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NEW SUBCLASSES OF ANALYTIC AND UNIVALENT
FUNCTIONS INVOLVING CERTAIN CONVOLUTION

OPERATORS

K.O. BABALOLA

Abstract. Let E be the open unit disk {z ∈ C : |z| < 1}. Let A be the class of
analytic functions in E, which have the form f(z) = z + a2z

2 + . . . . We define
operators Lσ

n : A → A using the convolution ∗. Using these operators, we define
and study new classes of functions in the unit disk. Moreover, we obtain some ba-
sic properties of the new classes, namely inclusion, growth, covering, distortion,
closure under certain integral transformation and coefficient inequalities.
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1. INTRODUCTION

Denote by A the class of functions

f(z) = z + a2z
2 + . . .

which are analytic in E. Let P be the class of functions

(1) p(z) = 1 + c1z + c2z
2 + . . .

which are also analytic in the unit disk E and satisfy Re p(z) > 0, z ∈ E.
Furthermore, for 0 ≤ β < 1, let P (β) denote the subclasses of P consisting of
analytic functions of the form pβ(z) = β + (1− β)p(z), p ∈ P .

It is well known that a function f ∈ A is said to belong to the class S0(β) if
f(z)/z ∈ P (β), and is said to be of bounded turning of order β if f ′(z) ∈ P (β).
The class of functions of bounded turning of order β is denoted by R(β) and it
is known to consist only of univalent functions in the unit disk. These classes
of functions were studied in the literatures [5, 12] and various generalizations
of them have appeared in [1, 2, 4, 7].

Let g(z) = z + b2z
2 + · · · ∈ A. The convolution (or Hadamard product) of

f and g (written as f ∗ g) is defined as

(f ∗ g)(z) = z +
∞∑

k=2

akbkz
k.

Let σ be a fixed real number and n ∈ N. Define

τσ,n(z) =
z

(1− z)σ−(n−1)
, σ − (n− 1) > 0
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and τ
(−1)
σ,n such that

(τσ,n ∗ τ (−1)
σ,n )(z) =

z

1− z
.

For n = 0, we simply write τσ and τ
(−1)
σ respectively. Let f ∈ A, define the

operator Dσ : A → A by

Dσf(z) = (τσ ∗ f)(z).

The operator Dσ is called the Ruscheweyh derivative [9]. Analoguos to Dσ,
Noor [6] defined the integral operator Iσ : A → A by

Iσf(z) = (τ (−1)
σ ∗ f)(z).

The operators Dσ and Iσ have been used to define several classes of functions
(see [1, 2, 4, 7, 9, 10]). We define the following operators.

Definition 1. Let f ∈ A. We define the operators Lσ
n : A → A as follows:

Lσ
nf(z) = (τσ ∗ τ (−1)

σ,n ∗ f)(z).

Definition 2. Let f ∈ A. We define the operators lσn : A → A as follows:

lσnf(z) = (τ (−1)
σ ∗ τσ,n ∗ f)(z).

Note that Lσ
0f(z) = L0

0f(z) = f(z), L1
1f(z) = zf ′(z). Furthermore Ln

nf(z) =
Dnf(z) and L0

−nf(z) = Inf(z). Similarly, lσ0 f(z) = l00f(z) = f(z), l11f(z) =
zf ′(z), lnnf(z) = Inf(z) and l0−nf(z) = Dnf(z). We also have the following
remark.

Remark 1. Let f ∈ A. Then

Lσ
n(lσnf(z)) = lσn(Lσ

nf(z)) = f(z).

In the case σ = n we write Lnf(z) (= Dnf(z)) instead of Ln
nf(z) and

lnf(z) (= Inf(z)) instead of lnnf(z).
Next we isolate new classes of functions by:

Definition 3. Let f ∈ A. Let σ be any fixed real number satisfying
σ− (n− 1) > 0 for n ∈ N. Then, for 0 ≤ β < 1, a function f ∈ A is said to be
in the class Bσ

n(β) if and only if

(2) Re
Lσ

nf(z)
z

> β, z ∈ E .

