0$ in (1.3), it follows

$$
\begin{equation*}
g(x)=-f(x) \text { and } f(x)=f\left(x^{-1}\right) . \tag{5.11}
\end{equation*}
$$

Permuting in (4.4) x and y and subtracting the equality such obtained from (4.4), due to the fact that f is even, we have

$$
f(x y)-f(y x)=h(x) k_{2}(y)-h(y) k_{2}(x) .
$$

Setting $y=y_{0} \in Z_{1}$ in this equality, we get

$$
\begin{equation*}
h(x)=c k_{2}(x), \tag{5.12}
\end{equation*}
$$

where $c=h\left(y_{0}\right) / k_{2}\left(y_{0}\right)$. From this equality and (4.4) we deduce

$$
f(x y)-f\left(x y^{-1}\right)=c k_{2}(x) k_{2}(y) .
$$

Taking in this equality $y=x$, we have

$$
\begin{equation*}
f\left(x^{2}\right)=A+c k_{2}^{2}(x) . \tag{5.13}
\end{equation*}
$$

If we consider for k_{2} the form (4.2), from (5.11), (5.12) and (5.13) we obtain the solution (f, g, h, k) of (1.1) of the form (2.5). If we take k_{2} of the form (4.3), we obtain that the solution (f, g, h, k) has the form (2.6).
b) If $L=0, E=0$ and $k_{2}(x)=0$ for all $x \in Z_{\alpha}$ and there exists $u \in Z_{\alpha+1}$ such that $k_{2}(u) \neq 0$, then it follows from Lemma 11 that f, g, h, k are functions on G / Z_{α} and (f, g, h, k) is a solution of (1.1) on G / Z_{α}. But for this solution the hypotheses of the case a) are verified, hence the solution (f, g, h, k) has the forms (2.5) or (2.6) on G / Z_{α}, in turn (f, g, h, k) has the same forms on G. This finishes the proof.

Acknowledgements. The authors wish to thank the referees for their useful remarks that improved the presentation of this paper.

REFERENCES

[1] AczÉL, J., Lectures on functional equations and their applications, Academic Press, New York and London, 1966.
[2] Aczél, J. and Vincze, E., Über eine gemeinsame Verallgemeinerung zweier Funktionalgleichungen von Jensen, Publ. Math., 9 (1962), 326-344.
[3] BaER, R., Nilpotent groups and their generalizations, Trans. Amer. Math. Soc., 47 (1940), 393-434.
[4] Corover, I., The functional equation $f(x y)+f(y x)+f\left(x y^{-1}\right)+f\left(y^{-1} x\right)=4 f(x) f(y)$ on nilpotent groups, Bul. Ştiinţ. Inst. Polit. Cluj-Napoca, 20 (1977), 25-28.
[5] Corover, I., The functional equation $f(x y)+f\left(x y^{-1}\right)=2 f(x) g(y)$ for nilpotent groups, Mathematica (Cluj), 22 (45) (1980), 33-41.
[6] Corovei, I., On semi-homomorphisms and Jensen's equation, Mathematica (Cluj), $\mathbf{3 7}$ (60), nrs. 1-2 (1995), 59-64.
[7] Corovei, I., Functional equation $f(x y)+g\left(x y^{-1}\right)=h(x) k(y)$ on nilpotent groups, Automation Computers App. Math., 11 (2002), nr. 2, 55-68.
[8] Corover, I., The sine functional equation on 2-divisible group, Accepted for publication by Mathematica (Cluj).
[9] Friis, P., D'Alembert's and Wilson's equations on Lie groups, Aequationes Math., 67 (2004), 12-25.
[10] Ng, C. T., Jensen's functional equation on groups, III, Aequationes Math., 62 (2001), 143-159.
[11] Stetkaer, H., On Jensen's functional equation on groups, Aequationes Math., 66 (2003), 100-118.
[12] Vincze, E., A generalization of the functional equation of Abel-Poisson, Mat. Lapok, 12 (1961), 18-31.
[13] Wilson, W. H., On certain related functional equations, Bull. Amer. Math. Soc., 26 (1919), 300-312.

Received April 26, 2007
Technical University, Department of Mathematics
Str. Constantin Daicoviciu, nr. 15
400020 Cluj-Napoca, Romania
E-mail: Ilie.Corovei@math.utcluj.ro