If σ = n we write Bn(β) in place of Bσ
n(β). We also note the following

equivalent classes of functions: B0(β) ≡ S0(β) and B1(β) ≡ R(β). In [4], Goel
and Sohi defined classes Mn(β) as consisting of functions f ∈ A satisfying

Re
Dn+1f(z)

z
> β, z ∈ E.
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These classes coincide with Bσ
n+1(β). Following from the geometric condi-

tion (2) and Remark 1, functions in the classes Bσ
n(β) can be represented in

terms of functions in P (β) as

f(z) = lσn[zpβ(z)].

We investigate the classes Bσ
n(β) in Section 3. However, we require some

preliminary discussions and results, which we present in the next section.

2. TWO-PARAMETER INTEGRAL ITERATION OF THE CLASS P

In [2], the authors identified the following iterated integral transformation
of functions in the class P .

Definition 4 ([2]). Let p ∈ P and α > 0 be real. The n-th iterated integral
transform of p(z), z ∈ E, is defined as

pn(z) =
α

zα

∫ z

0
tα−1pn−1(t)dt, n ≥ 1,

with p0(z) = p(z).
The transformation, denoted by Pn, arose from the study of classes Tα

n (β)
consisting of functions defined by the condition Re {Dnf(z)α/αnzα} > β,
where α > 0 is real, 0 ≤ β < 1, and Dn (n ∈ N) is the Salagean derivative
operator defined as D0f(z) = f(z) and Dnf(z) = z[D(n−1)f(z)]′ (see [1, 2, 7]);
and was applied successfully in providing elegant proofs of many results. It is
known that for each n ≥ 1, the class Tα

n (β) consists only of univalent functions
in the unit disk. A basic relationship between the classes Pn and Tα

n (β) was
given by the following lemma.

Lemma 1. ([2]) Let f ∈ A, and α, β and Dn as defined above. Then the
following are equivalent:

(i) f ∈ Tα
n (β),

(ii) (Dnf(z)α/αnzα − β)/(1− β) ∈ P ,
(iii) (f(z)α/zα − β)/(1− β) ∈ Pn.

Analogous to Pn we define the following two-parameter integral iteration of
a p ∈ P .

Definition 5. Let p ∈ P . Let σ be any fixed real number such that
σ− (n− 1) > 0 for n ∈ N. We define the sigma-n-th integral iteration of p(z),
z ∈ E as

(3) pσ,n(z) =
σ − (n− 1)
zσ−(n−1)

∫ z

0
tσ−npσ,n−1(t)dt, n ≥ 1

with pσ,0(z) = p(z).
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We note that since pσ,0(z) belongs to P , the transform pσ,n(z) is analytic,
and pσ,n(0) = 1 and pσ,n(z) 6= 0 for z ∈ E. We denote the family of iterations
above by P σ

n . With p(z) given by (1) it is easily verified that

pσ,n(z) = 1 +
∞∑

k=1

cσ
n,kz

k

where

(4) cσ
n,k =

σ(σ − 1) . . . (σ − (n− 1))
(σ + k)(σ + k − 1) . . . (σ + k − (n− 1))

ck, k ≥ 1 .

Observe that the multiplier of ck in (4) can be written in factorial form as:

σ(σ − 1) . . . (σ − (n− 1))
(σ + k)(σ + k − 1) . . . (σ + k − (n− 1))

=
σ!

(σ + k)!
(σ + k − n)!

(σ − n)!
, k ≥ 1.

If also, as it is well known, (σ)n stands for the Pochhammer symbol defined
by

(σ)n =
Γ(σ + n)

Γ(σ)
=

{
1 if n = 0,
σ(σ + 1) . . . (σ + n− 1) if n ≥ 1.

then we can write the multiplier as (σ − (n − 1))n/(σ + k − (n − 1))n and
throughout this paper we represent this fraction by [σ]n/k. Thus we have

(5) cσ
n,k =

(σ − (n− 1))n

(σ + k − (n− 1))n
ck = [σ]n/kck

with [σ]0/k = 1. By setting pσ,0(z) = L0(z) = (1 + z)/(1 − z) we see easily
that the sigma-n-th integral iteration of the Mobius functions is

(6) Lσ,n(z) =
σ − (n− 1)
zσ−(n−1)

∫ z

0
tσ−nLσ,n−1(t)dt, n ≥ 1 .

The function Lσ,n(z) will play a central role in the family P σ
n similar to the

role of the Mobius function L0(z) in the family P . Now, from (5) and the fact
that |ck| ≤ 2 (Caratheodory lemma), we have the following inequality

(7) |cσ
n,k| ≤ 2[σ]n/k, k ≥ 1,

with equality if and only if pσ,n(z) = Lσ,n(z) given by (6).

Remark 2. From Definitions 4 and 5 we note that P σ
1 = P1.

The following results characterizing the family P σ
n can be obtained mutatis

mutandis as in Section 2 of [2], thus we omit the proofs.

Theorem 1. Let γ 6= 1 be a nonnegative real number. Then for any fixed
σ and each n ≥ 1

Re pσ,n−1(z) > γ ⇒ Re pσ,n(z) > γ, 0 ≤ γ < 1,

and
Re pσ,n−1(z) < γ ⇒ Re pσ,n(z) < γ, γ > 1.
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Corollary 1. P σ
n ⊂ P , n ≥ 1.

Theorem 2. P σ
n+1 ⊂ P σ

n , n ≥ 1.

Theorem 3. Let pσ,n ∈ P σ
n . Then

(a) |pσ,n(z)| ≤ 1 + 2
∑∞

k=1[σ]n/kr
k, |z| = r,

(b) Re pσ,n(z) ≥ 1 + 2
∑∞

k=1[σ]n/k(−r)k, |z| = r.
The results are sharp for the function pσ,n(z) = Lσ,n(z) in the upper bound

and pσ,n(z) = Lσ,n(−z) in the lower bound.

Corollary 2. pσ,n ∈ P σ
n if and only if pσ,n(z) ≺ Lσ,n(z).

Remark 3. If we choose n = 0 in the corollary above we see that p ∈ P if
and only if p(z) ≺ L0(z) which is well known.

Remark 4. For z ∈ E, the following are equivalent:
(i) p ≺ L0(z),
(ii) p ∈ P ,
(iii) pσ,n ∈ P σ

n ,
(iv) pσ,n(z) ≺ Lσ,n(z).

Theorem 4. P σ
n is a convex set.

Proof. Let pσ,n, qσ,n ∈ P σ
n . Then for nonnegative real numbers µ1 and µ2

with µ1 + µ2 = 1, we have

µ1pσ,n + µ2qσ,n =
σ − (n− 1)
zσ−(n−1)

∫ z

0
tσ−n(µ1pσ,n−1 + µ2qσ,n−1)(t)dt.

The result follows inductively since µ1pσ,0 + µ2qσ,0 = µ1p(z) + µ2q(z) ∈ P , for
p, q ∈ P . �

3. CHARACTERIZATIONS OF THE CLASS Bσ
N (β)

In this section we present the main results of this work. These include
inclusion, growth, covering, distortion, closure under certain integral transfor-
mation and coefficient inequalities.

First we prove the following lemma, similar to Lemma 1.

Lemma 2. Let f ∈ A and α, β and Dn as defined above. Then the following
are equivalent:

(i) f ∈ Bσ
n(β),

(ii) (Lσ
nf(z)/z − β)/(1− β) ∈ P ,

(iii) (f(z)/z − β)/(1− β) ∈ P σ
n .

Proof. That (i) ⇔ (ii) is clear from Definition 5. Now (ii) is true ⇔ there
exists p ∈ P such that

Lσ
nf(z) = z[β + (1− β)p(z)]

= z + (1− β)
∞∑

k=1

ckz
k+1 .

(8)
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Applying the operator lσn on (8), we have (8) ⇔

f(z) = z + (1− β)
∞∑

k=1

cσ
n,kz

k+1

⇔

(9)
f(z)/z − β

1− β
= 1 +

∞∑
k=1

cσ
n,kz

k .

The right hand side of (9) is a function in P σ
n . This proves the lemma. �

We prove now the main results.

Theorem 5. For any fixed σ satisfying σ − (n − 1) > 0, the following
inclusion holds

Bσ
n+1(β) ⊂ Bσ

n(β), n ∈ N.

Proof. Let f ∈ Bσ
n+1(β). Then, by Lemma 2, (f(z)/z − β)/(1− β) ∈ P σ

n+1.
By Theorem 3, (f(z)/z − β)/(1 − β) ∈ P σ

n . That is, by Lemma 2, again
f ∈ Bσ

n(β). �

Theorem 6. The class Bσ
1 (β) consists only of univalent functions in E.

Proof. Let f ∈ Bσ
1 (β). Lemma 2 implies that (f(z)/z − β)/(1 − β) ∈ P σ

1 .
Since σ is any fixed integer satisfying σ− (n−1) > 0, we have σ > 0 for n = 1
and by Remark 2, it follows that (f(z)/z−β)/(1−β) ∈ P1. Thus, by Lemma
1, this implies that the function f(z) belongs to the class T σ

1 (β) (≡ Tα
1 (β))

which consists only of univalent functions in E. �

From Theorems 5 and 6 we have

Corollary 3. For n ≥ 1, Bσ
n(β) consists only of univalent functions in E.

Theorem 7. Let f ∈ Bσ
n(β). Then we have the sharp inequalities

|ak| ≤ 2(1− β)[σ]n/(k−1), k ≥ 2.

Equality is attained for

(10) f(z) = z + 2(1− β)
∞∑

k=2

[σ]n/(k−1)z
k .

Proof. The result follows from equation (9) and the inequality (7). �

Theorem 8. The class Bσ
n(β) is closed under the Bernard integral

(11) F (z) =
c + 1
zc

∫ z

0
tc−1f(t)dt, c + 1 > 0 .
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Proof. From (11) we have

(12)
F (z)/z − β

1− β
=

ν

zν

∫ z

0
tν−1

(
f(t)/t− β

1− β

)
dt,

where ν = c+1. Since f ∈ Bσ
n(β), taking ν = c+1 = σ−n, we can write (12)

as
F (z)/z − β

1− β
=

σ − n

zσ−n

∫ z

0
t(σ−n)−1pσ,n(t)dt

which implies that (F (z)/z − β)/(1 − β) ∈ P σ
n+1. Thus, by Theorem 2, we

have (F (z)/z − β)/(1− β) ∈ P σ
n . Hence F ∈ Bσ

n(β). �

Theorem 9. Let f ∈ Bσ
n(β). Then

r + 2(1− β)
∞∑

k=2

(−1)k−1[σ]n/(k−1)r
k ≤ |f(z)| ≤ r + 2(1− β)

∞∑
k=2

[σ]n/(k−1)r
k.

The inequalities are sharp.

Proof. The result follows by taking pσ,n(z) = (f(z)/z − β)(1− β) in Theo-
rem 3. Upper bound equality is realized for the function given by (10) while
equality in the lower bound equality is attained for the function

(13) f(z) = z + 2(1− β)
∞∑

k=2

(−1)k − 1[σ]n/(k−1)z
k .

This completes the proof. �

Theorem 10. Each function f(z) in the class Bσ
n(β) maps the unit disk

onto a domain which covers the disk |w| < 1+2(1−β)
∑∞

k=2(−1)k − 1[σ]n/(k−1).
The result is sharp.

Proof. From Theorem 9 it follows that

|f(z)| ≥ r + 2(1− β)
∞∑

k=2

(−1)k−1[σ]n/(k−1)r
k.

This implies that the range of every function f(z) in the class Bσ
n(β) covers

the disk

|w| < 1 + 2(1− β)
∞∑

k=2

(−1)k − 1[σ]n/(k−1)

= inf
r→1

{
r + 2(1− β)

∞∑
k=2

(−1)k−1[σ]n/(k−1)r
k

}
.

The function given by (13) shows that the result is sharp. �
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Theorem 11. Let f ∈ Bσ
n(β). Define

M(σ, n, β, r) = σ − (n− 1) + 2(1− β)
∞∑

k=1

[σ](n−1)/kr
k

and

m(σ, n, β, r) = σ − (n− 1) + 2(1− β)
∞∑

k=1

[σ](n−1)/k(−r)k

with
[σ](−1)/k =

σ + k + 1
σ + 1

.

Then

m(σ, n, β, r) ≤
∣∣∣∣(σ − n)

f(z)
z

+ f ′(z)
∣∣∣∣ ≤ M(σ, n, β, r).

The inequalities are sharp.

Proof. Since f ∈ Bσ
n(β), by Lemma 2, there exists pσ,n ∈ P σ

n such that

(14) f(z) = z[β + (1− β)pσ,n(z)] .

Hence we have

(15) f ′(z) = β + (1− β)[pσ,n(z) + zp′σ,n(z)] .

From (14) and (15) we get

(16) (σ−n)
f(z)

z
+f ′(z) = (σ− (n−1))β +(1−β)[(σ− (n−1))pσ,n + zp′σ,n] .

However we find from (3) that

(σ − (n− 1))pσ,n(z) + zp′σ,n(z) = (σ − (n− 1))pσ,n−1(z)

so that (16) becomes

(σ − n)
f(z)

z
+ f ′(z) = (σ − (n− 1))[β + (1− β)pσ,n−1].

Therefore, by Theorem 3, we get

(17)
∣∣∣∣(σ − n)

f(z)
z

+ f ′(z)
∣∣∣∣ ≤ σ − (n− 1) + 2(1− β)

∞∑
k=1

[σ](n−1)/kr
k

and

(18) Re
{

(σ − n)
f(z)

z
+ f ′(z)

}
≥ σ− (n− 1)+2(1−β)

∞∑
k=1

[σ](n−1)/k(−r)k .

The inequalities now follow from (17) and (18). Upper bound equality is
realized for the function f(z) given by (10) while equality in the lower bound
equality is attained for the function f(z) defined by (13). �

Finally we prove

Theorem 12. Bσ
n(β) is a convex family of analytic and univalent functions.
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Proof. Let f, g ∈ Bσ
n(β). Then by Lemma 2 there exists pσ,n, qσ,n ∈ P σ

n

such that
f(z) = z[β + (1− β)pσ,n(z)]

and
g(z) = z[β + (1− β)qσ,n(z)].

Therefore for nonnegative real numbers µ1 and µ2 with µ1 + µ2 = 1, we have
h(z) = µ1f(z) + µ2g(z) = zµ1[β + (1− β)pσ,n(z)] + zµ2[β + (1− β)qσ,n(z)]

= z[(µ1 + µ2)β + (1− β)(µ1pσ,n + µ2qσ,n]

= z[β + (1− β)(µ1pσ,n + µ2qσ,n].

The conclusion follows from Theorem 4. �

4. GENERAL REMARKS

The two-parameter integral iteration of the Caratheodory functions pre-
sented in Section 2 of this paper has also proved very resourceful in providing
elegantly short proofs of many fundamental results in the theory of analytic
and univalent functions. An earlier one presented in [2] closely relates with
certain classes of functions defined by the Salagean derivative operators. This
provides the motivation to search for analogous iteration that will equivalently
closely relate with certain other classes of functions involving the Ruscheweyh
derivative, and this leads us to defining new operators Lσ

n : A → A, which
includes the Ruscheweyh derivative as a special case.

Finally we remark that the results presented in this work include many
earlier ones as particular cases.
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